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W±, Z0

Figure 1: Generic exchange of an intermediate vector boson between weakly interacting particles.

1 Introduction

Weak interactions are one of the four fundamental interactions in Nature. Weak interactions
are responsible for a wide variety of phenomena, including β-decays of nuclei and other hadronic
decays (pions, kaons, hyperons), decays of elementary particles (muons and taus), and reactions
of astrophysical relevance involving neutrinos. They are also fully responsible for parity-violating
effects, including in atomic spectra. All elementary particles (quarks and leptons) interact
weakly, in an essentially universal manner.

Weak interactions are the least symmetric of interactions, and violate a large number of con-
servation laws, namely P , C, CP , T ,1 and most flavour symmetries. The only symmetries fully
respected are Poincaré, CPT , baryon and lepton number.2 From a modern perspective, they
are described in a unified fashion together with electromagnetism in terms of a spontaneously
broken gauge theory of the group SU(2)×U(1). In the resulting theory, the electromagnetic
part of the interactions corresponds to the exchange of massless, electrically neutral photons
between electrically charged particles. The weak part corresponds instead to the exchange of
massive bosons between particles: these are the charged W± bosons mediating the charged
weak interactions (mW ' 80 GeV), and the Z0 boson mediating the neutral weak interactions
(mZ ' 90 GeV). These are also known collectively as intermediate vector bosons (see Fig. 1).

In this section we provide a brief historical introduction and a discussion of the most im-
portant aspects of the weak interactions. In the subsequent sections we will follow mostly a
phenomenological approach, avoiding the intricacies of the electroweak theory. A more detailed
discussion of this subject is postponed till after most of the phenomenology has been dealt with.

1.1 Historical notes

We start with a brief history of weak interactions, based on Chapter 21 of Ref. [2] and on
Chapter 3 of Ref. [3], where one can also find lists of the original references. Further sources are
the biographical pages Ref. [4], and Ref. [5] on the neutrino hypothesis.

1When CP is violated, violation of T is automatic if elementary particles are described by a Poincaré-invariant
local quantum field theory, due to the CPT theorem.

2If one insists on massless neutrinos, lepton family number is also a good symmetry. Also, tiny nonperturbative
effects are expected to violate baryon (B) and lepton (L) number separately, leaving only B−L as a symmetry [1].
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From radioactivity to the neutrino hypothesis The history of weak interactions begins
with the discovery of radioactivity by Henri Becquerel in 1896. He discovered that a uranium salt
(potassium uranyl sulfate) emitted some invisible radiation that could expose a photographic
plate, even if this was wrapped in opaque paper. In 1898 this phenomenon was observed also
with thorium by Schmidt and, independently, by Marie Sk lodowska Curie, who named it “ra-
dioactivity”, and new radioactive materials, polonium and radium, were discovered by Pierre
and Marie Curie with Gustave Bémont. Work on finding out what was the origin of the rays
emitted by radioactive material led to major breakthroughs, and ultimately to the establishment
of the whole new branch of particle physics. In 1899 Ernest Rutherford distinguished α, β and γ
rays, corresponding to radiation with increasing penetrating power. In 1900 Becquerel measured
mass and charge-to-mass ratios of the β rays and showed that they were electrons, that had been
discovered only three years earlier in 1897 by J. J. Thomson.3 In 1911 Rutherford established
the existence of the atomic nucleus, and in 1913 Bohr suggested that β-rays originated there.

In 1914 Chadwick showed that β-rays had a continuous energy spectrum. This was in
contradiction with the quantum-mechanical idea that nuclear energy levels were discrete, and
became a major puzzle. The possibility that a continuous spectrum was due to the effect
of interactions on their way out of the nucleus was definitively excluded in 1927 by Ellis and
Wooster. Studying the β-decay 210

83Bi→ 210
84Po (in modern language), they found that the energy

release of the reaction, measured in a calorimeter, did not equal the maximal possible energy
of the β-rays, but rather their average energy. One way out of this problem was to assume
non-conservation of energy (or rather, conservation only on average, in a statistical sense: this
was the position of Bohr). Another, for the times possibly more extreme solution was suggested
by Pauli in 1930: a new type of spin-1

2 particle was emitted in the decay process, which went
undetected and carried away the missing energy. This was the neutrino hypothesis, although
Pauli initially called the new particle “neutron” and thought it was a very light constituent of
the nucleus. In 1932 Chadwick discovered the actual neutron, although this was thought by
most to be a composite object, made of a proton and an electron - except by Majorana, who
called it “neutral proton”. In 1933-34 Fermi proposed his groundbreaking theory of β-decay
based on the reaction4 n → p e−ν̄e, postulating that an electron and a neutrino were created
at their emission when a neutron turns into a proton (regarded at this point as elementary
particles), without being previously present in the nucleus (the same suggestion was made by
Francis Perrin in 1933). This theory achieved a good description of experimental results.

Fermi theory of β-decay The theoretical background inspiring Fermi for his proposal were
QED, the prototype of any successful quantum field theory so far, and Heisenberg’s proposal
that proton and neutron were two different states of the same particle. QED suggests that the
interaction couples two vectors, which in the case of electromagnetism are the electric current
and the photon field. Replacing the proton electric current with a neutron-proton current,
and the gauge field with a neutrino-electron current, Fermi wrote the interaction part of the
Hamiltonian as

H int
Fermi = G

∫
d3x

(
p̄(x)γµ n(x)

)(
ē(x)γµ ν(x)

)
+ h.c. , (1.1)

3In the presence of a magnetic field, α and β rays where deflected in opposite directions, and γ rays not at all.
The α and γ rays are now known to be helium nuclei, 4

2He, and highly energetic photons, respectively.
4We are running ahead of time and distinguishing neutrinos from antineutrinos, and electronic from muonic

neutrinos. These distinctions were unknown to Fermi.
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where p(x), n(x), e(x) and ν(x) are the fermionic fields corresponding to the various parti-
cles, “h.c.” stands for “Hermitian conjugate”, and G is a constant (now named “Fermi con-
stant”) with dimensions of inverse mass squared. Comparing predictions from his theory with
experiments, Fermi concluded that the neutrino had to be massless or very light, and that
G ' 0.3 · 10−5 GeV−2 (this should be confronted with the modern value G ' 1.1 · 10−5 GeV−2).
While the neutrino hypothesis proved to be phenomenologically successful, neutrinos remained
elusive, and could be directly detected only in 1956 by Reines and Cowan, studying the inverse
reaction ν̄e + p→ n+ e+, as proposed by Pontecorvo in 1946. An experiment by Davis in 1959
showed that neutrinos and antineutrinos were different particles.5

Theoretical progress was achieved by Gamow (1936) who generalised Fermi’s Hamiltonian
Eq. (1.1), a necessary step to allow for the description of more general β-decay processes. Sticking
to four-fermion, non-derivative couplings one finds that the most general Hamiltonian is of the
form

H int
β = −

∫
d3xL int

β (x) ,

L int
β (x) = −

5∑
j=1

gj
(
p̄(x)Mj n(x)

)(
ē(x)M j ν(x)

)
+ g′j

(
p̄(x)Mj n(x)

)(
ē(x)M jγ5 ν(x)

)
+ h.c. ,

(1.2)
where M j = 1 , γ5 , γµ , γµγ5 , σµν and gj , g

′
j are (generally complex) coupling constants.6 The

requirement of T invariance imposes that gj , g
′
j be real. The requirement of P invariance imposes

that all the g′j are zero. These seemed perfectly reasonable requirements at that moment.

The muon and universality of the weak interactions While theory underwent these
developments, from the experimental side a new particle emerged, the muon. Discovered in
cosmic rays in 1936 by Anderson and Neddermayer and initially mistaken for Yukawa’s meson,
it gained its modern status in 1947, after that Powell, Occhialini and Lattes showed that another
particle, the pion, also present in the cosmic rays, was actually Yukawa’s meson. The muon,
in fact, did not interact strongly, and was essentially a heavier relative of the electron, that
decayed weakly via µ− → e− ν̄e νµ. The existence of two types of neutrino was later demonstrated
experimentally by Lederman and collaborators in 1962. In 1947 Pontecorvo suggested that weak
interactions coupled muons and electrons to hadrons in the same way (µ-e universality), and in
1948 Puppi inferred the approximate equality of couplings in muon decay and in β-decays. This
suggested universality of weak interactions, i.e., that they affected equally leptons and nuclei.

Parity violations Still from the experimental side, the 1950s and 1960s saw the discovery of
a large number of new hadrons, that often showed weak decays, sometimes involving leptons in
the final state (semileptonic processes) and sometimes not (nonleptonic processes). This led to
ask if a new term should be added to the Lagrangian for each new hadron, a clearly annoying
kind of situation. Before we discuss this issue, though, it is interesting to focus on one particular
puzzle that led to one of the most important breakthroughs in 20th-century physics. This was

5This is the case if lepton number is conserved. Since neutrinos actually have small but nonzero mass, it is
not excluded that they are fermions of Majorana type, identical to their own antiparticle, which would lead to
lepton number violations.

6 Terms differing by a permutation of the fields p(x), n(x), e(x) and ν(x) can be reduced to those in Eq. (1.2)
making use of the so-called Fierz transformations. The matrices Mj are the matrices M j with covariant indices.
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the so-called θ-τ puzzle: the scalar particles then named θ and τ displayed the following decay
modes,

θ+ → π+ π+ π− , τ+ → π+ π0 , (1.3)

which suggested that they had parity −1 and +1, respectively. Very surprisingly, these two
particles had the same mass and lifetime, a rather unexpected coincidence. In 1956 Lee and
Yang proposed that the two particles were in fact the same particle (now known as the K+), and
that weak interactions did not conserve parity. They showed that previous experiments could
not disprove parity violations in weak processes,7 and suggested new experiments to test their
proposal. Such experiments were performed in 1957 by Wu and collaborators, and by Garwin
and collaborators, confirming the violation of parity in weak interactions.

V −A structure of the interaction Violation of parity was a rather shocking result, but it
led to finally understand the correct form of the weak Lagrangian, clarifying the so-called V −A
structure of the interaction: for β-decays,

L int
β = −Gβ√

2

(
p̄(x)γα(1− gV

gA
γ5)n(x)

)(
ē(x)γα(1− γ5) νe(x)

)
+ h.c. , (1.4)

while for muon decays

L int
µ = −Gµ√

2

(
µ̄(x)γα(1− γ5) νµ(x)

)(
ē(x)γα(1− γ5) νe(x)

)
+ h.c. , (1.5)

where Gβ and Gµ have dimensions of inverse mass squared, and gV /gA is a real dimension-
less constant. This was understood in 1956-57 thanks to works by Salam, Landau, and Lee
and Yang; and by Feynman and Gell-Mann, Sudarshan and Marshak, and Theis. Of course,
starting from the general form Eq. (1.2), the breaking of parity implies that the couplings g′j
need not vanish. The two-component neutrino hypothesis, stating that neutrinos have definite
helicity (Salam, Landau, and Lee and Yang), reduces the number of couplings back to five. This
hypothesis implies that only a specific definite-handedness part of the neutrino fields enters
the Lagrangian. This was confirmed experimentally by Goldhaber and collaborators in 1958,
showing that neutrinos were left-handed particles. Extending this assumption to all the fields
(Feynman and Gell-Mann, Sudarshan and Marshak) immediately entails Eq. (1.4) and (1.5). As
anticipated above, very similar couplings were found in the two cases, with Gβ/Gµ ' 0.98. The
fact that the same coupling works for a pointlike particle like the muon and an extended one
like the nucleon is reminiscent of what happens with the electric charge, which is the same for a
positron and a proton. This led to the fruitful conserved vector current (CVC) hypothesis, i.e.,
that the hadronic current was a conserved current (Gershtein, 1956, and Feynman, 1958).

From hadronic currents to the quark model We now return on the proliferation of
hadrons, and how to achieve their description. It was known (Feynman, 1958) that one did
not have to add a new term for each hadron, but that only a few hadronic currents with the
appropriate quantum numbers sufficed. On the other hand, these had to be postulated, since
no fundamental description was available for hadrons. This changed in 1964 with the quark

7Actually, parity violations in weak interactions are already borne out of the experiments of Cox (1928) and
his student Chase (1930).
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hypothesis (Zweig, 1964; Gell-Mann, 1964), i.e., the assumption that hadrons were bound states
of quarks, and that the fundamental objects appearing in the weak Lagrangian were the quark
currents. Nuclear β-decay and charged-pion decay would then be two manifestations of the same
decay process of the d quark, d→ u e− ν̄e, in the first case appearing in the combination ddu of
a neutron in a nucleus, and in the other case appearing in the combination dū of a π+. This
would require a quark current of the form

ūγα(1− γ5) d . (1.6)

However, this could not possibly be the whole story, since it would not allow strangeness-changing
processes, like the K+ decays of Eq. (1.3), or K+ → µ+ νµ. The solution proposed by Cabibbo
(in 1963, so still in terms of hadronic currents) was to modify Eq. (1.6) to

ūγα(1− γ5) d −→ ūγα(1− γ5) d′ , d′ = cos θCd+ sin θCs . (1.7)

This solved several standing issues at once: it made possible to explain strangeness-changing
processes, and to explain the difference between Gµ and Gβ while essentially retaining univer-
sality of the charged current, if the latter was expressed in terms of the “rotated” quark field d′.
The angle θC is known as the Cabibbo angle. From experimental results on β-decays and muon
decays one finds cos θC = Gβ/Gµ ' 0.98, and from the semileptonic decays of the K+ one finds
instead sin θC ' 0.21, which are consistent with each other.

Neutral currents and the charm quark Although Cabibbo’s proposal described very
successfully all the semileptonic processes known until 1973 (nonleptonic processes are more
complicated to describe, as they involve a yet underdeveloped knowledge of hadrons), further
theoretical work did not stop, and finally found experimental confirmation in 1973 and 1974.
Between 1963 and 1968 a unified theory of electroweak interactions was developed by Glashow,
Weinberg, and Salam (see below). This predicted, among other things, the existence of electri-
cally neutral currents, besides the well known charged ones, responsible for a new type of weak
interaction. In 1973 processes mediated by these neutral currents were observed experimen-
tally by the Gargamelle experiment (Hasert et al., 1973-74), in particular antineutrino-electron
scattering ν̄e e

− → ν̄e e
−, and elastic (anti)neutrino scattering on nuclei, i.e., on quarks. In

1974 the J/ψ resonance was observed, and quickly recognised as evidence of a fourth type of
quark, the charm c. Such a particle had been proposed by Glashow, Iliopoulos and Maiani
in 1970 (GIM mechanism) to explain the experimentally observed suppression of certain weak
processes. These discoveries made a convincing case for the electroweak unified theory, and for
the microscopic theory of strong interactions that had emerged from the quark model, namely
Quantum Chromodynamics, or QCD (Gell-Mann, Fritzsch, Leutwyler, 1973), and established
what is now known as the Standard Model of particle physics.

The unified electroweak theory The ideas underlying the electroweak theory date back to
Yukawa, who in 1935 suggested that, similarly to QED, weak interactions could be mediated
by the exchange of some intermediate boson,8 instead of coupling directly four fermions. Such
boson would be very massive, contrary to the photon that is massless, resulting in an interaction

8In Yukawa’s intentions, this boson would have mediated both weak and strong interactions. Using different
bosons for the two interactions does not change the argument.
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of very short range, compared to the infinite range of the Coulomb interaction. In fact, in the
nonrelativistic limit the effect of such exchanges is described by the Coulomb and Yukawa
potentials, respectively,

VCoulomb(~r ) =
e2

4πr
, VYukawa(~r ) =

g2

4πr
e−mW r , (1.8)

where g is a coupling constant and mW the mass of the intermediate boson. While in the
massless limit mW → 0 the Yukawa potential reduces to Coulomb potential, in the large mass
limit mW →∞ one finds instead9

VYukawa(r) −−−−−→
mW→∞

g2

m2
W

δ(3)(~r ) , (1.10)

i.e., it reduces to a point-like interaction with coupling G = g2

m2
W

. Equivalently, from the rel-

ativistic point of view the exchange of a massive boson brings a factor g2/(m2
W − p2) in the

scattering amplitude, where p is the momentum carried by the boson. In the limit of very large
mass, this reduces to the same constant G. Notice that if one assumes that the weak coupling
g and the electric charge e are of the same order, g2 ' e2, one finds

m2
W =

g2

G
' e2

G
=

4πα

G
' (90 GeV)2 , (1.11)

that compares well with the modern measurements mW ' 80 GeV. The main reason to go
beyond the four-fermion theory is its bad behaviour at high energy, which can be foreseen by
the mass dimension of the Fermi coupling. Introducing a massive intermediate boson does
not solve completely the problem, and a further trick is needed, namely the generation of the
boson masses via spontaneous symmetry breaking, the so-called Higgs mechanism (Higgs, 1964;
Brout and Englert, 1964; Guralnik, Hagen and Kibble; 1964). The original development of the
unified electroweak theory is due to Glashow (1961), Weinberg (1967), and Salam (1968). When
everything is put together one obtains a well-behaved theory, that has so far been very successful
in describing experiments. In this theory weak interactions are mediated by three massive vector
bosons, the W± and the Z0: these were experimentally observed in 1983 by the UA1 and UA2
collaborations at CERN. This theory also predicts the existence of a massive scalar particle, a
leftover from spontaneous symmetry breaking: this is the Higgs boson H, observed in 2012 by
the ATLAS and CMS collaborations at CERN.

1.2 Overview

After this historical excursus, we give here an overview of the theory in its pre-electroweak
form (but in modern language). This corresponds to the low-energy limit of the electroweak
theory, in which W,Z-boson exchanges are replaced by a four-fermion local interaction. This

9To see this, notice that for any function f(~r)∫
d3r VYukawa(r)f(~r ) =

g2

4πm2
W

∫
d3r

e−mW r

r
f(~r ) =

g2

4πm2
W

∫
d3x

e−x

x
f( ~x

mW
)

→
mW→∞

g2

4πm2
W

f(~0)

∫
dΩ

∫ ∞
0

dxx e−x =
g2

m2
W

f(~0) .

(1.9)
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is due to the fact that at low energies the square of the momentum flowing in internal boson
lines is much smaller than the square of the masses of the intermediate vector bosons, and can
therefore be neglected compared to them. The W and Z propagators are then replaced by
constants, corresponding graphically to the corresponding internal lines shrinking to a point.
This approximation already provides an excellent tool to do quantitative calculations in many
cases of interest, while avoiding the technicalities of the full theory. Furthermore, it allows one
to see clearly how matter particles are coupled by the weak interactions, without distractions
from the intricacies of gauge theories. I mostly follow Ref. [6].

Low-energy Lagrangian In the low-energy limit, the weak Lagrangian reads

L int
W = L int

W, ch + L int
W, 0 , (1.12)

with

L int
W, ch = − G√

2
Jα†Jα , L int

W, 0 = − G√
2
Jα0 J0α , (1.13)

where “ch” and “0” refer to the charged and neutral interaction, respectively. The currents
Jα and Jα0 are the charged and neutral currents, respectively. The charged current is further
decomposed into a leptonic and a hadronic part,

Jα = Jαl + Jαh , (1.14)

with
Jαl = ēOαL νe + µ̄OαL νµ + τ̄ OαL ντ =

∑
`=e,µ,τ

¯̀OαL ν` ,

Jαh = d̄′OαL u+ s̄′OαL c+ b̄′OαL t ,
(1.15)

where
OαL = γα(1− γ5) , (1.16)

` and ν` are the fields of the charged leptons and of the neutrinos, u, c, t are the fields of the
positively charged quarks andd′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 = VCKM

ds
b

 , (1.17)

with d, s, b the fields of the negatively charged quarks. The Dirac adjoint fields are denoted with
ψ̄ ≡ ψ†γ0. Here γµ and γ5 are the usual gamma matrices, which read (in Dirac basis)

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 , γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
, (1.18)

with σi the usual Pauli matrices. The unitary matrix VCKM is the Cabibbo-Kobayashi-Maskawa
matrix, and defines the “rotated” negative-charge quark fields that interact according to the
universal charged interaction.10 Notice that such rotated fields are linear combinations of fields
of different definite mass, and as such they are not definite-mass fields. Stated differently, mass

10There is no need to introduce a second mixing matrix, mixing the positive-charge quarks, as it could be
reabsorbed in VCKM.
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t

ν̄e

ν̄µ

e−

µ−

Figure 2: Four-fermion charged-current interaction vertex. Fermionic lines have been labelled
for the case of the pair of leptonic currents (ν̄µOαLµ)(ēOLανe).

eigenstates of quarks, which are eigenstates of flavour as defined via strong interactions, are not
the eigenstates of flavour as defined via the weak interactions. In the two-family approximation,
when bottom and top quarks are neglected, or more precisely when the mixing of bottom with
down and strange can be neglected, the CKM matrix can be reduced to

VCKM → VC =

(
cos θC sin θC
− sin θC cos θC

)
, (1.19)

which we may call Cabibbo matrix. The typical vertex of the charged current is shown in Fig. 2.
The neutral current reads instead

Jα0 =
∑
f

gLf f̄ OαL f + gRf f̄ OαR f , (1.20)

where f = e, µ, τ, νe, νµ, ντ , u, d, c, s, t, b runs over the fermion species,

OαR = γα(1 + γ5) , (1.21)

and the coupling gL,Rf are

gLf =


1
2 , f = νe, νµ, ντ ,

− 1
2 + ξ , f = e, µ, τ ,

1
2 − 2

3ξ , f = u, c, t ,

− 1
2 + 1

3ξ , f = d, s, b ,

gRf =


0 , f = νe, νµ, ντ ,

ξ , f = e, µ, τ ,

− 2
3ξ , f = u, c, t ,

1
3ξ , f = d, s, b ,

(1.22)

where ξ = sin2 θW and θW is called the weak, or Weinberg,11 angle. The sub/superscripts L,R
refer to chirality, as we explain below. Notice the absence of flavour-changing neutral currents:
neutral currents do not change flavour, and flavour-changing currents also change electric charge.

In the expressions above Lorentz indices have been dropped. For leptons, one has in full
notation

¯̀OαL ν =
(
¯̀
)
λ

(OαL)λλ′ (ν)λ′ . (1.23)

Quark fields have a further colour index, which is contracted trivially: in full notation

q̄1OαL q2 = (q̄1)iλ (OαL)λλ′ δii′ (q2)i
′

λ′ . (1.24)

Here and in the following, summation over repeated indices is understood.

11It is called so due to the fact that it was introduced by Glashow (see “Arnol’d principle” [7]).
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Massive fermion fields It is useful to recall here the explicit expression for a free massive
fermion field,

ψ(x) =

∫
dΩp

∑
s=± 1

2

{
bs(~p )us(~p )e−ip·x + ds(~p )†vs(~p )eip·x

}
, (1.25)

where bs(~p ) and ds(~p ) are the fermion and antifermion annihilation operators, respectively, that
remove a fermion or antifermion of momentum ~p and spin component s in some chosen direction
from the state on which they are applied,

{bs(~p ), bs′(~p
′)†} = {ds(~p ), ds′(~p

′)†} = δss′(2π)32p0δ(3)(~p− ~p ′) , (1.26)

all other anticommutators vanishing. With this normalisation, the particle states |~p, s〉 =
bs(~p )†|0〉, with |0〉 the vacuum state normalised to 〈0|0〉 = 1, obey the relativistic normalisation
condition,

〈 ~p | ~p ′〉 = (2π)32p0δ(3)(~p− ~p ′) . (1.27)

The bispinors us(~p ) and vs(~p ) are the positive-energy and negative-energy solutions of the Dirac
equation, respectively, which obey

(/p−m)us(~p ) = 0 , (/p+m)vs(~p ) = 0 , (1.28)

with m the fermion mass, and are normalised according to

ūs′(~p )us(~p ) = 2mδs′s , v̄s′(~p )vs(~p ) = −2mδs′s . (1.29)

In the formulas above, we used the notation /A = Aµγ
µ, where Aµ is any four-vector, and again

ū = u†γ0 for the Dirac adjoint of a bispinor. The explicit expressions read

us(~p ) =
√
p0 +m

(
ϕs

~p·~σ
p0+m

ϕs

)
, vs(~p ) =

√
p0 +m

(
~p·~σ
p0+m

ϕ̃s
ϕ̃s

)
, (1.30)

where ϕ†s′ϕs = ϕ̃†s′ϕ̃s = δs′s, with ~η · ~σ2ϕs = sϕs for some unit vector ~η, and ϕ̃s = −iσ2ϕ
∗
s in order

for the field ψ(x) to have simple Lorentz transformation properties.12 Notice also the following
relations,

ūs′(~p )vs(~p ) = v̄s′(~p )us(~p ) = 0 ,

ūs′(~p )γµus(~p ) = v̄s′(~p )γµvs(~p ) = 2pµδs′s .
(1.31)

Finally, dΩp denotes the invariant integration measure in momentum space,

dΩp =
d3p

(2π)32p0
, p0 =

√
~p 2 +m2 . (1.32)

We also recall a few facts about gamma matrices. They obey the anticommutations relations

{γµ, γν} = γµγν + γνγµ = 2ηµν , (1.33)

12Notice that ~η · ~σ
2
ϕ̃s = −i~η · ~σ

2
σ2ϕ

∗
s = iσ2(~η · ~σ

2
ϕs)
∗ = −s(−iσ2ϕ

∗
s) = −sϕ̃s. However, ϕ̃s corresponds to an

antiparticle state with spin component +s. The reason is that while us is paired with an annihilation operator,
vs is paired with a creation operator: taking particles and antiparticles to transform in the same representation
under rotations, this requires that the two wave functions transform in representations that are one the complex
conjugate of the other for ψ to have a simple transformation law.
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with13 ηµν = ηµν = diag(1,−1,−1,−1) the Minkowski (pseudo)metric tensor. The defining
property Eq. (1.33) makes them the generators of a Clifford algebra. The set of matrices

1 , γµ , σµν , iγ5γµ , γ5 , (1.34)

where

σµν = 1
2i [γ

µ, γν ] , γ5 = − i
4!εµνρσγ

µγνγργσ = −iε0123γ
0γ1γ2γ3 = iγ0γ1γ2γ3 , (1.35)

form a basis of the vector space of complex 4×4 matrices. Here εµνρσ is the totally-antisymmetric
tensor with ε0123 = −1. The sigma matrices are the generators of the relevant representation of
the Lorentz group for the fermion fields: given an element of the (proper orthocronous) Lorentz

group Λ = e
i
2
ωµνJ(µν)

, with J (µν) the group generators, the matrices S(e
i
2
ωµνJ(µν)

) ≡ e
i
4
ωµνσµν

provide a finite-dimensional representation of the group. Moreover, if U(Λ) are the unitary
operators representing Lorentz transformations on single-particle states, then

U(Λ)†ψ(x)U(Λ) = S(Λ)ψ(Λ−1x) ,

U(Λ)†ψ̄(x)U(Λ) = ψ̄(Λ−1x)S(Λ)−1 .
(1.36)

Notice that S(Λ)† 6= S(Λ)−1 (there are no finite-dimensional unitary representations of the
Lorentz group), but S(Λ)†γ0 = γ0S(Λ)−1. Finally, the matrix γ5 anticommute with all the γµ,

{γ5, γµ} = 0 , (1.37)

and plays an important role, discussed below.

Chirality The weak interactions are said to be chiral, as they treat differently fields with
different chirality. Given a generic Dirac bispinor ψ, it can be always written as ψ = ψ+ + ψ−
with γ5ψ± = ±ψ±. The eigenvalue of γ5 corresponding to ψ± is the chirality of ψ±. Clearly
these eigenvalues can only be ±1, since (γ5)2 = 1. It is then possible to decompose ψ making
use of the chiral projectors P±,

P± =
1± γ5

2
, P± = P †± = P 2

± , P+P− = P−P+ = 0 , P+ + P− = 1 . (1.38)

Clearly γ5P± = ±P±, so ψ± = P±ψ. Notice that γαP± = P∓γ
α. Since OαL contains only P−,

the charged current only involves the fermionic fields with negative chirality, f− = P−f ,14 while
the neutral current has different couplings for the terms involving f− and f+ = P+f .

The concept of chirality is often conflated with that of helicity, which is the projection of
the particle’s spin in the direction of motion. As a matter of fact the two concepts coincide
only for massless fermions. It has nonetheless become customary to denote with L and R the
negative and positive chirality components of the fields, respectively, although these refer to the
“handedness” of the particle (see below).

13The first equality must be understood as a matrix equality, not a tensor equality.
14Since f̄ = f†γ0, one has f̄γαP− = f†γ0γαP− = f†γ0P+γ

α = f†P−γ
0γα = (P−f)†γ0γα = f̄−γ

0γα.
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Neutrinos As mentioned above, chirality and helicity can be safely identified in the case of
a massless fermion. If we insist on treating the neutrinos as massless, then we are forced to
drop one of the two helicity components, as it does not appear anywhere in the interaction
Lagrangian15 Eqs. (1.12) and (1.13). In order to see this, let us work out in detail the solutions
to the Dirac equation in the massless case.

Since {/∂, γ5} = 0, the solution of the massless Dirac equation can be chosen with definite
chirality,16

i/∂ψ± = 0 , γ5ψ± = ±ψ± . (1.39)

Let us look first at positive-energy plane-wave solutions ψ = ue−ip·x, for which /pu = 0. These
read for a massless particle

u(~p ) =
√
|~p |
(

ξ
p̂ · ~σξ

)
, (1.40)

where ξ†ξ = 1, having chosen the normalisation ūγ0u = 2p0 = 2|~p |. If we take solutions with
definite helicity, i.e., using p̂ · ~σξR,L = ±ξR,L, then

uR,L(~p ) =
√
|~p |
(
ξR,L
±ξR,L

)
, γ5uR,L(~p ) = ±uR,L(~p ) . (1.41)

A positive-helicity particle is said to be right-handed, while a negative-helicity one is said to
be left-handed. This means that in the massless case definite-helicity particle solutions are
also definite-chirality solutions, with chirality equal to helicity. For negative-energy solutions
ψ = veip·x, one again has /pv = 0, and

v(~p ) =
√
|~p |
(
p̂ · ~σξ̃
ξ̃

)
. (1.42)

Lorentz transformation properties of the fermion field tell us that if u with a two-spinor ξ
represents a particle state with definite spin s in a certain direction, then the antiparticle state
described by v will have the same definite spin s in the same direction if we choose ξ̃ = −iσ2ξ

∗.
Then to have a state with positive or negative helicity we need ξ̃R,L = −iσ2ξ

∗
R,L, so that

p̂ · ~σξ̃R,L = p̂ · ~σ(−iσ2)ξ∗R,L = iσ2(p̂ · ~σξR,L)∗ = ∓(−iσ2)ξ∗R,L = ∓ξ̃R,L . (1.43)

It then follows

vR,L(~p ) =
√
|~p |
(
∓ξ̃R,L
ξ̃R,L

)
, γ5vR,L(~p ) = ∓vR,L(~p ) . (1.44)

This means that definite-helicity antiparticle solutions are also definite-chirality solutions, with
chirality equal to minus the helicity. It is worth mentioning that helicity is a Lorentz-invariant
quantity only in the massless case: for massive particles one can always choose a fast enough
reference frame to overtake the particle and flip its momentum, thus flipping its helicity. For
massive particles, helicity becomes better and better a quantum number as the energy increases,
for in that case the particle is closer and closer to behave as approximately massless.

15One can of course include them as non-interacting particles, the so-called sterile neutrinos. They would be,
however, almost entirely unobservable, coupling only to gravity.

16If i/∂ψ = 0, then also i/∂γ5ψ = 0, and we can form linear combinations with definite chirality.
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The results of Eqs. (1.41) and (1.44) imply that since the neutrino field is coupled by the
charged weak interaction with the projector P−, what is relevant is the combination

P−ν(x) =
1− γ5

2

∫
dΩp

∑
h=R,L

{
bh(~p )uh(~p )e−ip·x + dh(~p )†vh(~p )eip·x

}
=

∫
dΩp

{
bL(~p )uL(~p )e−ip·x + dR(~p )†vR(~p )eip·x

}
≡ νL(x) .

(1.45)

The field νL(x) = P−ν(x) annihilates a left-handed neutrino and creates a right-handed antineu-
trino; the adjoint field ν̄L(x) = (νL(x))†γ0 = ν̄P+ creates a left-handed neutrino and annihilates
a right-handed antineutrino. Since the field νR(x) = P+ν(x) never appears in the weak La-
grangian [check also Eq. (1.22)], we conclude that massless neutrinos can only be left-handed,
and antineutrinos can only be right-handed.

P , C, and CP symmetries We conclude this overview discussing the properties of the weak
Lagrangian under the discrete transformations of parity and charge conjugation. To this end we
need the known transformation properties of the fermion bilinears V α ≡ f̄γαf and Aα ≡ f̄γαγ5f ,

V α −→
P
PαβV β , V α −→

C
−V α† ,

Aα −→
P
−PαβAβ , Aα −→

C
Aα† ,

(1.46)

where Pαβ = diag(1,−1,−1,−1). The V − A structure of the charged-interaction Lagrangian
reads schematically

L = (V α† −Aα†)(Vα −Aα) = V α†Vα +Aα†Aα − V α†Aα −Aα†Vα . (1.47)

It is easy to see that under P and C

L −→
P
PαβP γ

α

(
V β†Vγ +Aβ†Aγ + V β†Aγ +Aβ†Vγ

)
= (V α† +Aα†)(Vα +Aα)

L −→
C
V αV †α +AαA†α + V αA†α +AαV †α = (V α† +Aα†)(Vα +Aα) .

(1.48)

i.e., both P and C are broken.17 The clearest example is provided by neutrinos: a left-handed
neutrino is transformed by P into a right-handed neutrino, and by C into a left-handed antineu-
trino, which do not appear in the weak Lagrangian.18

The schematic structure Eq. (1.47) is good enough for the leptonic part of the current, and
(barring neutrino mixing for the time being) shows that the combined transformation CP is a
good symmetry in the leptonic sector. However, Eq. (1.47) is in general not good enough for
the hadronic part, which reads

Jαh = d̄′OαL u+ s̄′OαL c+ b̄′OαL t =
∑

q1=u,c,t

∑
q2=d,s,b

(VCKM)q1q2 q̄2OαL q1

=
∑

q1=u,c,t

∑
q2=d,s,b

(VCKM)q1q2(V α
q2q1 −Aαq2q1) ≡ Jαh (VCKM) .

(1.49)

17The identities V αV †α = V †αV
α and likewise follow from the bosonic nature of the bilinears, and from the

understanding that the Lagrangian is normal ordered, if we work in the operator formalism, or is just a c-number,
if we work in the functional-integral formalism.

18One is tempted to say that they do not exist, but it is now known that neutrinos have masses, so that a
“wrong”-handedness component exists. Nevertheless, it is not coupled in the same way as the “right”-handedness
component.
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Under CP one has

Jαh −−→
CP
−Pαβ

∑
q1=u,c,t

∑
q2=d,s,b

(VCKM)q1q2(V β
q2q1 −Aβq2q1)† = −PαβJβh (V ∗CKM)† . (1.50)

If VCKM is real, then CP is a symmetry. With only two families of quarks one can redefine the
fermion fields to make VCKM real [see Eq. (1.19)], so there can be no CP violation. On the other
hand, with three families there is one phase factor that cannot be transformed to 1, and so there
is the possibility of CP violation (and thus of T violation). In general, VCKM is expressed in
terms of sines and cosines of three angles and one phase factor.

