

Zoltán Trócsányi

LEPTO-BARYOGENESIS

based on

arXiv:1812.11189 (Symmetry), 2301.07961 (JHEP), 2409.07180 (JHEP), 2509.nnnn with K. Seller, Zs. Szép and also 1812.07180 by B. Garbrecht

ELTE seminar, 21 October, 2025

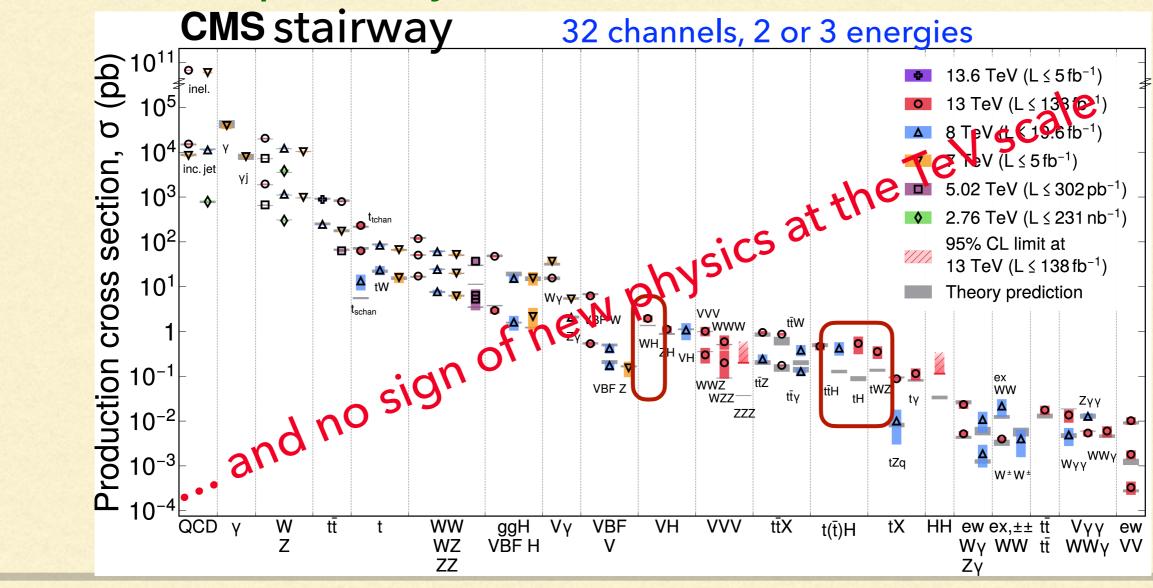
OUTLINE

Rough estimates of BSM effects can easily be deceptive

- 1. Motivation: status of particle physics
 - Colliders
 - Cosmology
- 2. Sakharov's conditions
- 3. Elements of lepto-baryogenesis
- 4. Superweak $U(1)_z$ extension of SM (SWSM)
- 5. Outlook

Status of particle physics: energy frontier

 Colliders: SM describes final states of particle collisions precisely



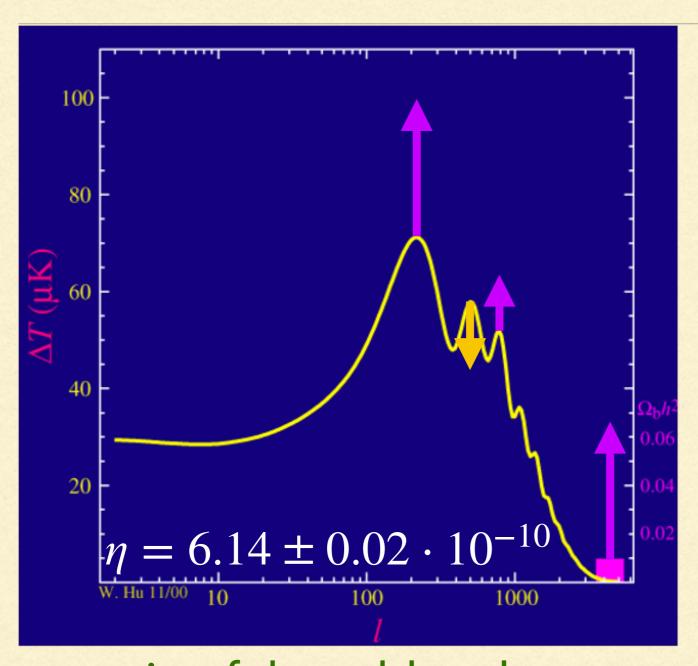
Status of particle physics: cosmic and intensity frontiers

Established observations require physics beyond SM, but do not suggest rich BSM physics

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry
- 1. Neutrino flavours oscillate
- 2. Universe at large scale described precisely by cosmological SM: Λ CDM (Ω_m =0.3); inflation of the early, accelerated expansion of the present Universe
- 3. Existing baryon asymmetry cannot be explained by CP asymmetry in SM, baryon to photon ratio at large scales: $\eta \simeq 6.0 \cdot 10^{-10}$

Baryon asymmetry in the Universe from CMB power spectrum & BBN nucleosynthesis



baryon density parameter $\Omega_{\rm B}h^2$ $5.8 \le 10^{10} \eta \le 6.6$ 0.25D/H 10^{-4} $_{10^{-5}}^{He/H}$ 10^{-9} 10^{-10} 10^{-10} baryon-to-photon ratio $\eta = n_b/n_{\gamma}$

ratio of the odd and even peaks strongly depends on η

abundances of light elements strongly depend on η 5b/32

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry

Puzzles in the scalar sector:

- Lagrangian and its parameters
- Yukawa couplings
- Connection to inflation
- Vacuum stability (λ too small)
- Naturalness (μ is dimensional)

$$\mathcal{L} \supset \mathcal{L}_S = \mu^2 |\phi|^2 + \lambda |\phi|^4 + ?$$

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry

Hidden new particles:

- Too heavy
- Interact too weakly

Puzzles in the scalar sector:

- Lagrangian and its parameters
- Yukawa couplings
- Connection to inflation
- Vacuum stability (λ too small)
- Naturalness (μ is dimensional)

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry

Hidden new particles:

- Too heavy
- Interact too weakly

Puzzles in the scalar sector:

- Lagrangian and its parameters
- Yukawa couplings
- Connection to inflation
- Vacuum stability (λ too small)
- Naturalness (μ is dimensional)

Anomalies:

- Muon anomalous magnetic moment
- 2-3σ excesses at LHC experiments
- X17 and E38 anomalies
- CDF II result for M_W

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry

Hidden new particles:

- Too heavy
- Interact too weakly

Puzzles in the scalar sector:

- Lagrangian and its parameters
- Yukawa couplings
- Connection to inflation
- Vacuum stability (λ too small)
- Naturalness (μ is dimensional)

Anomalies:

Not addressed in this talk, they seem to fade away or not related fundamental physics

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry is our focus today

Hidden new particles:

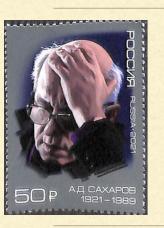
- Too heavy
- Interact too weakly

Puzzles in the scalar sector:

- Lagrangian and its parameters
- Yukawa couplings
- Connection to inflation
- Vacuum stability (λ too small)
- Naturalness (μ is dimensional)

Anomalies:

- Muon anomalous magnetic moment
- 2-3σ excesses at LHC experiments
- X17 and E38 anomalies
- CDF II result for M_W

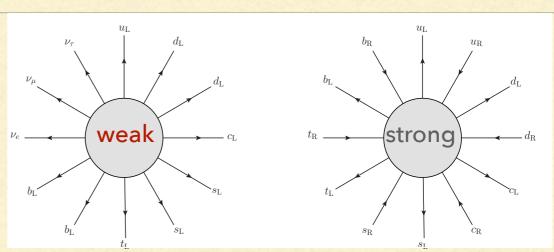


Sakharov's conditions for baryogengesis are fulfilled in the SM, but not enough

1. Baryon number violation

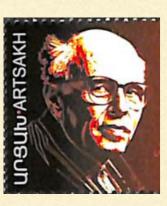
✓ exists in the SM
weak sphaleron process:
\(\lambda(P + I) = 6 \lambda(P + I) = 0

$$\Delta(B+L)=6, \, \Delta(B-L)=0$$



't Hooft vertices

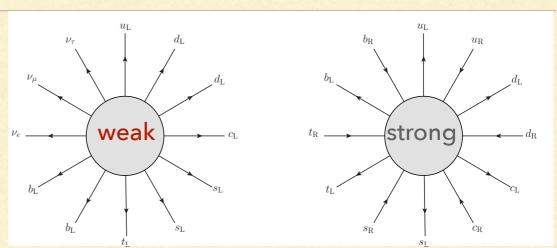
- ✓ C violation exists in the SM in weak interactions
- CP violation exists in the SM in the quark sector (CKM), but falls short by almost 10 orders of magnitude
- 3. Deviation from equilibrium at phase boundaries in phase transitions
 - phase transition exists in the SM scalar sector,
 but only cross-over instead of strong 1st order



Sakharov's conditions for baryogengesis may be enough in extensions of SM

- 1. Baryon number violation
 - ✓ exists in the SM
 weak sphaleron process:

$$\Delta(B+L)=6, \, \Delta(B-L)=0$$



't Hooft vertices

- ✓ C violation exists in the SM in weak interactions
- ✓ CP violation in decays and oscillations of right-handed neutrinos
- 3. Deviation from equilibrium
 - √ in production and decay of RHNs

Estimate of lepto-baryogenesis has two steps

- Leptogenesis in a beyond the standard model (BSM)
 - followed by computing the effect of
- 2. sphaleron processes in the SM: violates B + L, but conserves B L
 - Suppressed exponentially with decreasing temperature, but unsuppressed above $T_{\rm sph} \simeq 132\,{\rm GeV}$

Neutrino masses and leptogenesis

...can naturally be explained by adding right-handed neutrinos (RHNs) to the particle spectrum with Majorana mass terms:

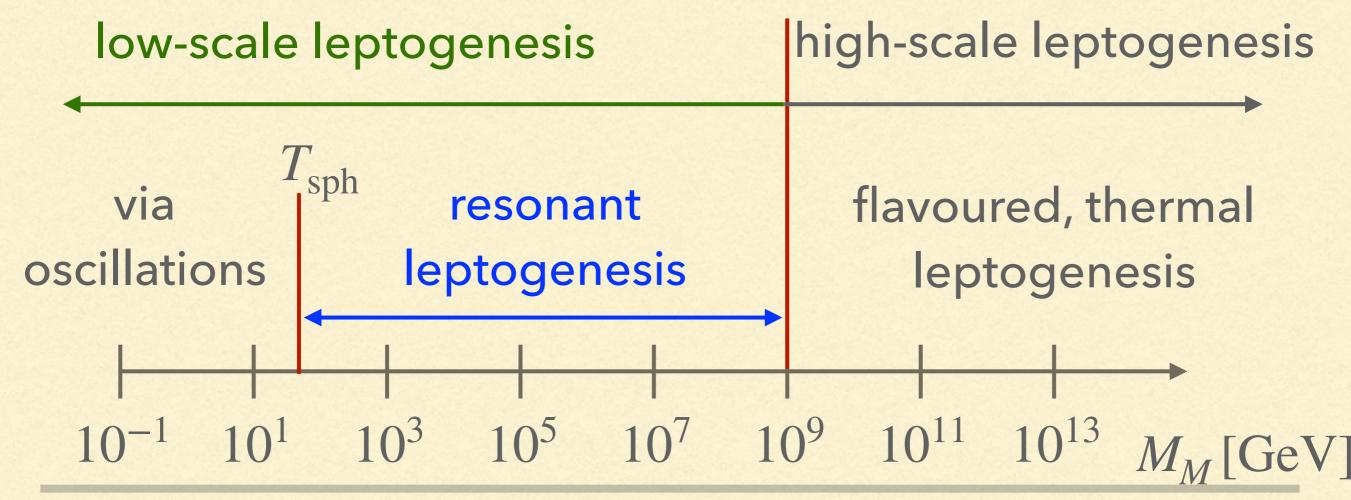
$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_{L}} & \overline{\nu_{R}^{c}} \end{pmatrix} \begin{pmatrix} \mathbf{0}_{3} & \mathbf{M}_{D} \\ \mathbf{M}_{D}^{T} & \mathbf{M}_{M} \end{pmatrix} \begin{pmatrix} \nu_{L}^{c} \\ \nu_{R} \end{pmatrix},$$

which gives active neutrino masses with the seesaw formula $\mathbf{M}_{\nu} = \mathbf{M}_D \mathbf{M}_M^{-1} \mathbf{M}_D^T$