A similar CP -violating phase can appear in the lepton sector, assuming that a nontrivial
mixing matrix exists there. This is not possible if the neutrinos are massless (or more generally
mass-degenerate): any nontrivial mixing matrix U`′` could be transformed away by redefining
the neutrino fields ν ′` = U``′ν`′ , which does not affect the free part of the Lagrangian. As
a matter of fact, neutrinos are massive, and a nontrivial, physically relevant mixing matrix
UPMNS (Pontecorvo-Maki-Nakagawa-Sakata matrix) appears.

As long as weak interactions are described by a Poincaré-invariant quantum field theory,
it is guaranteed that Θ = CPT is a good (antiunitary) symmetry. This is enough to show
that particles and antiparticles have the same mass, and the same decay width/lifetime if they
are unstable. Indeed, since for a particle with quantum numbers α, momentum ~p and spin
component s one finds, Θ|α; ~p, s〉 = |ᾱ; ~p,−s〉 (with the appropriate choice of phases), where ᾱ
denotes the quantum numbers of the corresponding antiparticle, one has

〈ᾱ; ~p ′,−s′|P 2|ᾱ; ~p,−s〉 = 〈α; ~p ′, s′|Θ†P 2Θ|α; ~p, s〉 = 〈α; ~p ′, s′|P 2|α; ~p, s〉 , (1.51)

from which mᾱ = mα follows. Equality of decay widths will be discussed in the next subsection.

Baryon, lepton and lepton family number While the very nature of the charged currents
makes flavour not a good quantum number, both for quarks and leptons, the mixing of quarks
prevents also “quark family” from being a good quantum number. On the other hand, quark
number, or equivalently baryon number, is conserved. In the absence of a leptonic mixing
matrix, lepton family number is a conserved quantity, and so a fortiori is lepton number. The
usual assignment of lepton family numbers is l` = 1 for ` and ν`, l` = −1 for ¯̀ and ν̄`, and
l` = 0 for anything else. Of course, given a system of particles one has for l` of the system
the sum of the individual lepton family numbers. Lepton number is just L =

∑
` l`. It is

now known that a nontrivial lepton mixing matrix is present, and so (small) violations of lepton
family number conservation are expected. Ignoring these, the approximate lepton family number
conservation forbids a number of processes that would otherwise be allowed using only phase-
space considerations and electric charge conservation, for example

µ− → e− γ , µ− → e− e+ e− , (1.52)

and neutrino-nucleus scattering processes like

Z
AN + νµ → Z+1

A N + e− , (1.53)

where Z
AN denotes a nucleus with atomic number Z and mass number A. On the other hand,

the following processes are allowed,

Z
AN + νe → Z+1

A N + e− , Z
AN + ν̄e → Z−1

A N + e+ . (1.54)
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Lepton family number conservation also forbids the neutrinoless double-beta decay,19

Z
AN→ Z+2

A N + 2e− . (1.55)

1.3 Decay of unstable particles

In the following we will deal with a wide variety of decays of unstable particles. Here we briefly
summarise the main technical points required to deal with the theoretical description of these
phenomena.

The decay rate of an unstable particle is the probability per unit time that it decays in any
of the allowed final states. It is also called the (total) decay width, and is usually denoted with
the symbol Γ. The probability per unit time to decay into a final state with a specified set of
products, i.e., into a specific channel, is called partial width. The ratio of a partial width over
the total width is the branching ratio (or fraction) of the given channel, and tells us how likely
a certain decay mode is among all those allowed for the unstable particle under consideration.
For a large sample of (independent) unstable particles, one expects an exponential decay of the
population with lifetime τ = 1/Γ.

The probability per unit time for the unstable particle to decay into a specific channel
with a specified final state (i.e., with definite momenta and/or spins) is called differential decay
rate/width. For an unstable particle with four-momentum p decaying into an n-particle final
state, the differential decay rate dΓ(n) is given by

dΓ(n) =
|Mfi|2

2p0
dΦ(n) , (1.56)

where dΦ(n) is the infinitesimal element of invariant n-particle phase space,

dΦ(n) = (2π)4δ(4)

(
p−

n∑
i=1

pi

)
n∏
i=1

d3pi
(2π)32p0

i

, (1.57)

and Mfi is the matrix element of the decay operator between the initial and final states. We
will not need here to fully develop the formal theory of decay since, given the weakness of weak
interactions, the first-order perturbative approximation will almost always suffice. In such an
approximation the relevant matrix element is

(2π)4δ(4)(Pf − Pi)Mfi = −
∫
dx0 〈f |H int

W (x0)|i〉 , (1.58)

where |i〉 and |f〉 are the initial and final free-particle states, with relativistic normalisation, and
H int
W (x0) is the weak interaction Hamiltonian in the interaction picture, which since there is no

derivative coupling reads

H int
W (x0) =

∫
d3xH int

W (fj(x), f̄j(x)) = −
∫
d3xL int

W (fj(x), f̄j(x)) , (1.59)

19This process would be allowed if neutrinos were massive, truly neutral particles, coinciding with their an-
tiparticle (Majorana fermions), in which case of course they could not be assigned any nonzero conserved charge.
(If massless, the two helicity states can still be interpreted as different particles independently of lepton family
number conservation.)
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where we made explicit the dependence on the fermion fields {fj , f̄j} (which are here fields in
the interaction representation). Substituting Eq. (1.59) in Eq. (1.58) we find

Mfi = 〈f |L int
W (fj(0), f̄j(0))|i〉 , (1.60)

having used translation invariance to integrate over spacetime, and having dropped the momen-
tum-conserving delta function. These matrix elements are efficiently evaluated making use of
Feynman diagrams, and of the Feynman rules in momentum space. These are easily derived
based on the following considerations. The interaction vertex couples four fermionic fields, or
more precisely two fermionic currents jα1 and jα2 , that can create or annihilate initial or final
(anti)particles. The vertex couples them in the form − G√

2
jα1 j2α, and therefore

1. for each vertex, draw a dot and include a factor − G√
2
.

The currents are of the general form gabf̄aOαfb with gab some coupling (e.g., VCKM matrix
elements) and Oα a combination of gamma matrices. Depending on the process, we will then
include Dirac bispinors w̄a and wb corresponding to the fields f̄a and fb creating or destroying
particles in the initial and final states, as follows:

2. a bispinor us(~p ) for each particle in the initial state;

3. a bispinor ūs(~p ) for each particle in the final state;

4. a bispinor v̄s(~p ) for each antiparticle in the initial state;

5. a bispinor vs(~p ) for each antiparticle in the final state.

These are represented as oriented external lines attached to the vertex containing the field
responsible for the creation/annihilation of the corresponding particle, either flowing in the
vertex (initial particle/final antiparticle) or out of the vertex (initial antiparticle/final particle).
All remaining fermion fields must be contracted with each other, yielding fermion propagators
that connect different vertices. These are represented as oriented internal lines, running from the
vertex containing the field f̄ to that containing the field f of the relevant contraction. At this
point the Lorentz indices of the bispinors and of the propagators must be contracted according
to the structure of the currents, and all missing factors should be included:

6. connect bispinors and propagators along each uninterrupted fermion line, starting from
the end and moving backwards, and including the appropriate vertex factors along the
way;

7. contract the Lorentz indices of currents coupled at a vertex.

The first of these rules simplifies a lot in the case of a single vertex:

6′ (for a single vertex) connect the pairs belonging to the same current with the appropriate
factor Oα (e.g., OαL for charged currents), forming bilinears of the type w̄aOαwb, including
the appropriate gab factor.

At this point all that is left is standard practice:

8. impose conservation of momentum at each vertex;
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9. integrate over internal momenta (i.e., momenta flowing through the propagators) with

measure d4q
(2π)4 ;

10. include minus signs for each fermionic loop, and each fermionic line crossing the diagram
from top to bottom (i.e., an antifermionic line across the whole diagram);

11. include the appropriate numerical factors counting the number of ways a certain diagram
can be obtained.

We conclude this subsection showing that CPT-invariance implies equality of the lifetimes
of an unstable particle and the corresponding antiparticle. In fact, since (working in the rest
frame of the decaying particle)

Γ =
1

2m

∑
n

∫
dΦ(n) |Mi→n|2 =

1

2m

∑
n

∫
dΦ(n)

∣∣〈n|H int(0)|i, s〉
∣∣2 , (1.61)

for a decay governed by an interaction Hamiltonian density H int, using completeness of the set
of states |n〉 one finds

Γ =
1

2m
〈i, s|H int(0)H int(0)|i, s〉 . (1.62)

Using CPT invariance, one has then for the decay width Γ̄ of the antiparticle ı̄ (notice that the
two particles must have the same mass)

Γ̄ =
1

2m̄
〈̄ı, s|H int(0)H int(0)|̄ı, s〉 =

1

2m
〈i,−s|H int(0)H int(0)|i,−s〉

=
1

2m
〈i, s|H int(0)H int(0)|i, s〉 = Γ ,

(1.63)

where in the last passage we have used rotation invariance (which by the way implies that the
total decay width is independent of the polarisation of the unstable particle).
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Figure 3: Muon decay.

2 Muon decay

We now begin to discuss applications to phenomenology, starting with the simplest example,
namely, the main decay mode of the muon (see Fig. 3),

µ− → e− ν̄e νµ . (2.1)

Following Eq. (1.60), the relevant quantity to compute is

Mfi = − G√
2
〈e−(k, se) ν̄e(q1) νµ(q2)|

(
ν̄µ(0)OαL µ(0)

)(
ē(0)OLα νe(0)

)
|µ−(p, sµ)〉 , (2.2)

where we have already selected the only combination of currents that contributes. Here pµ,e and
sµ,e are the four-momentum and the spin of muon and electron, and q1,2 are the momenta of the
neutrinos. We assume neutrinos to be massless, so there is no need to specify their helicity since
it is fixed. This matrix element is easily evaluated going over to momentum space, or directly
using the Feynman rules listed above in section 1.3, and equals

Mfi = − G√
2

(
ū(νµ)(q2)OαLu(µ)(p, sµ)

)(
ū(e)(k, se)OLαv(νe)(q1)

)
. (2.3)

Here we have conveniently changed the notation for the Dirac bispinors in an obvious way. The
decay width dΓ involves the absolute value square of this matrix element,

|Mfi|2 =
G2

2

(
ū(νµ)(q2)OαLu(µ)(p, sµ)

)(
ū(µ)(p, sµ)OβLu(νµ)(q2)

)
×
(
ū(e)(k, se)OLαv(νe)(q1)

)(
v̄(νe)(q1)OLβu(e)(k, se)

)
=
G2

2
tr
(
u(νµ)(q2)ū(νµ)(q2)OαLu(µ)(p, sµ)ū(µ)(p, sµ)OβL

)
× tr

(
v(νe)(q1)v̄(νe)(q1)OLβu(e)(k, se)ū

(e)(k, se)OLα
)
.

(2.4)

We now study the amplitude with an increasing degree of detail.
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An alternative but equivalent form of Mfi is obtained making use of the following Fierz identity,

(āOαLb) (c̄OLαd) = − (āOαLd) (c̄OLαb) , (2.5)

derived in Section 2.4 below. This results in the following alternative form of Eq. (2.3),

Mfi =
G√

2

(
ū(νµ)(q2)OαLv(νe)(q1)

)(
ū(e)(k, se)OLαu(µ)(p, sµ)

)
. (2.6)

The complex conjugate of this can be combined with Eq. (2.3) to yield the following equivalent form
of Eq. (2.4),

|Mfi|2 = −G
2

2

(
v̄(νe)(q1)OαLu(νµ)(q2)

)(
ū(µ)(p, sµ)OLαu(e)(k, se)

)
×
(
ū(νµ)(q2)OβLu(µ)(p, sµ)

)(
ū(e)(k, se)OLβv(νe)(q1)

)
= −G

2

2

(
v̄(νe)(q1)OαLu(νµ)(q2)

)(
ū(νµ)(q2)OβLu(µ)(p, sµ)

)
×
(
ū(µ)(p, sµ)OLαu(e)(k, se)

)(
ū(e)(k, se)OLβv(νe)(q1)

)
.

(2.7)

We will use the form Eq. (2.4), commenting on how the calculation develops when using instead the

alternative expression Eq. (2.7).

2.1 Unpolarised muons, electron spin not measured

In this case we have to sum the decay width over the spin of the electron, and average over the
spin of the muon. To this end, for m 6= 0 one makes use of the following completeness relations,∑

s

us(~p )ūs(~p ) = /p+m,
∑
s

vs(~p )v̄s(~p ) = /p−m, (2.8)

while for massless fermions of definite helicity h = ±1 the bispinors satisfy

uh(~p )ūh(~p ) = /p
1− hγ5

2
, vh(~p )v̄h(~p ) = /p

1 + hγ5

2
. (2.9)

Summing over spins in Eq. (2.4), and taking into account that h = −1 (resp. h = +1) for
neutrinos (resp. antineutrinos) one then obtains

〈〈|Mfi|2〉〉 ≡
∑
sµ,se

|Mfi|2 =
G2

2
tr
(
/q2
OαL(/p+mµ)OβL

)
tr
(
/q1
OLβ(/k +me)OLα

)
, (2.10)

having used 1+γ5

2 OαL = 1+γ5

2 γα(1− γ5) = γα 1−γ5

2 (1− γ5) = OαL. The terms proportional to the
fermion masses drop, since they involve traces of an odd number of gamma matrices (γ5 counts
as four gamma matrices) which automatically vanish. We are then left with

〈〈|Mfi|2〉〉 =
G2

2
tr
(
/q2
OαL/pOβL

)
tr
(
/q1
OLβ/kOLα

)
=
G2

2
tr
(
/q2
γα(1− γ5)/pγ

β(1− γ5)
)

tr
(
/q1
γβ(1− γ5)/kγα(1− γ5)

)
=
G2

2
4 tr

(
/q2
γα/pγ

β(1− γ5)
)

tr
(
/q1
γβ/kγα(1− γ5)

)
,

(2.11)

having used (1− γ5)2 = 2(1− γ5).
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Starting from the alternative expression Eq. (2.7) one obtains the following single-trace formula instead
of Eq. (2.10),

〈〈|Mfi|2〉〉 = −G
2

2
tr /q1
OαL/q2

OβL(/p+mµ)OLα(/k +me)OLβ

= −G
2

2
tr /q1
OαL/q2

OβL/pOLα/kOLβ .
(2.12)

The terms linear in mµ and me vanish since they contain the trace of an odd number of gamma

matrices, while the term proportional to mµme vanishes since OLαOLβ = γα(1 − γ5)γβ(1 − γ5) =

γα(1− γ5)(1 + γ5)γβ = 0.

We now need the following identities for traces of products of gamma matrices:

tr γµγαγνγβ = 4
(
ηµαηνβ − ηµνηαβ + ηµβηνα

)
≡ 4Sµανβ ,

tr γ5γµγαγνγβ = −4iεµανβ ,
(2.13)

with εµανβ the totally antisymmetric tensor with ε0123 = 1. Using the symmetries of the two
tensors we can drop crossed terms in Eq. (2.11) and write

〈〈|Mfi|2〉〉 =
G2

2
43
(
Sµανβ + iεµανβ

)(
Sρασβ + iερβσα

)
q2µpνq

ρ
1k

σ

= 32G2
(
SµανβSρασβ + εµανβερασβ

)
q2µpνq

ρ
1k

σ .

(2.14)

A straightforward calculation shows that

SµανβSρασβ = 2
(
δµσδ

ν
ρ + δµρδ

ν
σ

)
. (2.15)

The other contraction reads instead

εµανβερασβ = 2
(
δµσδ

ν
ρ − δµρδνσ

)
. (2.16)

Proof: The left hand-side in Eq. (2.16) is a Lorentz-invariant tensor Tµνρσ = Tµναβηαρηβσ, with

Tµναβ invariant, and antisymmetric in both the first and second pair of indices, and symmetric

under exchange of the two pairs. It is furthermore invariant under parity. The only such tensor is

Tµναβ = A(ηµαηνβ − ηµβηνα) for some constant A, so Tµνρσ = A(δµρδ
ν
σ − δµσδνρ). Contracting µ with

ρ and ν with σ, Tµνµν = 12A = εµανβεµανβ = −24, where the last passage follows from counting the

nonzero entries of the Levi-Civita tensor (which are 4! = 24), recalling that they are equal to ±1, and

that ε0123 = −ε0123 = −1.

Plugging Eqs. (2.15) and (2.16) into Eq. (2.14) we find

〈〈|Mfi|2〉〉 = 128G2δµσδ
ν
ρq2µpνq

ρ
1k

σ = 128G2(p · q1)(k · q2) , (2.17)

for the square amplitude summed over spins.

If one wants to use instead Eq. (2.12) to find the decay width, then one needs the following identities:

γα /A/Bγα = 4A ·B , γα /A/B /Cγα = −2/C /B /A , (2.18)
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which can be proved straightforwardly making only use of the anticommutation relations of gamma
matrices. Using these, one shows that

tr /q1
OαL/q2

OβL/pOLα/kOLβ = tr /q1
γα(1− γ5)/q2

γβ(1− γ5)/pγα(1− γ5)/kγβ(1− γ5)

= tr /q1
γα/q2

γβ/pγα/kγβ(1− γ5)4 = −16tr /q1/pγ
β
/q2
/kγβ(1− γ5) = −64tr /q1/p(k · q2)(1− γ5)

− 64tr /q1/p(k · q2) = −256(p · q1)(k · q2) ,

(2.19)

from which Eq. (2.17) follows.

Taking into account a factor 1/(2s + 1) = 1/2 due to averaging (not summing) over the muon
spin, according to Eq. (1.56) the differential decay width reads in the muon rest frame

dΓ =
1

2mµ

〈〈|Mfi|2〉〉
2

dΦ(3) =
32G2

mµ
(p · q1)(k · q2)dΦ(3) . (2.20)

The phase-space element reads

dΦ(3) = (2π)4δ(4)(p− k − q1 − q2)
d3k

(2π)32E

d3q1

(2π)32ω1

d3q2

(2π)32ω2
, (2.21)

where E = k0 =

√
~k 2 +m2

e and ωi = q0
i = |~qi|. Four-momentum conservation imposes that

p− k = q1 + q2 be a timelike or lightlike vector, as it satisfies (p− q)2 = (q1 + q2)2 = 2q1 · q2 =
2ω1ω2(1− cos θ12) ≥ 0, where θ12 is the relative angle between the trajectories of the neutrinos.
As a consequence, the electron energy in the muon rest frame is bounded by m2

µ+m2
e−2mµE ≥ 0,

i.e.,

E ≤
m2
µ +m2

e

2mµ
=
mµ

2

(
1 +O(m

2
e

m2
µ

)
)
. (2.22)

Typically neutrinos are not detected, and measurements are made only on the electron. We
then integrate over the neutrino momenta, and get

dΓ =
32G2

mµ

d3k

(2π)58E

∫
d3q1

ω1

∫
d3q2

ω2
δ(4)(p− k − q1 − q2)(p · q1)(k · q2)

=
G2

8mµπ5

d3k

E
pαkβIαβ(p− k) ,

Iαβ(q) ≡
∫
d3q1

ω1

∫
d3q2

ω2
δ(4)(q − q1 − q2)q1αq2β .

(2.23)

Evaluation of Iαβ(q) is made easier by exploiting its properties under Lorentz transformation:
since it must be a symmetric tensor of mass dimension 2 built out of q, one must have

Iαβ(q) = Aq2ηαβ +Bqαqβ , (2.24)

with A and B dimensionless functions of q2. Since there is no other dimensionful invariant
available besides q2, they must simply be numerical constants. Next, notice that thanks to the
delta function one can replace q2 → 2q1 · q2 in the integrand, and so

ηαβIαβ(q) = q2(4A+B) =

∫
d3q1

ω1

∫
d3q2

ω2
δ(4)(q − q1 − q2) q1 · q2 =

q2

2
C ,

qαqβIαβ(q) = (q2)2(A+B) =

∫
d3q1

ω1

∫
d3q2

ω2
δ(4)(q − q1 − q2) (q1 · q2)2 =

(q2)2

4
C ,

C ≡
∫
d3q1

ω1

∫
d3q2

ω2
δ(4)(q − q1 − q2) .

(2.25)
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The resulting system of equations for A and B is easily solved to give A = C/12, B = C/6. Since
C is a Lorentz invariant it can be equivalently evaluated in any frame. Since q1,2 are lightlike
vectors, due to the delta function imposing q = q1 + q2 one has that Iαβ(q) can be nonzero only
if q is a timelike vector,20 so we can choose the frame where ~q = 0, which is the centre-of-mass
frame of the neutrino-antineutrino system. Upon integration we then find

C =

∫
d3q1

ω1

∫
d3q2

ω2
δ(q0 − ω1 − ω2)δ(3)(~q1 + ~q2) =

∫
d3q1

ω2
1

δ(q0 − 2ω1)

=
1

2

∫
dΩ

∫
dω1 ω

2
1

ω2
1

δ(1
2q

0 − ω1) = 2π ,

(2.26)

and so
Iαβ(q) =

π

6

(
q2ηαβ + 2qαqβ

)
. (2.27)

The case where neutrinos are replaced by particles of arbitrary mass is discussed in Section 2.5.
Plugging this result back into Eq. (2.23) we find

dΓ =
G2

8mµπ5

d3k

E
pαkβ

π

6

(
(p− k)2ηαβ + 2(p− k)α(p− k)β

)
=

G2

48mµπ4

d3k

E

(
(p− k)2p · k + 2p · (p− k) k · (p− k)

)
=

G2

48mµπ4

d3k

E

(
(p2 + k2 − 2p · k) p · k − 2(p2 − p · k)(k2 − p · k)

)
=

G2

48mµπ4

d3k

E

(
3(p2 + k2)p · k − 4(p · k)2 − 2p2k2

)
=

G2

48mµπ4

d3k

E

(
3(m2

µ +m2
e)mµE − 4(mµE)2 − 2m2

µm
2
e

)
.

(2.28)

We now make approximations based on the fact that the electron mass is much smaller than
the muon mass, so that the last term is much smaller than the first (in which we can ignore the
electron mass), since m2

e/(mµE) < me/mµ � 1, and that the electron is typically ultrarelativis-
tic (we will check this assumption self-consistently at the end of the calculation), me/E � 1,
so that the last term is much smaller than the second. We can therefore neglect m2

e in the first
term, and the last term altogether, and write

dΓ =
G2

48mµπ4

d3k

E
(p · k)

(
3p2 − 4(p · k)

)
=

G2

48mµπ4

d3k

E
m2
µE (3mµ − 4E) , (2.29)

up to terms of order (me/mµ)2, (me/mµ)(me/E), and (me/E)2. Integrating over the direction
of the electron, and using kdk = EdE, we get

dΓ =
G2

48mµπ4
4πdEE

√
E2 −m2

em
2
µ (3mµ − 4E)

=
G2mµ

12π3
(3mµ − 4E)E

√
E2 −m2

e dE .

(2.30)

20In the case of lightlike q, q2 = 0, the integral vanishes, since it receives contributions only from the sets of
zero measure where q1 · q2 = 0, corresponding to collinear neutrinos, or where ω1 = |~q1| = 0 or ω2 = |~q2| = 0,
corresponding to neutrinos of vanishing energy.
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Figure 4: Probability distribution function for the energy of the electron produced in the muon
decay µ− → e− ν̄e νµ.

The maximal energy that the electron can reach is Emax =
mµ
2 , up to corrections of relative

order O(m2
e/m

2
µ), and expressing dΓ in terms of the variable ε ≡ E/Emax = 2mµ/E we find

dΓ =
G2m2

µ

12π3

(
3− 2E

mµ/2

)(mµ

2

)3 E

mµ/2

√(
E

mµ/2

)2

−
(

me

mµ/2

)2 dE

mµ/2

=
G2m5

µ

96π3
(3− 2ε) ε2dε ,

(2.31)

having consistently neglected the term of order (me/mµ)2 in the square root, since it gives a
correction of relative order O(m2

e/E
2) to the width. Similarly, the lower limit of integration is

me/Emax = O(me/mµ), which is negligible. In our approximation, the variable ε thus runs from
0 to 1. The total width is obtained integrating Eq. (2.31) over ε, and equals

Γ =
G2m5

µ

96π3

∫ 1

0
dε (3− 2ε) ε2 =

G2m5
µ

192π3
. (2.32)

This can be compared to experiments to extract the Fermi constant G (after the appropriate
electromagnetic radiative corrections are included). Using Eq. (2.32) we can recast Eq. (2.31)
as

1

Γ

dΓ

dε
= (6− 4ε) ε2 , (2.33)

which provides the probability distribution function for the electron energy (see Fig. 4). Inte-
grating this quantity one finds out that in more than 98% of the cases one has ε > 0.2, which
since ε = (E/me)(2me/mµ) ' 0.01E/me corresponds to a gamma factor γ = E/me & 20, i.e.,
an ultrarelativistic electron.

2.2 Polarised muons

The generalisation to the case when muons are polarised is rather easy, if we recall that for a
fermion of mass m with definite positive spin in direction ~η in its rest frame one has

u(p, s)ū(p, s) = (/p+m)
1 + γ5/s

2
. (2.34)
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Here s is a spacelike vector that in the fermion rest frame reads s = (0, ~η), and in a generic
reference frame is transformed to21

s =

(
~η · ~p
m

, ~η +
~p(~η · ~p )

m(p0 +m)

)
. (2.35)

Clearly, s2 = −~η 2 = −1 and s · p = 0. In the most general case, Eq. (2.4) is then equal to

|Mfi|2 =
G2

2

1

22
tr
(
/q2
OαL(/p+mµ)(1 + γ5/sµ)OβL

)
tr
(
/q1
OLβ(/k +me)(1 + γ5/se)OLα

)
=
G2

2
tr
(
/q2
γα(/p+mµ)(1 + γ5/sµ)γβ(1− γ5)

)
tr
(
/q1
γβ(/k +me)(1 + γ5/se)γα(1− γ5)

)
.

(2.36)
The polarisation vectors of the muon and of the electron will be denoted simply with ~ηµ = ~η and

~ηe = ~ζ. From Eq. (2.36) we recover 〈〈|Mfi|2〉〉 by replacing sµ,e → 0 and multiplying by a factor 4,
which exactly corresponds to summing over the two spin values. If we want to discuss partially
polarised muons, we have to average this expression over ~η with some probability distribution,
and since s is linear in ~η, we simply have to replace ~η → 〈~η 〉 in the expression for s, i.e.,
s(~η)→ s(〈~η 〉) = s̄. Notice that while one still has s̄ · p = 0, in general −1 ≤ s̄2 ≤ 0.

Since the two factors in Eq. (2.36) have the same structure, it suffices to study only the
first one to make progress. The only terms coming from (/p + mµ)(1 + γ5/sµ) that contribute
to the trace are those containing an odd number of gamma matrices, and so we can replace
(/p+mµ)(1 + γ5/sµ)→ (/p+ γ5mµ/sµ). Furthermore,

tr
(
/q2
γαγ5/sµγ

β(1− γ5)
)

= tr
(
/q2
γα/sµγ

βγ5(1− γ5)
)

= −tr
(
/q2
γα/sµγ

β(1− γ5)
)
. (2.37)

This means that in practice all that we have to do is replace p → (p − mµsµ)/2 and k →
(k −mese)/2 in Eq. (2.17), and obtain in the most general case

|Mfi|2 = 32G2[(p−mµsµ) · q1][(k −mese) · q2] , (2.38)

and thus

dΓ =
1

2mµ
|Mfi|2dΦ(3) =

16G2

mµ
[(p−mµsµ) · q1][(k −mese) · q2]dΦ(3) . (2.39)

Integrating over the momenta of neutrinos we find

dΓ =
G2

16mµπ5

d3k

E
(p−mµsµ)α(k −mese)

βIαβ(p− k)

=
G2

96mµπ4

d3k

E

[
(p− k)2(p−mµsµ) · (k −mese)

+ 2(p− k) · (p−mµsµ) (p− k) · (k −mese)
]
.

(2.40)

21To prove Eqs. (2.34) and (2.35), check first that they are correct in the rest frame of a massive particle using
the explicit expressions Eq. (1.30). Notice that if ~η · ~σϕ = ϕ, then ϕϕ† = 1+~η·~σ

2
. The validity of Eq. (2.34)

in a general reference frame follows from Lorentz invariance, after showing that Eq. (2.35) provides the Lorentz

transformed of s under a pure boost in direction ~p
|~p | (without any further rotation around ~p

|~p | ) with βγ = |~p |
m

starting from the rest frame.
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Setting p̃ = p−mµsµ, k̃ = k −mese, we have for the term in square brackets

[. . .] = (p− k)2p̃ · k̃ + 2(p− k) · p̃ (p− k) · k̃
= (p− k)2(p · k̃ −mµsµ · k̃) + 2[(p− k) · p+mµsµ · k](p · k̃ − k2)

= (p · k̃)[(p− k)2 + 2(p− k) · p]
−mµ[(p− k)2sµ · k̃ − 2(p · k̃ − k2)sµ · k]− 2k2(p− k) · p

= (p · k̃)(3p2 − 4p · k + k2)

−mµ[(p2 − 2p · k + k2)sµ · k̃ − 2(p · k̃ − k2)sµ · k]− 2k2(p2 − p · k) .

(2.41)

Since mµ � me, we can neglect k2 = m2
e against p2 = m2

µ and p · k = Emµ, and against

p · k̃ = mµ(E − ~ζ · ~k). In this approximation,

[. . .] = (p · k̃)(3p2 − 4p · k)−mµ[(p2 − 2p · k)sµ · k̃ − 2p · k̃sµ · k] . (2.42)

If we sum over the electron spin states, this becomes

[. . .] −−−−−−−→
sum over se

2
[
(p · k)(3p2 − 4p · k)−mµsµ · k(p2 − 4p · k)

]
. (2.43)

and so

dΓ =
G2

48mµπ4

d3k

E

[
(p · k)(3p2 − 4p · k)−mµsµ · k(p2 − 4p · k)

]
=

G2

48mµπ4

d3k

E

[
mµE(3m2

µ − 4mµE) +mµ~η · ~n|~k|(m2
µ − 4mµE)

]
=

G2

48π4
d3k

[
(3m2

µ − 4mµE) + ~η · ~n |
~k|
E

(m2
µ − 4mµE)

]
,

(2.44)

where ~n is the direction of the electron momentum. Going over to ε and neglecting powers of
me/mµ we find

dΓ =
G2m5

µ

48π4

dΩdεε2

8
(3− 2ε+ ~η · ~n (1− 2ε))

=
G2m5

µ

96π3
(3− 2ε+ ~η · ~n (1− 2ε)) dεε2dΩ

4π

=
G2m5

µ

192π3
(3− 2ε+ cos θ (1− 2ε)) dεε2d cos θ

= Γ (3− 2ε+ (1− 2ε) cos θ) ε2dεd cos θ ,

(2.45)

where θ is the angle between the electron momentum and the muon polarisation. Integrating
over energy we find the angular distribution of the electron

1

Γ

dΓ

d cos θ
=

∫ 1

0
dε ε2 (3− 2ε+ (1− 2ε) cos θ) =

1

2

(
1− 1

3
cos θ

)
. (2.46)

If we do not sum over but instead observe the electron spin, considering the (typical) high-energy
case E � me, we have that

mese =

(
~ζ · ~k,me

~ζ + ~k
~ζ · ~k

E +me

)
' E(~ζ · ~n) (1, ~n) ' (~ζ · ~n)k , (2.47)
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i.e., k̃ ' (1− ~ζ · ~n)k, and so

[. . .] −−−−→
E�me

(1− ~ζ · ~n)
{

(p · k)(3p2 − 4p · k)−mµsµ · k(p2 − 4p · k)
}
. (2.48)

To obtain the differential decay width we then have to multiply Eq. (2.44) by 1
2(1−~ζ ·~n). Going

over to ε we then get

dΓ =
G2m5

µ

192π3
(1− ~ζ · ~n) (3− 2ε+ ~η · ~n (1− 2ε)) dεε2dΩ

4π

= Γ(1− ~ζ · ~n) (3− 2ε+ ~η · ~n (1− 2ε)) dεε2dΩ

4π
.

(2.49)

If we choose to measure the azimuthal angle of ~n from ~ζ, then

cosφ =
[~ζ − ~η(~η · ~ζ)] · [~n− ~η(~η · ~n)]

|~ζ − ~η(~η · ~ζ)||~n− ~η(~η · ~n)|
=

~ζ · ~n− (~η · ~ζ)(~η · ~n)√
1− (~η · ~ζ)2

√
1− (~η · ~n)2

=
~ζ · ~n− cos θ cos δ

sin θ sin δ
, (2.50)

where cos δ = ~η · ~ζ. We have then ~ζ · ~n = cos θ cos δ + sin θ sin δ cosφ, and

dΓ

Γ
= (1− cos θ cos δ − sin θ sin δ cosφ) (3− 2ε+ cos θ (1− 2ε)) dεε2dΩ

4π
. (2.51)

Notice that if we average over the muon polarisation in Eq. (2.49), we get

dΓ

Γ
= (1− ~ζ · ~n) (3− 2ε) dεε2dΩ

4π
=

1− cos θ̃

2
(3− 2ε) dεε2d cos θ̃ , (2.52)

with θ̃ the angle between the electron momentum and polarisation.
Before discussing the implications of these results, let us derive the corresponding formulas

in the case of antimuon decay,
µ+ → e+ νe ν̄µ . (2.53)

The relevant amplitude is easily seen to be

Mfi =
G√

2

(
v̄(µ)(p, sµ)OαLv(νµ)(q2)

)(
ū(νe)(q1)OLαv(e)(k, se)

)
, (2.54)

and all that is required to obtain the desired decay widths is to make the replacements

(/p+mµ)
1 + γ5/sµ

2
→ (/p−mµ)

1 + γ5/sµ
2

, (/k +me)
1 + γ5/se

2
→ (/k −me)

1 + γ5/se
2

, (2.55)

which after evaluating the traces boils down to the replacements

p−mµsµ → p+mµsµ , k −mese → k +mese (2.56)

in the matrix element, which in turn corresponds simply to

~η → −~η , ~ζ → −~ζ . (2.57)

The phase-space element is left unchanged, and so we find in the most general case of polarised
muons and measured electron spin

dΓµ− = Γ(1− ~ζ · ~n) (3− 2ε+ ~η · ~n (1− 2ε)) dεε2dΩ

4π
,

dΓµ+ = Γ(1 + ~ζ · ~n) (3− 2ε− ~η · ~n (1− 2ε)) dεε2dΩ

4π
,

(2.58)

where we have also reported the µ− decay width for comparison.
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2.3 Qualitative discussion

Let us highlight the most interesting features of the results Eqs. (2.32) and (2.58).

• The muon mass dependence Γ ∝ m5
µ follows for dimensional reasons from

Γ = mµF (Gm2
µ,me/mµ) , (2.59)

for some dimensionless function F , once we take into account that me/mµ � 1, so that it
can be neglected, and that to the given perturbative order F (x, 0) = F0x

2, i.e.,

Γ = mµF (Gm2
µ, 0) = mµ(Gm2

µ)2F0 . (2.60)

• The decay widths in Eq. (2.58) break both parity and charge conjugation symmetry. In-
deed, under these transformations

dΓµ∓(~n, ~η, ~ζ ) −→
C
dΓµ±(~n, ~η, ~ζ ) 6= dΓµ∓(~n, ~η, ~ζ ) ,

dΓµ∓(~n, ~η, ~ζ ) −→
P
dΓµ∓(−~n, ~η, ~ζ ) = dΓµ±(~n, ~η, ~ζ ) ,

(2.61)

which also shows that the combined transformation CP is instead a symmetry,

dΓµ∓(~n, ~η, ~ζ ) −→
P
dΓµ∓(−~n, ~η, ~ζ ) = dΓµ±(~n, ~η, ~ζ ) −→

C
dΓµ∓(~n, ~η, ~ζ ) . (2.62)

This is reflected, for example, in the different angular distributions of the electron and the
positron (summed over final spins),

1

Γ

dΓ

d cos θ

∣∣∣∣
e−

= 1
2

(
1− 1

3 cos θ
)
,

1

Γ

dΓ

d cos θ

∣∣∣∣
e+

= 1
2

(
1 + 1

3 cos θ
)
. (2.63)

• The breaking of parity can be inferred also from the fact that the decay of unpolarised
muons produces polarised electrons (with polarisation that can only be along the same
direction of their momentum due to rotation invariance).

• The factor (1 − ~ζ · ~n) suppresses high-energy electrons with polarisation parallel to their
momentum. This is a consequence of the chiral coupling of the charged currents, which
suppresses massless particles (resp. antiparticles) with positive (resp. negative) helicity,
and of the obvious fact that a high-energy particle effectively resembles a massless one.

• The angular asymmetry in the emission of electrons is a consequence of angular momentum
conservation and of the fixed helicity of neutrinos and antineutrinos (see Fig. 5). For
ε ' 1, one has (p − k)2 ' m2

µ − 2mµE ' 0, so q1 · q2 = ω1ω2(1 − cos θν) ' 0, and since
low values of ω1,2 are suppressed by the phase-space element as dqi/ωi = dΩidωiωi, one
has cos θν ' 1, i.e., the neutrino and the antineutrino momenta are parallel. This means
that their spins add up to zero in the direction of their motion, leading to a state of zero
angular momentum.22 Furthermore, in the high-energy limit the electron has essentially
negative helicity, and since its spin must be in the same direction as that of the muon, it

22The neutrino-antineutrino system in this case is a zero-mass system with zero helicity, so a system with
vanishing total angular momentum.
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Figure 5: Alignment of momenta and spin in the decay of the muon at high (top) and low
(bottom) energy. Thin lines correspond to momenta, white arrows to spins.

must be emitted in the direction opposite to the muon spin. In the low energy limit ~k ' 0
one has instead that the neutrino and antineutrino travel in opposite directions, so that
their spins add up to 1 in the direction of the antineutrino. This means that the electron
spin must be opposite to the muon spin, and parallel to the direction of motion of the
neutrino. Since negative helicity is favoured by the chiral coupling, the electron is then
emitted preferentially in the direction of the muon polarisation (see Fig. 5).

2.4 Appendix: Fierz identities

Equation (2.5) is a particular case of the so-called Fierz identities. The proof of these identities
revolves around the basic fact that the set of sixteen matrices {ΓA},

{ΓA} =
{
1 ; γµ , 0 ≤ µ ≤ 3 ; σµν , 0 ≤ µ < ν ≤ 3 ; iγ5γµ , 0 ≤ µ ≤ 3 ; γ5

}
, (2.64)

provides a basis of the linear space of complex 4× 4 matrices. This is in fact a 16-dimensional
space, and the matrices ΓA are necessarily linearly independent since they transform differently
under proper orthocronous Lorentz and parity transformations. In particular, this implies that
tr ΓAΓB = 0 unless A = B: the object tr ΓAΓB must in fact be a symmetric, Lorentz- and
parity-invariant object. No invariant can be obtained from matrices transforming differently
under Lorentz and parity, and so this object must vanish unless ΓA and ΓB are of the same
type, i.e., they belong to the same Lorentz multiplet. The only symmetric invariants can be
built using ηµν , and one can then show that tr ΓAΓB = αAδ

AB. The values of αA are obtained
noticing that

tr 11 = 4 ,

tr γαγβ = 1
2tr {γα, γβ} = 4ηαβ ,

tr [σµνσαβ]µ<να<β = −tr [γµγνγαγβ]µ<να<β = −4[ηµνηαβ − ηµαηνβ + ηµβηνα]µ<να<β = 4ηµαηνβ ,

tr iγ5γαiγ5γβ = tr γαγβ = 4ηαβ ,

tr γ5γ5 = 4 .

(2.65)

If we denote with ΓA the matrix obtained lowering the Lorentz indices with the metric tensor,
then it follows that

1
4 tr ΓAΓB = δAB . (2.66)
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Using this identity one proves straightforwardly the linear independence of the ΓA (write any
linear combination, and extract the single coefficients by taking the appropriate trace). The {ΓA}
thus form a complete set, and one can write a generic 4× 4 complex matrix as M =

∑
ACAΓA,

with
1
4 trMΓA = 1

4

∑
BCBtr ΓBΓA = CA . (2.67)

Therefore

M =
∑
A

1
4 tr [MΓA]ΓA , M i

j =
∑
A

1
4 tr [MΓA](ΓA)ij =

∑
A

1
4 M

k
l(ΓA)lk(Γ

A)ij , (2.68)

and since this must hold for any matrix M , the following completeness relation follows,

δikδ
l
j = 1

4

∑
A

(ΓA)ij(ΓA)lk . (2.69)

This can be contracted with any pair of matrices F and G to yield

F ljG
i
k = 1

4

∑
A

(ΓA)ij(FΓAG)lk , (2.70)

and further with bispinors ā, b, c̄ and d to get

(āF b)(c̄Gd) = 1
4

∑
A

(c̄ΓAb)(āFΓAGd) . (2.71)

This is the starting point to derive a number of useful relations by taking such F and G that
lead to a Lorentz-invariant object on the left-hand side, e.g., F = G = 1, F = γµ and G = γµ,
and so on.

The case of interest for us is F = OαL, G = OLα. We can show that

OαL1OLα = γα(1− γ5)γα(1− γ5) = γαγα(1 + γ5)(1− γ5) = 0 ,

OαLγµOLα = γα(1− γ5)γµγα(1− γ5) = 2γαγµγα(1− γ5) = −4γµ(1− γ5) = −4OµL ,
OαLσµνOLα = γα(1− γ5)σµνγα(1− γ5) = γασµνγα(1 + γ5)(1− γ5) = 0 ,

OαLiγ5γµOLα = −iγ5OαLγµOLα = 4iγ5OµL = 4iOµL ,
OαLγ5OLα = −γ5OαLOLα = 0 ,

(2.72)

where on the second line we used the identity

γαγµγα = γα(2δµα − γαγµ) = 2γµ − 4γµ = −2γµ . (2.73)

From this it follows that

(āOαLb)(c̄OLαd) = 1
4

(
−4(c̄γµb)(āOµLd) + 4(c̄iγ5γµb)(āiOµLd)

)
= −

(
(c̄γµb)(āOµLd) + (c̄γµγ

5b)(āOµLd)
)

= −(āOµLd)(c̄OLµb) .
(2.74)
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2.5 Appendix: phase-space integral

We compute here the phase-space integral Iαβ(q) of Eq. (2.24) in the general case of final particles
of masses m1 and m2. Using relativistic normalisation for the integration measure, let

Iαβ(q) =

∫
dΩq1

∫
dΩq2 (2π)4δ(4)(q − q1 − q2) q1α q2β , (2.75)

where

dΩqi =
d3qi

(2π)32q0
i

, q0
i =

√
~q 2
i +m2

i . (2.76)

Clearly, Iαβ and Iαβ differ only by a numerical factor,

Iαβ(q) =
Iαβ(q)

4(2π)2
. (2.77)

The four-vectors q1,2 are timelike, and so is their sum. The delta function in Eq. (2.75) has
therefore nonvanishing support inside the integration domain only if q is timelike; since it also
imposes q2 = (q1 + q2)2, and (q1 + q2)2 ≥ (m1 + m2)2, this support is further restricted by
q2 ≥ (m1 + m2)2. Lorentz invariance of the integration measure implies that Iαβ(q) must take
the form

Iαβ(q) = A(q2)q2ηαβ +B(q2)qαqβ . (2.78)

In fact, Iαβ must be a rank-2 Lorentz tensor, and ηαβ and qαqβ are the only two independent
structures that can be constructed with a single four-vector. The quantities A and B are Lorentz
scalars, that can depend only on q2, as well as m1,2. From dimensional analysis it follows that
they must be dimensionless. In order to find out their values, we will compute ηαβIαβ and
qαqβIαβ, so dealing with scalar quantities which are easier to manipulate. We have

ηαβIαβ(q) = (4A(q2) +B(q2))q2 =

∫
dΩq1

∫
dΩq2 (2π)4δ(4)(q − q1 − q2) q1 · q2

=

∫
dΩq1

∫
dΩq2 (2π)4δ(4)(q − q1 − q2) 1

2

(
q2 −m2

1 −m2
2

)
= 1

2

(
q2 −m2

1 −m2
2

)
C(q2) ,

(2.79)

where

C(q2) =

∫
dΩq1

∫
dΩq2 (2π)4δ(4)(q − q1 − q2) . (2.80)

By the same arguments used above, this is a Lorentz-invariant quantity with support in q2 ≥
(m1 + m2)2. To derive Eq. (2.79) we have used the fact that due to the delta function, inside
the integral one can identify q2 = (q1 + q2)2 = m2

1 +m2
2 + 2q1 · q2. Furthermore

qαqβIαβ(q) = (A(q2) +B(q2))(q2)2 =

∫
dΩq1

∫
dΩq2 (2π)4δ(4)(q − q1 − q2) q · q1 q · q2

= 1
2

(
q2 +m2

1 −m2
2

)
1
2

(
q2 +m2

2 −m2
1

)
C(q2)

= 1
4

((
q2
)2 − (m2

1 −m2
2

)2)
C(q2) ,

(2.81)
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having used m2
2 = q2

2 = (q−q1)2 = q2 +m2
1−2q ·q1, that holds for the arguments of the integrand

thanks to the delta function, and a similar relation with the roles of q1 and q2 interchanged. In
conclusion,

4A(q2) +B(q2) =
1

2

(
1− m2

1 +m2
2

q2

)
C(q2) ,

A(q2) +B(q2) =
1

4

[
1−

(
m2

1 −m2
2

q2

)2
]
C(q2) .

(2.82)

Subtracting the second equation from the first and dividing by 3 we find

A(q2) =
C(q2)

6

[
1− m2

1 +m2
2

q2
− 1

2
+

1

2

(
m2

1 −m2
2

q2

)2
]

=
C(q2)

12

[
1− 2(m2

1 +m2
2)

q2
+

(
m2

1 +m2
2

q2

)2

−
(

2m1m2

q2

)2
]

=
C(q2)

12

[(
1− m2

1 +m2
2

q2

)2

−
(

2m1m2

q2

)2
]

=
C(q2)

12

[
1− (m1 +m2)2

q2

] [
1− (m1 −m2)2

q2

]
.

(2.83)

The value of B can be similarly determined, but it is more convenient instead to rearrange
Eq. (2.78) as follows,

Iαβ(q) = A(q2)(q2ηαβ − qαqβ) + (A(q2) +B(q2))qαqβ , (2.84)

obtaining directly from Eqs. (2.82) and (2.83)

Iαβ(q) =
C(q2)

12

[
1− (m1 +m2)2

q2

] [
1− (m1 −m2)2

q2

]
(q2ηαβ − qαqβ)

+
C(q2)

4

[
1−

(
m2

1 −m2
2

q2

)2
]
qαqβ .

(2.85)

We are left with the calculation of C(q2). Since it is Lorentz-invariant and supported in the
timelike domain q2 ≥ (m1 + m2)2, we can compute it in the most convenient frame, which in
this case is the “rest frame” qR = (q0

R, ~qR = ~0), where q0
R =

√
q2 ≥ m1 +m2. We then find

C(q2) =

∫
d3q1

(2π)32q0
1

∫
d3q2

(2π)32q0
2

(2π)4δ(q0
R − q0

1 − q0
2)δ(3)(~q1 + ~q2)

=
1

4(2π)2

∫
d3q1

(2π)3q0
1q

0
2

δ(q0 − q0
1 − q0

2) ,

(2.86)

where now q0
1 =

√
~q 2

1 +m2
1 and q0

2 =
√
~q 2

1 +m2
2. Going over to polar coordinates,

C(q2) =
1

4(2π)2

∫
dΩ

∫ ∞
0

dxx2√
m2

1 + x2
√
m2

2 + x2
δ

(
q0
R −

√
m2

1 + x2 −
√
m2

2 + x2

)

=
1

4π

∫ ∞
0

dxx2√
m2

1 + x2
√
m2

2 + x2

(
x√

m2
1 + x2

+
x√

m2
2 + x2

)−1

δ(x− x∗) ,
(2.87)
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where x∗ is the unique positive solution of the equation q0
R =

√
m2

1 + x2 +
√
m2

2 + x2, to be
determined below. The integral in Eq. (2.87) is now trivial, and we find

C(q2) =
1

4π

∫ ∞
0

dxx√
m2

1 + x2 +
√
m2

2 + x2
δ(x− x∗) =

x∗
4πq0

R

=
x∗

4π
√
q2
. (2.88)

Our last task is to find x∗. Here is the derivation:23

q0
R −

√
m2

1 + x2 =
√
m2

2 + x2 ,

(q0
R)2 +m2

1 + x2 − 2q0
R

√
m2

1 + x2 = m2
2 + x2 ,

(q0
R)2 +m2

1 −m2
2 = 2q0

R

√
m2

1 + x2 ,

((q0
R)2 +m2

1 −m2
2)2 = 4(q0

R)2(m2
1 + x2) ,

((q0
R)2 +m2

1 −m2
2 − 2q0

Rm1)((q0
R)2 +m2

1 −m2
2 + 2q0

Rm1) = 4(q0
R)2x2 ,

((q0
R −m1)2 −m2

2)((q0
R +m1)2 −m2

2) = 4(q0
R)2x2 .

(2.89)

Simple manipulations show that the left-hand side equals

((q0
R −m1)2 −m2

2)((q0
R +m1)2 −m2

2)

= (q0
R −m1 −m2)(q0

R −m1 +m2)(q0
R +m1 −m2)(q0

R +m1 +m2)

= ((q0
R)2 − (m1 +m2)2)((q0

R)2 − (m1 −m2)2)

= (q2 − (m1 +m2)2)(q2 − (m1 −m2)2) ,

(2.90)

where in the last passage we made Lorentz invariance manifest. We can now solve Eq. (2.89)
for x2, obtaining

x2
∗ =

(q2 − (m1 +m2)2)(q2 − (m1 −m2)2)

4q2

=
q2

4

(
1− (m1 +m2)2

q2

)(
1− (m1 −m2)2

q2

)
,

(2.91)

that has real solutions if and only if q2 ≥ (m1 +m2)2.24 Taking the positive solution for x∗ we
conclude

C(q2) =
1

4π

√
x2
∗
q2

=
1

8π

√
1− (m1 +m2)2

q2

√
1− (m1 −m2)2

q2
, (2.92)

if q2 ≥ (m1 +m2)2, and C(q2) = 0 otherwise. Setting M = m1 +m2 and µ = m1−m2, we then
have

Iαβ(q) =
1

32π

√
1− M2

q2

√
1− µ2

q2

{
1

3

(
1− M2

q2

)(
1− µ2

q2

)
(q2ηαβ − qαqβ)

+

(
1− M2

q2

µ2

q2

)
qαqβ

}
.

(2.93)

23 If solutions exist for q0
R ≥ m1 + m2, then both sides of each equation in Eq. (2.89) are positive. Replacing

them with their squares leads therefore to an entirely equivalent equation under the restriction on q0
R, i.e., their

solutions are in one-one correspondence.
24Notice that (m1 +m2)2 ≥ (m1 −m2)2 if m1,2 ≥ 0.
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Let us discuss a few simple cases. When m1 = m2 = m, we have µ = 0 and so

Iαβ(q) =
1

32π

√
1− 4m2

q2

{
1

3

(
1− 4m2

q2

)
(q2ηαβ − qαqβ) + qαqβ

}
. (2.94)

If furthermore m = 0 we recover Eq. (2.24),

Iαβ(q) =
1

32π

{
1

3
(q2ηαβ − qαqβ) + qαqβ

}
=

1

96π
{q2ηαβ + 2qαqβ} . (2.95)

If instead m1 = 0, m2 = m, we have M = |µ| = m and so

Iαβ(q) =
1

96π

(
1− m2

q2

){
q2ηαβ + 2qαqβ −

2m2

q2
(q2ηαβ − qαqβ)

+

(
m2

q2

)2

(q2ηαβ − 4qαqβ)

}
.

(2.96)
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3 Strangeness-conserving semileptonic processes

In semileptonic processes where the strangeness is conserved, the relevant term of the Lagrangian
is (we ignore heavy quarks b and t)

δL = − G√
2

cos θC(ūOαLd)Jlα + h.c. . (3.1)

For initial/final hadronic states |hi,f 〉 and initial/final leptonic states |`i,f 〉, the relevant matrix
elements are (in lowest-order perturbation theory)

Mfi = − G√
2

cos θC(HαLα + H̃αL̃α) ,

Hα = 〈hf |(ūOαLd)(0)|hi〉 , Lα = 〈`f |Jαl (0)|`i〉 ,
H̃α = 〈hf |(ūOαLd)(0)†|hi〉 , L̃α = 〈`f |Jαl (0)†|`i〉 ,

(3.2)

having used Eq. (1.60). Depending on the quantum numbers of the states |hi,f 〉, either one or
the other term in Eq. (3.2) will only be nonzero. In fact, the current ūOαLd has electric charge
Q = 1 (also isospin I3 = 1, and hypercharge Y = 0) while its Hermitian conjugate d̄OαLu has
Q = −1 (isospin I3 = −1, and hypercharge Y = 0), so they cannot both have a nonzero matrix
element with given initial and final states. We will simplify the notation in the following and
drop the unnecessary tilde.

To lowest perturbative order, the hadronic states |hi,f 〉 are determined by strong interactions
alone, with corrections suppressed by powers of the weak coupling constant. However, at low
momentum transfer the matrix elements Hα of interest cannot be studied using perturbative
QCD, since its low-energy dynamics is inherently nonperturbative. Nonetheless, a lot can be said
about them based simply on symmetries. Decay amplitudes are in fact determined by translation
and Lorentz invariance up to a few functions of the transferred momentum squared. These can
be studied using nonperturbative techniques, e.g., numerical calculations on the lattice, or, more
pragmatically, treated as phenomenological parameters that can be determined experimentally.
The relevant parameters for different processes are furthermore related, to a certain degree
of approximation, by the known (approximate) symmetries of the strong interactions, namely
isospin and (to a lesser extent) flavour SU(3) symmetry.

3.1 Isotopic spin (isospin) invariance

If we organise the up and down quark into an isospin doublet,

q =

(
u
d

)
, (3.3)

then the two relevant currents are part of the isovector triplet

J µa = q̄OµL
τa
2
q = q̄γµ

τa
2
q − q̄γµγ5 τa

2
q = V µ

a −Aµa , (3.4)

which is the sum of a vector-isovector and an axial vector-isovector current. Here τa denotes
the Pauli matrices (the usage of τa instead of σa is standard in this context). In particular,
the charged weak current ūOµLd and its conjugate d̄OµLu correspond to J µ± = q̄OµL

τ±
2 q, where

τ± = τ1 ± iτ2. Notice that (V µ
+ )† = q†γµ†γ0τ †+q = q†γ0γµτ−q = V µ

− .
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Conservation of the vector current The vector part V µ
+ of the charged current and its

Hermitean conjugate V µ
− are components of the same isotriplet as the isotriplet part of the

electromagnetic current. Stated more simply, the electromagnetic current receives a contribution
from V µ

3 , since

V µ
em = 2

3 ūγ
µu− 1

3 d̄γ
µd = 1

2

(
ūγµu− d̄γµd

)
+ 1

6

(
ūγµu+ d̄γµd

)
= V µ

3 + Sµ , (3.5)

where Sµ is a vector-isoscalar current. A first consequence of this is that, since V µ
em is conserved,

∂µV
µ

em = 0, the vector current must be conserved as well in the limit of exact isospin invari-
ance. This implies first of all that V µ

3 and Sµ must be conserved separately, due their different
transformation properties under isospin rotations; and that the whole isotriplet V µ

a must be con-
served, since its components are related to each other by isospin transformations. Conservation
of a current Jµ has an important and well-known consequence on its matrix elements between
momentum eigenstates. Using translation invariance, we have in general that

〈~p ′|∂µJµ(x)|~p 〉 = ∂µ〈~p ′|Jµ(x)|~p 〉 = ∂µ〈~p ′|eiP ·xJµ(0)e−iP ·x|~p 〉
= ∂µe

i(p′−p)·x〈~p ′|Jµ(0)|~p 〉 = ∂µe
−iq·x〈~p ′|Jµ(0)|~p 〉 = −ie−iq·xqµ〈~p ′|Jµ(0)|~p 〉 ,

(3.6)

and setting x = 0,
〈~p ′|∂µJµ(0)|~p 〉 = −iqµ〈~p ′|Jµ(0)|~p 〉 . (3.7)

Conservation of the current, ∂µJ
µ(x) = 0, implies that the matrix elements of Jµ(0) are trans-

verse to q = p− p′,
qµ〈~p ′|Jµ(0)|~p 〉 = 0 . (3.8)

Isospin selection rules – Wigner-Eckart theorem A more direct consequence of isospin
invariance is that matrix elements of the current J µa can be nonzero only between initial and
final states with total isospin Ii,f differing by ∆I = If − Ii = 0,±1. This follows from the usual
composition rules of SU(2) representations. In particular, the matrix elements of the vector-
isovector current between states A and B belonging to the same isospin multiplet, If = Ii = I,
must have the form

〈A|V µ
a |B〉 = Cµ(I) (T (I)

a )AB , (3.9)

with T
(I)
a the generators in the representation R = 2I + 1 of dimension R = 2I+1 corresponding

to a multiplet of total isospin I.25 The reason is that under an isospin rotation of A and
B these matrix elements must transform like an isovector, resulting from the composition of
representations R̄ ⊗R = R ⊗R = ⊕2R

d=1d. Since each representation appears only once in the
decomposition, there is a single tensorial structure that can be formed, and that is provided by

T
(I)
a . Similarly, for the vector-isoscalar current one finds

〈A|Sµ|B〉 = C̃µ(I) δ
(I)
AB , (3.10)

since the (2I + 1)-dimensional identity matrix is the only scalar structure that can be formed
out of R̄⊗R. These are particular instances of the Wigner-Eckart theorem.

25The axial-vector current matrix elements have the same form, of course with a different coefficient, but this
does not turn out to be as useful.
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We can now combine these results with Eq. (3.5) to find a useful relation. Take A and B
to be I3 eigenstates in a multiplet of isospin I, and consider the matrix elements of the vector
currents V µ

+ , V µ
3 , and Sµ. We find

〈I I ′3|V µ
+ |I I3〉 = Cµ(I) (T

(I)
+ )I′3 I3 = Cµ(I)

√
I(I + 1)− I3(I3 + 1) δI′3 I3+1 ,

〈I I ′3|V µ
3 |I I3〉 = Cµ(I) (T

(I)
3 )I′3 I3 = Cµ(I) I3 δI′3 I3 ,

〈I I ′3|Sµ|I I3〉 = C̃µ(I) δI′3 I3 .

(3.11)

Here we assumed the Condon-Shortley convention on isospin eigenstates. If we subtract the
diagonal matrix elements of V µ

3 with isospin I3 + 1 and I3 we find

Cµ(I) = 〈I I3 + 1|V µ
3 |I I3 + 1〉 − 〈I I3|V µ

3 |I I3〉
= 〈I I3 + 1|V µ

em + Sµ|I I3 + 1〉 − 〈I I3|V µ
em + Sµ|I I3〉

= 〈I I3 + 1|V µ
em|I I3 + 1〉 − 〈I I3|V µ

em|I I3〉 .
(3.12)

Combining this with the first equation in Eq. (3.11) we obtain

〈I I3 + 1|V µ
+ |I I3〉 =

√
I(I + 1)− I3(I3 + 1)

[
〈I I3 + 1|V µ

3 |I I3 + 1〉 − 〈I I3|V µ
3 |I I3〉

]
=
√
I(I + 1)− I3(I3 + 1)

[
〈I I3 + 1|V µ

em|I I3 + 1〉 − 〈I I3|V µ
em|I I3〉

]
.

(3.13)

Weak charge The Noether charges associated with the vector-isovector current read

Ta =

∫
d3xV 0

a (x) . (3.14)

Here x0 is arbitrary due to conservation, so we take x0 = 0. For the matrix element between
isospin and momentum eigenstates A and B, with respectively isospin I ′, I ′3 and I, I3 and mo-
menta ~p ′ and ~p, we have

〈A|Ta|B〉 =

∫
d3x 〈A|V 0

a (x)|B〉 =

∫
d3xei(~p−~p

′)·x〈A|V 0
a (0)|B〉

= (2π)3δ(3)(~q )〈A|V 0
a (0)|B〉 ,

(3.15)

with ~q = ~p− ~p ′, and so for the + component, with the usual relativistic normalisation of states,
we find∫

d3x 〈A|V 0
+(x)|B〉 = 〈A|T+|B〉 = δI′IδI′3 I3+1

√
I(I + 1)− I3(I3 + 1)(2π)32p0δ(3)(~q ) . (3.16)

Comparing with Eq. (3.15) we conclude that

〈A|V 0
+(0)|B〉|~q=0 = 2p0δI′IδI′3I3+1

√
I(I + 1)− I3(I3 + 1) ≡ 2p0δI′IδI′3 I3+1QW (I, I3) . (3.17)

An analogous derivation leads to the following result for the − component of the vector current,

〈A|V 0
−(0)|B〉|~q=0 = 2p0δI′IδI′3I3−1

√
I(I + 1)− I3(I3 − 1) = 2p0δI′IδI′3 I3−1QW (I, I ′3) . (3.18)
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In the case of transitions where the initial and final state belong to the same isospin multiplet,
the amplitude in the static limit ~q = 0 is determined entirely by the weak charge, QW (I, I3).
(Notice that in this case also q0 = 0, since states in the same multiplets have the same mass.)
Analogously, for the electromagnetic current we have∫

d3x 〈A|V 0
em(x)|B〉 = 〈A|Qem|B〉 = δQ′QQ(2π)32p0δ(3)(~q ) , (3.19)

from which it follows that
〈A|V 0

em(0)|B〉|~q=0 = 2p0δQ′QQ . (3.20)

This is not in contradiction with Eq. (3.13): in fact, combining the two equations one finds
Q(I3 + 1) − Q(I3) = 1, which implies that Q(I3) is a linear function of I3; but this follows
directly from Eq. (3.5). (In fact, we know that Q = I3 + 1

2Y , the Gell-Mann–Nishijima relation.)

Axial current and chiral symmetry If quarks were massless, the SU(2) isospin symmetry
could actually be extended to a chiral isospin symmetry SU(2)L⊗ SU(2)R, with the two factors
acting independently on the two chiralities of the quark. In that case the corresponding chiral
currents would be conserved, and therefore both the vector and the axial current would be
exactly conserved, as they are the sum and the difference of the chiral ones. In the real world
the light quarks have small but finite masses, which leads to conservation of the axial current
being only partial,26 the current divergence being proportional to the light quark masses.

On the other hand, even in the massless quark limit the vector and axial part of the chiral
symmetry are realised in different ways: while the vacuum is invariant under a vector isospin
rotation, it is not under an axial one. Chiral symmetry is therefore spontaneously broken, and
being a continuous symmetry it generates massless bosons through the Goldstone mechanism.
These are nothing but the pions, whose nonzero mass is due to the explicit but soft breaking of
chiral symmetry due to the small light quark masses, and which would vanish in the massless
limit.

Partial conservation of the axial current (PCAC) was correctly guessed before the discovery
of quarks and of QCD. If the axial part of the chiral symmetry is spontaneously broken, then
Goldstone bosons πa are generated, one for each broken generator. Such bosons are coupled to
the axial current,

〈0|Aµa(0)|πb〉 = ipµfab , (3.21)

with fab some constants. The form of the right-hand side is dictated by Lorentz invariance. If
the vector part of the symmetry is not broken, then isospin invariance implies

〈0|Aµa(0)|πb〉 = ipµfπδab . (3.22)

The real27 quantity fπ is the pion decay constant, for reasons that will become clear soon, and

26We know that the light quark masses are also different from each other, so that the vector current is also not
exactly conserved, but this has a smaller effect on physical quantities.

27Exploiting invariance under the antiunitary transformation Θ = CPT and the transformation property
Θ†Aµ(x)Θ = −Aµ(−x) of an axial-vector fermion bilinear, one finds

〈0|Θ†Aµa(0)Θ|πb(~p)〉 = −〈0|Aµa(0)|πb(~p)〉 = −ifπδabpµ = 〈0|Aµa(0)|πb(−~p)〉∗ = (ifπδabp
µ)∗ .

having used the transformation property

Θ|πa(~p)〉 = ηT ηP ηC |π̄a(~p)〉 = |πa(~p)〉 .
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it has dimensions of a mass. Taking the divergence on both sides [see Eq. (3.7)]

〈0|∂µAµa(0)|πb〉 = (−i)pµipµfπδab = m2
πfπδab . (3.23)

The PCAC hypothesis is the generalisation of Eq. (3.23) to an operator relation,

∂µA
µ
a(x) = fπm

2
πφa(x) , (3.24)

with φa the pion fields (of mass dimension 1), normalised to have amplitude 1 between the
vacuum and the one-particle states,

〈0|φa(0)|πb〉 = δab . (3.25)

Here the states |πa〉 are related to the physical pion states |π0〉 and |π±〉 as |π0〉 = |π3〉 and

|π±〉 =
1√
2
I±|π0〉 =

|π1〉 ± i|π2〉√
2

, (3.26)

and the fields φa(x) are related to the neutral pion field π0(x) = π0(x)† and to the charged pion
fields π+(x) and π−(x) = π+(x)†, normalised such that

〈π0|π0(0)|0〉 = 1 , 〈π±|π±(0)|0〉 = 1 , (3.27)

as π0 = π3 and
√

2π± = φ1 ∓ iφ2. Indeed, taking the complex conjugate

〈0|
√

2π∓(0)|π±〉 =
1√
2
〈0|(φ1(0)∓ iφ2(0))(|π1〉 ± i|π2〉) =

√
2 , (3.28)

as required. These fields form an isotriplet: by construction the effect of a unitary isospin
transformation U on |πa〉 is U |πa〉 = U3

ba|πb〉, with U3 the representative of the transformation
in the adjoint (triplet) representation, so28

〈πb|Uφa(0)U †|0〉 = (U3†)∗cb〈πc|φa(0)|0〉 = U3
ba =⇒ Uφa(0)U † =

∑
c

U3
caφc(0) . (3.29)

While ∂µA
µ
a(x) is trivially “a” pion field, as it can create pion states out of the vacuum having

the right quantum numbers, Eq. (3.24) tells us that pions can be excited using a total divergence.
This has nontrivial consequences in the form of low-energy theorems (see Chapter 5 in Ref. [10]).

From a modern perspective, the PCAC relation Eq. (3.24) is the transcription in terms of
an effective mesonic field of the Ward identity for the axial current,

∂µA
µ
a(x) = 2mudPa(x) , (3.30)

where Pa = q̄γ5 τa
2 q is the pseudoscalar density, and mud is the light quark mass in the isospin

limit. The identity Eq. (3.30) is an exact result in the isospin limit of QCD. Comparison with
Eq. (3.24) shows that the pion mass square is proportional to the light-quark mass (in the limit
of small mass where the other states excited by Pa can be neglected), a relation known as the
Gell-Mann–Oakes–Renner relation.

Notice that the states |πa〉 are C eigenstates, and that the (arbitrary) residual phase ηT for the T transformation
is chosen so that ηT ηP ηC = 1, where ηP and ηC are the intrinsic parity and charge-conjugation phases. From the
equation above it follows that f∗π = fπ.

28This treatment is appropriate for free pion fields, like, e.g., the ones appearing in the interaction picture, that
only create one-particle states out of the vacuum. For the fully interacting fields, one should start from the isospin
invariant action, from which the symmetry generators are obtained via Noether’s theorem. Their action on the
pion states, defined as the lightest states created by the interacting fields, follows then from the transformation
properties of the fields.
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3.2 Pion decays

Let us apply the general results of the previous subsection to concrete cases.

Leptonic decays of charged pions We begin with the decays

π+ → `+ ν` , π− → `− ν̄` . (3.31)

Since pions are pseudoscalars, a fully leptonic decay of a pion can only be mediated by the
axial current, i.e., 〈0|V µ

∓ |π±〉 = 0. This matrix element is in fact an axial vector under Lorentz
transformations, but no axial vector is available. The axial current matrix element is instead a
vector, and Lorentz invariance dictates it to be of the form [see Eqs. (3.22), (3.26) and (3.28)]

〈0|Aµ∓|π±〉 = i
√

2fπp
µ , (3.32)

with real constant fπ of mass dimension 1. It should now be clear why fπ is called the “pion
decay constant”. The value of fπ is the same for both charged pions, even away from the isospin
limit: in fact, CP symmetry is sufficient to show that this is the case; CPT symmetry implies
furthermore that fπ is real.29 The choice of signs in Eq. (3.32) follows from isospin conservation,
or, from a quark model perspective, from the fact that π+ = d̄u and π− = ūd, so that the
currents d̄OµLu and ūOµLd are respectively needed to annihilate them.30 These are respectively
coupled to ν̄`OµL` and ¯̀OµLν`.

Let us focus on π+ → `+ ν` for definiteness: CP symmetry implies that the same width is

29The transformation laws for fermion bilinears under Θ = CPT and CP read

Θ†ψ̄(x)Γψ(x)Θ = ψ̄(−x)γ5γ0Γ†γ0γ5ψ(−x) (CP )†ψ̄(x)Γψ(x)CP = ψ̄(xP )γ0C†ΓT Cγ0ψ(xP )

where xP = (x0,−~x) and C = iγ2γ0 = −C† is such that C†γµC = −(γµ)T . For the charged pions and the
axial-vector current one has

〈0|Θ†Aµ+(0)Θ|π+(~p)〉 = −〈0|Aµ−(0)|π+(~p)〉 = −ifπ+p
µ = 〈0|Aµ+(0)|π−(−~p)〉∗ = (ifπ−p

µ)∗ ,

〈0|(CP )†Aµ+(0)CP |π+(~p)〉 = −ηµµ〈0|Aµ−(0)|π+(~p)〉 = −ifπ+p
µ
P = ηCηP 〈0|Aµ+(0)|π−(−~p)〉 = ifπ−p

µ
P ηCηP ,

with pµP = (p0,−~p). In the equation above we made use of

γ5γ0[γµγ5(τ1 + iτ2)]†γ0γ5 = γ5γ0γ5γ0γµγ0γ0γ5(τ1 − iτ2) = −γµγ5(τ1 − iτ2) ,

γ0C†[γµγ5(τ1 + iτ2)]T Cγ0 = γ0C†γ5γµT Cγ0(τ1 − iτ2) = −γ0γ5γµγ0(τ1 − iτ2) = −ηµµγµγ5(τ1 − iτ2) .