=> M_M sets the scale of leptogenesis

Neutrino masses and leptogenesis

...can naturally be explained by adding righthanded neutrinos (RHNs) to the particle spectrum with Majorana mass terms



Neutrino masses and leptogenesis

...can naturally be explained by adding righthanded neutrinos (RHNs) to the particle spectrum with Majorana mass terms

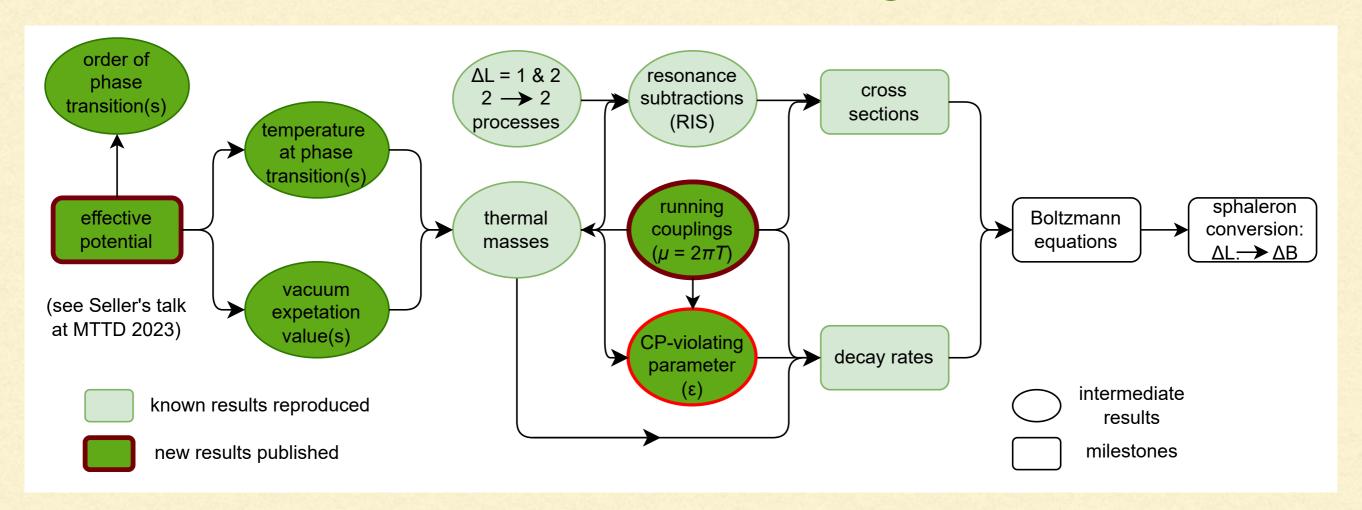
Decays of such RHNs lead to a non-vanishing ΔL that can be estimated either by

- Kadanoff-Baym eqs. of non-equilibrium QFT, or
- semiclassical Boltzmann eqs.

(can be obtained from KB employing quasiparticle approximation, valid "near" equilibrium)

Boltzmann approach is much simpler technically: easier to apply in specific models

...which does not mean it is simple – relies on several (?) ingredients:



$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

 $-z = \Lambda/T$ inverse temperature

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

- $z = \Lambda/T$ inverse temperature
- s(z) entropy density when $T = \Lambda/z$

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

- $z = \Lambda/T$ inverse temperature
- s entropy density
- H(z) Hubble parameter when $T = \Lambda/z$

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

- $z = \Lambda/T$ inverse temperature
- s entropy density
- H(z) Hubble parameter when $T = \Lambda/z$
- $\gamma_{ab \to leptons}(T)$ thermal rate for $ab \to leptons$

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

- $z = \Lambda/T$ inverse temperature
- s entropy density
- H(z) Hubble parameter when $T = \Lambda/z$
- $\gamma_{ab \to leptons}(T)$ thermal rate for $ab \to leptons$
- $\mathcal{Y}_{\ell}^{\text{eq}}$ equilibrium value of the lepton abundance

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\epsilon \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - \mathbf{W} \mathcal{Y}_{\Delta L} \right]$$

- $z = \Lambda/T$ inverse temperature
- s entropy density
- H(z) Hubble parameter when $T = \Lambda/z$
- $\gamma_{ab \to \text{leptons}}(T)$ thermal rate for $ab \to \text{leptons}$
- $\mathcal{Y}_{\ell}^{\text{eq}}$ equilibrium value of the lepton abundance
- W collection of terms emerging from the scattering processes, leads to equilibration (washout of asymmetry)

CP asymmetry factor

$$\frac{\mathrm{d}\mathcal{Y}_{\Delta L}}{\mathrm{d}z} = \frac{1}{sHz} \left[\left(\boldsymbol{\epsilon} \gamma_{\mathrm{D}} - \gamma_{ab \to N\ell} \frac{\mathcal{Y}_{\Delta L}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right) \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - W \mathcal{Y}_{\Delta L} \right]$$

asymmetry is generated by CP-violating decays of the sterile neutrinos, given by γ_D , and proportional to the CP asymmetry factor from

the decay $a \to b + c$ and CP-conjugate decay $\bar{a} \to \bar{b} + \bar{c}$

$$\epsilon_{a \to b+c} = \frac{\gamma_{a \to b+c} - \gamma_{\bar{a} \to \bar{b}+\bar{c}}}{\gamma_{a \to b+c} + \gamma_{\bar{a} \to \bar{b}+\bar{c}}}$$