The exact CPT symmetry implies fπ+ = f∗π− , so that they might differ only by a phase. Since ηP = −1 and
ηC = 1 for pions, CP symmetry further implies fπ+ = fπ− = f∗π+ . CP is a good symmetry as long as the heaviest
quarks can be ignored, so this relation is expected to be very accurate. At the present level of approximation,
where hadronic matrix elements are computed considering only strong interactions, CP is exact, and so is T .
One could then use directly T invariance and the transformation property Aµ±(x) → ηµµAµ±(xT ) to show that
fπ+ = fπ− = fπ is real,

ifπη
µµpµ = ηµµ〈0|Aµ+(0)|π+(~p)〉 = 〈0|T †Aµ+(0)T |π+(~p)〉 = 〈0|Aµ+(0)|π+(−~p)〉∗ηP ηC = (−ηP ηC)if∗πη

µµpµ .

30Notice that with this definition of π+ the corresponding isospin state is −|1 1〉, if we adopt the usual Condon-
Shortley convention.
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obtained for π− → `− ν̄`. We have for the decay amplitude

Mfi =
G√

2
cos θC i

√
2fπp

µ
(π)〈`

+ν`|(ν̄`OLµ`)(0)|0〉

= iG cos θC fπp
µ
(π)ū(ν)(p(ν))γµ(1− γ5)v(`)(p(`))

= iG cos θC fπū(ν)(p(ν))(/p(ν)
+ /p(`)

)(1− γ5)v(`)(p(`))

= iG cos θC fπū(ν)(1 + γ5)/p(`)
v(`)(p(`))

= −iG cos θC fπm`ū(ν)(1 + γ5)v(`)(p(`)) ,

(3.33)

where we have used momentum conservation and the Dirac equation. Taking the absolute value
square,

|Mfi|2 = G2 cos2 θC f
2
πm

2
` ū(ν)(1 + γ5)v(`)(p(`))v̄(`)(p(`))(1− γ5)u(ν) , (3.34)

and summing over spins (recall Eq. (2.9) for the neutrino bispinors)

〈〈|Mfi|2〉〉 = G2 cos2 θC f
2
πm

2
` tr (1 + γ5)(/p(`)

−m`)(1− γ5)/p(ν)

1 + γ5

2
= G2 cos2 θC f

2
πm

2
` 2 tr (/p(`)

−m`)/p(ν)
(1 + γ5)

= 2G2 cos2 θC f
2
πm

2
` tr /p(`)/p(ν)

= 8G2 cos2 θC f
2
πm

2
` p(`) · p(ν) .

(3.35)

Taking the square of the momentum conservation relation, p(π) = p(`) + p(ν), we find

m2
π = m2

` + 2p(`) · p(ν) , (3.36)

and so
〈〈|Mfi|2〉〉 = 4G2 cos2 θC f

2
πm

2
` (m

2
π −m2

` ) , (3.37)

which is a constant. The total decay width is found integrating the differential width,

Γ =

∫
dΓ =

∫
dΦ(2) 〈〈|Mfi|2〉〉

2mπ
=
〈〈|Mfi|2〉〉

2mπ

∫
dΦ(2) =

〈〈|Mfi|2〉〉
2mπ

Φ(2) , (3.38)

where

dΦ(2) = (2π)4δ(4)(p(π) − p(`) − p(ν))
d3p(`)

(2π)32E`

d3p(ν)

(2π)32Eν
, (3.39)

with E = p0 =
√
~p 2 +m2 the particle energy. The two-body phase-space integral is Lorentz

invariant, so is most conveniently obtained in the pion rest frame as follows (for generality we
include a neutrino mass mν):

Φ(2) =

∫
d3p(`)

(2π)32E`

∫
d3p(ν)

(2π)32Eν
(2π)4δ(4)(p(π) − p(`) − p(ν))

=
1

(4π)2

∫
d3p(`)

E`

∫
d3p(ν)

Eν
δ(mπ − E` − Eν)δ(3)(~p(`) + ~p(ν))

=
1

(4π)2

∫
d3p(`)

E`Eν
δ(mπ − E` − Eν)

=
1

4π

∫ ∞
0

dp p2√
m2
` + p2

√
m2
ν + p2

δ

(
mπ −

√
m2
` + p2 −

√
m2
ν + p2

)
.

(3.40)
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The delta function can be recast as

δ

(
mπ −

√
m2
` + p2 −

√
m2
ν + p2

)
=

(
p

E`
+

p

Eν

)−1

δ(p− p∗) =
E`Eν
pmπ

δ(p− p∗) , (3.41)

where p∗ is the magnitude of the spatial momentum of the final particles in the rest frame of
the pion, obtained by solving the following equation:

mπ −
√
m2
ν + p2 =

√
m2
` + p2

m2
π − 2mπ

√
m2
ν + p2 +m2

ν + p2 = m2
` + p2

m2
π +m2

ν −m2
` = 2mπ

√
m2
ν + p2

(m2
π +m2

ν −m2
` )

2 = 4m2
π(m2

ν + p2) .

(3.42)

Since at each step we are squaring positive quantities, we are always solving an equivalent
equation. From the last line we finally find

p2
∗ =

(m2
π +m2

ν −m2
` )

2

4m2
π

−m2
ν =

[m2
π − (mν +m`)

2][m2
π − (mν −m`)

2]

4m2
π

. (3.43)

It follows that

Φ(2) =
1

4π

∫ ∞
0

dp p2

E`Eν

E`Eν
pmπ

δ(p− p∗) =
p∗

4πmπ
. (3.44)

In the case at hand mν = 0, so

p2
∗ =

(
m2
π −m2

`

2mπ

)2

, (3.45)

and

Φ(2) =
m2
π −m2

`

8πm2
π

. (3.46)

We are now ready to write the final result for the total width:

Γ =
1

2mπ
4G2 cos2 θC f

2
πm

2
` (m

2
π −m2

` )
m2
π −m2

`

8πm2
π

=
G2 cos2 θC f

2
πm

2
`

4πm3
π

(m2
π −m2

` )
2 =

G2 cos2 θC f
2
π

4π
mπm

2
`

(
1− m2

`

m2
π

)2

.

(3.47)

As a function of the lepton mass, Γ is suppressed both near mπ, which is a threshold effect due to
the limited available phase space, and near 0. This suppression is due to the definite handedness
of the current: for a very light lepton helicity is almost a good quantum number, and almost
only left-handed leptons and right-handed antileptons appear. Since the pion has zero spin, the
spins of the fermions in the final state must be opposite, and since also their spatial momenta
are opposite this requires that the two fermions have the same helicity; being a lepton and an
antilepton, this cannot happen if they are both massless. For this reason, despite the limited
phase space available, the dominant decay mode is π+ → µ+ νµ, instead of π+ → e+ νe. In fact
(using mπ± = 140 MeV, mµ = 106 MeV, me = 0.5 MeV)

Γπ+→e+ νe

Γπ+→µ+ νµ

=

(
me

mµ

)2(m2
π −m2

e

m2
π −m2

µ

)2

' 1.2 · 10−4 . (3.48)
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Pion beta decay Next we consider the three-body decay (“pion beta decay”)

π+ → π0 e+ νe . (3.49)

(Why do we not consider also π+ → π0 µ+ νµ?) Let p1 and p2 be the initial and final pion
momenta, and p(e) and p(ν) the positron and neutrino momenta. The decay amplitude is

Mfi = − G√
2

cos θC〈π0|(d̄OµLu)(0)|π+〉〈e+νe|(ν̄eOLµe)(0)|0〉

= − G√
2

cos θC〈π0|V µ
− |π+〉ū(ν)(p(ν))γµ(1− γ5)v(e)(p(e)) ,

(3.50)

since only the vector current can have a nonvanishing hadronic matrix element (no axial vector
is available). This matrix element must be of the form

〈π0|V µ
− |π+〉 = f+(q2)pµ + f−(q2)qµ , (3.51)

where p = p1 + p2, q = p1 − p2, and f± are dimensionless real31 functions of q2.32 In the isospin
limit, conservation of the vector current implies

0 = qµ〈π0|V µ
− |π+〉|iso = q2f−(q2)|iso , (3.52)

so that f−|iso ≡ 0. (Obviously, the subscript “iso” means that we take the isospin limit.)
Of course, there must be a mass difference between the pions for the decay to take place.
Nonetheless, if we expand in the symmetry-breaking parameter ∆ ≡ mπ+ −mπ0 we find

f−(q2) = f−(q2)|iso + ∆f
(1)
− (q2)|iso + . . . = ∆f

(1)
− (q2)|iso + . . . , (3.53)

where f
(1)
− = ∂f−/∂∆. Furthermore, the transferred momentum must be small,

q2 = m2
π+ +m2

π0 − 2p1 · p2 ≤ m2
π+ +m2

π0 − [(mπ+ +mπ0)2 −m2
π+ −m2

π0 ]

= m2
π+ +m2

π0 − 2mπ+mπ0 = ∆2 ,
(3.54)

which reflects the fact that there is little phase space available due to the small mass difference.
We thus see that the term f−(q2)qµ in Eq. (3.51) is of order ∆2, and moreover that f+(q2) =
f+(0) +O(∆2). Since the transition is between states belonging to the same isospin multiplet,
in the isospin limit we can use Eq. (3.18), telling us that in the static limit the amplitude is
governed by the weak charge. Since I = 1, I3 = 1, I ′3 = 0, we find

f+(q2)|iso p0|~q=0 = f+(0)|iso 2p0
1 = 2p0

1

√
2 =⇒ f+(0)|iso =

√
2 . (3.55)

31This is shown again using T invariance, which implies

ηµµ〈π0(~p2)|V µ− (0)|π+(~p1)〉 = 〈π0(~p2)|T †V µ− (0)T |π+(~p1)〉 = 〈π0(−~p2)|V µ− (0)|π+(−~p1)〉∗(η0
P η

0
C)∗η+

P η
+
C

= ηµµ〈π0(~p2)|V µ− (0)|π+(~p1)〉∗ =⇒ f± = f∗± ,

having used the properties of the explicit form, Eq. (3.51), and having made the usual choice η±C = η0
C for the

charge-conjugation phase of the charged pions (which is automatic in the isospin limit as π± and π0 are in the
same triplet).

32In general they must be scalar functions of p and q, so functions of q2, q · p = m2
π+ −m2

π0 and p2 = q2 + 4q · p,
and therefore can be written as functions of q2 and the pion masses.
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One can show that corrections due to isospin breaking are of order ∆2, and so we can write

〈π0|V µ
− |π+〉 = f+(0)|iso pµ +O(∆2) =

√
2pµ +O(∆2) . (3.56)

Neglecting the mass difference in the matrix element thus gives the correct result up to O(∆2).

The fact that corrections to f+|iso are of second order in the symmetry-breaking parameter is a
consequence of the analogue of the Ademollo-Gatto theorem (see Section 4.2) in the case at hand. Let
I3 and I± denote the isospin generators in the unperturbed limit of exact isospin symmetry, and treat
the symmetry-breaking term in the Hamiltonian as a perturbation. Let this term be proportional to
some small parameter δ. In the perturbed theory the energy eigenstates are generally mixtures of the
unpertubed energy and isospin eigenstates, but since I3 is still an exact symmetry only states with
the same eigenvalue of I3 can mix. Moreover, for small δ one can still associate the perturbed states
uniquely with the unperturbed ones. We write then |I I3〉δ for the perturbed states that are exact

eigenstates of I3, and that as δ → 0 become the ~I 2 and I3 eigenstates |I I3〉0 = |I I3〉iso. Starting now
from the commutation relation [I+, I−] = 2I3, and taking its expectation value on a hadronic state
|I I3〉δ we find

2δ〈I I3|I3|I I3〉δ = 2I3 = δ〈I I3|[I+, I−]|I I3〉δ
=
∑
n

δ〈I I3|I+|n〉δδ〈n|I−|I I3〉δ − δ〈I I3|I−|n〉δδ〈n|I+|I I3〉δ

=
∑
n

|δ〈n|I−|I I3〉δ|2 − |δ〈n|I+|I I3〉δ|2 ,
(3.57)

having inserted a complete set of states. Among the states |n〉δ we now separate those corresponding
to the same isomultiplet as |I I3〉δ, and write

2I3 = |δ〈I I3 − 1|I−|I I3〉δ|2 − |δ〈I I3 + 1|I+|I I3〉δ|2

+
∑′

n
|δ〈n|I−|I I3〉δ|2 − |δ〈n|I+|I I3〉δ|2 ,

(3.58)

where the sum extends now only on states corresponding to multiplets other than that of the state of
interest. Since the symmetry-breaking term in the Hamiltonian is proportional to δ, this sum must
be at least of order δ2, since the matrix elements themselves are at least of order δ (they vanish in
the isospin limit). On the other hand, in the isospin limit

|iso〈I I3 − 1|I−|I I3〉iso|2 − |iso〈I I3 + 1|I+|I I3〉iso|2
= [I(I + 1)− I3(I3 − 1)]− [I(I + 1)− I3(I3 + 1)] = 2I3 ,

(3.59)

and so

|δ〈I I3 − 1|I−|I I3〉δ|2 − |δ〈I I3 + 1|I+|I I3〉δ|2

= |iso〈I I3 − 1|I−|I I3〉iso|2 − |iso〈I I3 + 1|I+|I I3〉iso|2 +O(δ2) = 2I3 +O(δ2) .
(3.60)

Applied to the states |π+〉 = −|1 1〉 and |π0〉 = |1 0〉 this gives

|δ〈π0|I−|π+〉δ|2 = |
√

2|2 +O(δ2) . (3.61)

Notice that here we used states with unit normalisation, rather than the relativistically normalised

ones. Adapting the proof is straightforward, and requires only a multiplicative factor 2p0. Including

this factor, we have (2p0)−1〈π0|V 0
−|π+〉|~q=0 = (2p0)−1〈π0|I−|π+〉|~q=0 = f+(0) =

√
2 + C, with C real

(since f+ is real) and vanishing in the isospin limit. Then from Eq. (3.61) O(δ2) = f+(0)2 − 2 =

(
√

2 + C)2 − 2 = 2
√

2C + C2, and so C = O(δ2). For the meson masses, one finds instead that the

leading order correction in perturbation theory is of order δ, as it comes from the diagonalisation of

the symmetry-breaking part of the Hamiltonian, restricted to the given (degenerate) multiplet, and

so ∆ ∝ δ. In conclusion, f+(0) =
√

2 +O(∆2), which is what we wanted to show.
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To next-to-leading order in ∆ we thus have

Mfi = − G√
2

cos θC
√

2pµū(ν)(p(ν))γµ(1− γ5)v(e)(p(e))

= −G cos θCp
µū(ν)(p(ν))γµ(1− γ5)v(e)(p(e)) ,

|Mfi|2 = G2 cos2 θCp
µpν ū(ν)(p(ν))γµ(1− γ5)v(e)(p(e))v̄(e)(p(e))γν(1− γ5)u(ν)(p(ν)) ,

(3.62)

and summing over spins

〈〈|Mfi|2〉〉 = G2 cos2 θCp
µpνtr γµ(1− γ5)(/p(e)

−me)γν(1− γ5)/p(ν)

= 2G2 cos2 θCp
µpνtr (1 + γ5)γµ(/p(e)

−me)γν/p(ν)

= 2G2 cos2 θCp
µpνtr (1 + γ5)γµ/p(e)

γν/p(ν)

= 8G2 cos2 θCp
µpν

[
p(e)µp(ν)ν + p(e)νp(ν)µ − ηµν(p(e) · p(ν))− iεµανβpα(e)p

β
(ν)

]
= 8G2 cos2 θC

[
2(p · p(e))(p · p(ν))− p2(p(e) · p(ν))

]
.

(3.63)

The differential decay width is then

dΓ =
4G2 cos2 θC

mπ+

[
2(p · p(e))(p · p(ν))− p2(p(e) · p(ν))

]
dΦ(3) , (3.64)

where we recall that the term in square brackets is correct to leading and first subleading order
in ∆. In order to get the total width we write

Γ =
4G2 cos2 θC

mπ+

∫
d3p2

(2π)32E2
pµpν [2Iµν(q)− ηµνIαα(q)] (3.65)

where, since q is timelike (see below), we can use the general result Eq. (2.93) for Iµν(q), which
in the case at hand reads

Iαβ(q) =
1

32π

(
1− m2

e

q2

){
1

3

(
1− m2

e

q2

)2

(q2ηαβ − qαqβ) +

[
1−

(
m2
e

q2

)2
]
qαqβ

}
. (3.66)

The contraction Iαα can be computed straightforwardly,

Iαα(q) =
q2

32π

(
1− m2

e

q2

){(
1− m2

e

q2

)2

+

[
1−

(
m2
e

q2

)2
]}

=
q2

16π

(
1− m2

e

q2

)2

. (3.67)

Contracting the tensorial structures in Eq. (3.65) with pµpν we find

pµpνIµν(q) =
1

32π

(
1− m2

e

q2

){
1

3

(
1− m2

e

q2

)2

(p2q2 − (p · q)2)

+

[
1−

(
m2
e

q2

)2
]

(p · q)2

}
,

pµpνηµνIαα(q) =
p2q2

16π

(
1− m2

e

q2

)2

.

(3.68)
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We then plug this into Eq. (3.65) to get

Q = pµpν [2Iµν(q)− ηµνIαα(q)]

=
1

16π

(
1− m2

e

q2

){[
1−

(
m2
e

q2

)2

− 1

3

(
1− m2

e

q2

)2
]

(p · q)2

+

[
1

3

(
1− m2

e

q2

)2

−
(

1− m2
e

q2

)]
p2q2

}

=
1

16π

(
1− m2

e

q2

){[
2

3
+

2

3

m2
e

q2
− 4

3

(
m2
e

q2

)2
]

(p · q)2

+

[
−2

3
+

1

3

m2
e

q2
+

1

3

(
m2
e

q2

)2
]
p2q2

}

=
1

48π

(
1− m2

e

q2

){
2(p · q)2

(
1− m2

e

q2

)(
1 +

2m2
e

q2

)
− p2q2

(
1− m2

e

q2

)(
2 +

m2
e

q2

)}

=
1

24π

(
1− m2

e

q2

)2
{

(p · q)2

(
1 +

2m2
e

q2

)
− p2q2

(
1 +

m2
e

2q2

)}
.

(3.69)

The various Lorentz invariants read (2m ≡ mπ+ +mπ0)

q2 = m2
π+ +m2

π0 − 2mπ+E2 ,

p2 = m2
π+ +m2

π0 + 2mπ+E2 = q2 + 4mπ+E2 ,

q · p = m2
π+ −m2

π0 = 2m∆ ,

(3.70)

Notice that q2 must be positive, hence qµ is a timelike vector, and furthemore q2 is bounded
from above:

q2 = (p(e) + p(ν))
2 ≥ m2

e , q2 ≤ m2
π+ +m2

π0 − 2mπ+mπ0 = ∆2 . (3.71)

We still have to integrate over the neutral pion momentum. To this end, taking into account
that Eq. (3.69) depends only on E2 and not on the angular variables, we can replace∫

d3p2

(2π)32E2
→ 4π

2(2π)3

∫ p2max

0

dp2p
2
2

E2
=

1

(2π)2

∫ E2max

E2min

dE2

√
E2

2 −m2
π0 . (3.72)

We further relate (notice that here p2 denotes the magnitude of the spatial momentum of the
neutral pion, not its four-momentum)

E2 =
m2
π+ +m2

π0 − q2

2mπ+

,

p2
2 = E2

2 −m2
π0 =

(
m2
π+ +m2

π0 − q2

2mπ+

)2

−m2
π0

=
[m2

π+ − (mπ0 + ω)2][m2
π+ − (mπ0 − ω)2]

4m2
π+

,

p2 = 2(m2
π+ +m2

π0)− ω2 ,

(3.73)
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where ω2 = q2 and we have used Eq. (3.43). We can further manipulate the expression for p2
2

and p2 to get

p2
2 =

[mπ+ −mπ0 − ω][mπ+ +mπ0 + ω][mπ+ −mπ0 + ω][m2
π+ +mπ0 − ω]

4m2
π+

=
[∆− ω][2m+ ω][∆ + ω][2m− ω]

4m2
π+

=
[∆2 − ω2][4m2 − ω2]

4m2
π+

,

p2 = 4
(
m2 +

(
∆
2

)2)− ω2 = 4m2 + ∆2 − ω2 .

(3.74)

The most convenient integration variable is ω. We only have to determine the integration range
and the Jacobian:

ωmin =
√
q2

min = me , ωmax =
√
q2

max = ∆ , 2ωdω = −2mπ+dE2 . (3.75)

The integration measure Eq. (3.72) becomes∫
d3p2

(2π)32E2
→ 1

(2π)22m2
π+

∫ ∆

me

dω ω
√

[∆2 − ω2][4m2 − ω2] , (3.76)

while the integrand becomes

Q =
1

24π

(
1− m2

e

ω2

)2
{

4m2∆2

(
1 +

2m2
e

ω2

)
− (4m2 + ∆2 − ω2)ω2

(
1 +

m2
e

2ω2

)}
. (3.77)

It is convenient to rescale ω → ∆ω and write∫
d3p2

(2π)32E2
→ ∆32m

(2π)22m2
π+

∫ 1

me
∆

dω ω

√
[1− ω2][1− ∆2

4m2 ω2] ,

Q =
∆2m2

6π

(
1− m2

e

∆2ω2

)2
{(

1 +
2m2

e

∆2ω2

)
−
(

1 + ∆2

4m2 (1− ω2)
)
ω2

(
1 +

m2
e

2∆2ω2

)}

=
∆2m2

6π
Q̃ .

(3.78)

All in all we have

Γ =
4G2 cos2 θC

mπ+

∆32m

(2π)22m2
π+

∆2m2

6π

∫ 1

me
∆

dω ω

√
[1− ω2][1− ∆2

4m2 ω2]Q̃(ω)

=
G2 cos2 θC∆5

6π3

(
m

mπ+

)3 ∫ 1

me
∆

dω ω

√
[1− ω2][1− ∆2

4m2 ω2]Q̃(ω) .

(3.79)

We now set ε = m2
e/∆

2 and drop orders of ∆/m higher than (∆/m)1 to get

Γ =
G2 cos2 θC∆5

6π3

(
1− 3∆

2m

)∫ 1

√
ε
dω ω

√
1− ω2

×
(

1− ε

ω2

)2
{(

1 +
2ε

ω2

)
− ω2

(
1 +

ε

2ω2

)}

=
G2 cos2 θC∆5

6π3

(
1− 3∆

2m

)
K(ε) .

(3.80)
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The calculation of K(ε) is particularly annoying. Let us change variables to z = ω2 to get

K(ε) =
1

2

∫ 1

ε
dz
√

1− z
(

1− ε

z

)2
[(

1 +
2ε

z

)
− z

(
1 +

ε

2z

)]
. (3.81)

Expanding the polynomial part of the integrand we obtain(
1− ε

z

)2
[(

1 +
2ε

z

)
− z

(
1 +

ε

2z

)]
= 1− z + 3

2ε− ε2(3 + ε
2)

1

z2
+ 2ε3 1

z3
, (3.82)

which leads to

K(ε) =
1

2

∫ 1

ε
dz
√

1− z
[
1− z + 3

2ε− ε2(3 + ε
2)

1

z2
+ 2ε3 1

z3

]
. (3.83)

The exact evaluation is left for later (see Appendix 3.5). For the time being we will be content
with finding the lowest order approximation. This requires some care: if the integrand were
regular at zero, it would suffice to expand K(ε) = K(0) +εK ′(0) + . . ., but K ′(0) does not exist:
among the various contributions there is that coming from deriving the integral with respect to
its lower integration limit, which is minus times the integrand, which blows up at the origin. To
circumvent this problem we isolate the most singular part of the integrand, and write∫ 1

ε
dz
√

1− z 1

zn
=

∫ 1

ε
dz

1

zn
−
∫ 1

ε
dz(1−

√
1− z) 1

zn

= − 1

n− 1

1

zn−1

∣∣∣1
ε
−
∫ 1

ε
dz(1−

√
1− z) 1

zn

=
1

n− 1

1

εn−1
+ less singular .

(3.84)

Integrating exactly the first two terms and retaining only the leading contributions of the rest
we find

K(ε) ' 1

2

[
2
5(1− ε) 5

2 + ε(1− ε) 3
2 − 3ε2 1

ε
+ 2ε3 1

2ε2

]
' 1

5
(1− 5ε) . (3.85)

Shoving this into Eq. (3.80) we finally get

Γ =
G2 cos2 θC∆5

6π3

(
1− 3∆

2m

)
1

5
(1− 5ε) =

G2 cos2 θC∆5

30π3

(
1− 3∆

2m
− 5

m2
e

∆2

)
, (3.86)

which is correct to O( ∆
m) and O(m

2
e

∆2 ).

3.3 Neutron beta decay

We move to one of the most important decay processes governed by weak interactions, namely
the beta decay of the neutron,

n −→ p+ e− + ν̄e . (3.87)

This process is the basic process behind all nuclear beta decays. In turn, the fundamental
process behind it at the quark level is

d −→ u+ e− + ν̄e , (3.88)
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which turns the neutron, n = (udd) in terms of quarks, into a proton. p = (uud). This is clearly
the same fundamental process behind π− → π0 + e− + ν̄e. The relevant term in the Lagrangian
is thus

− G√
2

cos θC(ūOαLd)(ēOLανe) , (3.89)

and the decay amplitude reads

Mfi = − G√
2

cos θCH
αūe(p(e))γα(1− γ5)ve(p(ν)) , (3.90)

where
Hα = 〈p|(ūOαLd)(0)|n〉 = V α

+ −Aα+ ,
V α

+ = 〈p|(ūγαd)(0)|n〉 ,
Aα+ = 〈p|(ūγαγ5d)(0)|n〉 .

(3.91)

The subscript + refers to the fact that these are the + components of isovector currents. While
it is very difficult to obtain the hadronic matrix elements of Eq. (3.91) from first principles (and
this requires techniques beyond perturbation theory), it is nevertheless possible to constrain
their form by means of symmetry considerations. In fact, Lorentz invariance imposes

〈p|V µ
+ |n〉 = ūp(pp, sp)

(
f1(q2)γµ + f2(q2)iσµν

qν
2m

+ f3(q2)
qµ

2m

)
un(pn, sn)

= ūp(pp, sp)M
µ(q)un(pn, sn) ,

〈p|Aµ+|n〉 = ūp(pp, sp)

(
g1(q2)γµ + g2(q2)iσµν

qν
2m

+ g3(q2)
qµ

2m

)
γ5un(pn, sn)

= ūp(pp, sp)M
µ
5 (q)un(pn, sn) ,

(3.92)

where q = pn − pp, m = 1
2(mp + mn), and fi, gi are real dimensionless functions of q2 called

form factors (see Appendix 3.6 for details). In fact, these are the most general linearly inde-
pendent structures one can build out of D = (1

2 , 0)⊕ (0, 1
2) and its conjugate D̄ that transforms

respectively like a vector and an axial vector under Lorentz transformations. The form fac-
tors can be determined experimentally by means of (anti)neutrino-nucleon scattering, since the
same hadronic matrix elements appear there. For the same reason, the matrix elements of the
electromagnetic current must read

〈p|V µ
em|p〉 = ūp(p

′
p, s
′
p)

(
fp1(q2)γµ + fp2(q2)iσµν

qν
2mp

+ fp3(q2)
qµ

2mp

)
up(pp, sp) ,

〈n|V µ
em|n〉 = ūn(p′n, s

′
n)

(
fn1(q2)γµ + fn2(q2)iσµν

qν
2mn

+ fn3(q2)
qµ

2mn

)
un(pn, sn) ,

(3.93)

where fpi and fni are the electromagnetic form factors of the proton and the neutron, that can
be studied by means of electron-nucleon scattering.

We can further constrain the hadronic matrix element by recalling that the electromag-
netic current is conserved, which implies that the matrix elements of V µ

em are transverse, i.e.,
qµV

µ
em = 0. Since ū(p′, s′)/qu(p, s) = ū(p′, s′)(/p′ − /p)u(p, s) = ū(p′, s′)(m − m)u(p, s) = 0, and

σµν is antisymmetric, this implies that fp3(q2) = fn3(q2) = 0. In the case of exact isospin
invariance, this implies conservation of the vector current (the isovector and isoscalar part of
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the electromagnetic current must be conserved separately), qµV
µ

+ = 0. This implies that also
f3(q2) = 0. Alternatively, one can use the behaviour of the vector current under G-parity to
drop this term in the isospin limit (see Appendix 3.7). There is actually more: applied to the
nucleon isospin doublet (I = 1

2) relevant to neutron decay, Eq. (3.13) implies

〈p|V µ
+ |n〉 = 〈p|V µ

em|p〉 − 〈n|V µ
em|n〉 , (3.94)

and so in the isospin limit

fi(q
2) = fp i(q

2)− fn i(q2) , i = 1, 2, 3 . (3.95)

These relations are particularly useful in the limit q → 0. Recalling Eq. (3.19),

〈p|V 0
em(0)|p〉|~q=0 = fp1(0)ūp(p, s

′
p)γ

0up(p, sp) = fp1(0)2p0δs′p,sp

= 2p0Qpδs′p,sp = 2p0δs′p,sp ,

〈n|V 0
em(0)|n〉|~q=0 = fn1(0)ūn(p, s′n)γ0un(p, sn) = fn1(0)2p0δs′n,sn

= 2p0Qnδs′n,sn = 0 ,

(3.96)

it follows that
f1(0) = fp1(0)− fn1(0) = Qp −Qn = 1 . (3.97)

Alternatively, since the n → p transition is a ∆I = 0, strangeness-conserving transition, at
zero transferred momentum it is governed by the weak charge QW (1

2 ,−1
2) = 1, i.e., recalling

Eq. (3.17),
〈p|V 0

+(0)|n〉|~q=0 = f1(0)ūp(p, sp)γ
0un(p, sn) = f1(0)2p0δsp,sn

= 2p0δsp,sn

√
3
4 + 1

4 = 2p0δsp,sn ,
(3.98)

we again find f1(0) = 1. Yet another way to find this result is to consider the decay process at
the quark level, and compute the matrix elements of the current between the appropriate quark
states. Schematically,〈
u ud−du√

2

∣∣∣ūd ∣∣∣d ud−du√
2

〉
=
(〈

ud−du√
2

∣∣∣− 2
〈
ud√

2

∣∣∣)(∣∣∣ud−du√
2

〉
− 2

∣∣∣ du√
2

〉)
= 1− 21

2 + 21
2 = 1 . (3.99)

The form factors fp,n2(0) at zero momentum are instead related to the response of the particles
to an external static magnetic field, and are known as the anomalous magnetic moments of the
proton and the neutron. These are well known experimentally:

fp2(0) = 1.79 , fn2(0) = −1.91 , (3.100)

from which it follows that
f2(0) = 3.7 . (3.101)

This terms is known as “weak magnetism”. The third term is known as “effective scalar” since
it can be expressed as a scalar through

qµūνγ
µ(1− γ5)ue = ūν(/qν + /qe)(1− γ

5)ue = ūν(1 + γ5)/qeue = meūν(1 + γ5)ue . (3.102)

All in all then

〈p|V µ
+ |n〉 = ūp(pp, sp)

(
γµ + iσµνqν

f2(0)

2m

)
un(pn, sn) . (3.103)
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A more precise treatment is as follows. Near the exact isospin point, expand in the isospin-breaking

parameter ∆ = mn − mp. The transferred momentum satisfies q2 = (p(e) + p(ν))
2 ≥ m2

e and q2 =

m2
n + m2

p − 2mnEp ≤ (mn − mp)
2 = ∆2. In the isospin limit ∆ = 0, and expanding in ∆, fi =

f
(0)
i + ∆f

(1)
i + . . . we find from current conservation in the isospin limit that f

(0)
3 (q2) = 0, while for

f
(0)
1,2 one finds nonzero values. Since q = O(∆), we find that the f1 term is O(1), the f2q term is O(∆),

and the f3q term is O(∆2), so if we work to order ∆ we can neglect it. We can furthermore neglect

deviations from f1,2(0) since they also are O(∆2).

We now proceed with the axial vector matrix element. In the isospin limit, the second term
(“weak electrism”) is forbidden by G-parity, since it is G-even while the axial current is G-odd.
Since we are working at order ∆ we can therefore drop it. We then approximate again the form
factors with their values at zero, and obtain

〈p|Aµ+|n〉 = ūp(pp, sp)

(
γµg1(0) + qµ

g3(0)

2m

)
γ5un(pn, sn) . (3.104)

What can we say about the axial form factors? The PCAC hypothesis, Eq. (3.24), implies

− iqµ〈p|Aµ+(0)|n〉 = fπm
2
π〈p|φ+(0)|n〉 , (3.105)

and using the known pole structure of the nucleon matrix element (see Appendix 3.8, in partic-
ular Eq. (3.216)) we find

− iqµ〈p|Aµ+(0)|n〉 = 2ifπm
2
π

gπNN (q2)

m2
π − q2

ūp(pp, sp)γ
5un(pn, sn) , (3.106)

with gπNN (q2) the pion-nucleon-nucleon vertex function. On the other hand, using the general
structure of the axial current matrix element we find

−ūp(pp, sp)
(
/qg1(q2) + q2 g3(q2)

2m

)
γ5un(pn, sn) = 2fπm

2
π

gπNN (q2)

m2
π − q2

ūp(pp, sp)γ
5un(pn, sn) ,

(mp +mn)g1(q2)− q2 g3(q2)

2m
= 2fπm

2
π

gπNN (q2)

m2
π − q2

,

(3.107)
Setting q2 = 0 we find (mp = mn = m)

mg1(0) = fπgπNN (0) . (3.108)

The quantity g1(0) is known experimentally, comparing Eq. (3.104) with measurements of neu-
tron β decay, and is g1(0) ' 1.267. On the other hand, from the experimental study of nucleon-
nucleon scattering one can obtain (under the assumption that pion exchange dominates the
amplitude) the physical value g = gπNN (m2

π) of the pion-nucleon coupling, with g ' 13.169. If
we further assume that gπNN does not vary much between zero and the pion mass squared, then
we obtain the Goldberger-Treiman relation

mg1(0) = fπg , (3.109)

which is satisfied within 2÷ 3%.
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Is it worth noting that in the limit of massless pions the axial current becomes exactly
conserved, and so we obtain the relation

2mg1(q2)− q2 g3(q2)

2m
= 0 =⇒ g3(q2)

2m
=

2mg1(q2)

q2
, (3.110)

which implies the presence of a pole at zero in g3. This massless pole is a consequence of the
spontaneous breaking of chiral symmetry, and indicates the presence of massless particles in the
theory, i.e., the pions.

There is another, more phenomenological way to see the origin of the pole. Since nucleons are
not elementary, their coupling to the leptonic weak current is not pointlike, but rather a “blob”
taking into account the internal structure. Contributions to this blob run over the possible ways
in which the final products can be obtained from the neutron, and include a pointlike neutron-
proton-leptons four-fermion interaction, and a pointlike neutron-proton-pion interaction with
the pion subsequently decaying into a lepton pair. The latter involves the coupling to a leptonic
current as discussed in the previous subsections. The effective Lagrangian is

L eff = −G cos θ√
2

[
N̄τ+γ

µ(1− gAγ5)N ēγµ(1− γ5)ν + h.c.
]

+ igN̄τaγ
5Nφa , (3.111)

with N the nucleon doublet of fields and gA = g1(0). We then have to sum two contributions,
corresponding respectively to the g1 and the g3 terms in the decay amplitude iMfi,

g1 term :
−iG√

2
gAupγ

µγ5un ,

g3 term : i(ig
√

2)upγ
5un

i

q2 −m2
π

−iG√
2

(i
√

2fπqµ) =
2fπgqµ
m2
π − q2

−iG√
2
,

(3.112)

that have to be contracted with the leptonic current ū(e)OLµv(ν).
To leading order we can then set set q2 = 0 and just keep the terms proportional to f1(0) =

gV = 1 and g1(0) = gA, obtaining for the decay amplitude

Mfi = − G√
2

cos θC ūpγ
µ(1− αγ5)un ūeγµ(1− γ5)vνe , (3.113)

where α = g1(0)/f1(0) = gA/gV . This is the starting point to derive phenomenological con-
sequences. Let us include a polarisation for the neutron and the electron, with corresponding
polarisation vectors

sn = (0, ~ηn) , se =
(
~ηe·~ke
me

, ~ηe +
~ke(~ke·~ηe)

me(Ee+me)

)
. (3.114)

Summing over the unobserved proton spin we find

∑
sp

|Mfi|2 =
G2 cos2 θC

2
tr γµ(1− αγ5)(/p+mn)

1 + γ5/sn
2

γν(1− αγ5)(/p
′ +mp)

× tr γµ(1− γ5)/k(ν)γν(1− γ5)(/ke +me)
1 + γ5/se

2
.

(3.115)
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We already know how to deal with the second trace, which is equal to

tr γµ(1− γ5)/k(ν)γν(1− γ5)(/ke +me)
1 + γ5/se

2
= tr (1 + γ5)γµ/k(ν)γν /̃ke

= 4
{
k(ν)µk̃(e)µ + k(ν)ν k̃(e)µ − ηµνk(ν) · k̃(e) − iεµανβkα(ν)k̃

β
(e)

}
,

(3.116)

with k̃e = ke −mese. For the first trace we have instead, taking into account that the trace of
an odd number of gamma matrices vanishes,

tr γµ(1− αγ5)(/p+mn)(1 + γ5/sn)γν(1− αγ5)(/p
′ +mp)

= tr (1 + αγ5)2γµ(/p+ γ5mn/sn)γν/p
′ + tr

(
1− (αγ5)2

)
γµ(mn − γ5

/p/sn)γνmp

= tr (1 + α2 + 2αγ5)γµ(/p+ γ5mn/sn)γν/p
′ + (1− α2)tr γµ(mn − γ5

/p/sn)γνmp

= tr γµ[(1 + α2)/p− 2αmn/sn]γν/p
′ − tr γ5γµ[(1 + α2)mn/sn − 2α/p]γ

ν
/p
′

+ (1− α2)mnmptr γ
µγν + (1− α2)mptr γ

5γµ/p/snγ
ν .

(3.117)

Since the electron and neutrino energies and momenta (as well as the electron mass) are of order
∆ = mn −mp, Eq. (3.116) is of order ∆2. We will retain only the leading order in Eq. (3.117),
which means in practice setting mn = mp = m and p′ = p. This simplifies the calculation,
leading to

tr γµ(1− αγ5)(/p+mn)(1 + γ5/sn)γν(1− αγ5)(/p
′ +mp)→

4
{

(1 + α2)(2pµpν −m2ηµν)− 2αm(sµnp
ν + sνnp

µ) + im(1 + α2)εµα
′νβ′snα′pβ′

+ (1− α2)
[
m2ηµν − imεµα′β′νpα′snβ′

]}
= 8

{
(1 + α2)pµpν − α2m2ηµν − αm(sµnp

ν + sνnp
µ) + iα2mεµα

′νβ′snα′pβ′
}
.

(3.118)

Contracting Eq. (3.116) and Eq. (3.118) and including the missing factors we find∑
sp

|Mfi|2 =
G2 cos2 θC

2
42
{

(1 + α2)pµpν − α2m2ηµν − αm(sµnp
ν + sνnp

µ) + iα2mεµα
′νβ′snα′pβ′

}
×
{
k(ν)µk̃(e)µ + k(ν)ν k̃(e)µ − ηµνk(ν) · k̃(e) − iεµανβkα(ν)k̃

β
(e)

}
= 8G2 cos2 θC

{
2(1 + α2)p · k(ν)p · k̃(e) − (1− α2)m2k(ν) · k̃(e)

+ 2m[(α2 − α)sn · k̃(e)p · k(ν) − (α2 + α)sn · k(ν)p · k̃(e)]
}
.

(3.119)
Let us consider now several cases.

Unpolarised neutron, no spin measurement In this case we sum over electron spin and
average over neutron spin. The result is obtained replacing sn → 0, k̃(e) → k(e), and including
a factor of 4/2 = 2 in the decay width. We find

dΓ =
8G2 cos2 θC

m

{
2(1 + α2)m2EeEν − (1− α2)m2(EeEν − ~k(ν) · ~k(e))

}
dΦ(3)

= 8G2 cos2 θCmEeEν

{
(1 + 3α2) + (1− α2)βe cos θ

}
dΦ(3) ,

(3.120)
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where βe =
|~k(e)|
Ee

is the electron velocity and θ the relative angle between the electron and
neutrino trajectories. The phase space element reads

dΦ(3) =
1

8(2π)5

d3ke
Ee

d3kν
Eν

d3p′

Ep
δ(4)(p− p′ − k(ν) − k(e))

=
1

8(2π)5

d3ke
Ee

d3kν
Eν

1

Ep
δ(mn − Ep − Eν − Ee) ,

(3.121)

where E2
p = m2

p + (~kν + ~ke)
2. Since

(p− p′)2 = (k(ν) + k(e))
2 ≥ m2

e ,

m2
n +m2

p − 2mnEp ≥ m2
e ,

(mn −mp)
2 −m2

e ≥ 2mn(Ep −mp) ,

(3.122)

we have

Ep −mp ≤
∆2 −m2

e

2mn
= O(∆2

m , m
2
e
m ) ,

Eν + Ee = mn −mp − (Ep −mp) = ∆ +O(∆2

m , m
2
e
m ) .

(3.123)

To leading order in ∆ we can then replace Ep with the proton mass, neglecting the proton recoil
|~p ′|,

~p ′ 2 = E2
p −m2

p = (Ep −mp)(Ep −mp + 2mp) = 2mp · O(∆2

m , m
2
e
m ) . (3.124)

We find

dΦ(3) ' 1

8(2π)5

d3ke
Ee

d3kν
Eν

1

m
δ(Eν + Ee −∆)

=
1

8(2π)5mEeEν
dEeEe

√
E2
e −m2

edΩ(e)dEνE
2
νdΩ(ν)δ(Eν + Ee −∆) .

(3.125)

Since the overall orientation of the electron-neutrino pair can be integrated out trivially, from
Eq. (3.120) we can read off the angular correlation C(cos θ) between electron and neutrino (that
can be measured indirectly by measuring the proton recoil, see below), namely

C(cos θ) =

(
dΓ

dEe

)−1 dΓ

dEed cos θ
= 1 +

1− α2

1 + 3α2
βe cos θ . (3.126)

This measures the distribution of electrons and neutrinos in the relative angle, for fixed electron
energy. In order to find the energy distribution 1

Γ
dΓ
dEe

of the electron we integrate over the angles
and find

dΓ = 8G2 cos2 θC(1 + 3α2)
1

8(2π)5
(4π)2dEeEe

√
E2
e −m2

e(∆− Ee)2

=
G2 cos2 θC

2π3
(1 + 3α2)dEeEe

√
E2
e −m2

e(∆− Ee)2 .

(3.127)

Finally, the total decay width is

Γ =
G2 cos2 θC

2π3
(1 + 3α2)

∫ ∆

me

dEeEe
√
E2
e −m2

e(∆− Ee)2

=
G2 cos2 θC

2π3
(1 + 3α2)∆5I(me∆ ) ,

(3.128)
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where

I(z) =

∫ 1

z
dxx

√
x2 − z2(1− x)2 . (3.129)

The integral I(z) can be calculated explicitly, and reads

I(z) =
2

3

{
−1

5
(1− z2)

5
2 +

3

8
z4arccosh

1

z
+

1

4

√
1− z2

[
1− 5

2
z2

]}
. (3.130)

Notice I(0) = 1/30. For me = 0.51 MeV and ∆ = 1.29 MeV we have z = 0.395, and I(z)/I(0) =
0.47, so

Γ = 0.47
G2 cos2 θC

60π3
(1 + 3α2)∆5 . (3.131)

Unpolarised neutron, electron spin measurement In this case we have to average over
the neutron spin and keep the electron spin:

dΓ =
4G2 cos2 θC

m

{
2(1 + α2)p · k(ν)p · k̃(e) − (1− α2)m2k(ν) · k̃(e)

}
dΦ(3)

=
4G2 cos2 θC

m

{
2(1 + α2)m2Eν k̃

0
(e) − (1− α2)m2(Eν k̃

0
(e) − ~kν ·

~̃
ke)
}
dΦ(3)

= 4G2 cos2 θCmEνEe

{
(1 + 3α2)

k̃0
(e)

Ee
+ (1− α2)

~kν
Eν
·
~̃
ke
Ee

}
dΦ(3) .

(3.132)

If we integrate over the neutrino momenta (including over the relative angle between the electron
and neutrino trajectories), we can read off the electron polarisation ~Pe from

k̃0
(e)

Ee
= 1− ~ηe · ~ke

Ee
, (3.133)

i.e., ~Pe = − ~ke
Ee

.

Polarised neutron In this case we sum over the electron spin, obtaining

dΓ =
8G2 cos2 θC

m

{
2(1 + α2)p · k(ν)p · k(e) − (1− α2)m2k(ν) · k(e)

+ 2m[(α2 − α)sn · k(e)p · k(ν) − (α2 + α)sn · k(ν)p · k(e)]
}
dΦ(3)

= 8G2 cos2 θCmEeEν

{
2(1 + α2)− (1− α2)(1− βe cos θ)

− 2
[
(α2 − α)~ηn ·

~ke
Ee
− (α2 + α)~ηn ·

~kν
Eν

]}
d(3)Φ .

(3.134)

Integrating over everything but the direction of the electron or that of the neutrino, we are left
with(

dΓ

dEe

)−1 dΓ

dEed cos θe
= 1− 2(α2 − α)

1 + 3α2

~ηn · ~ke
Ee

= 1− 2(α2 − α)

1 + 3α2

|~ke| cos θe
Ee

(e correlation) ,(
dΓ

dEe

)−1 dΓ

dEed cos θν
= 1 +

2(α2 + α)

1 + 3α2

~ηn · ~kν
Eν

= 1 +
2(α2 + α)

1 + 3α2

Eν cos θν
Eν

(ν̄e correlation) .

(3.135)
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Figure 6: Fermi function

Summary of free neutron decay Let us collect the results concerning free neutron decay
when no measurement is made on the electron spin. The differential decay width in the static
approximation (q2 ' 0) reads

dΓ =
G2 cos2 θC

2π3
(1 + 3α2)

{
1 +

1− α2

1 + 3α2
~βe · ~nν − 2

[ α2 − α
1 + 3α2

~βe · ~ηn −
α2 + α

1 + 3α2
~nν · ~ηn

]}
× dΩe

4π

dΩν

4π
dEeEe

√
E2
e −m2

e(∆− Ee)2 .

(3.136)

The coefficients of ~βe ·~nν , ~βe ·~ηn and ~nν ·~ηn give the angular correlation between the momenta of
the electron and the neutrino, between the neutron polarisation and the electron momentum, and
between the neutron polarisation and the neutrino momentum, respectively. From the electron-
neutrino angular correlation, measured from the proton recoil, ~p 2

p = 2mp(E
2
ν+~k2

e+2Eν |~ke| cos θ),
one can obtain |α| = |gA/gV |, which since gV ' 1 yields the axial charge. The sign of α is
obtained instead from the angular correlation of the electron with the neutron spin in polarised
neutron decay. Combining the result for α2 with the experimental values of the neutron lifetime
and of the Fermi constant G obtained from muon decay, one can then determine | cos θC |.

The energy spectrum of the electron is given by the function

F (x,W0) = x
√
x2 − 1(W0 − x)2 , x = Ee

me
, W0 =

∆

me
, (3.137)

up to constant factors. This is the Fermi function for the energy spectrum in the case of free
neutron decay, and provides a first approximation of the energy spectrum in the case of nuclear
β− and β+ decays. The inclusion of effects due to the form factor f2(0), i.e., due to weak mag-
netism, leads to a modification of the Fermi spectrum to F (x,W0) → F (x,W0)(1 ± εx) for β∓

decays. Such effects are hard to detect in neutron decay since the vector current is dominated by
the weak charge contribution, but they become the leading contribution from the vector current
in decay processes involving the transition between nuclei belonging to different isomultiplets,
since in this case f1(0) vanishes. A good example is provided by the transitions between the
isotriplet (12B, 12C∗, 12N) and the isosinglet 12C, which are respectively a β−, γ, and β+ transi-
tions. The electromagnetic transition 12C∗ → 12C is a magnetic dipole transition governed by
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the electromagnetic form factor f em
2 (0), which since ∆I = 1 contains only a contribution from

the isovector current and none from the isoscalar. This belongs to the same isotriplet as the
charge weak currents governing the β∓ decays of (12B and 12N), and so the weak form factor
f2(0) can be obtained from f em

2 (0) as determined by an experimental study of 12C∗ → 12C,
and the value of ε in the modified spectrum can be predicted. The result is in agreement with
experiments (see Ref. [11]).

Fermi and Gamow-Teller nuclear transitions The vector and axial vector current matrix
element between proton and neutron read, in the non-relativistic limit

〈p|V µ
+ |n〉 = gV ūpγ

µun ' gV δµ0u
†
pun = 2mgV δ

µ
0δspsn ,

〈p|Aµ+|n〉 = gAūpγ
µγ5un ' gA

3∑
j=1

δµju
†
pσjun = 2mgA

3∑
j=1

δµj(σj)spsn .
(3.138)

Only the temporal component of the vector current and the spatial components of the axial
current contribute. In the beta decay of a n-nucleon nucleus N → N ′, one has instead for the
relevant components

〈N ′|V 0
+|N〉 = 2mgV

∫
d3npΨf ′s′

N ′ (~p )∗
(∑

iτ
(i)
+ 1

(i)
S

∏
j 6=i1

(j)
F 1

(j)
S

)
f ′s′,fs

Ψfs
N (~p ) ≡ gV 〈1〉 ,

〈N ′| ~A+|N〉 = 2mgA

∫
d3npΨf ′s′

N ′ (~p )∗
(∑

iτ
(i)
+ ~σ (i)

∏
j 6=i1

(j)
F 1

(j)
S

)
f ′s′,fs

Ψfs
N (~p ) ≡ gA 〈~σ〉 ,

(3.139)

where ΨN and ΨN ′ are the wave functions of the initial and final nuclei, carrying collective
isospin and indices f = f1 . . . fn and s = s1 . . . sn, as well as a dependence on the momenta

~p1, . . . , ~pn. The index i runs over the n nucleons in N . Since the isospin matrix τ
(i)
+ has non-zero

matrix element only if nucleon i is in a neutron state in N and in a proton state in N ′, the sum
over i (together with the antisymmetrisation of the wave functions) covers all possible ways in
which the transition takes place through the beta decay of a neutron of N into a proton of N ′.
Transitions for which 〈1〉 6= 0 and 〈~σ〉 = 0 are called Fermi transitions, those for which 〈1〉 = 0
and 〈~σ 〉 6= 0 are called Gamow-Teller transitions, and those for which both terms are nonzero
are called mixed transitions. Denoting

Xµ ≡
(
〈N ′|V 0|N〉 , −〈N ′| ~A|N〉

)
, (3.140)

we have for the decay amplitude squared

|Mfi|2 ∝ XµXν ∗
(
k(e)µk(ν)ν + k(e)νk(ν)µ − ηµνk(e) · k(ν) − iεµανβkα(ν)k

β
(e)

)
, (3.141)

where we have summed over the electron spin. If we are interested in the correlation between
the electron and neutrino trajectories, we need to keep only terms that are either independent
of the spatial momenta or that depend on both of them, while terms depending only on one of
the momenta drop out after integration over the overall orientation of the final products. We
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find

|Mfi|2|relevant ∝ X0X∗02EeEν +XiXj∗(~ke i~kν j + ~kν i~ke j)−X ·X∗(EeEν − ~ke · ~kν)

− i(X0Xj∗ −XjX0∗)ε0jkl
~kkν
~kle

=
[
2(gV |〈1〉|)2 − (gV |〈1〉|)2 + (gA|〈~σ〉|)2

]
EeEν + (XiXj∗ +XjXi∗)~ke i~kν j

+X ·X∗~ke · ~kν + i(X0 ~X∗ − ~XX0∗) · ~kν ∧ ~ke
=
[
κ2
V + κ2

A

]
EeEν + (XiXj∗ +XjXi∗)~ke i~kν j +X ·X∗~ke · ~kν

+ i(X0 ~X∗ − ~XX0∗) · ~kν ∧ ~ke ,
(3.142)

where
κ2
V = (gV |〈1〉|)2 , κ2

A = (gA|〈~σ〉|)2 . (3.143)

Furthermore, we are generally not interested in the spin of the final nucleus, and we do not know
the polarisation of the initial nucleus, so we sum over the final spin and average over the initial
one. Up to a constant factor this amounts to average over all the spins, and since the result
must be invariant under spin rotations it has to boil down to the replacement

XiX∗j −→
average

1
3δ
ij ~X · ~X∗ . (3.144)

We then find

|Mfi|2|relevant ∝ (κ2
V + κ2

A)EeEν + (κ2
V − 1

3κ
2
A)~ke · ~kν

= (κ2
V + κ2

A)EeEν

(
1 +

κ2
V − 1

3κ
2
A

κ2
V + κ2

A

βe cos θ

)
∝ 1− ξβe cos θ .

(3.145)

For a Fermi transition the electron-neutrino correlation coefficient is ξ = −1, while for a Gamow-
Teller transition it is ξ = 1

3 . For the decay of a free neutron, where both the vector and axial
current contribute, we have instead

ξ =
α2 − 1

3α2 + 1
' 0.1 . (3.146)

3.4 Hyperon decays

We conclude this section discussing the beta decay of the hyperons Σ±,

Σ+ → Λ e+νe , Σ− → Λ e−ν̄e . (3.147)

Since mΣ+ = 1.1894 GeV, mΣ− = 1.1974 GeV, and mΛ = 1.1157 GeV, we have that ∆+ =
mΣ+ −mΛ = 73.7 MeV and ∆− = mΣ− −mΛ = 81.7 MeV, so decay into muons is forbidden.
The quark content of the hyperons is Σ+ = (uus), Σ− = (dds), and Λ = (uds), so strangeness
is conserved in these processes. The relevant currents are then d̄OµLu and its conjugate ūOµLd,
respectively. We can write the relevant matrix elements as (2M = mΛ +mΣ+)

〈Λ|V µ
− |Σ+〉 = 〈Λ|d̄γµu|Σ+〉 = ūΛ

(
f1γ

µ + i
f2

2M
σµνqν + f3

qµ

2M

)
uΣ+ ,

〈Λ|Aµ−|Σ+〉 = 〈Λ|d̄γµγ5u|Σ+〉 = ūΛ

(
g1γ

µ + i
g2

2M
σµνqν + g3

qµ

2M

)
γ5uΣ+ ,

(3.148)
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and similarly for the decay of Σ−. Due to the small mass difference we can take the form
factors at q2 = 0, with corrections of order q2 = O(∆2

+). In the isospin limit, f1(0)|iso = 0 since
Σ± and Λ belong to different isomultiplets, so f1(0) is of the order of the isospin breaking
parameter, O(mΣ+ − mΣ−) = O(∆+ − ∆−), after symmetry-breaking effects are included.
Current conservation in the isospin limit also implies

0 = ūΛ

(
f1(q2)|iso/q + f3(q2)|iso

q2

2M

)
uΣ+ = ūΛ

(
f1(q2)|iso∆+ + f3(q2)|iso

q2

2M

)
uΣ+ , (3.149)

and for f1(q2)|iso/q2 = O(1) near zero we find that f3(0)|iso/(2M) = O(∆+), hence f3(0)/(2M) =
∆+O(∆+ − ∆−). Finally, in the isospin limit the form factor f2 can be related to the corre-
sponding term in the electromagnetic decay Σ0 → Λ γ, and is some number of order one, so that
the weak magnetism contribution is of order ∆+. All in all, the vector current is suppressed
with respect to the axial current, as long as g1(0) 6= 0, so it is the latter that dominates the
decay. In the isospin limit the relevant matrix element has the same value for Σ+ and Σ−, so
the ratio of the two decay widths is determined uniquely by the available phase space. Since
this is proportional to ∆5

±, as one can see by adapting the result obtained for the neutron, we
find

Γ(Σ+ → Λ e+νe)

Γ(Σ− → Λ e−ν̄e)
=

(
∆+

∆−

)5

' 0.6 . (3.150)

This agrees with experiments.

3.5 Appendix: evaluation of K(ε)

We want to compute the integral defined in Eq. (3.83), reported here for convenience,

K(ε) =
1

2

∫ 1

ε
dz
√

1− z
[
1− z + 3

2ε− ε2(3 + ε
2)

1

z2
+ 2ε3 1

z3

]
. (3.151)

Changing integration variable to z → 1− z this reads

K(ε) =
1

2

∫ 1−ε

0
dz
√
z

[
z + 3

2ε− ε2(3 + ε
2)

1

(1− z)2
+ 2ε3 1

(1− z)3

]
. (3.152)

Integration of the first two terms is straightforward. For the other two terms it is convenient to
write

1

2

∫ 1−ε

0
dz
√
z

1

(1− z)n =

∫ √1−ε

0
dxx2 1

(1− x2)n

=

∫ √1−ε

0
dx

[
1

(1− x2)n
− 1

(1− x2)n−1

]
.

(3.153)

We only need n = 2, 3. For n > 0 these integrals can be treated by elementary methods by
replacing

1

(1− x2)n
=

1

(1− x)n(1 + x)n
=

n∑
j=1

Aj

(
1

(1− x)j
+

1

(1 + x)j

)
, (3.154)
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and finding the appropriate Aj (the same coefficient appears for both pole terms due to the
x→ −x symmetry). We have

1

(1− x2)
= A1

(
1

(1− x)
+

1

(1 + x)

)
=

2A1

(1− x2)
,

1

(1− x2)2
=

2A1

(1− x2)
+

2A2(1 + x2)

(1− x2)2
=

2A1(1− x2) + 2A2(1 + x2)

(1− x2)2
,

1

(1− x2)3
=

2A1

(1− x2)
+

2A2(1 + x2)

(1− x2)2
+

2A3(1 + 3x2)

(1− x2)3

=
2A1(1− 2x2 + x4) + 2A2(1− x4) + 2A3(1 + 3x2)

(1− x2)3
,

(3.155)

which are solved by

n = 1 : A1 =
1

2
,

n = 2 : A1 = A2 =
1

4
,

n = 3 : A1 = A2 =
3

16
, A3 =

1

8
.

(3.156)

One can then integrate Eq. (3.154) to get∫
dx

1

(1− x2)n
= A1 log

1 + x

1− x +
n∑
j=2

Aj
j − 1

(
1

(1− x)j−1
− 1

(1 + x)j−1

)
, (3.157)

and in the cases of interest∫
dx

1

(1− x2)
=

1

2
log

1 + x

1− x ,∫
dx

1

(1− x2)2
=

1

4
log

1 + x

1− x +
1

4

(
1

(1− x)
− 1

(1 + x)

)
=

1

4
log

1 + x

1− x +
1

2

x

(1− x2)
,∫

dx
1

(1− x2)3
=

3

16
log

1 + x

1− x +
3

16

(
1

(1− x)
− 1

(1 + x)

)
+

1

16

(
1

(1− x)2
− 1

(1 + x)2

)
=

3

16
log

1 + x

1− x +
3

8

x

(1− x2)
+

1

4

x

(1− x2)2
.

(3.158)
We then have

1

2

∫ 1−ε

0
dz
√
z

1

(1− z)2
=

[
1

2

x

(1− x2)
− 1

4
log

1 + x

1− x

]√1−ε

0

,

=
1

2

√
1− ε
ε

− 1

2
log

1 +
√

1− ε√
ε

,

1

2

∫ 1−ε

0
dz
√
z

1

(1− z)3
=

[
1

4

x

(1− x2)2
− 1

8

x

(1− x2)
− 1

16
log

1 + x

1− x

]√1−ε

0

=
1

4

√
1− ε
ε2

− 1

8

√
1− ε
ε

− 1

8
log

1 +
√

1− ε√
ε

(3.159)
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We can then combine these two contributions to get

1

2

∫ 1−ε

0
dz
√
z

[
−ε2(3 + ε

2)
1

(1− z)2
+ 2ε3 1

(1− z)3

]
=

[
−ε2(3 + ε

2)

(
1

2

√
1− ε
ε

− 1

2
L

)
+ 2ε3

(
1

4

√
1− ε
ε2

− 1

8

√
1− ε
ε

− 1

8
L

)]
=

3ε2

2
L− 1

2

√
1− ε

(
2ε+ ε2

)
,

(3.160)

where L = log 1+
√

1−ε√
ε

. The other two integrals are

1

2

∫ 1−ε

0
dz
√
zz =

1

5
(1− ε) 5

2 ,

1

2

∫ 1−ε

0
dz
√
z =

1

2
ε(1− ε) 3

2 .

(3.161)

Putting everything together we find

K(ε) =
1

5
(1− ε) 5

2 +
1

2
ε(1− ε) 3

2 +
3ε2

2
L− 1

2

√
1− ε

(
2ε+ ε2

)
=

1

2

√
1− ε

{
2

5
(1− ε)2 + ε(1− ε)−

(
2ε+ ε2

)}
+

3ε2

2
L

=
1

2

√
1− ε

{
2

5
− 9

5
ε− 8

5
ε2

}
+

3ε2

2
L

=
1

5

{√
1− ε

[
1− 9

2
ε− 4ε2

]
+

15ε2

2
log

1 +
√

1− ε√
ε

}
.

(3.162)

We can finally look for the lowest-order approximation in ε,

K(ε) ' 1

5
(1− 5ε) , (3.163)

which agrees with Eq. (3.85).

3.6 Appendix: form factors

The matrix element of interest are of the form 〈H ′(p′, s′)|V µ|H(p, s)〉, 〈H ′(p′, s′)|Aµ|H(p, s)〉, for
momentum and spin component eigenstates of some spin-1

2 fermions H and H ′, and for vector
or axial-vector operators V µ and Aµ. In general, the matrix elements of any observable O can
be written as

〈H ′(p′, s′)|O|H(p, s)〉 = ūs′(~p
′)ΓO(p, p′)us(~p ) . (3.164)

To see this, notice that the left-hand side is in general a 2×2 matrix labelled by s, s′ = ±1
2 , and

recall that

us(~p ) =
√
p0 +m

(
χs

~p·~σ
p0+m

χs

)
, (3.165)
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so writing ΓO in block form

ΓO(p, p′) =

(
M1(p, p′) M2(p, p′)
M3(p, p′) M4(p, p′)

)
(3.166)

one has

ūs′(~p
′)ΓO(p, p′)us(~p )

=
√

(p′0 +m′)(p0 +m)χ†s′

(
M1(p, p′) +M2(p, p′)

~p · ~σ
p0 +m

− ~p ′ · ~σ
p′0 +m′

M3(p, p′)− ~p ′ · ~σ
p′0 +m′

M4(p, p′)
~p · ~σ
p0 +m

)
χs ,

(3.167)

and any 2× 2 matrix can be written this way (in fact this is redundant, as it suffices to choose
M1 appropriately and set M2,3,4 to zero: only four complex parameters are needed). The form
Eq. (3.164) is convenient in order to parameterise matrix elements with simple tranformation
properties under Lorentz transformations. For O = V µ we have

〈H ′(p′, s′)|V µ(0)|H(p, s)〉 = ūs′(~p
′)Γµ(p, p′)us(~p ) , (3.168)

and Lorentz invariance dictates

〈H ′(p′, s′)|U(Λ)†V µ(0)U(Λ)|H(p, s)〉
= Λµν 〈H ′(p′, s′)|V ν(0)|H(p, s)〉 = Λµν ūs′(~p

′)Γν(p, p′)us(~p )

=
∑
s̄,s̄′

〈H ′(Λp′, s̄′)|V µ(0)|H(Λp, s̄)〉D ( 1
2

)
s̄s (W (Λ))D

( 1
2

)

s̄′s′ (W (Λ))∗

= ūs̄′(Λ~p
′)Γµ(Λp,Λp′)us̄(Λ~p )D

( 1
2

)
s̄s (W (Λ))D

( 1
2

)

s̄′s′ (W (Λ))∗

= ūs′(~p
′)S(Λ)−1Γµ(Λp,Λp′)S(Λ)us(~p )

(3.169)

The matrix Γµ(p, p′) can always be written as a linear combination of the sixteen 4× 4 matrices
ΓA = 1, iγ5, γµ, γ5γµ, σµν , discussed above in Section 2.4, and the objects ūs′(~p

′)ΓAus(~p ) have
simple transformation properties under Lorentz transformations. Still working in full generality,

ūs′(~p
′)Γµ(p, p′)us(~p ) = ūs′(~p

′)
(
cµ1 (p, p′)1 + +cµ2 (p, p′)iγ5 + cµ3ν(p, p′)γν

+cµ4ν(p, p′)γ5γν + cµ5νρ(p, p
′)σνρ

)
us(~p )

(3.170)

The various terms correspond to a scalar, a pseudoscalar, a vector, an axial-vector, and a
rank-2 tensor. The Lorentz transformation property Eq. (3.169), the availability only of two
independent vectors that we take to be Pµ = pµ + p ′ and qµ = pµ − p ′, and of a single
independent Lorentz scalar (besides the particle masses), that we take to be q2, and of no axial
vector and no pseudoscalar then dictates

cµ1 (p, p′) = c1,1(q2)Pµ + c1,2(q2)qµ ,

cµ2 (p, p′) = 0 ,

cµ3ν(p, p′) = cµ3,1(q2)δµν + c3,2(q2)PµPν + c3,3(q2)Pµqν + c3,4(q2)qµPν + c3,5(q2)qµqν ,

cµ4ν(p, p′) = 0 ,

cµ5νρ(p, p
′) =

(
c5,1(q2)Pµ + c5,2(q2)qµ

)
(Pνqρ − Pρqν) + (c5,3(q2)P[ρ + c5,4(q2)q[ρ)δ

µ
ν] .

(3.171)
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Moreover, since

pν ūs′(~p
′)γνus(~p ) = mūs′(~p

′)us(~p ) ,

p′ν ūs′(~p
′)γνus(~p ) = m′ūs′(~p

′)us(~p ) ,

Pνqρ − Pρqν = (pν + p′ν)(pρ − p′ρ)− (pρ + p′ρ)(pν − p′ν)

= 2(p′νpρ − p′ρpν) ,

(Pνqρ − Pρqν)ūs′(~p
′)σνρus(~p ) = −2i(p′νpρ − p′ρpν)ūs′(~p

′)γνγρus(~p )

= −2i[p′νpρūs′(~p
′)γνγρus(~p )− p′ρpν ūs′(~p ′)(2ηνρ − γργν)us(~p )]

= −4i[mm′ūs′(~p
′)us(~p )− p · p′ūs′(~p ′)us(~p )]

(3.172)
the contributions coming from c3,2, c3,3, and c5,1 are of the same form as those coming from
c1,1, and the contributions from c3,4, c3,5, and c5,2 are of the same form as those coming from
c1,2. This leaves three independent structures to parameterise the matrix elements. A similar
argument can be made for an axial vector operator.

Instead of proceeding as above, we first simplify the argument for the vector operator.
From here on we drop spin indices for simplicity. The matrix element on the left-hand side
of Eq. (3.170) is a vector that must be built using only the vectors Pµ, qµ, and the structures
ū(p′)ΓAu(p). The are then only five vector structures,

Pµū(p′)u(p) , qµū(p′)u(p) , ū(p′)γµu(p) , ū(p′)σµνu(p)Pν , ū(p′)σµνu(p)qν . (3.173)

As we showed above, these can be reduced to three independent structures. The simplest way
to do this is to use the generalised version of the Gordon identity. Since

ū(p′)γαγβu(p) = ū(p′)ηαβu(p) + ū(p′)iσαβu(p) , (3.174)

contracting with p and p′ and using the Dirac equation we find

ū(p′)γα/pu(p) = mū(p′)γαu(p) = pαū(p′)u(p) + ū(p′)iσαβpβu(p) ,

ū(p′)/p
′γβu(p) = m′ū(p′)γβu(p) = p′βū(p′)u(p) + ū(p′)iσαβp′αu(p) .

(3.175)

After relabelling β → α in the second equation, we find by adding and subtracting the two
equations that

(m+m′)ū(p′)γαu(p) = Pαū(p′)u(p) + ū(p′)iσαβqβu(p) ,

(m−m′)ū(p′)γαu(p) = qαū(p′)u(p) + ū(p′)iσαβPβu(p) ,
(3.176)

which allow us to express the first and fourth terms in Eq. (3.173) as linear combinations of the
other three. In passing, we get in the case m = m′ the Gordon identity, which reads

ū(p′)γαu(p) =
Pα

2m
ū(p′)u(p) + ū(p′)iσαβ

qβ
2m

u(p) . (3.177)

In the axial vector case we have other five structures,

Pµū(p′)γ5u(p) , qµū(p′)γ5u(p) , ū(p′)γµγ5u(p) , ū(p′)σµνγ5u(p)Pν , ū(p′)σµνγ5u(p)qν ,
(3.178)

but also in this case Gordon-type identities allow us to drop two of them. Indeed,

ū(p′)γαγβγ5u(p) = ū(p′)ηαβγ5u(p) + ū(p′)iσαβγ5u(p) , (3.179)
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and proceeding as above we find

ū(p′)γα/pγ
5u(p) = −mū(p′)γαu(p) = pαū(p′)γ5u(p) + ū(p′)iσαβγ5pβu(p) ,

ū(p′)/p
′γβγ5u(p) = m′ū(p′)γβu(p) = p′βū(p′)γ5u(p) + ū(p′)iσαβγ5p′αu(p) .