(other terms decrease $\mathcal{Y}_{\Lambda I}$, i.e. lead to washout)

CP asymmetry factor

Often used as constant coming from T=0 QFT:

$$\epsilon_{N_i \to \phi + L}^{(0)}(x) = \frac{G}{8\pi} \sqrt{x} \left\{ \frac{1}{1 - x} + \left[1 + (1 + x) \log\left(\frac{x}{1 + x}\right) \right] \right\}$$

$$\rightarrow G = \operatorname{Im}[(K_{ij})^2] / K_{ii} \neq 0 \text{ with } K = Y^{\dagger}Y$$

coupling factor

Often used as constant coming from T=0 QFT:

$$\epsilon_{N_i \to \phi + L}^{(0)}(\mathbf{x}) = \frac{G}{8\pi} \sqrt{\mathbf{x}} \left\{ \frac{1}{1 - \mathbf{x}} + \left[1 + (1 + \mathbf{x}) \log\left(\frac{\mathbf{x}}{1 + \mathbf{x}}\right) \right] \right\}$$

- $G = \operatorname{Im}[(K_{ij})^2] / K_{ii} \neq 0 \text{ with } K = Y^{\dagger}Y$ coupling
- $x = m_{N_j}^2 / m_{N_i}^2 > 1$: ratio of the squared masses of the Majorana neutrinos

Often used as constant coming from T=0 QFT:

$$\epsilon_{N_i \to \phi + L}^{(0)}(x) = \frac{G}{8\pi} \sqrt{x} \left\{ \frac{1}{1 - x} + \left[1 + (1 + x) \log\left(\frac{x}{1 + x}\right) \right] \right\}$$

- $G = \operatorname{Im}[(K_{ij})^2] / K_{ii} \neq 0 \text{ with } K = Y^{\dagger}Y$ coupling
- $\rightarrow x = m_{N_j}^2/m_{N_i}^2 > 1$: ratio of the squared masses of the Majorana neutrinos
- \rightarrow for $x \gg 1$: 1st term \approx twice the 2nd one

Often used as constant coming from T=0 QFT:

$$\epsilon_{N_i \to \phi + L}^{(0)}(x) = \frac{G}{8\pi} \sqrt{x} \left\{ \frac{1}{1 - x} + \left[1 + (1 + x) \log\left(\frac{x}{1 + x}\right) \right] \right\}$$

1st term: contribution of the imaginary part of

self energy

$$=\frac{1}{2} \times \int \left(\int d\Gamma \right) d\Gamma \right)$$

Often used as constant coming from T=0 QFT:

$$\epsilon_{N_i \to \phi + L}^{(0)}(x) = \frac{G}{8\pi} \sqrt{x} \left\{ \frac{1}{1 - x} + \left[1 + (1 + x) \log\left(\frac{x}{1 + x}\right) \right] \right\}$$

1st term: contribution of the imaginary part of

self energy

$$=\frac{1}{2} \times \int \left(\int d\Gamma \right) d\Gamma \right)$$

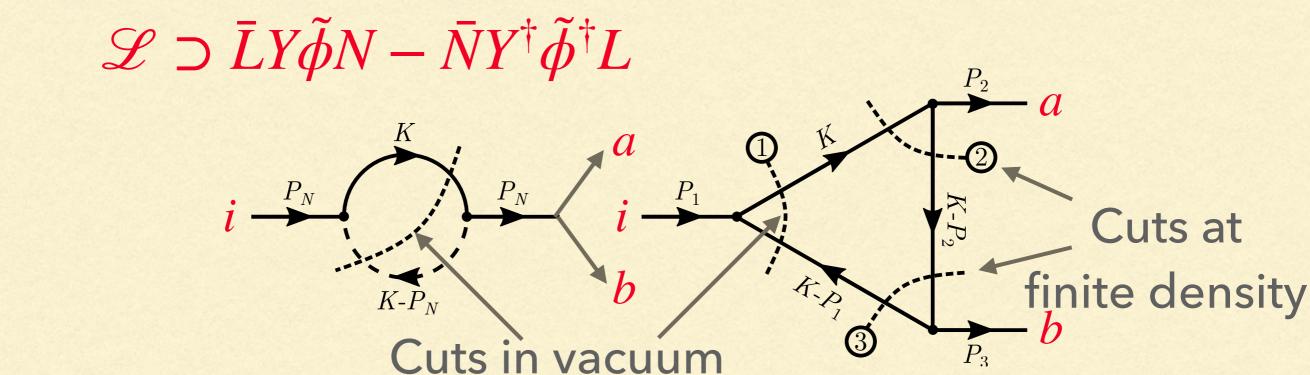
2nd term: contribution of the imaginary part of

vertex correction

$$=\frac{1}{2} \times \int \left(\frac{1}{2} + \frac{1}{2}$$

CP asymmetry factor at finite density

Two cuts (2 and 3 in the vertex correction)



are neglected in standard literature, but may be relevant for low-scale leptogenesis when $m_N \approx T$

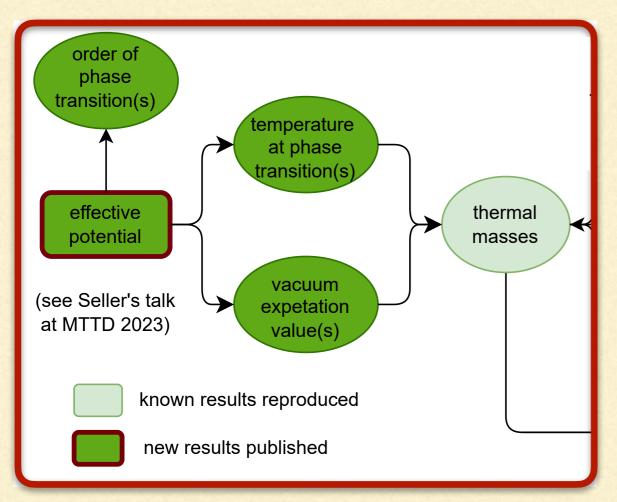
Computation of CP asymmetry factor

Detailed computation with explicit integral representations, ready for numerical evaluation are presented in