(3.180)

Combining the two equations we find

(m′ −m)ū(p′)γαu(p) = Pαū(p′)γ5u(p) + ū(p′)iσαβγ5qβu(p) ,

(m′ +m′)ū(p′)γαγ5u(p) = −qαū(p′)γ5u(p)− ū(p′)iσαβγ5Pβu(p) ,
(3.181)

which allows us to express, e.g., the first and fourth terms in Eq. (3.178) in terms of the others.
One ends up with the three terms shown in Eq. (3.92).

Reality of the form factors in Eq. (3.92) follows from the T invariance of the matrix elements
(in the approximation in which the t and b quarks are neglected):

〈Tp|V µ
+ |Tn〉∗ = 〈p|T †V µ

+T |n〉 = Pµν〈p|V ν
+ |n〉 ,

〈Tp|Aµ+|Tn〉∗ = 〈p|T †Aµ+T |n〉 = Pµν〈p|Aν+|n〉 .
(3.182)

Since T |~p, sz〉 = ζ(−1)s+sz |−~p,−sz〉 for some phase ζ, which is the same for proton and neutron,

and using iγ0γ2γ5us(~p )∗ = (−1)
1
2

+su−s(−~p ), we find

〈Tp|V µ
+ |Tn〉∗ =

{
(−1)

1
2

+sp ūp(Ppp,−sp)Mµ(Pq)un(Ppn,−sn)(−1)
1
2

+sn
}∗

= −ūp(pp, sp)[γ5γ2γ0Mµ(Pq)γ0γ2γ5]∗un(pn, sn) ,

〈Tp|Aµ+|Tn〉∗ =
{

(−1)
1
2

+sp ūp(Ppp,−sp)Mµ
5 (Pq)un(Ppn,−sn)(−1)

1
2

+sn
}∗

= −ūp(pp, sp)[γ5γ2γ0Mµ
5 (Pq)γ0γ2γ5]∗un(pn, sn) .

(3.183)

It is now straightforward to show that

γ5γ2γ0γ0γ2γ5 = −1 ,

γ5γ2γ0γµγ0γ2γ5 = −γ2γµ†γ2 = −Pµνγν∗ ,
γ5γ2γ0σµνγ0γ2γ5 = γ2σµν†γ2 = PµαPνβσµν∗ ,
γ5γ2γ0γ5γ0γ2γ5 = −γ5 ,

γ5γ2γ0γµγ5γ0γ2γ5 = −γ2γµ†γ2γ5 = −Pµνγν∗γ5 ,

γ5γ2γ0σµνγ5γ0γ2γ5 = γ2σµν†γ2γ5 = PµαPνβσµν∗γ5 ,

(3.184)

from which it follows that (recall γ5 = γ5∗)

[γ5γ2γ0Mµ(Pq)γ0γ2γ5]∗ = Pµν
(
f1(q2)∗γν − f2(q2)∗(−i)σναPραP β

ρ

qβ
2m

+ f3(q2)∗
qν

2m

)
= Pµν

(
f1(q2)∗γν + f2(q2)∗σνρ

qρ
2m

+ f3(q2)∗
qν

2m

)
,

[γ5γ2γ0Mµ
5 (Pq)γ0γ2γ5]∗ = Pµν

(
g1(q2)∗γν − g2(q2)∗(−i)σναPραP β

ρ

qβ
2m

+ g3(q2)∗
qν

2m

)
γ5

= Pµν
(
g1(q2)∗γν + g2(q2)∗σνρ

qρ
2m

+ g3(q2)∗
qν

2m

)
γ5 .

(3.185)
These must equal PµνMν(q) and PµνMν

5 (q), respectively, which is only possible if the fi and gi
are real.
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3.7 Appendix: G-parity

In the isospin limit it is convenient to make use of the following symmetry transformation called
G-parity,

G = CeiπI2 , (3.186)

where C is charge conjugation and eiπI2 an isospin rotation. It can be shown that

eiπI2 |I i3〉 = (−1)I+i3 |I − i3〉 . (3.187)

The way we are going to use this symmetry is however unrelated to the transformation properties
of the states, but rather to those of the quantum fields associated to the particles. It is a general
result (a particular case of the LSZ reduction formula) that matrix elements of operators, e.g.,
a current Jµ, between a proton and a neutron state can be expressed as

〈p(p′, s′)|Jµ(z)|n(p, s)〉

= (−i)2

∫
d4y

∫
d4xei(p

′·y−p·x)ū(p′, s′)(i/∂y −m)Sµ(x, y)(i
←−
/∂ x −m)u(p, s)

= ū(p′, s′)Γµ(p′, p)u(p, s) ,

Sµ(y, x) = 〈0|T
{
ψp(y)ψ̄n(x)Jµ(z)

}
|0〉 ,

Γµ(p′, p) = lim
p,p′→on-shell

−(/p
′ −m)

{∫
d4y

∫
d4xei(p

′·y−p·x)Sµ(y, x)

}
(/p−m) ,

(3.188)

where the limit “p, p′ → on-shell” implies that we start from off-shell momenta p, p′, compute
the Fourier transform of Sµ(y, x) for off-shell momenta, then multiply by the inverse propagators
and finally take p, p′ on their mass shell. Here ψp and ψn are local, spin-1

2 fields which annihilate
a proton and a neutron, respectively, normalised as

〈0|ψp(x)|p(p, s)〉 = u(p, s)e−ip·x , 〈0|ψn(x)|n(p, s)〉 = u(p, s)e−ip·x . (3.189)

Of course, the form of the matrix element on the third line of Eq. (3.188) is dictated by Lorentz
invariance, but in this way we have related Γµ directly to the vacuum expectation value of fields.

We can now discuss the consequences of G-parity invariance. Let us assume that Jµ has the
simple transformation property G†JµG = ηJµ with η some phase. Under charge conjugation a
spin-1

2 field transforms as

C†ψα(x)C = ξ(ψ̄iγ0γ2)α , C†ψ̄α(x)C = ξ∗(iγ0γ2ψ)α . (3.190)

Concerning the isospin rotation, p and n are the i3 = +1
2 and i3 = −1

2 components of an isospin
doublet, and so

e−iπI2ψp(x)eiπI2 = −ψn(x) , e−iπI2ψn(x)eiπI2 = ψp(x) . (3.191)

Putting everything together we find

Sµαβ(y, x) = 〈0|T
{
ψpα(y)ψ̄nβ(x)Jµ(z)

}
|0〉

= −η〈0|T
{
C†ψnα(y)CC†ψ̄p β(x)CJµ(z)

}
|0〉

= η〈0|T
{

(iγ0γ2ψp)β(x)(ψ̄niγ
0γ2)α(y)Jµ(z)

}
|0〉

= η(iγ0γ2〈0|T
{
ψp(x)ψ̄n(y)Jµ(z)

}
|0〉iγ0γ2)βα ,

(3.192)
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or in a more manageable form

Sµ(y, x) = η
(
iγ0γ2Sµ(x, y)ηiγ0γ2

)T
= −ηγ0γ2 (Sµ(x, y))T γ0γ2 . (3.193)

Here and below we need the following identities,

γµT = −γ0γ2γµγ0γ2 , σµν T = −γ0γ2σµνγ0γ2 ,
(
γ0γ2

)2
= 1 . (3.194)

Plugging Eq. (3.193) into the expression for Γµ we find (the on-shell limit is understood)

−Γµ(p′, p) = −η(/p
′ −m)γ0γ2

{∫
d4y

∫
d4xei(p

′·y−p·x)Sµ(x, y)

}T
γ0γ2(/p−m)

= −ηγ0γ2(−/p′T −m)

{∫
d4y

∫
d4xei(−p·y+p′·x)Sµ(y, x)

}T
(−/pT −m)γ0γ2

= −ηγ0γ2

{
(−/p−m)

∫
d4y

∫
d4xei(−p·y+p′·x)Sµ(y, x)(−/p′ −m)

}T
γ0γ2

= ηγ0γ2Γµ(−p,−p′)Tγ0γ2 ,

(3.195)

i.e.,
Γµ(p′, p) = −ηγ0γ2Γµ(−p,−p′)Tγ0γ2 . (3.196)

The currents we are interested in are the following vector and axial currents,

V µ = ūγµd , Aµ = ūγµγ5d , (3.197)

which under G transform as follows

G†V µG = V µ , G†AµG = −Aµ . (3.198)

In fact (recall that u and d behave like p and n as far as isospin is concerned),

G†V µG = C†(d̄)γµ(−u)C = −(iγ0γ2d)αγ
µ
αβ(ūiγ0γ1)β = ūiγ0γ1γµT iγ0γ2d

= ūγ0γ1γ0γ2γµγ0γ2γ0γ2d = ūγµd = V µ ,

G†AµG = C†(d̄)γµγ5(−u)C = −(iγ0γ2d)α(γµγ5)αβ(ūiγ0γ1)β = ūiγ0γ1(γµγ5)T iγ0γ2d

= ūγ0γ1γ5γ0γ2γµγ0γ2γ0γ2d = −ūγµγ5d = −Aµ .

(3.199)

The associated matrices ΓµV (p′, p) and ΓµA(p′, p) must therefore satisfy

ΓµV (p′, p) = −γ0γ2ΓµV (−p,−p′)Tγ0γ2 , ΓµA(p′, p) = γ0γ2ΓµA(−p,−p′)Tγ0γ2 . (3.200)

The general form of these matrices has been given above, and each consists of three linearly in-
dependent terms proportional to γµ, σµνqν ,1q

µ, for the vector current, and γµγ5, σµνγ5qν , γ
5qµ,

for the axial current, where q = p− p′. Since q → q under p↔ −p′ it now suffices to verify that

−γ0γ2γµTγ0γ2 = γµ , −γ0γ2σµν Tγ0γ2 = σµν , −γ0γ21γ0γ2 = −1 ,

γ0γ2(γµγ5)Tγ0γ2 = γµγ5 , γ0γ2σµν Tγ0γ2 = −σµνγ5 , γ0γ2γ5γ0γ2 = γ5 ,
(3.201)

to show that only γµ and σµνqν are admissible for the vector current, and γµγ5 and γ5qµ for
the axial current.
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3.8 Appendix: pion pole in nucleon matrix elements

We show here a particular case of a general result: vacuum expectation values or matrix elements
of products of (appropriate) fields have poles when combinations of external momenta approach
the mass shell of a physical particles. Consider the correlation function

Ga(p
′, p, q) =

∫
d4x

∫
d4y

∫
d4z ei(p

′x·x−p·y−q·z)〈0|T
{
ψp(x)ψ̄n(y)φa(z)

}
|0〉

= (2π)4δ(4)(p′ − p− q)
∫
d4x

∫
d4y ei(p

′x·x−p·y)〈0|T
{
ψp(x)ψ̄n(y)φa(0)

}
|0〉

= (2π)4δ(4)(p′ − p− q)ga(p′, p, q) ,

(3.202)

where the proton and neutron fields ψp and ψn are normalised as in Eq. (3.189), while for the
pion field φa(x)

〈0|φa(x)|πb〉 = δab e
−ip·x . (3.203)

The LSZ reduction formula relates G and the proton-neutron-pion vertex, e.g.,

out〈p|nπ+〉in = ū(p′, s′)
/p′ −m
i

1√
2
G+(p′, p, q)

/p−m
i

u(p, s)
q2 −m2

π

i
. (3.204)

It is understood here that momenta are off the mass-shell, so the left-hand side is actually the
analytic continuation of the S-matrix element for nπ+ → p (which is obviously zero for on-
shell momenta). With this proviso, we can extract the scattering amplitude for nπ+ → p from
Eq. (3.204) as

iMnπ+→p = ū(p′, s′)
/p′ −m
i

1√
2
g+(p′, p, q)

/p−m
i

u(p, s)
q2 −m2

π

i
. (3.205)

Similarly, using the last line of Eq. (3.202) one finds by means of LSZ reduction

out〈p|φa(0)|n〉in = ū(p′, s′)
/p′ −m
i

ga(p
′, p, q = p′ − p)/p−m

i
u(p, s) , (3.206)

Let us now isolate, among the various time orderings in Eq. (3.202), those in which the pion
field corresponds to the earliest time,

Ga(p
′, p, q) =

∫
d4x

∫
d4y

∫
d4z ei(p

′x·x−p·y−q·z)〈0|T
{
ψp(x)ψ̄n(y)

}
φa(z)|0〉θ(min(x0, y0)− z0)

+ OT ,
(3.207)

where OT indicates “other terms”. We now insert a complete set of states and focus on pion
states, writing (no sum over a)

Ga(p
′, p, q) =

∫
d4x

∫
d4y

∫
d4z

∫
dΩk e

i(p′x·x−p·y−q·z)〈0|T
{
ψp(x)ψ̄n(y)

}
|πa(~k )〉

× 〈πa(~k )|φa(z)|0〉θ(min(x0, y0)− z0) + OT .

(3.208)

68



Here it is crucial that the fields φa have nonzero matrix elements between the vacuum and the
pion states. Translation invariance implies

〈0|T
{
ψp(x)ψ̄n(y)

}
|πa(~k )〉 = 〈0|T

{
ψp(0)ψ̄n(y − x)

}
|πa(~k )〉e−ik·x ,

〈πa(~k )|φa(z)|0〉 = eik·z〈πa(~k )|φa(0)|0〉 ,
(3.209)

and of course min(x0, y0) = x0 +min(0, y0−x0). Changing variables to y′ = y−x and z′ = x−z
(and dropping the prime) we find

Ga(p
′, p, q) =

∫
d4x

∫
d4y

∫
d4z

∫
dΩk e

i[(p′−p−q)·x−p·y+(q−k)·z]

× 〈0|T
{
ψp(0)ψ̄n(y)

}
|πa(~k )〉〈πa(~k )|φa(0)|0〉θ(z0 + min(0, y0)) + OT

= (2π)4δ(4)(p′ − p− q)
∫
d4y

∫
d4z

∫
dΩk e

i(−p·y+(q−k)·z)

× 〈0|T
{
ψp(0)ψ̄n(y)

}
|πa(~k )〉θ(z0 + min(0, y0)) + OT ,

(3.210)

where in the second line we used Eq. (3.203). Dropping the momentum-conserving delta function,
and making use of the Fourier transform representation of the theta function,

θ(x0) = −
∫

dω

2πi
e−iωx

0 1

ω + iε
, (3.211)

we obtain

ga(p
′, p, q) =

∫
d4y

∫
d4z

∫
dΩk

∫
dω

2π
ei(−p·y+(q−k)·z)

× i

ω + iε
e−iω(z0+min(0,y0))〈0|T

{
ψp(0)ψ̄n(y)

}
|πa(~k )〉+ OT

=

∫
d4y

∫
dΩk

∫
dω

2π
e−ip·y

i

ω + iε
e−iωmin(0,y0)

× (2π)3δ(3)(~q − ~k )2πδ(q0 − k0 − ω)〈0|T
{
ψp(0)ψ̄n(y)

}
|πa(~k )〉+ OT

=

∫
d4y e−ip·y

1

2k0

i

q0 − k0 + iε
e−i(q

0−k0) min(0,y0)

× 〈0|T
{
ψp(0)ψ̄n(y)

}
|πa(~q )〉+ OT .

(3.212)

We now focus on the region q0 ' k0 =
√
~q2 +m2

π, where the other terms can be dropped (since
they do not have a pole there), and get

ga(p
′, p, q) =

q0∼k0

∫
d4y e−ip·y

1

2k0

i

q0 − k0 + iε
〈0|T

{
ψp(0)ψ̄n(y)

}
|πa(~q )〉

=
1

2k0

i(q0 + k0)

(q0)2 − ~q 2 −m2
π + iε

∫
d4y e−ip·y〈0|T

{
ψp(0)ψ̄n(y)

}
|πa(~q )〉

=
q0∼k0

i

q2 −m2
π + iε

∫
d4y e−ip·y〈0|T

{
ψp(0)ψ̄n(y)

}
|πa(~q )〉 .

(3.213)
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Plugging this result into Eq. (3.206) we find

out〈p|φa(0)|n〉in
=

q0∼k0

i

q2 −m2
π + iε

ū(p′, s′)(/p
′ −m)

∫
d4y e−ip·y〈0|T

{
ψp(0)ψ̄n(y)

}
|πa(~q )〉(/p−m)u(p, s) .

(3.214)
We can then parameterise this matrix element, using Lorentz and isospin invariance and knowl-
edge of the pion pole, as

out〈p|φa(0)|n〉in = −igπNN (q2)

q2 −m2
π

ū(p′, s′)γ5τau(p, s) , (3.215)

with gπNN regular at the pion mass squared. In particular,

out〈p|φ+(0)|n〉in = −igπNN (q2)

q2 −m2
π

ū(p′, s′)γ5τ+u(p, s) = 2i
gπNN (q2)

m2
π − q2

ūp(p
′, s′)γ5un(p, s) . (3.216)

To understand the choice of prefactors, compute the left-hand side using an effective Lagrangian
with the following nucleon-pion coupling,

L eff = igψ̄τaγ
5ψφa = g(ψ̄pτ3γ

5ψp − ψ̄nτ3γ
5ψn)φ3 + g

√
2ψ̄pγ

5ψn
φ−√

2
+ g
√

2ψ̄nγ
5ψp

φ+√
2
. (3.217)

(The factor i is required to make the Lagrangian T -invariant, since ηP ηC = −1 for pions.
Actually: it makes the Lagrangian Hermitian.) It is straightforward to get to lowest order

out〈p|φ+(0)|n〉in =
√

2i(ig
√

2)ūpγ
5un

i

q2 −m2
π

= 2igūpγ
5un

1

m2
π − q2

, (3.218)

so that we can identify g = gπNN (m2
π) as the physical pion-nucleon-nucleon coupling.

The reason of this identification is that if one considers the S-matrix element for nucleon-
nucleon scattering, inserting a complete set of states and focussing on the unphysical region
where q2 = (p1−p′1)2 is close to the pion mass squared, an argument similar to the one developed
above shows that

out〈N(p′1)N(p′2)|N(p1)N(p2)〉in

∼ const.× gπNN (q2)

q2 −m2
π

ū(p′1, s
′
1)γ5τau(p1, s1)ū(p′2, s

′
2)γ5τau(p2, s2)

∼ const.× gπNN (m2
π)

q2 −m2
π

ū(p′1, s
′
1)γ5τau(p1, s1)ū(p′2, s

′
2)γ5τau(p2, s2) .

(3.219)

In the physical region q2 ≤ 0, but since the pion mass is small the pole Eq. (3.219) is close to
the physical region and can dominate the scattering amplitude. The resulting contribution is
then precisely of the form corresponding to the tree-level exchange of a pseudoscalar isovector
particle (i.e., the pion) between the colliding nucleons, with coupling constant gπNN (m2

π).
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4 Strangeness-changing leptonic decays of hadrons

Most leptonic decays of strange particles are strangeness-changing. The relevant interaction
is the coupling of the hadronic currents ūOαLs and s̄OαLu to the leptonic currents ¯̀OαLν` and
ν̄`OαL`, respectively. The lightest hadrons undergoing strangeness-changing weak decays are
strange octet mesons and baryons (as well as the decuplet Ω baryon). Kaon decays have the
following special notation in the literature:

K+
µ2 : K+ → µ+ νµ , K+

µ4 : K+ → µ+νµ π
+ π− ,

K+
µ3 : K+ → µ+ νµ π

0 , K+′
µ4 : K+ → µ+ νµ π

0 π0 ,

K0
µ3 : K0 → µ+ νµ π

− , K0
µ4 : K0 → µ+ νµ π

0 π− .

(4.1)

Similarly, K−µ2, K−µ3 etc. are used to denote the corresponding decays of K− into muons, and

K±e2, K±e3 etc. to denote processes with positrons or electrons in the final state. If the notation
K−`2, K−`3 is used, then the lepton type in the final state is summed over, i.e., one generically
considers decays into whatever type of lepton (compatibly with mass contraints, of course). No
special notation is used for hyperon decays, the most relevant of which are

Λ→ p `− ν̄` , Σ− → n `− ν̄` ,

Ξ− → Λ `− ν̄` , Ξ− → Σ0 `− ν̄` ,

Ξ0 → Σ+ `− ν̄` , Ω− → Ξ0 `− ν̄` .

(4.2)

Decay amplitude The general form of the decay amplitude is

Mfi = − G√
2

sin θCHαL
α , (4.3)

where the hadronic matrix element is

Hα = 〈f |ūOαLs|i〉 or Hα = 〈f |s̄OαLu|i〉 (4.4)

and the leptonic matrix element is

Lα = ū`OαLvν` , or Lα = ūν`OαLv` , (4.5)

depending on the specific process.

Selection rules The currents ūOαLs and s̄OαLu carry a change in strangeness ∆S = ±1, so the
selection rule |∆S| = 1 follows. They also effect a change in electric charge equal to the change in
strangeness, so the selection rule ∆Q = ∆S follows. Processes that violate these selection rules
are not strictly forbidden, since they could take place in higher orders of perturbation theory,
but they are very strongly suppressed. Since u has I = 1

2 while s has I = 0, these currents
belong to isodoublets, and so the selection rule |∆I| = 1

2 follows (more on this below).
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SU(3) flavour symmetry The SU(3) flavour symmetry allows one to relate strangeness-con-
serving and strangeness-changing processes. The currents ūOαLd, d̄OαLu, ūOαLs and s̄OαLu belong
to the same octet of currents,

(jα)ij = q̄iOαLqj − 1
3

∑
m

q̄mOαLqm , (4.6)

where q = (u, d, s). There are two independent flavour-diagonal currents, that can be taken as

1√
2

(
ūOαLu− d̄OαLd

)
, 1√

6

(
ūOαLu+ d̄OαLd− 2s̄OαLs

)
. (4.7)

Both are neutral currents, the first part of an isovector of strangeness-conserving currents with
ūOαLd, d̄OαLu, while the second is an isoscalar. The remaining two currents are d̄OαLs and
s̄OαLd, which complete the isospin doublets of the strangeness-changing currents. These are
however flavour-changing neutral currents (FCNC) which do not appear in the weak Lagrangian.
The different roles played by different parts of the octet should not be surprising since weak
interactions are not SU(3) invariant. Since strong interactions approximately are, relations
among decay amplitudes follow.

4.1 K`2 decays

The processes
K+ → ` ν` (4.8)

are the analogues of the charged pion decays π+ → ` ν`, and would have exactly the same
amplitude in the SU(3)-symmetric limit. As in that case, the hadronic matrix elements receive
contributions only from the axial current, and read

Hα = 〈0|s̄OαLu|K+〉 = i
√

2fKp
α , (4.9)

where pα is the kaon momentum and fK is the kaon decay constant, a real quantity with
dimensions of a mass, that would equal fπ in the SU(3)-symmetric limit (in which case also
mK = mπ). Using momentum conservation, p = p` + pν , we find

Mfi = − G√
2

sin θC i
√

2fKp
α ūν`OαLv` = −iG sin θCfK ūν`/p(1− γ5)v`

= −iG sin θCfK ūν`(/pν + /p`)(1− γ
5)v` = −iG sin θCfK ūν`(1 + γ5)/p`v`

= iG sin θCfK m`ūν`(1 + γ5)v` .

(4.10)

This is entirely analogous to charged pion decay, and following the same steps one obtains for
the total decay width

Γ =
G2 sin2 θCf

2
K

8π
mKm

2
`

(
1− m2

`

m2
K

)2

. (4.11)

Assuming knowledge of sin θC ' 0.21, of the decay times and branching ratios of pion and kaon
decays,

Γ(π+ → µ+ νµ) ' Γ(π+) =
(
2.6 · 10−8s

)−1
,

Γ(K+ → µ+ νµ) ' 0.63 Γ(K+) = 0.63
(
1.2 · 10−8s

)−1
,

(4.12)
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and of the particle masses mπ = 140 MeV, mK = 497 MeV, and mµ = 106 MeV, one obtains
fπ/fK = 1.3. Besides a 28% of hadronic decays, significant contributions to the charged kaon
decay come from the Ke3 and Kµ3 processes. Since kaons are more than 3 times as massive as
pions, the ratio between Γ(K+ → e+ νµ) and Γ(K+ → µ+ νµ) is closer to the asymptotic limit
(me/mµ)2 = 2 · 10−5 for large mass of the decaying particle.

4.2 K`3 decays

The analysis of K+ → `+ ν` π
0 and K0 → `+ ν` π

− decays is similar to that of the β decay of
the pion. Writing pK = pπ + p` + pν for momentum conservation, and denoting p = pK + pπ
and q = pK − pπ, we have for the relevant hadronic matrix elements

H(+)
α = 〈π0|s̄OLαu|K+〉 = f

(+)
+ (q2)pα + f

(+)
− (q2)qα ,

H(0)
α = 〈π−|s̄OLαu|K0〉 = f

(0)
+ (q2)pα + f

(0)
− (q2)qα ,

(4.13)

which receive contributions only from the vector current. In the CP -symmetric case f
(+,0)
± are

real quantities. The decay amplitude reads

M(+,0)
fi = − G√

2
sin θc[f

(+,0)
+ (q2)pα + f

(+,0)
− (q2)qα]ūν`γ

α(1− γ5)v` . (4.14)

The f
(+,0)
− term is easily seen to be proportional to m` (just plug q = p` + pν into the leptonic

matrix element), and thus it is negligible in Ke3 decays.
The approximation q2 ' 0 is here less accurate than in the β decay of the pion, but it is

still reasonable. In the SU(3)-symmetric limit we can determine f
(+,0)
+ (0) using only symmetry

considerations. In fact, in this limit the relevant weak current is related to one of the generators
of the SU(3) symmetry, ∫

d3x
(
s̄O0

Lu
)

(0, ~x) = V− . (4.15)

Recall from the algebra of SU(3) that [I3, V−] = −1
2V− and [Y, V−] = −V−, and furthermore

that [I−, V−] = 0. Taking matrix elements and using translation invariance,

(2π)3δ(3)(~q )〈f |
(
s̄O0

Lu
)

(0)|i〉 = 〈f |V−|i〉 = 2p0(2π)3δ(3)(~q )〈〈f |V−|i〉〉 , (4.16)

where double angular brackets indicate that only the flavour part of the wave functions is
involved. Using Eq. (4.13) we find

f
(+)
+ (0) = 〈〈π0|V−|K+〉〉 , f

(0)
+ (0) = 〈〈π−|V−|K0〉〉 . (4.17)

A look at the meson octet shows that π− and K0 are the V3 = −1
2 and the V3 = 1

2 members of
a V -spin doublet V = 1

2 , and so33

f
(0)
+ (0) =

√
V (V + 1)− V3(V3 − 1)|V=V3= 1

2
= 1 . (4.18)

33This is so if we choose phases as follows: K+ = s̄u, K0 = s̄d = I−K
+, |π+〉 = d̄u = −W−K+, and√

2|π0〉 = I−π
+,
√

2|π−〉 = I−π
0, i.e., π0 = d̄d−ūu√

2
, π− = −ūd.
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Recalling that I+|π−〉 =
√

2|π0〉, we can show that

〈〈π0|V−|K+〉〉 = 1√
2
〈〈π−|I−V−|K+〉〉 = 1√

2
〈〈π−|V−I−|K+〉〉 = 1√

2
〈〈π−|V−|K0〉〉 , (4.19)

and therefore
f

(+)
+ (0) =

isospin limit

1√
2
f

(0)
+ (0) =

SU(3) limit

1√
2
. (4.20)

The first relation is exact in case of isospin invariance, and should therefore have the same degree
of accuracy. A result known as the Ademollo-Gatto theorem guarantees that corrections to

f
(0)
+ (0) due to SU(3) symmetry breaking are only quadratic in the symmetry breaking parameter
δSU(3) (which from the modern point of view is the strange-light quark mass difference ms −
mu+md

2 ), and so f
(0)
+ (0) = 1 should be a reasonable approximation.

The proof of the Ademollo-Gatto theorem is similar to the discussion of isospin breaking effects
in Eqs. (3.57)–(3.61). In fact, the proof is the same, using V -spin instead of I-spin. Starting from
[V+, V−] = 2V3 = I3 + 3

2Y , one finds

2〈〈V V3|V3|V V3〉〉 = 2V3 = 〈〈V V3|[V+, V−]|V V3〉〉 =
∑
n

|〈〈n|V−|V V3〉〉|2 − |〈〈n|V+|V V3〉〉|2 , (4.21)

where the generators are the unperturbed ones in the SU(3) symmetric case, while the states are
the physical, perturbed states including the effects of SU(3) breaking. Using |K0〉〉 = |V, V 〉〉 with
V = V3 = 1

2 , and separating out from the sum the |π−〉〉 state, which is the only state in the octet
having a nonzero V− matrix element with K0, we find

1 = |〈〈π−|V−|K0〉〉|2 +
∑′

n

|〈〈n|V−|K0〉〉|2 − |〈〈n|V+|K0〉〉|2 , (4.22)

and since the matrix element in the sum are already of order δSU(3), and |〈〈π−|V−|K0〉〉|2|SU(3) limit =
1, we find

|1 + δ〈〈π−|V−|K0〉〉|2 − 1 = Re
(
δ〈〈π−|V−|K0〉〉

)
+O(δ2

SU(3)) = O(δ2
SU(3)) , (4.23)

where δ〈〈π−|V−|K0〉〉 is the deviation from the SU(3)-symmetric limit. Since f
(0)
+ (0) = 〈〈π−|V−|K0〉〉

is real, it follows f
(0)
+ (0) = 1 +O(δ2

SU(3)).

In the SU(3)-symmetric limit f
(+,0)
− (q2) = 0 due to current conservation (which extends to the

whole octet of currents), but no theorem prevents corrections due to SU(3) breaking from being

large, and it is well possible that f
(+,0)
− (0)/f

(+,0)
+ (0) be of order 1. Using the PCAC hypothesis

it is possible to derive the Callan-Treiman relation, which relates K`2 and K`3 decays:

f+(m2
K) + f−(m2

K) = fK/fπ . (4.24)

Like the Goldberger-Treiman relation, this one also involves form factors at unphysical values
of their arguments (here m2

` ≤ q2 ≤ (mK − mπ)2), which have to be reconstructed through
extrapolation from experimental data. The formula is in good agreement with the experimental
results.

In the case of K+
e3 it is possible to obtain a reasonably accurate theoretical prediction, since

the f
(+)
− term can be neglected. The form factor f

(+)
+ (q2) is usually fitted to experimental results

with expressions of the form

f
(+)
+ (q2) = f

(+)
+ (0)

(
1 + λ

(+)
+

q2

m2
π+

)
, (4.25)
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having included a quadratic term. The factor f
(+)
+ (0) is approximately known from SU(3)

symmetry; fit to experimental results give λ
(+)
+ ' 0.03. Due to its lightness, the electron is

ultrarelativistic and its mass can be neglected. Calculation of the total decay width gives34

Γ =
G2 sin θ2

C

(
f

(+)
+ (0)

)2

12π3
m5
K

(
mπ0

mK

)4 {
1.62 + λ

(+)
+ 5.988

}

=
G2 sin θ2

C

(
f

(+)
+ (0)

)2

768π3
m5
K

{
0.58 + λ

(+)
+ 2.1

}
.

(4.26)

Comparison with experiments allows to determine sin θC .

4.3 Ke4 decay

We conclude this subsection with a brief remark about the four-body decay process K+ →
π+ π− e+ νe. Four-momentum conservation reads p = p1 + p2 + k1 + k2. In this case both terms
in the current contribute. In fact, since K+ is a pseudoscalar, 〈π+ π−|V µ

+ |K+〉 is a pseudovector
and 〈π+ π−|Aµ+|K+〉 is a vector.35 Since there are now three independent momenta, it is possible
to build a pseudovector using the Levi-Civita tensor. One has

〈π+ π−|Aµ+|K+〉 = f1(p1 + p2)µ + f2(p1 − p2)µ + f3(p− p1 − p2)µ ,

〈π+ π−|V µ
+ |K+〉 =

f4

m2
K

εµνρσp
νpρ1p

σ
2 ,

(4.27)

with fj real functions of mass dimension −1 of the scalar quantities p · p1, p · p2 and p1 · p2. The
f3 term contribution is small: in fact, p−p1−p2 = k1 +k2, and a familiar calculation shows that
this contribution is proportional to the lepton mass (while the f1 term is of order mK). The f4

term contribution is also suppressed: in fact, it is proportional to mK(~p1/mK) ∧ (~p2/mK), and
so it is suppressed by two powers of momentum. An estimate using PCAC yields f1,2 ≈ 1/fπ.

4.4 Leptonic decays of hyperons

Octet baryons undergo weak decay processes analogue to the β decay of the neutron, of the
general form h→ h′`ν`, where ` and ν` are the appropriate combination of a charged lepton and
a neutrino or antineutrino of the same family, respecting charge and lepton family conservation,
but possibly not strangeness.

The hadronic matrix elements relevant to such leptonic decays of octet baryons, both the
strangeness-conserving and the strangeness-changing ones, are among the matrix elements of
the octet of currents (jα)ij of Eq. (4.6). Their octet nature is made explicit by writing them as

jαa = q̄OαLtaq = q̄γα(1− γ5)taq , (4.28)

34This result differs from the one reported in Okun.
35The argument is that the matrix element Mµ({~pj}, {~p ′j}) = 〈f({~p ′j})|V µ|i({~pj})〉 of a vector current satisfies
〈f({~p ′j})|P †V µP |i({~pj})〉 = η′fηi〈f({−~p ′j})|V µ|i({−~pj})〉 = 〈f({~p ′j})|Pµν V ν |i({~pj})〉, i.e., Mµ({−~pj}, {−~p ′j}) =
η′fηiPµνMν({~pj}, {~p ′j}), thus transforming as a vector if η′fηi = 1 and as pseudovector if η′fηi = −1. As similar
argument holds for an axial-vector current.
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where ta are the SU(3) generators in the fundamental representation, obeying the usual commu-
tation relations [ta, tb] = ifabctc and normalisation condition 2tr tatb = δab. The original currents
can be recovered from the explicit expressions for the ta. The hadronic matrix elements we are
interested in are of the general form

Aµa(B → B′) = 〈B′|jµa (0)|B〉 , (4.29)

where |B〉 and |B′〉 are generic octet baryon states, |B〉 = Ba|a〉 and similarly |B′〉 = B′ a|a〉,
where |a〉, a = 1, . . . , 8 are a basis for octet baryon states – not necessarily the physical one. We
are allowing here states that are linear combinations of octet baryons, even though these are
forbidden in the real world by superselection rules, because they would be allowed in the ideal,
SU(3)-symmetric world, and because they will be useful in order to find relations between the
matrix elements of interest. Any dependence on the particle spins and momenta are enconded
in the vectors |a〉, while Ba and B′ a are independent of them.

To make the abstract Hilbert space spanned by the states |a〉 concrete , we use the linear
space of traceless hermitian 3 × 3 matrices as representation space for the flavour part of the
wave function, thus writing B = Bata instead of |B〉. With this choice the basis states |a〉 are
associated with the basis vectors ta, i.e., the group generators; physical states are obtained as
suitable linear combinations of them, e.g., the proton corresponds to 1√

2
t4+i5 = 1√

2
(t4 + it5). To

make this linear space a Hilbert space we need to define a positive-definite Hermitian product:
we take this to be

(B′, B) ≡ 2trB′ †B . (4.30)

This is easily seen to satisfy the requirements of a positive-definite Hermitian bilinear form.
Using linearity and the normalisation of the generators we can write

(B′, B) = B̄′aBb 2tr tatb = B̄′aBbδab , (4.31)

where an overbar denotes complex conjugation (B̄′a = B′a∗). It is now easy to find out the
general structure of the matrix elements Eq. (4.29). Under a SU(3) transformation, |B〉 →
|BU 〉 = U|B〉 (boldface type denotes here the abstract transformation operator), one has for
the representative vectors/matrices B that B → UBU † = BaD(8)(U)batb, since they transform
according to the adjoint (octet) representation. On the other hand, U†jαaU = D(8)(U)abj

α
b due

to the octet nature of the currents, so

Aµa(BU → B′U ) = 〈B′U |jµa (0)|BU 〉 = 〈B′|U†jµa (0)U|B〉 = D(8)(U)ab〈B′|jµb (0)|B〉
= D(8)(U)abAµb (B → B′) .

(4.32)

The matrix elements Aµa(B → B′) are then linear (antilinear) functionals of the matrix B
(B′), that under B → UBU † and B′ → UB′U † transform as an octet. In representation-
theoretic terms, we have to look for octet representations in the decomposition of the matrix
Aµa(B → B′) in irreducible components. This matrix is by construction transforming in the
8 ⊗ 8 = 8̄ ⊗ 8 representation (notice that 8 = 8̄ is self-conjugate). A general result is that in
the decomposition of the representation R̄ ⊗R of SU(3), the octet representation can appear
at most twice. This means that there are at most two independent structures with the desired
transformation properties. These have to be bilinear in B and B′, and linear in the current
index. It is easy to write down two such structures,

2trB′ †taB , 2trBtaB
′ † , (4.33)
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where the factor of 2 is introduced for normalisation purposes; the general result mentioned
above guarantees that there are no more independent structures. Instead of the objects in
Eq. (4.33) it is convenient to use their symmetric and antisymmetric combinations, and write

Aµa(B → B′) = (Dµ + Fµ)2trB′ †taB + (Dµ − Fµ)2trBtaB
′ †

= Dµ2trB′ †{ta, B}+ Fµ2trB′ †[ta, B] = DµdabcB
bB̄′c + FµifabcB

bB̄′c

= DµdabcB̄
′bBc + Fµ(−ifabc)B̄′bBc = DµB̄′b(T̃a)bcB

c + FµB̄′b(Ta)bcB
c .

(4.34)

Here (Ta)bc = −ifabc are the generators in the adjoint representation, and (T̃a)bc = dabc are a
second set of eight matrices. Equation (4.34) determines entirely the flavour structure of the
matrix elements up to two unknown objects Dµ and Fµ, which contain both a vector and an
axial vector part. These objects depend on the spin and momenta of the initial and final baryons,
but not on their type (in the exact SU(3) approximation considered here).

Lorentz invariance further imposes that Dµ and Fµ have the general structure

Dµ = Dµ
V −D

µ
A ,

Dµ
V = ū(p′, s′)

{
fD1(q2)γµ + ifD2(q2)

σµνqν
2m

+ fD3(q2)
qµ

2m

}
u(p, s) ,

Dµ
A = ū(p′, s′)

{
gD1(q2)γµ + igD2(q2)

σµνqν
2m

+ gD3(q2)
qµ

2m

}
γ5u(p, s) ,

Fµ = FµV − F
µ
A ,

FµV = ū(p′, s′)

{
fF1(q2)γµ + ifF2(q2)

σµνqν
2m

+ fF3(q2)
qµ

2m

}
u(p, s) ,

FµA = ū(p′, s′)

{
gF1(q2)γµ + igF2(q2)

σµνqν
2m

+ gF3(q2)
qµ

2m

}
γ5u(p, s) ,

(4.35)

where p, s and p′, s′ are the momenta and spin compent of the initial and final baryon states, and
q = p− p′. The decays of octet baryons involve small momentum transfers due to the relatively
small mass difference, which makes it possible to work in the static approximation q = 0 for the
evaluation of matrix elements. Equation (4.35) then reduces to

Dµ = ū(p)γµ(DV −DAγ
5)u(p) ,

Fµ = ū(p)γµ(FV − FAγ5)u(p) ,
(4.36)

with DV = fD1(0), DA = gD1(0), FV = fF1(0), and FA = gF1(0).
We can further exploit SU(3) symmetry to determine DV and FV in the case when this

symmetry is exact. In fact, the integral over space of the vector part of jµa (t, ~x) is just the
(t-independent since conserved) abstract generator Ta of SU(3), and so∫

d3x〈B′|jµV a(0, ~x)|B〉 = 〈B′|Ta|B〉 = B̄′bBc〈b|Ta|c〉 = (2π)3δ(~q )2p0δs′sB̄
′bBc(Ta)bc , (4.37)

having used the fact that the baryon octet transforms precisely in the adjoint representation,
and the relativistic normalisation of particle states. Using translation invariance on the left-hand
side we obtain

(2π)3δ(~q )〈B′|jµV a(0)|B〉 = (2π)3δ(~q )2p0B̄′bBc(Ta)bc ,

〈B′|jµV a(0)|B〉|~q=0,s=s′ = 2p0B̄′bBc(Ta)bc ,
(4.38)
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having matched the coefficients of the Dirac delta. Using the general structures Eqs. (4.34) and
(4.35) we find

B̄′bBc[DV (T̃a)bc + FV (Ta)bc]ū(p, s)γ0u(p, s) = B̄′bBc[DV (T̃a)bc + FV (Ta)bc]2p
0

= 2p0B̄′bBc(Ta)bc ,

DV (T̃a)bc + FV (Ta)bc = (Ta)bc .

(4.39)

Since T̃a is a symmetric while Ta is an antisymmetric matrix, they are linearly independent and
so it follows DV = 0 and FV = 1. In the exact SU(3), static approximation we then have

Aµa(B → B′) = ū(p, s′)γµ
{

(Ta)bc −
[
FA(Ta)bc +DA(T̃a)bc

]
γ5
}
u(p, s)B̄′bBc . (4.40)

In order to determine the specific form of the amplitude for the various decays of octet baryons,
it is convenient to return to the original set of structures, writing Eq. (4.40) as

Aµa(B → B′) = ū(p, s′)γµ{[(DV + FV )2tr B̄′taB + (DV − FV )2trBtaB̄
′]

− [(DA + FA)2tr B̄′taB + (DA − FA)2trBtaB̄
′]γ5}u(p, s) ,

(4.41)

and compute the quantities tr B̄′taB and trBtaB̄
′ explicitly for the relevant currents. Here we

put back DV and FV for notational symmetry, and for allowing deviations from the SU(3)-exact
case. To this end, notice that the wave function B = Bata of octet baryons can be written as
the following matrix,36

B =
1√
2


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− −Ξ0 −
√

2
3Λ

 . (4.42)

Here we have replaced the wave function components Ba with the appropriate linear combi-
nations p, n, Σ0, to make explicit which component corresponds to which baryon. Eventually,
one of them will be set to 1 and the other to 0 to get the desired decay amplitudes. The form
Eq.(4.42) can be obtained by direct calculation using the explicit form of the generators, or
more simply by recalling that the transformation law B → UBU † identifies the traceless part
of the upper left 2× 2 block as an isospin triplet, with hypercharge 0; the first two elements of
the rightmost column as an isodoublet with hypercharge 1; the first two elements of the bot-
tom row as a (complex-conjugate) isodoublet with hypercharge −1; and the trace part of the
top left block and the bottom right element as an isosinglet with hypercharge 0. The associa-
tion between matrix entries and baryons then follows naturally. Suitable normalisation factors
are introduced to normalise each baryonic component to 1

2 . The currents of interest are the
strangeness-conserving current

ūOµLd = jµ1 + ijµ2 = jµ1+i2 (4.43)

and its Hermitian conjugate, and the strangeness-changing current

ūOµLs = jµ4 + ijµ5 = jµ4+i5 (4.44)

36Minus signs are introduced to make the phases of the various baryon states match those required by the
Condon-Shortley convention for the matrix elements of the lowering operators of SU(2)I . One could use different
phase conventions, but this does not concern us here since superselection rules do not allow one to consider linear
combinations of different baryons in physical matrix elements, and so such phases are physically irrelevant.
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and its Hermitian conjugate. Since

t1+i2 = t1 + it2 =

0 1 0
0 0 0
0 0 0

 , t4+i5 = t4 + it5 =

0 0 1
0 0 0
0 0 0

 , (4.45)

one readily finds

2tr B̄′t1+i2B = 2
∑
n

B̄′n1B2n

=

(
1√
2

Σ̄0 +
1√
6

Λ̄

)
Σ− + Σ̄+

(
− 1√

2
Σ0 +

1√
6

Λ

)
+ p̄n ,

2trBt1+i2B̄
′ = 2

∑
n

B̄′2nBn1

= Σ̄+

(
1√
2

Σ0 +
1√
6

Λ

)
+

(
− 1√

2
Σ̄0 +

1√
6

Λ̄

)
Σ− − Ξ̄0Ξ− .

(4.46)

Including also the cosine of the Cabibbo angle, the coefficients multiplying ū(p, s′)γµu(p, s) and
ū(p, s′)γµγ5u(p, s) in the hadronic matrix elements relevant to the various strangeness-conserving
decays of octet baryons (here and below the upper sign is for V , the lower sign for A) ,

± cos θC [(DV,A + FV,A)2tr B̄′t1+i2B + (DV,A − FV,A)2trBt1+i2B̄
′]

= ± cos θC [DV,A(2tr B̄′t1+i2B + 2trBt1+i2B̄
′) + FV,A(2tr B̄′t1+i2B − 2trBt1+i2B̄

′)] ,
(4.47)

read explicitly
n→ p : ± cos θC(DV,A + FV,A) ,

Ξ− → Ξ0 : ∓ cos θC(DV,A − FV,A) ,

Λ→ Σ+ : ± cos θC

√
2
3DV,A ,

Σ− → Λ : ± cos θC

√
2
3DV,A ,

Σ0 → Σ+ : ∓ cos θC
√

2FV,A ,

Σ− → Σ0 : ± cos θC
√

2FV,A .

(4.48)

The same calculation for the strangeness-changing current gives

2tr B̄′t4+i5B = 2
∑
n

B̄′n1B3n

=

(
1√
2

Σ̄0 +
1√
6

Λ̄

)
Ξ− − Σ̄+Ξ0 + p̄

(
−
√

2
3Λ

)
,

2trBt4+i5B̄
′ = 2

∑
n

B̄′3nBn1

= p̄

(
1√
2

Σ0 +
1√
6

Λ

)
+ n̄Σ− +

(
−
√

2
3 Λ̄

)
Ξ− ,

(4.49)

and including also the sine of the Cabibbo angle one finds for the coefficients of ū(p)γµu(p) and
ū(p)γµγ5u(p) in Eq. (4.41),

± sin θC [(DV,A + FV,A)2tr B̄′t4+i5B + (DV,A − FV,A)2trBt4+i5B̄
′]

= ± sin θC [DV,A(2trBt4+i5B̄
′ + 2tr B̄′t4+i5B) + FV,A(2tr B̄′t4+i5B − 2trBt4+i5B̄

′)] ,
(4.50)
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the explicit expressions

Λ→ p : ∓ sin θC
1√
6
(DV,A + 3FV,A) ,

Ξ− → Λ : ∓ sin θC
1√
6
(DV,A − 3FV,A) ,

Σ0 → p : ± sin θC
1√
2
(DV,A − FV,A) ,

Ξ− → Σ0 : ± sin θC
1√
2
(DV,A + FV,A) ,

Σ− → n : ± sin θC(DV,A − FV,A) ,

Ξ0 → Σ+ : ∓ sin θC(DV,A + FV,A) .

(4.51)

Not all these matrix elements are relevant for actual physical processes in the real, SU(3) non-
symmetric world: for example, the decay Λ → Σ is forbidden since the Sigmas are heavier
than the Lambda. Including the relevant gamma matrices and our knowledge of the vector form
factors, we can write the following for the important hadronic matrix elements (to be sandwiched
between initial and final hadron bispinors):

n→ p e− ν̄e : cos θC [γµ − (DA + FA)γµγ5] ,

Σ± → Λ e± νe(ν̄e) : − cos θCDAγ
µγ5 ,

Λ→ p e− ν̄e : −
√

3
2 sin θC [γµ − (FA + 1

3DA)γµγ5] ,

Σ− → n e− ν̄e : − sin θC [γµ − (FA −DA)γµγ5] ,

Ξ− → Λ e− ν̄e :
√

3
2 sin θC [γµ − (FA − 1

3DA)γµγ5] ,

Ξ− → Σ0 e− ν̄e : 1√
2

sin θC [γµ − (FA +DA)γµγ5] ,

Ξ0 → Σ+ e− ν̄e : − sin θC [γµ − (FA +DA)γµγ5] .

(4.52)

The decay rates of all these processes are parameterised by the three quantities DA, FA and
θC , which can be determined by fitting the experimental data. Measurements of the neutron β
decay fix DA + FA = gA = 1.25. A best fit to experimental results yields DA = 0.80, FA = 0.45
and sin θC = 0.23 (to be compared to sin θC = 0.21 obtained from kaon decays).
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Figure 7: Strangeness-changing non-leptonic decay processes: Σ+ → nπ+ (top) and K+ →
π+ π0 (bottom).

5 Strangeness-changing non-leptonic interactions

Non-leptonic interactions are responsible for process like K → 2π, 3π or Σ → Nπ (see Fig. 7).
They involve the product of two hadronic currents (see Fig. 8). Restricting to the lightest quarks,
and recalling d′ = cos θCd+ sin θCs, the relevant part of the weak Lagrangian is

− G√
2
d̄′OαLuūOLαd′ = − G√

2
[ cos2 θC d̄OαLuūOLαd+ sin2 θC s̄OαLuūOLαs
+ sin θC cos θC

(
s̄OαLuūOLαd+ d̄OαLuūOLαs

)
] .

(5.1)

The first two terms are neutral interactions that do not change the flavour content of the
system, while the term in brackets is the strangeness-changing non-leptonic interaction we are
after. Recalling that OαL = 2γαPL with PL the left-handed chiral projector, we can write the
interesting part as

− 2
√

2G sin θC cos θC
(
s̄Lγ

αuLūLγαdL + d̄Lγ
αuLūLγαsL

)
. (5.2)

This term realises effectively a transition s → d, but not directly through a flavour-changing
neutral current. Since strangeness is either decreased or increased by 1 by this interaction, the
selection rule |∆S| = 1 follows. Processes with higher |∆S| are not strictly forbidden but strongly
suppressed, since they take place in higher orders of perturbation theory. Concerning isospin,
the terms s̄Lγ

αuL and ūLγαsL are clearly part of isodoublets, while ūLγαdL and its Hermitian
conjugate contain the representations 1

2 ⊗ 1
2 = 0 ⊕ 1. Since 0 ⊗ 1

2 = 1
2 and 1

2 ⊗ 1 = 1
2 ⊕ 3

2 , the
selection rule |∆I| = 1

2 ,
3
2 on total isospin follows. Moreover, since the field d carries I3 = −1

2
(and so d̄ carries I3 = 1

2), for I3 one has the selection rule ∆I3 = ±1
2 , the sign being plus if the

first term in Eq. (5.2) is involved, and minus if it is the second term instead.
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Figure 8: Four-fermion interaction vertices for strangeness changing non-leptonic interactions.

5.1 Suppression of ∆I = 3
2

transitions

Let us elaborate further on the issue of isospin. Take the second term in Eq. (5.2) (an entirely
analogous argument works for the first one) and write it as

2d̄Lγ
αuLūLγαsL = (d̄Lγ

αuLūLγαsL − ūLγαuLd̄LγαsL)

+ (d̄Lγ
αuLūLγαsL + ūLγ

αuLd̄LγαsL) = M− +M+ .
(5.3)

The combinations M± can be written as

M± = (d̄L ⊗ ūL ± ūL ⊗ d̄L)ai,bj (γαuL ⊗ γαsL)ai,bj , (5.4)

where the Dirac indices a, b = 1, . . . , 4 and colour indices i, j = 1, 2, 3 have been written ex-
plicitly. The first factor is a symmetric or antisymmetric product of two isospin doublets and
fundamental (3) colour representations, and therefore an isotriplet I = 1 transforming in the
colour 6 representation, when taking the plus sign, or an isosinglet I = 0 transforming in the
colour 3̄ representation, when taking the minus sign. The second factor has clearly I = 1

2 , so
that overall the antisymmetric combination mediates |∆I| = 1

2 transitions, while the symmetric
combination mediates both |∆I| = 1

2 and |∆I| = 3
2 transitions. Setting I3 = M− + h.c. and

I6 = M+ + h.c., we can write for the relevant part of the Lagrangian

L = −
√

2G sin θC cos θC (I3 + I6) . (5.5)

Although there is no particular difference between the |∆I| = 1
2 and |∆I| = 3

2 parts of the
Lagrangian, it is an experimental fact that |∆I| = 1

2 transitions are around one order of mag-
nitude enhanced (in amplitude) with respect to the |∆I| = 3

2 transitions. The reason for this
is therefore dynamical in nature, and enhancement and suppression result from the interplay of
weak and other interactions, mainly the strong ones.

To get a handle on how strong interactions contribute to the relevant matrix elements of I3,6

one would like to use perturbation theory, but doing so is not straightforward. Perturbatively,
strong interactions are described by the exchange of gluons between the quarks participating in
the process (as well as by more complicated virtual processes involving gluon self-interactions
and quark-antiquark pair creation). To do this accurately, one should use for each interaction
vertex the so-called running coupling constant, gs(µ), where µ is an energy scale, and the de-
pendence of the running coupling on µ is determined by the theory. One should then choose
µ judiciously, depending on the process under consideration. For gluon exchange, this scale is
set by the amount of energy transferred by the gluon. In QCD, due to a phenomenon known
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as asymptotic freedom, the running coupling constant becomes small at high energy, while it is
large at low energies. For this reason, high-energy processes can be dealt with perturbatively,
while low-energy ones cannot. One should then separate the exchange of “soft gluons”, i.e.,
with low transferred momentum, and the exchange of “hard gluons”, i.e., with high transferred
momentum: while the latter can be treated perturbatively, the former cannot. Adopting a
description of hadrons as bound states of quarks and antiquarks (and gluons), the effects of
soft-gluon exchange should be included in the wave functions that describe the various hadronic
states, while hard-gluon exchange between the constituents can be treated perturbatively. The
separation scale between soft and hard gluons should then be taken around the inverse of the
confinement scale µ ∼ 1/lconf , as gluons of longer wavelength than lconf do not resolve the inside
of the hadron, determining instead their long distance properties as encoded in the wave func-
tion. The relevant scale is then of the order of µ ∼ 1/lconf ∼ 100 MeV ÷ 1 GeV. Given gluons
carrying four-momentum q, for q2 < µ2 we speak of soft gluons, while for q2 > µ2 we speak of
hard gluons.

In the context of weak hadronic interactions, the effects of soft-gluon exchange is then in-
cluded in the (anyway unknown) wave functions of the hadrons, while hard-gluon exchange can
be studied explicitly in perturbation theory. The Lagrangian L in Eq. (5.5) becomes then the
“bare” Lagrangian, Lbare, describing only weak-interaction effects at the level of quark and anti-
quarks, that should be “dressed” by including the effects of further hard-gluon exchanges on top
of W -boson exchanges. Notice that since µ� mW , we can still treat the exchange of a W boson
effectively as a four-fermion interaction when including the effects of hard-gluon exchange. The
resulting Lagrangian can then be used to describe weak-interaction effects at the constituent
level; eventually, one should fold the resulting amplitudes with suitable wave functions.

Let us see how the perturbative approach works in practice at a qualitative level. One type
of diagrams are those in which we add gluons to W -boson exchanges between different quark
lines. In the low-energy limit where the interaction becomes a local four-fermion interaction
they look like those in Fig. 9, where one should add any possible number of gluons. Effectively
these diagrams reduce to the original vertex except that the I3 and I6 parts receive different
contributions and have therefore different prefactors. After “dressing” with gluons one has then
to replace [see Eq. (5.5)]

Lbare = −
√

2G sin θC cos θC (I3 + I6)→ −
√

2G sin θC cos θC (a3I3 + a6I6) . (5.6)

A second type of diagrams is obtained by including gluon exchanges to the emission and subse-
quent reabsorption of a W -boson in the same quark line, see Fig. 10. After emitting the W , the
s quark can turn into a u or a c quark, but the sign of the coupling is opposite in the two cases.
The two diagrams would therefore cancel exactly if mu = mc, but since mu � mc they do not.
The effective four-fermion interaction obtained from these diagrams and the more complicated
ones obtained by further adding gluons exchanged between the quark lines is of a new type, and
is described by the operator

IR = −(d̄Lγ
αλasL)(ūRγαλ

auR + d̄Rγαλ
adR) , (5.7)

where λa are the Gell-Mann matrices, and summation over a, a = 1, . . . , 8, is understood. Since
the first factor is I = 1

2 while the second is an isosinglet, I = 0, this term carries ∆I = 1
2 . This is

referred to as the “gluonic monopole vertex”. The main differences with the other contributions
is that this one involves colour, and most importantly also the right-handed component of the
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Figure 9: Dressing the four-fermion interaction with hard-gluon exchanges.
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Figure 10: Lowest-order contributions to gluonic monopole vertex.

quark fields.37 All in all, the effective, “dressed” Lagrangian reads

Ldressed = −
√

2G sin θC cos θC (a3I3 + a6I6 + aRIR) . (5.8)

A perturbative calculation yields a3 ' 3, a6 ' 0.6, aR ' 0.12 (see Ref. [6] for details about
the estimate), and since ∆I = 3

2 transitions are mediated only by I6, one sees that these are
suppressed compared to the ∆I = 1

2 transitions. However, the degree of suppression obtained
with this perturbative estimate is not enough to agree with experiments.

Of course, in order to take fully into account the effects of strong interactions one should
rather employ a non-perturbative technique. Good agreement between the experimentally ob-
served degree of suppression and the prediction of QCD has been recently obtained using lattice
techniques [8].

5.2 Non-leptonic decays of kaons

The most relevant non-leptonic decays of kaons are into two or three pions,

K0, K̄0 → π+π−, π0π0 , K0, K̄0 → π+π−π0, π0π0π0 ,

K± → π±π0 , K± → π±π+π−, π±π0π0 .
(5.9)

37A second term, IL, is also present, obtained by replacing uR, dR → uL, dL in Eq. (5.7), but since its overall
coupling is small it can be neglected compared to I3.
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5.2.1 Neutral kaons

An important aspect of neutral kaons concerning their weak decays is that the eigenstates of
strangeness produced in strong interaction processes, K0(ds̄) and K̄0(−sd̄), are not eigenstates
of CP (nor of C). At the same time, weak interactions are CP invariant as long as we ignore
the third generation of fermions, while they do not conserve strangeness. For this reason it is
more convenient in this context to use the linear combinations of neutral kaons that are CP
eigenstates rather than strangeness eigenstates, as these will have definite decay properties.
Using linear combinations of neutral kaons is physically allowed since K0 and K̄0 differ only in
strangeness, for which there is no superselection rule, and are mixed by a second-order weak
interaction to form the physical eigenstates with definite decay properties (we will come back
to this below).

Since kaons are pseudoscalars, P |K0〉 = −|K0〉 and P |K̄0〉 = −|K̄0〉, and choosing phases
such that C|K0〉 = |K̄0〉, and C|K̄0〉 = |K0〉, the CP eigenstates are

|K0
1 〉 =

K0 − K̄0

√
2

, CP |K0
1 〉 = |K0

1 〉 ,

|K0
2 〉 =

K0 + K̄0

√
2

, CP |K0
2 〉 = −|K0

2 〉 .
(5.10)

Two- and three-pion states with definite orbital angular momenta are also eigenstates of CP .
Working in the centre-of-mass frame and writing the definite ` states |πaπb; `〉, a, b = 0,±, in
terms of definite momentum states |πa(~p )πb(−~p )〉 and a suitable wave function f`(~p ), with
f`(−~p ) = (−1)`f`(~p ), one has

|πaπb; `〉 =

∫
dΩp |πa(~p )πb(−~p )〉f`(~p ) . (5.11)

A π+π− system has CP = 1 independently of its orbital angular momentum `:

CP |π+π−; `〉 =

∫
dΩpCP |π+(~p )π−(−~p )〉f`(~p ) = (−1)2

∫
dΩp |π−(−~p )π+(~p )〉f`(~p )

=

∫
dΩp |π+(~p )π−(−~p )〉f`(~p ) = |π+π−; `〉 ,

(5.12)

having used in the last passage the symmetry of the state vector, due to the bosonic nature of
pions. For a π0π0 system one has instead

CP |π0π0; `〉 =

∫
dΩpCP |π0(~p )π0(−~p )〉f`(~p ) = (−1)2

∫
dΩp |π0(−~p )π0(~p )〉f`(~p )

=

∫
dΩp |π0(~p )π0(−~p )〉f`(−~p ) = (−1)`|π0π0; `〉

=

∫
dΩp |π0(~p )π0(−~p )〉f`(~p ) = |π0π0; `〉 ,

(5.13)

having used the change of variable ~p → −~p to get the second line from the first, and again the
symmetry of the state vector to get the third one from the first. We then find that a π0π0

system has CP = (−1)`, but must also have CP = 1, so it cannot exist in an odd ` state. A
neutral two-pion state with definite ` therefore always has CP = 1.
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For the three-pion system one can consider states |πaπbπc; `, L〉 with definite values of two
orbital angular momenta, one corresponding to the π+π− pair or one pair of π0s, that we will
denote again with `, and a second one corresponding to the motion of the third pion with respect
to the centre of mass of the other two, that we will denote with L. Since the kaon has spin zero,
one must have ` = L. For the state π+π−π0 we have shown above that the charged pair is CP
invariant, while for the neutral pion the only effect is an intrinsic parity factor and a change
~p→ −~p in the corresponding wave function fL (see the second line of Eq. (5.13)), and so

CP |π+π−π0; `, `〉 = −(−1)`|π+π−π0; `, `〉 = (−1)`+1|π+π−π0; `, `〉 . (5.14)

For the π0π0π0 case we get a factor (−1)` from the first pair if it has orbital angular momentum
`, and also a factor (−1)L = (−1)` from the third pion and so

CP |π0π0π0; `, `〉 = −(−1)2`|π0π0π0; `, `〉 = −|π0π0π0; `, `〉 . (5.15)

In summary, one has CP = 1 for two-pion final states, and for three-pion π+π−π0 if ` of the
charged pair is odd, although this process is relatively suppressed for phase-space reasons; and
CP = −1 for three-pion π0π0π0 states and for three-pion π+π−π0 states if ` of the charged pair
is even.

In the approximation of conserved CP , K0
1 and K0

2 correspond exactly to the “short” and
“long” kaons K0

S,L that come from the diagonalisation of the effective Hamiltonian that describes
the temporal evolution of the neutral kaon state on the kaon subspace (see below), and have
therefore a definite mass and decay width. “Short” and “long” clearly refer to their lifetime.
Imposing CP conservation one has predominantly K0

1 → 2π and exclusively K0
2 → 3π. The first

process violates parity, while the second one conserves it, and since P -preserving and P -violating
interactions have the same strength at the level of the Lagrangian, the difference between the
widths of the two types of processes comes from the difference in the available phase space.
Since there is less kinetic energy available for three pions than for two, the available phase
space is smaller in K0

2 decays, so the width of the K0
2 is smaller than that of the K0

1 and its
lifetime longer. In other words, K0

1 = K0
S and K0

2 = K0
L. Indeed, the decay rate of K0

1 → 2π
is about three orders of magnitude larger than that of K0

2 → 3π, with τ1 = 1/Γ1 ' 10−10 s and
τ2 = 1/Γ2 ' 5 · 10−8 s. The two states K0

1,2 (identified with K0
S,L)also differ slightly in mass,

with ∆m = m2 − m1 = 3.5 · 10−12 MeV. We will see below how this mass difference can be
measured experimentally

5.2.2 Isospin wave functions in two-pion decays and ratios of decay widths

Isospin conservation can be used to predict the ratios of kaon decay widths based on symmetry
considerations alone. To this end, we write a generic two-pion state as follows,

|π π〉 = AaBb |πa πb〉 , a, b = 1, 2, 3 , (5.16)

where

π1 =
π+ + π−√

2
, π2 =

π+ − π−√
2i

, π3 = π0 , (5.17)

and ~A and ~B are three-component complex vectors. Although the electric charge superselection
rule forbids the physical realisation of superpositions of states with different charge, we are still
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allowed to build these combinations in the Hilbert space. In this language, the transformation
properties of the pions under isospin rotations are passed on to Aa and Bb, which are therefore
I = 1 isotriplets. Since AaBb is the composition of two isotriplets, it can be decomposed in the
usual way into I = 0, I = 1 and I = 2 parts that transform irreducibly under isospin rotations:

AaBb = 1
3
~A · ~Bδab︸ ︷︷ ︸
I=0

+ 1
2ε
abc( ~A ∧ ~B)c︸ ︷︷ ︸

I=1

+ 1
2

(
AaBb +AbBa − 2

3
~A · ~Bδab

)
︸ ︷︷ ︸

I=2

. (5.18)

Bose-Einstein symmetry requires that the total pion wave function be symmetric, so for a ` = 0
state like those involved in kaon decays the flavour wave function must be symmetric, and so
the I = 1 component must be absent. Furthermore, in K0

1 → π+π−, π0π0 one has I3 = 0 in the
final state, so both I = 0, 2 can be present, while in K+ → π+π0 one has I3 = 1 and so only
I = 2 is present.

If |∆I| = 3
2 transitions were completely suppressed and the |∆I| = 1

2 enhancement turned
into an exact selection rule, then since kaons have I = 1

2 one could only get final states with
1
2 ⊗ 1

2 = 0 ⊕ 1, and therefore the process K+ → π+π0 would be forbidden, and only the I = 0
component would be present in the K0

1 decay. In this case one would have for the amplitude
the simple form M∝ ~A · ~B, and for the width

Γ(K0
1 → 2π) ∝ | ~A · ~B|2

| ~A|2| ~B|2 + | ~A∗ · ~B|2
, (5.19)

where the numerator takes care of the normalisation of the state. In the exact isospin limit
considered here, the proportionality factor is the same for the two two-pion decay processes,
as it involves the same (I = 0) decay amplitude, and a phase-space factor that is identical for
charged and neutral pion pairs. For K0

1 → π+π−, we can take

~A = 1√
2
(1, i, 0) , ~B = 1√

2
(1,−i, 0) , ~A · ~B = 1 , | ~A|2 = | ~B|2 = 1 , ~A∗ · ~B = 0 . (5.20)

For K0
1 → π0π0 we take instead

~A = (0, 0, 1) , ~B = (0, 0, 1) , ~A · ~B = 1 , | ~A|2 = | ~B|2 = 1 , ~A∗ · ~B = 1 . (5.21)

We then find
Γ(K0

1 → π+π−)

Γ(K0
1 → π0π0)

=
1/1

1/2
= 2 . (5.22)

The experimental value is 2.255(5), estimated identifying K0
1 with the short kaon K0

S , and using
current values for the K0

S branching fractions [9].
As matter of fact the process K+ → π+π0 is not strictly forbidden, but it takes place

mediated by I6 (see Eqs. (5.5) and (5.8)), which carries also a I = 3
2 component. This means

also that the I = 2 component of two-pion state wave function can contribute to the decay
amplitude. Let us then include both the I = 1

2 and I = 3
2 contributions and refine the analysis

above. To this end, notice that the relevant part L of the interaction Lagrangian can be written
as

L = s̄OαLuūOLαd+ d̄OαLuūOLαs = O 3
2

1
2

+O 3
2
− 1

2
+O 1

2
1
2

+O 1
2
− 1

2
, (5.23)

i.e., the sum of four terms OI I3 carrying total isospin I = 3
2 ,

1
2 and third component I3 =

±1
2 . Notice that OI 1

2
and OI − 1

2
are transformed into each other by Hermitean conjugation, as
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well as by a CP transformation, (CP )†OI I3(CP ) = OI −I3 . Using the known Clebsch-Gordan
coefficients we can decompose the states OI I3 |K+〉 = OI I3 |12 + 1

2〉 and OI I3 |K0〉 = OI I3 |12 − 1
2〉

into total isospin eigenstates:

O 3
2

1
2
|K0〉 = O 3

2
1
2
|12 − 1

2〉 = 1√
2

(|2 0〉K − |1 0〉K) ,

O 1
2

1
2
|K0〉 = O 1

2
1
2
|12 − 1

2〉 = 1√
2

(|1 0〉K − |0 0〉K) ,

O 3
2

1
2
|K+〉 = O 3

2
1
2
|12 + 1

2〉 =
√

3
2 (|2 1〉K + |1 1〉K) .

(5.24)

One can decompose the two-pion states in a similar manner:

|π+ π−〉 = 1√
3
|2 0〉π +

√
2
3 |0 0〉π ,

|π0 π0〉 =
√

2
3 |2 0〉π − 1√

3
|0 0〉π ,

|π+ π0〉 = |2 1〉π .

(5.25)

The subscripts K and π are used to distinguish the two sets of isospin eigenstates pertaining to
the kaon and the two-pion systems. When considering K0

1 decays, we can use the fact that the
two-pion states of interest have I3 = 0 and CP = 1 to show that

〈π π|OI 1
2

+OI − 1
2
|K0

1 〉 = 1√
2

[
〈π π|OI 1

2
|K0〉 − 〈π π|OI − 1

2
|K̄0〉

]
= 1√

2

[
〈π π|OI 1

2
|K0〉 − 〈π π|(CP )†OI 1

2
(CP )|K̄0〉

]
=
√

2〈π π|OI 1
2
|K0〉 .

(5.26)

All in all, we can parameterise the three relevant amplitudes in terms of two definite-isospin
amplitudes,

〈π+ π−|L |K0
1 〉 = 1√

3 π
〈2 0|2 0〉K −

√
2
3 π〈0 0|0 0〉K = 1√

3
A2 −

√
2
3A0 ,

〈π0 π0|L |K0
1 〉 =

√
2
3 π〈2 0|2 0〉K + 1√

3 π
〈0 0|0 0〉K =

√
2
3A2 + 1√

3
A0 ,

〈π+ π0|L |K+〉 =
√

3
2 π〈2 1|2 1〉K =

√
3

2 π〈2 0|2 0〉K =
√

3
2 A2 .