K. Seller, Z. Szép, Z.T., *CP violation at finite temperature*, JHEP **09** (2025) 034 [arXiv:2409.07180 [hep-ph]] and

CP asymmetry factor at finite temperature, to appear soon EPJC 11 (2025) [arXiv:2511.nnnn [hep-ph]] but too technical to repeat here

Step 1: find thermal masses



model dependent input ⇒ choose a model

SuperWeak extension of the Standard Model SWSM

- designed to
 - explain the origin of neutrino masses and oscillations through
 Dirac and Majorana neutrino mass terms generated by the SSB of two scalar fields,

[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]

Provide a candidate for WIMP dark matter

[Seller, Iwamoto and ZT, arXiv:2104.11248]

Provide a viable source of lepto-baryogenesis

[Seller, Szép, ZT, arXiv:<u>2301.07961</u>, <u>2409.07180</u>]

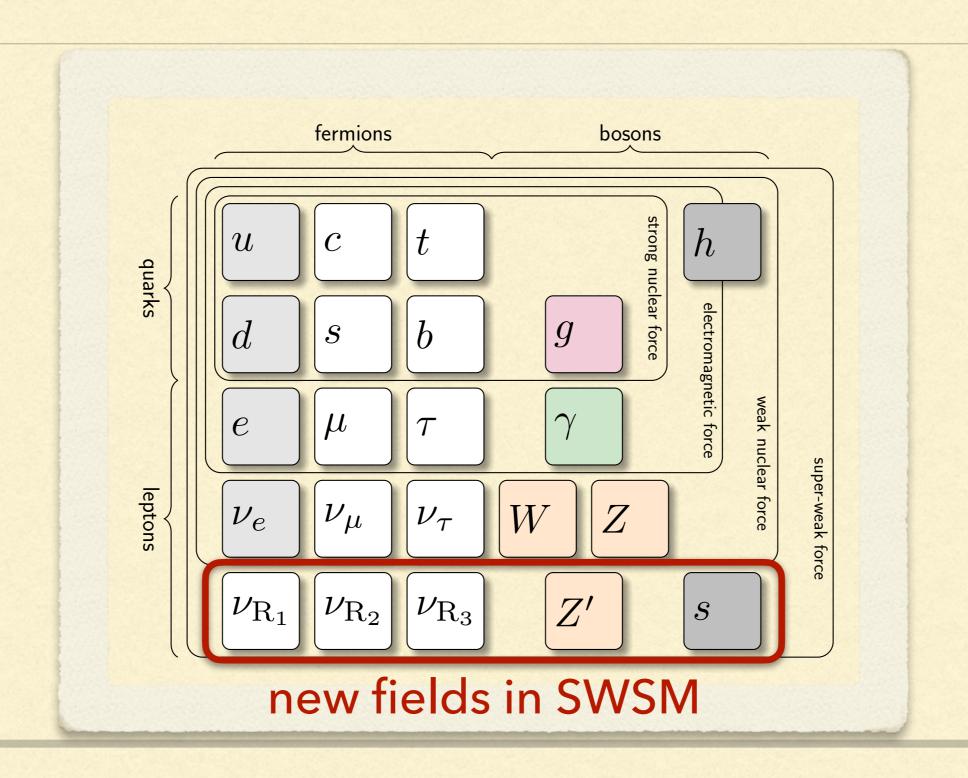
Parameter space is already partly explored

[Péli and ZT, arXiv:2204.07100, 2305.11931, 2402.14786, 2501.04388]

Superweak extension of SM (SWSM)

- Symmetry of the Lagrangian: local $G=G_{SM}\times U(1)_z$ with $G_{SM}=SU(3)_c\times SU(2)_L\times U(1)_Y$ renormalizable gauge theory, including all dim 4 operators allowed by G (except $F_{\mu\nu}\tilde{F}^{\mu\nu}$)
- U(1)_z gauge field must be massive, which requires a second scalar with a non-zero VEV, allowing for Majorana masses for right-handed neutrinos if exist
- z-charges fixed by requirement of
 - gauge and gravity anomaly cancellation and
 - gauge invariant Yukawa terms for neutrino mass generation

Particle content of SWSM (a take-home picture)



Charge assignment from gauge invariant neutrino interactions

field	$SU(3)_{c}$	$SU(2)_{ m L}$	y_j	$z_j^{\sf (a)}$	$z_j^{(b)}$	$r_j = z_j/z_\phi - y_j^{\text{c)}}$
$U_{ m L},D_{ m L}$	3	2	$\frac{1}{6}$	Z_1	$\frac{1}{6}$	0
$U_{ m R}$	3	1	$\frac{2}{3}$	Z_2	$\frac{7}{6}$	$\frac{1}{2}$
$D_{ m R}$	3	1	$-\frac{1}{3}$	$2Z_1 - Z_2$	$-\frac{5}{6}$	$-\frac{1}{2}$
$ u_{ m L},\ell_{ m L}$	1	2	$-\frac{1}{2}$	$-3Z_1$	$-\frac{1}{2}$	0
$ u_{ m R}$	1	1	0	$Z_2 - 4Z_1$	$\frac{1}{2}$	$\frac{1}{2}$
$\ell_{ m R}$	1	1	-1	$-2Z_1 - Z_2$	$-\frac{3}{2}$	$-\frac{1}{2}$
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}	1	$\frac{1}{2}$
χ	1	1	0	z_χ	(-1)	-1

Kinetic mixing

kinetic mixing:

$$\mathcal{L} \supset -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu}$$

covariant derivative:

$$\mathcal{D}_{\mu}^{\mathrm{U}(1)} = -\mathrm{i}(yg_{y}B_{\mu} + zg_{z}B_{\mu}')$$

or equivalently can choose basis s. t.:

$$D_{\mu}^{\mathrm{U}(1)} = -\mathrm{i} \left(y \ z \right) \begin{pmatrix} \hat{g}_{yy} \ \hat{g}_{yz} \\ \hat{g}_{zy} \ \hat{g}_{zz} \end{pmatrix} \begin{pmatrix} \hat{B}_{\mu} \\ \hat{B}'_{\mu} \end{pmatrix}$$

and can parametrize the coupling matrix s.t.:

$$\hat{\mathbf{g}} = \begin{pmatrix} \hat{g}_{yy} & \hat{g}_{yz} \\ \hat{g}_{zy} & \hat{g}_{zz} \end{pmatrix} = \begin{pmatrix} g_y & -\eta g_z' \\ 0 & g_z' \end{pmatrix} \begin{pmatrix} \cos \epsilon' & \sin \epsilon' \\ -\sin \epsilon' & \cos \epsilon' \end{pmatrix} \quad \text{with} \quad \begin{aligned} g_z' &= g_z/\sqrt{1 - \epsilon^2} \\ \eta &= \epsilon g_y/g_z. \end{aligned}$$

Mixing in the neutral gauge sector

$$egin{pmatrix} \left(egin{array}{c} B_{\mu} \ W_{\mu}^{3} \ B_{\mu}' \end{array}
ight) = \left(egin{array}{ccc} c_{W} & -s_{W} & 0 \ s_{W} & c_{W} & 0 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & c_{Z} & -s_{Z} \ 0 & s_{Z} & c_{Z} \end{array}
ight) \left(egin{array}{ccc} A_{\mu} \ Z_{\mu} \ Z_{\mu} \end{array}
ight) & c_{X} = \cos heta_{X} \ s_{X} = \sin heta_{X} \end{array}$$

where θ_W is the weak mixing angle & θ_Z is the Z-Z' mixing, implicitly:

$$\tan(2\theta_{\rm Z}) = -2\kappa / \left(1 - \kappa^2 - \tau^2\right)$$
, with κ and τ effective couplings,

functions of the Lagrangian couplings

The expressions for the neutral gauge boson masses are somewhat cumbersome, but exists a nice, compact generalization of the SM

mass-relation formula:
$$\frac{M_W^2}{c_W^2} = c_Z^2 M_Z^2 + s_Z^2 M_{Z'}^2 \qquad \left(M_W = \frac{1}{2} g_L v\right)$$

Scalars in the SWSM

• Standard ϕ complex SU(2)_L doublet and new χ complex singlet:

$$\mathcal{L}_{\phi,\chi} = [D_{\mu}^{(\phi)}\phi]^* D^{(\phi)\mu}\phi + [D_{\mu}^{(\chi)}\chi]^* D^{(\chi)\mu}\chi - V(\phi,\chi)$$

with scalar potential

$$V(\phi, \chi) = V_0 - \mu_{\phi}^2 |\phi|^2 - \mu_{\chi}^2 |\chi|^2 + (|\phi|^2, |\chi|^2) \begin{pmatrix} \lambda_{\phi} & \frac{\lambda}{2} \\ \frac{\lambda}{2} & \lambda_{\chi} \end{pmatrix} \begin{pmatrix} |\phi|^2 \\ |\chi|^2 \end{pmatrix}$$

■ After SSB, G \rightarrow SU(3)_c×U(1)_{QED} in R_{ξ} gauge

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} -i\sqrt{2}\sigma^+ \\ v + h' + i\sigma_\phi \end{pmatrix} \quad \mathbf{\&} \quad \chi = \frac{1}{\sqrt{2}} (w + s' + i\sigma_\chi)$$

Mixing in the scalar sector

$$\begin{pmatrix} h' \\ s' \end{pmatrix} = \begin{pmatrix} c_S & s_S \\ -s_S & c_S \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

where θ_S is the scalar mixing angle implicitly:

$$\tan(2\theta_S) = \lambda vw / \left(\lambda_{\chi} w^2 - \lambda_{\phi} v^2\right)$$
, with v and w VEVs

5 new parameters:

- in gauge sector: $\{g_z \text{ and } g_{yz}\}$ or $\{\kappa \text{ and } \tau\}$ or $\{\theta_Z \text{ and } M_{Z'}\}$
- in scalar sector: $\{\mu_{\chi}^2, \lambda_{\chi} \text{ and } \lambda\}$ or $\{w, \lambda_{\chi} \text{ and } \lambda\}$ or $\{M_S, \theta_S \text{ and } \lambda\}$

After SSB neutrino mass terms appear

$$-\mathcal{L}_{Y}^{\ell} = \frac{w + s' + i\sigma_{\chi}}{2\sqrt{2}} \overline{\nu_{R}^{c}} \mathbf{Y}_{N} \nu_{R} + \frac{v + h' - i\sigma_{\phi}}{\sqrt{2}} \overline{\nu_{L}} \mathbf{Y}_{\nu} \nu_{R} + \text{h.c.}$$

$$\mathbf{M}_{M} = \frac{w}{\sqrt{2}} \mathbf{Y}_{N}$$

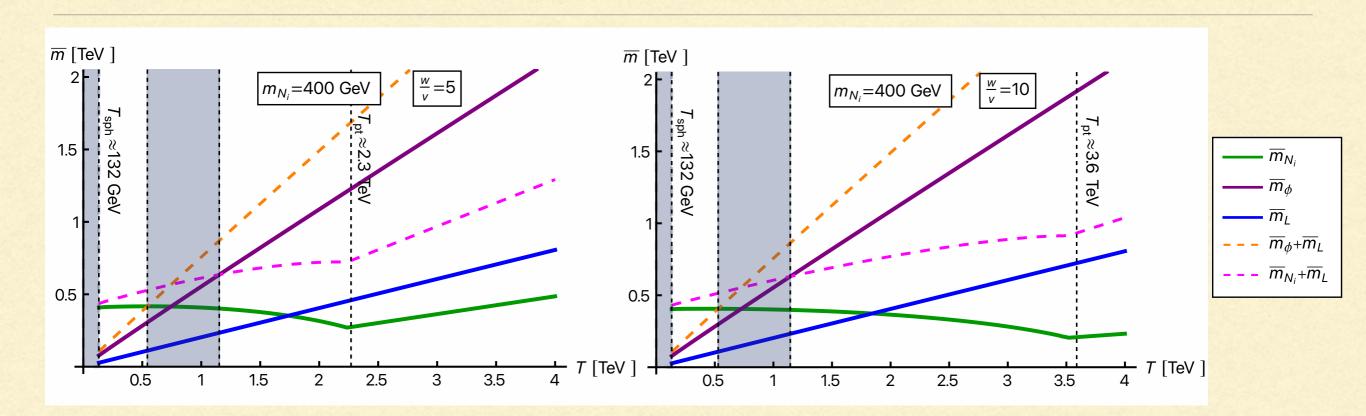
$$\mathbf{M}_{D} = \frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}$$

• In flavour basis the full 6×6 mass matrix reads

$$\mathbf{M}_{6\times6} = \begin{pmatrix} \mathbf{0}_3 & \mathbf{M}_D \\ \mathbf{M}_D^T & \mathbf{M}_M \end{pmatrix}$$

- v_L and v_R have the same q-numbers, can mix, leading to type-I low-scale see-saw
- Dirac and Majorana mass terms appear already at tree level by SSB (not generated radiatively)
- Quantum corrections to active neutrinos are not dangerous [lwamoto et al, arXiv:2104.14571]

Leptogenesis step 1: find thermal masses



Thermal masses for the lighter ones of the heavy RHNs (\overline{m}_{N_i}), the leptons (\overline{m}_L) and the Brout-Englert-Higgs field (\overline{m}_ϕ) in the SWSM at two specific values of the VEV ratio. Vacuum masses are $m_{N_j} = 1.1~m_{N_i} = 440~{\rm GeV}$ for the neutrinos, and $m_\chi = 650~{\rm GeV}$ for the singlet scalar with the singlet VEV being w = 5v (left) or w = 10v (right)

Given by the thermal average of the amplitude level asymmetry factor $\epsilon_{\mathcal{M}}$ (also model dependent):

$$\epsilon_{a \to b + c} = \frac{\int_{z_{a}}^{\infty} dy_{a} f_{t(a)}(-y_{a}) \sqrt{y_{a}^{2} - z_{a}^{2}} \int_{-1}^{1} dx \, \epsilon_{\mathcal{M}}(y_{a}, x) f_{t(b)}(y_{b}) f_{t(c)}(y_{c})}{\int_{z_{a}}^{\infty} dy_{a} f_{t(a)}(-y_{a}) \sqrt{y_{a}^{2} - z_{a}^{2}} \int_{-1}^{1} dx f_{t(b)}(y_{b}) f_{t(c)}(y_{c})}$$

$$\epsilon_{\mathcal{M}} = \frac{\left| M_{i,-}^{[1]} \right|^{2}}{\left| M_{i,+}^{[0]} \right|^{2}}, \quad \left| M_{i,\pm}^{[n]} \right|^{2} = \sum_{a,b,a} \left[\left\langle \left| \mathcal{M}_{ai}^{ab} [n] \right|^{2} \right\rangle \pm \left\langle \left| \overline{\mathcal{M}}_{ai}^{ab} [n] \right|^{2} \right\rangle \right]$$

$$n = \text{# of loops}$$

Given by the thermal average of the amplitude level asymmetry factor $\epsilon_{\mathcal{M}}$ (also model dependent):

$$\epsilon_{a \to b + c} = \frac{\int_{z_a}^{\infty} dy_a f_{t(a)}(-y_a) \sqrt{y_a^2 - z_a^2} \int_{-1}^{1} dx \, \epsilon_{\mathcal{M}}(y_a, x) f_{t(b)}(y_b) f_{t(c)}(y_c)}{\int_{z_a}^{\infty} dy_a f_{t(a)}(-y_a) \sqrt{y_a^2 - z_a^2} \int_{-1}^{1} dx f_{t(b)}(y_b) f_{t(c)}(y_c)}$$

$$- z_a = m_a / T,$$

29/32

Given by the thermal average of the amplitude level asymmetry factor $\epsilon_{\mathcal{M}}$ (also model dependent):

$$\epsilon_{a \to b + c} = \frac{\int_{z_a}^{\infty} \mathrm{d}y_a \, f_{\mathsf{t}(a)}(-y_a) \sqrt{y_a^2 - z_a^2} \int_{-1}^{1} \mathrm{d}x \, \epsilon_{\mathscr{M}}(y_a, x) f_{\mathsf{t}(b)}(y_b) f_{\mathsf{t}(c)}(y_c)}{\int_{z_a}^{\infty} \mathrm{d}y_a \, f_{\mathsf{t}(a)}(-y_a) \sqrt{y_a^2 - z_a^2} \int_{-1}^{1} \mathrm{d}x \, f_{\mathsf{t}(b)}(y_b) f_{\mathsf{t}(c)}(y_c)}$$

$$- z_a = m_a / T,$$

$$- f_{B/F}(y) = [\exp(y) \mp 1]^{-1} \text{ statistical factors,}$$

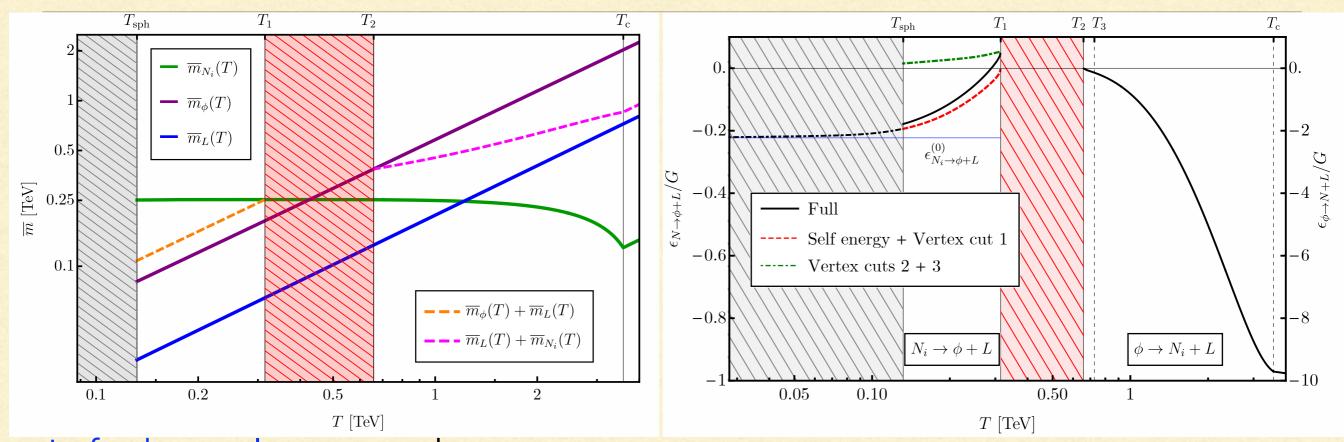
29/32

Given by the thermal average of the amplitude level asymmetry factor $\epsilon_{\mathcal{M}}$ (also model dependent):

$$\epsilon_{a \to b+c} = \frac{\int_{z_a}^{\infty} dy_a f_{t(a)}(-y_a) \sqrt{y_a^2 - z_a^2} \int_{-1}^{1} dx \, \epsilon_{\mathcal{M}}(y_a, x) f_{t(b)}(y_b) f_{t(c)}(y_c)}{\int_{z_a}^{\infty} dy_a f_{t(a)}(-y_a) \sqrt{y_a^2 - z_a^2} \int_{-1}^{1} dx f_{t(b)}(y_b) f_{t(c)}(y_c)}$$

$$- z_a = m_a / T,$$

- $f_{B/F}(y) = [\exp(y) \mp 1]^{-1}$ statistical factors,
- t(p) = B(ose) or F(ermi) giving the statistics type of p



Left: thermal masses when vacuum masses are

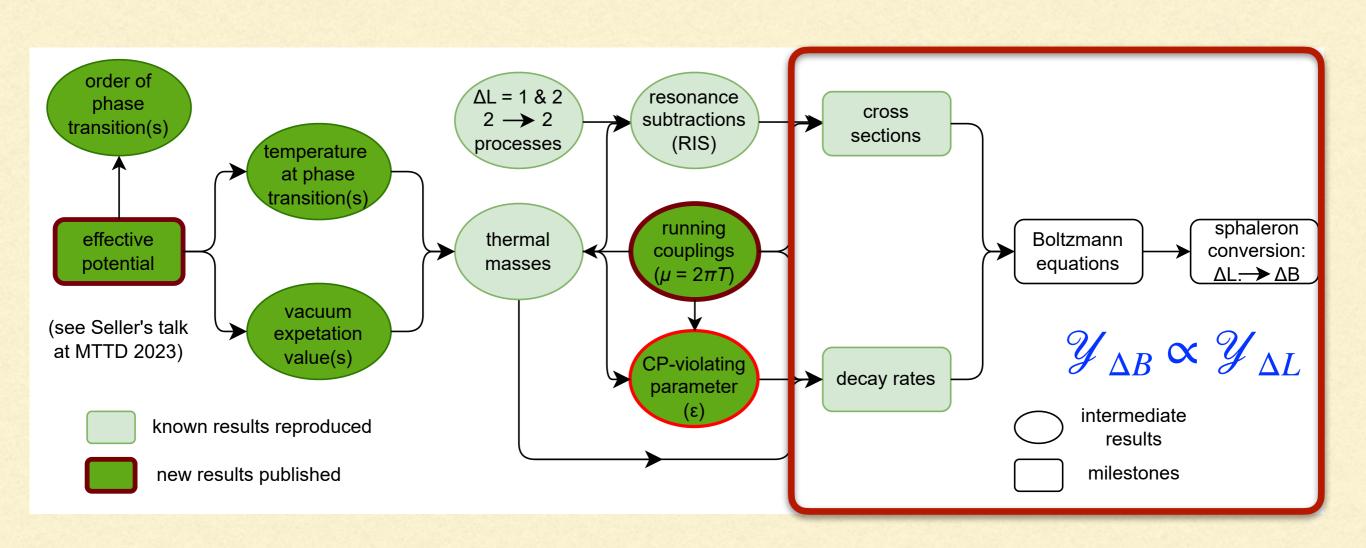
$$m_{N_j}$$
 = 1.1 m_{N_i} = 275 GeV, m_χ = 650 GeV and w = 10 v .

Right: thermal CP asymmetry factor normalized to couplings

 T_i (i = 1,2,3) correspond to the kinematic thresholds:

$$m_{N_i}(T_1) = m_{\phi}(T_1) + m_L(T_1), m_{\phi}(T_2) = m_{N_i}(T_2) + m_L(T_2), m_{\phi}(T_3) = m_{N_j}(T_3) + m_L(T_3)$$

Coming soon: leptogenesis in the SWSM (step 3: solving the Boltzmann eqs.)



Outlook:

Constrain the parameter space of SWSM by checking validity of the expected consequences

Does not fit:

- Neutrino masses
- Dark matter and energy
- Baryon asymmetry

Hidden new particles:

- Too heavy
- Interact too weakly

Puzzles in the scalar sector:

- Lagrangian and its parameters
- Yukawa couplings
- Connection to inflation
- Vacuum stability (λ too small)
- Naturalness (μ is dimensional)

Anomalies:

- Muon anomalous magnetic moment
- 2-3σ excesses at LHC experiments
- X17 and E38 anomalies
- CDF II result for M_W

the end