(5.27)

In the case discussed above of an exact |∆I| = 1
2 selection rule, only A0 entered the decay

amplitudes. In the real world |∆I| = 3
2 transitions are suppressed but not perfectly, so we

expect |A2| � 1 but nonzero. We then get for the ratio of widths

Γ(K0
1 → π+π−)

Γ(K0
1 → π0π0)

=
p±
p0

∣∣∣ 1√
3
A2 −

√
2
3A0

∣∣∣2∣∣∣√2
3A2 + 1√

3
A0

∣∣∣2 =
p±
p0

2|A0|2 + |A2|2 − 2
√

2ReA∗2A0

|A0|2 + 2|A2|2 + 2
√

2ReA∗2A0

'
(

2− 3
√

2
ReA∗2A0

|A0|2
)
p±
p0

,

Γ(K+ → π+π0)

Γ(K0
1 → 2π)

'
3
4 |A2|2

|A0|2 + |A2|2
' 3

4

|A2|2
|A0|2

,

(5.28)
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where Γ(K0
1 → 2π) = Γ(K0

1 → π+π−) + Γ(K0
1 → π0π0). We also included a factor that takes

into account the slight difference in the phase space of the two final states of K0
1 decays, i.e., the

ratio p±/p0 ' 0.99 of final-state momenta in the centre-of-mass frame for the charged pion and
the neutral pion pair. From experiments one gets a suppression factor for K+ against K0

1 decay
of about 670 [9], corresponding to |A2|/|A0| ' 0.045, which a posteriori justifies neglecting
|A2|2/|A0|2 terms in Eq. (5.28).

5.2.3 Neutral kaon oscillations

As already remarked above, the neutral kaons produced by strong interactions are eigenstates of
strangeness: for example, one can produce a beam of K0 directing a beam of negatively charged
pions on ordinary matter via the process π− p → K0 Λ, but one cannot similarly produce a
beam of K̄0. On the other hand, decays of neutral kaons are governed by weak interactions
which are (almost) CP -conserving but not strangeness-conserving, and decays into two or three
pions proceed respectively through the CP -even and CP -odd components of the neutral kaons.
A consequence of this is the possibility for K0 and K̄0 to oscillate into each other: since both
can decay into two pions, they can also oscillate into each other through a pion loop, i.e., via a
decay of the (say) K0 into two (virtual) pions and their subsequent annihilation to form a K̄0.
Due to this oscillation, if one prepares a beam of K0 at time t = 0, then at some later time t
the beam (thinner, due to real decay processes taking place) will contain a linear superposition
of K0 and K̄0 states. The oscillation of K0 and K̄0 into each other is possible since the charge
distinguishing them (strangeness) is not exactly conserved in Nature, differently from, e.g.,
neutron and antineutron (differing in baryon number). We now show that in the approximation
of exact CP symmetry the frequency of this oscillation is given by the mass difference of the
K0

1,2 particles.
The exact, unitary temporal evolution of a neutral kaon state at rest that at t = 0 equals

|K0〉 reads
e−iHt|K0〉 = c1(t)|K0〉+ c2(t)|K̄0〉+ |R(t)〉 , (5.29)

where |R(t)〉 accounts for the non-kaon states in which the neutral kaon can decay. The projec-
tion |K0(t)〉 = (|K0〉〈K0|+ |K̄0〉〈K̄0|)e−iHt|K0〉 of the neutral kaon state at time t on the kaon
subspace (thus projecting out the states into which it can decay) reads then

|K0(t)〉 = c1(t)|K0〉+ c2(t)|K̄0〉 . (5.30)

Due to the projection, the evolution of |K0(t)〉 is not unitary. Nonetheless, under certain approx-
imations (Weisskopf-Wigner approximation) it can be described in terms of a non-Hermitian
effective Hamiltonian Heff as |K0(t)〉 = e−iHeff t|K0〉 (see Ref. [2], Appendix I, for details). The
corresponding effective Schrödinger equation reads

i
∂

∂t
|K0(t)〉 = Heff |K0(t)〉 , (5.31)

and can be solved in the usual way by diagonalising Heff . Since this is not a Hermitean operator,
its eigenvalues are generally complex. This procedure yields the “short” and “long” neutral
kaons, K0

S,L,

Heff |K0
S,L〉 =

(
mS,L − i

2ΓS,L
)
|K0

S,L〉 , (5.32)

89



where by definition ΓS > ΓL (assumed to be non-degenerate), and one can show that ΓS,L > 0 [2].
The real part of the eigenvalue is naturally identified with the particle mass. The imaginary
part of the eigenvalue governs instead the exponential decay with time of the corresponding
component of the wave function, thus providing the decay width of the two eigenstates. Since
the eigenvalues are different, in the limit of exact CP symmetry the eigenstates of Heff must
also be eigenstates of CP , and since K0

1 is the short lived one (it has a larger decay rate since
it decays in two rather than three pions) we have K0

1 = K0
S and K0

2 = K0
L, so mS,L = m1,2 and

ΓS,L = Γ1,2.
For a state coinciding with K0 at t = 0,

|K0(0)〉 = |K0〉 =
|K0

1 〉+ |K0
2 〉√

2
, (5.33)

we have at time t,

|K0(t)〉 = 1√
2

(
e
−i
(
m1−iΓ1

2

)
t|K0

1 〉+ e
−i
(
m2−iΓ2

2

)
t|K0

2 〉
)
, (5.34)

and the probability of observing the neutral kaon as a K0 or a K̄0 at time t is the absolute value
square of the amplitudes

〈K0|K0(t)〉 = 1
2

(
e
−i
(
m1−iΓ1

2

)
t
+ e
−i
(
m2−iΓ2

2

)
t
)
,

〈K̄0|K0(t)〉 = −1
2

(
e
−i
(
m1−iΓ1

2

)
t − e−i

(
m2−iΓ2

2

)
t
)
.

(5.35)

The number of K0 and K̄0 observed in the neutral kaon beam at time t is thus equal to

NK0(t) = 1
4

(
e−Γ1t + e−Γ2t + 2 cos((m2 −m1)t) e−

Γ1+Γ2
2

t
)
,

NK̄0(t) = 1
4

(
e−Γ1t + e−Γ2t − 2 cos((m2 −m1)t) e−

Γ1+Γ2
2

t
)
.

(5.36)

Besides the overall exponential decay of these quantities due to the various decay processes of
the neutral kaons, these expressions show that K0 and K̄0 oscillate into each other: for example,
while NK0(0)−NK̄0(0) = 1 at t∗ = π

2 (m2 −m1) one finds NK0(t∗)−NK̄0(t∗) = 0.
The number of K0 and K̄0 in the beam can be inferred by measuring the positrons and the

electrons produced in their semileptonic decays. Due to the ∆Q = ∆S selection rule,

K0 → e+ νe π
− , K̄0 → e− ν̄e π

+ , (5.37)

while K0 → e− and K̄0 → e+ are forbidden. The number of positron and electron detected as de-
cay products from the beam at a certain time are then proportional to NK0(t) and NK̄0(t) (with
the same proportionality factor since the two processes are related by a CP transformation).
Another possibility is to direct the beam against a fixed target of ordinary (non-strange) matter
and observe hyperon production: while K̄0 can be absorbed through the process K̄0 p→ Λπ+,
strangeness conservation forbids the creation of hyperons from a K0. These processes depend
on the strangeness content of the kaon beam, and thus see the K0, K̄0 amplitudes. On the other
hand, non-leptonic decays into pions see the CP content of the kaon beam, and thus see the K0

1

and K0
2 amplitudes. These are different, and non-compatible aspects of the quantum-mechanical

state of the kaon, much like two different components of the spin of an electron.
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Figure 11: Effective ∆S = 2 vertex.

5.2.4 Neutral kaon mass difference and the GIM mechanism

A measurement of the oscillation frequency of neutral kaons gives the mass difference ∆m =
m2 − m1 between the two CP eigenstates. This can be predicted from the theory. To this
end, it is convenient to express it in terms of the mixing matrix element between strangeness
eigenstates as follows: since (for states normalised to 1)

mj = Re 〈K0
j |Heff |K0

j 〉 ,
m1 = 1

2Re
(
〈K0| − 〈K̄0|

)
Heff

(
|K0〉 − |K̄0〉

)
,

m2 = 1
2Re

(
〈K0|+ 〈K̄0|

)
Heff

(
|K0〉+ |K̄0〉

)
,

(5.38)

we have
m2 −m1 = Re

(
〈K̄0|Heff |K0〉+ 〈K0|Heff |K̄0〉

)
. (5.39)

Since
〈K̄0|Heff |K0〉∗ = 〈K0|H†eff |K̄0〉 , (5.40)

we have

m2 −m1 =
1

2

(
〈K̄0|Heff |K0〉+ 〈K̄0|Heff |K0〉∗ + 〈K0|Heff |K̄0〉+ 〈K0|Heff |K̄0〉∗

)
=

1

2

(
〈K̄0|Heff |K0〉+ 〈K0|H†eff |K̄0〉+ 〈K0|Heff |K̄0〉+ 〈K̄0|H†eff |K0〉

)
= 2 Re 〈K̄0|Heff H |K0〉 ,

(5.41)

with Heff H = 1
2(Heff + H†eff) the Hermitean part of the effective Hamiltonian. This can be

obtained as minus the spatial integral of the Hermitean part of a suitable effective interaction
Lagrangian density that describes the oscillation process.

Since S(K0) = 1 and S(K̄0) = −1, the neutral kaon oscillation is a ∆S = 2 process which
requires a second-order weak interaction to take place. If there were a ∆S = 2 vertex with some
coupling G2 (see Fig. 11),

L ∆S=2 = −G2(d̄OαLsd̄OLαs+ s̄OαLds̄OLαd) , (5.42)

one would easily find (x = (0, ~x)) fro relativistically normalised states

∆m = 2G2

∫
d3x

Re 〈K̄0|s̄OαLd(x)s̄OLαd(x)|K0〉(
〈K̄0|K̄0〉〈K0|K0〉

) 1
2

=
G2

mK
Re 〈K̄0|s̄OαLd(0)s̄OLαd(0)|K0〉

=
G2

mK
Re
∑
n

〈K̄0|s̄OαLd(0)|n〉〈n|s̄OLαd(0)|K0〉

∼ G2

mK
〈K̄0|s̄OαLd(0)|0〉〈0|s̄OLαd(0)|K0〉 = G2f

2
KmK ,

(5.43)
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Figure 12: GIM mechanism: four fermion loops with f1 = u, c and f2 = u, c have to be summed
up.

where in the first passage we have braved the laws of mathematics to cancel out a δ(3)(0) in
the numerator, coming from the spatial integral, and a δ(3)(0) in the denominator, coming
from the normalisation of the states, that also leave a factor 1

2mk
; and in the third passage we

have approximated the sum over states with the vacuum contribution, ignoring some numerical
factors that will be clarified later. The quantity fK is the same kaon decay constant appearing
in K+ → `+ν` decays: in fact,

〈0|s̄OLαd|K0〉 = 1√
2
〈0|s̄OLαu|K+〉 = −ipαfK (5.44)

due to isospin symmetry. Comparing Eq. (5.43) with the experimental value of ∆m = 3.5 ·
10−12 MeV obtained studying kaon oscillations, one finds that one would need G2 ∼ 10−7G.

Although a ∆S = 2 vertex like Eq. (5.42) is not present in the V − A theory, it can be
obtained as an effective vertex in second order perturbation theory. Since this effective vertex
involves a loop integral which diverges quadratically, one needs to impose a cut-off Λ, which
is naturally chosen to be of the order of the W -boson mass, where the whole four-fermion
interaction picture ceases to be adequate. One then obtains for the effective coupling constant
the estimate G2 = G2Λ2 = G2m2

W ' 10−1G. This is too big a coupling to explain the small mass
difference ∆m. As shown below, a possible way out of this problem is to assume the existence
of a fourth type of quark, the charm c, with the same charge as the u quark, and coupled in the
same way as the u to weak interactions. This quark would form a second family together with
the strange quark, and would be coupled to a combination s′ of d and s, similarly to the u being
coupled to the combination d′ of d and s.

Including the c quark, the charged weak hadronic current reads ūOαLd′+ c̄OαLs′, and removing
all unphysical, unobservable phases, the most general form of d-s mixing reads(

d′

s′

)
=

(
cos θC sin θC
− sin θC cos θC

)(
d
s

)
= VC

(
d
s

)
=

(
(VC)ud (VC)us
(VC)cd (VC)cs

)(
d
s

)
. (5.45)

Repeating the calculation outlined above, one finds know not one but four loop diagrams, either
with identical upper and lower line corresponding to uu or cc, or with different upper and
lower line corresponding to uc cu, see Fig. 12. The couplings corresponding to the two cases
are sin2 θC cos2 θC and − sin2 θC cos2 θC , and so if u and c had the same mass these four loop
diagrams would cancel each other out exactly. For sure, large-momentum contributions to the
loop integrals do cancel out exactly, since at very large loop momenta all quarks are effectively
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massless, and so the sum of the four loop diagrams is finite and no UV cutoff is needed. A
detailed calculation shows that the effective coupling of the ∆S = 2 effective vertex is

G2 =
G2

(4π)2
sin2 θC cos2 θC(mc −mu)2 . (5.46)

The mechanism discussed above, suppressing the unwanted large mass difference by having a
fourth quark running through loops, is known as the GIM mechanism after Glashow, Iliopoulos
and Maiani who proposed it.

Going now back to the second line of Eq. (5.44), treating the neutral kaons as pure qq̄ states,
K0 = ds̄ and K̄0 = sd̄, and properly taking into account the colour degree of freedom of quarks
we obtain the estimate

∆m =
G2

mK
Re 〈K̄0|s̄OαLd(0)s̄OLαd(0)|K0〉 ' 8

3

G2

mK
Re 〈K̄0|s̄OαLd|0〉〈0|s̄OLαd|K0〉

=
8

3mK

G2

(4π)2
sin2 θC cos2 θC(mc −mu)2f2

Km
2
K '

G2

6π
sin2 θC cos2 θCm

2
cf

2
KmK .

(5.47)

The factor 8
3 arises as follows. The first matrix element in Eq. (5.47) can be computed pairing

the d and s̄ fields with the d, d̄ and s, s̄ quarks in the initial and final states. Colour indices
are contracted within each operator, i.e.,

∑
i s̄iOαLdi, and within each meson, i.e.,

∑
i |dis̄i〉 and∑

i〈sid̄i|. There are two types of operator-state pairing: one where each s̄OαLd pairs with a single
state, and one where each s̄OαLd pairs with one quark from both states. Each of these pairings
can be done in two equivalent ways. For the first type of pairing, one has to compute in practice
the product of the matrix elements 〈0|s̄OLαd|K0〉 =

∑
i〈0|s̄iOLαdi|dis̄i〉 = Nc〈0|s̄1OLαd1|d1s̄1〉

and 〈K̄0|s̄OαLd|0〉 =
∑

i〈sid̄i|s̄iOαLdi|0〉 = Nc〈s1d̄1|s̄1OαLd1|0〉, having taken into account that
each colour gives the same contribution. For the second type of pairing one has instead∑

ijkl

∑
abcd

〈sid̄i|s̄akddl|0〉〈0|s̄cldbk|dj s̄j〉(OαL ⊗OLα)ab,cd

=
∑
ijkl

∑
abcd

δikδilδjlδjk〈s1d̄1|s̄a1dd1|0〉〈0|s̄c1db1|d1s̄1〉(OαL ⊗OLα)ab,cd

= Nc〈s1d̄1|s̄1OαLd1|0〉〈0|s̄1OLαd1|d1s̄1〉 ,

(5.48)

where a, b, c, d are Dirac indices. The full contribution is then

2(N2
c +Nc)〈s1d̄1|s̄1OαLd1|0〉〈0|s̄1OLαd1|d1s̄1〉 = 2

N2
c +Nc

N2
c

〈K̄0|s̄OαLd|0〉〈0|s̄OLαd|K0〉 , (5.49)

and setting Nc = 3 one finds 2(1 + 1
3) = 8

3 . Comparing with the K+ → µ+νµ decay width one
finds

∆m ' 4 cos2 θCm
2
c

3πm2
µ

Γ(K+ → µ+ νµ) . (5.50)

From the known values of Γ(K+ → µ+ νµ), cos θC , and mµ, one can predict the charm mass.
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6 τ decays

The τ lepton was discovered in 1975 at SLAC in e+ e− collisions. The corresponding neutrino,
ντ , was immediately theorised but observed only much later by the DONUT experiment at
Fermilab in 2000. The τ has spin 1

2 , mass mτ = 1.78 GeV, and lifetime ττ = 3.4 · 10−13 s. Under
the assumption of leptonic universality, the current ν̄τOαLτ has to be added to the charged weak
leptonic current with the same coupling as the electronic and muonic ones, i.e.,

Jαl = ν̄eOαLe+ ν̄µOαLµ+ ν̄τOαLτ . (6.1)

A new feature is that besides the leptonic decays τ → ` ν̄` ντ , ` = e, µ, the heavy mass of the
tau lepton allows also semi-hadronic decays τ → ντ + hadrons. Since the tau is lighter than
the lightest charmed particle, mτ < mD0 = 1.864 GeV (see below), only decays involving u, d, s
quarks are allowed.

Leptonic decays The decay rate for leptonic decays can be obtained exactly as in the case of
muon decay µ→ e ν̄eνµ. Since me � mµ � mτ , for both decays of the τ one can treat the final
lepton as massless. In this approximation, one thus has only to replace mµ → mτ in Eq. (2.32),
and get (mµ = 106 MeV, τµ = 2.2 · 10−6 s)

Γ(τ → e ν̄e ντ ) = Γ(τ → µ ν̄µ ντ ) =
G2m5

τ

192π3
=

(
mτ

mµ

)5

Γ(µ→ e ν̄e νµ) ' 6.1 · 1011 s−1 . (6.2)

Semi-hadronic decays For decay or scattering processes governed by electromagnetic or
weak interactions, but producing hadrons in the final state, one can ideally separate the process
into two parts. At first, electromagnetic or weak interactions produce quarks: for example,
an e+e− pair annihilates into a photon which subsequently turns into a quark-antiquark pair
qiq̄i pair for some flavour q and colour i of quarks. After this, the hadronisation process takes
place, during which strong interactions build up hadrons from the quarks. If one is interested in
inclusive processes, it suffices to know what is the total cross section or decay width for quark
production starting from the given initial state: after this, the resulting quarks will become
hadrons with probability one, and even though we do not know well how hadronisation works
we can rest assured that it will always take place. The total hadron production rate coincides
then with the total quark-antiquark production rate.

In computing the total cross section or decay width of interest it suffices to consider the
production of a single quark-antiquark pair, since electromagnetic and weak interactions have
small coupling constants and producing more pairs is suppressed. On the other hand, this stage
of the process may receive large corrections from additional strong interaction effects in the
intermediate quark-antiquark state. However, thanks to the asymptotic freedom property of
QCD, at high energy it is possible to use perturbation theory to estimate these corrections. For
example, for hadron production in e+ e− collisions at total centre of mass energy squared s one
has

R(s) ≡ σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)
=

∑
f σ(e+ e− → f̄ f)

σ(e+ e− → µ+ µ−)
= 3

∑
f

Q2
f

(
1 +

αs(s)

π
+ . . .

)
, (6.3)

where αs(s) ≡ gs(s)2

4π with gs(µ
2) the running coupling constant of QCD, evaluated here at the

energy scale squared s. Moreover, Qf is the electric charge of quark f , and the sum runs over
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those flavours f such that 4m2
f ≤ s. The factor 3 corresponds to the number of colours. Ignoring

next-to-leading order effects, for s < 4m2
c one has R ' 3(4

9 + 1
9 + 1

9) = 2. As the threshold for cc̄
production is crossed, this should increase to R ' 2 + 34

9 = 10
3 , and further to R ' 10

3 + 31
9 = 11

3
as soon as also bb̄ production becomes possible.

Using the same idea, one can estimate Γ(τ → ντ+hadrons). The three processes τ → ντ µ ν̄µ,
τ → ντ u d̄ and τ → ντ u s̄ are described by the same diagram except for the value of the coupling
constant, which is G, G cos θC and G sin θC in the three cases, respectively. The quark and the
antiquark produced in the process must have the same colour, but this can be any of the Nc = 3
possible colours; all the possibile outcomes must be included in the total decay rate. Ignoring
corrections to the tree-level contributions, since they are of order O(αs(m

2
τ )), we find

Γ(τ → ντ + hadrons)

Γ(τ → ντ µ ν̄µ)
=

Γ(τ → ντ u d̄) + Γ(τ → ντ u s̄)

Γ(τ → ντ µ ν̄µ)
= (cos2 θC + sin2 θC)Nc = 3 , (6.4)

so that Γ(τ→ντ+hadrons)∑
` Γ(τ→` ν̄` ντ ) = 3

2 .

Total width and lifetime Using Eqs. (6.2) and (6.4) we can estimate the total width of the
τ lepton:

Γ(τ) = Γ(τ → ντ + hadrons) + Γ(τ → ντ e ν̄e) + Γ(τ → ντ µ ν̄µ) ' 5Γ(τ → ντ µ ν̄µ) , (6.5)

from which it follows

ττ '
1

5Γ(τ → ντ µ ν̄µ)
= 3.3 · 10−13 s , (6.6)

which compares well with the experimental value ττ = 3.4 · 10−13 s.

6.1 Semi-hadronic decay modes

We discuss now two specific decay modes of the τ involving hadrons in the final state.

6.1.1 τ− → π− ντ and τ− → K− ντ

The decay amplitude reads

Mfi = −G cos θC√
2

ūν(pν)γα(1− γ5)uτ (pτ )〈π−|(d̄γα(1− γ5)u)(0)|0〉

= i
G cos θC√

2
fπ
√

2ūν(pν)/pπ(1− γ5)uτ (pτ ) ,

(6.7)

where we used the already known matrix element [see Eq. (3.32)]

〈π−|(d̄γα(1− γ5)u)(0)|0〉∗ = 〈0|(ūγα(1− γ5)d)(0)|π−〉 = 〈0|(d̄γα(1− γ5)u)(0)|π+〉
= −〈0|(d̄γαγ5u)(0)|π+〉 = −i

√
2fπ(pπ)α .

(6.8)

The pion decay constant fπ = 92 MeV is exactly the same appearing in the amplitude for pion
decay. Using now momentum conservation, pπ = pτ − pν , we find

ūν(pν)/pπ(1− γ5)uτ (pτ ) = ūν(pν)/pτ (1− γ5)uτ (pτ ) = mτ ūν(pν)(1 + γ5)uτ (pτ ) . (6.9)
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Squaring the amplitude, averaging over the spins of the τ and integrating over the phase space
of the final state, we obtain for the total decay width after including the appropriate factors

Γ(τ− → π− ντ ) =
Φ(2)G2 cos2 θCm

2
τf

2
π

2mτ

1

2

∑
sτ

ūν(pν)(1 + γ5)uτ (pτ )ūτ (pτ )(1− γ5)uν(pν)

=
G2 cos2 θC

4
mτf

2
πΦ(2)tr (/pτ +mτ )(1− γ5)/pν(1 + γ5)

= 2G2 cos2 θCmτf
2
πΦ(2)pτ · pν .

(6.10)

Notice that we have integrated over phase space before evaluating the spin-summed matrix
element: this is allowed since this matrix element can only depend on Lorentz-invariant com-
binations of the final momenta, and since the process has a two-body final state where such
invariants are fixed by four-momentum conservation. Recalling that

Φ(2) =
pCM

4πECM
=

Eν
4πmτ

, (6.11)

and that

pτ · pν = mτEν , Eν =
m2
τ −m2

π

2mτ
=
mτ

2

(
1− m2

π

m2
τ

)
, (6.12)

we obtain

Γ(τ− → π− ντ ) =
G2 cos2 θCf

2
π

2π
mτE

2
ν =

G2 cos2 θCf
2
π

8π
m3
τ

(
1− m2

π

m2
τ

)2

= Γ(τ → µ ν̄µ ντ )
24π2

m2
τ

cos2 θCf
2
π

(
1− m2

π

m2
τ

)2

' 0.6 Γ(τ → µ ν̄µ ντ ) .

(6.13)

The decay width for the process τ− → K− ντ is obtained from Eq. (6.13) simply by replacing
mπ → mK , fπ → fK and cos θC → sin θC . Using the experimental values mK = 495 MeV,
fK = 1.2fπ, sin θC = 0.22 and cos θC = 0.97, we find

Γ(τ− → K− ντ ) = Γ(τ− → π− ντ )

(
fK
fπ

)2( sin θC
cos θC

)2
1− m2

K
m2
τ

1− m2
π

m2
τ

2

' 0.06 , (6.14)

in reasonable agreement with the experimental value 0.07.

6.1.2 τ− → ρ− ντ

The rho mesons are vector particles (J = 1, P = −1) forming an isotriplet (I = 1), with
masses mρ = 770 MeV. Their quark content is the same as that of the pions (ρ+ = −ud̄,
ρ0 = (uū− dd̄)/

√
2, ρ− = dū), but the quark spin state is S = 1 instead of S = 0. The analysis

of this decay process follows the same lines of the decay into a pion discussed above, except that
now the hadronic current matrix element has a different parameterisation:

Hα = 〈ρ−|d̄γα(1− γ5)u|0〉 = 〈ρ−|d̄γαu|0〉 = gρεα + fρpα . (6.15)

In fact, only the vector current contributes, and there are two possible vectors, the four-
momentum p of the rho meson and its polarisation vector εα (which is a dimensionless quan-
tity). Being a vector particle, there are three independent polarisation vectors, corresponding
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to Jz = 0,±1, which satisfy p · ε = 0. This is because the polarisation vector has only spa-
tial components in the rest frame of the rho, and so must be orthogonal (in the Minkowskian
sense) to p.38 For future utility, we notice that the sum over three independent and orthogonal
polarisations yields ∑

s

ε(s)
α ε

(s)
β
∗ = −ηαβ +

pαpβ
m2
ρ

, (6.16)

where we allow ε to be complex in order to describe circular polarisations. Imposing now
conservation of the vector current (we work in the isospin limit) we get

0 = p · V = fρm
2
ρ ⇒ fρ = 0 . (6.17)

We then have Hα = Vα = gρεα, with gρ a constant of mass dimension m2.
We can now write the decay amplitude,

Mfi = − G√
2

cos θCgρεαūν(pν)γα(1− γ5)uτ (pτ ) , (6.18)

and the spin-summed amplitude square,

〈〈|Mfi|2〉〉 =
G2

2
cos2 θCg

2
ρ

(
−ηαβ +

pαpβ
m2
ρ

)
tr γα(1− γ5)(/pτ +mτ )γβ(1− γ5)/pν

= G2 cos2 θCg
2
ρ

(
−ηαβ +

pαpβ
m2
ρ

)
tr γα/pτγ

β
/pν

= G2 cos2 θCg
2
ρ

(
−tr γα/pτγα/pν +

1

m2
ρ

tr /p/pτ/p/pν

)
= G2 cos2 θCg

2
ρ

(
2tr /pτ/pν +

1

m2
ρ

tr /p/pτ/p/pν

)
= 4G2 cos2 θCg

2
ρ

(
2pτ · pν +

1

m2
ρ

(
2p · pτp · pν −m2

ρpτ · pν
))

= 4G2 cos2 θC
g2
ρ

m2
ρ

(
2p · pτp · pν + pτ · pνm2

ρ

)
.

(6.19)

Using now p · pν = (pτ − pν) · pν = pτ · pν , and 0 = p2
ν = m2

τ +m2
ρ − 2p · pτ , we obtain

〈〈|Mfi|2〉〉 = 4G2 cos2 θC
g2
ρ

m2
ρ

pτ · pν
(
2p · pτ +m2

ρ

)
= 4G2 cos2 θC

g2
ρ

m2
ρ

pτ · pν
(
2m2

ρ +m2
τ

)
.

(6.20)

Including all the appropriate factors we obtain for the decay width

Γ =
1

2

1

2mτ
Φ(2)4G2 cos2 θC

g2
ρ

m2
ρ

pτ · pνm2
τ

(
1 +

2m2
ρ

m2
τ

)
. (6.21)

38One can see this condition as eliminating one component of ε, since only three polarisations are available. In
particular, p · ε is a Lorentz scalar, and so unwanted in the description of a vector particle.
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The phase space is again

Φ(2) =
pCM

4πECM
=

Eν
4πmτ

, (6.22)

and since m2
ρ = m2

τ − 2pτ · pν = m2
τ − 2mτEν we find

Γ =
1

4mτ

Eν
4πmτ

4G2 cos2 θC
g2
ρ

m2
ρ

m3
τEν

(
1 +

2m2
ρ

m2
τ

)

=
G2 cos2 θC

4π

(
gρ
mρ

)2

mτE
2
ν

(
1 +

2m2
ρ

m2
τ

)

=
G2 cos2 θC

16π

(
gρ
mρ

)2

m3
τ

(
1−

m2
ρ

m2
τ

)2(
1 +

2m2
ρ

m2
τ

)
.

(6.23)

The unknown constant gρ can be related to the electromagnetic decay process ρ0 → e+ e− using
isospin invariance. The amplitude for this process reads

Mfi =
4παem

q2
ūeγ

µve〈0|Jemµ|ρ0〉 , (6.24)

where Jemµ is the electromagnetic current, and q = pe+ + pe− is the rho meson momentum.
Using conservation of the current, the hadronic matrix element can be written as

〈0|Jemµ|ρ0〉 =
m2
ρ

γ
εµ . (6.25)

with εµ the polarisation vector and γ a dimensionless constant. On the other hand, using the
explicit form of the electromagnetic current we find that

〈0|Jemµ|ρ0〉 = 〈0|23 ūγµu− 1
3 d̄γµd|ρ0〉 = 〈0| 1

2(ūγµu− d̄γµd)︸ ︷︷ ︸
I=1

+ 1
6(ūγµu+ d̄γµd)︸ ︷︷ ︸

I=0

|ρ0〉︸︷︷︸
I=1

= 1√
2
〈0| 1√

2
(ūγµu− d̄γµd)|ρ0〉 = 1√

2
〈0|ūγµd|ρ−〉 = 1√

2
gρεµ ,

(6.26)

where on the second line we used the fact that the isovector part of the electromagnetic current
and the charged weak current belong to the same isomultiplet. Comparing Eqs. (6.25) and (6.26)
we find

gρ
mρ

=
√

2
mρ

γ
. (6.27)

The amplitude square summed over spins is

〈〈|Mfi|2〉〉 =

(
4παem

γ

)2

tr [γµ(/pe+ −me)γ
ν(/pe− +me)]

(
−ηµν +

qµqν
m2
ρ

)2

= 4

(
4παem

γ

)2(
2pe+ · pe− + 4m2

e +
1

m2
ρ

(2q · pe+q · pe− − q2pe+ · pe−)− m2
e

m2
ρ

q2

)
= 4

(
4παem

γ

)2(
pe+ · pe− + 3m2

e +
2

m2
ρ

q · pe+q · pe−
)
.

(6.28)
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Since m2
e � m2

ρ we can treat the leptons as massless, so that m2
ρ = 2pe+ · pe− and m2

ρ = 2q · pe± ,
and so

〈〈|Mfi|2〉〉 = 4

(
4παem

γ

)2
(
m2
ρ

2
+
m2
ρ

2

)
= 4m2

ρ

(
4παem

γ

)2

. (6.29)

For the decay width we then obtain (Φ(2) = |~pe± |/(4πmρ) = |Ee± |/(4πmρ) = (mρ/2)/(4πmρ) =
1/(8π))

Γ =
1

3

1

2mρ
Φ(2)4m2

ρ

(
4παem

γ

)2

=
4π

3

α2
em

γ2
mρ =

4π

3

α2
em

mρ

(
mρ

γ

)2

, (6.30)

and so (
mρ

γ

)2

=
3

4π

mρ

α2
em

Γ(ρ0 → e+ e−) . (6.31)

Comparison with experiment yields

γ2

4π
=
α2

em

3

Γ(ρ0 → e+ e−)

mρ
= 2.1÷ 2.36 . (6.32)

7 Heavy quarks

In this section we briefly discuss the heavy quarks charm (c), bottom (b), and top (t).

7.1 Decay of charmed particles

Charmed particles are those with nonzero charm C (number of charm quarks minus number of
charm antiquarks). The lightest such particles are the pseudoscalar D and Ds mesons,

D+ = cd̄ , D0 = cū ,

D̄0 = uc̄ , D− = dc̄ ,

D+
s = cs̄ , D−s = sc̄ .

(7.1)

An older notation for the D±s mesons is F± (e.g., in Ref. [6]). The D mesons form two isospin
doublets, (D+, D0) and (D̄0, D−), while the D±s mesons are isosinglets. The masses of these
particles are mD± = 1.870 GeV, mD0,D̄0 = 1.865 GeV, and mD±s

= 1.968 GeV.
The relevant product of currents involved in charmed particles decay is (in the two-family

approximation)

(cos θC s̄OαLc− sin θC d̄OαLc)(
∑

` ν̄`OLα`+ cos θC ūOLαd+ sin θC ūOLαs) + h.c. , (7.2)

from which we can read off the couplings relevant to semi-leptonic decays, and to the various
possible non-leptonic decays.

Semi-leptonic decays The terms of Eq. (7.2) involved in semi-leptonic decays are

cos θC s̄OαLcν̄`OαL` ⇒ c→ s ν` `
+ ,

− sin θC d̄OαLcν̄`OαL` ⇒ c→ d ν` `
+ ,

(7.3)
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where we have written also the quark decay process to which they correspond. The related
decay widths are proportional to

c→ s ν` `
+ , Γ ∝ cos2 θc ,

c→ d ν` `
+ , Γ ∝ sin2 θc .

(7.4)

Processes of the first type satisfy the selection rule ∆C = ∆S, and are dominant compared to
those of the second type, which are suppressed by the tangent squared of the Cabibbo angle,
(sin θC/ cos θC)2 ' 0.05. Examples of decays of the first and second type are

first type (∆C = ∆S) : D+ → `+ ν` K̄
0 , D+

s → `+ ν` ,

second type (∆S = 0) : D+ → `+ ν` , D+
s → `+ ν`K

0 .
(7.5)

Non-leptonic decays The four types of non-leptonic decays correspond to the following prod-
ucts of currents,

cos2 θC s̄OαLcūOLαd , cos θC sin θC s̄OαLcūOLαs ,
− sin θC cos θC d̄OαLcūOLαd , − sin2 θC d̄OαLcūOLαs .

(7.6)

The corresponding quark process, decay width and selection rules are

c→ s u d̄ , Γ ∝ cos4 θC , ∆C = ∆S ,

c→ s u s̄ , d u d̄ , Γ ∝ sin2 θC cos2 θC , ∆C = −1 ,∆S = 0 ,

c→ d u s̄ , Γ ∝ sin4 θC , ∆C = −∆S .

(7.7)

The dominant processes are again those with ∆C = ∆S, where a c turns into an s, and a ud̄
pair is produced. If a us̄ pair is produced the decay rate is suppressed, as it is if c turns into d
and a ud̄ pair is produced; if in the latter case a us̄ pair is produced instead, the rate is doubly
suppressed. Due to the (trivial) colour structure of the charged weak current, the extra q and q̄
always have the same colour. For this reason, approximating cos2 θC ' 1, sin2 θC ' 0, one has

Γ(c→ s u d̄) ' Nc Γ(c→ s `+ν`) = 3 Γ(c→ s `+ν`) , (7.8)

where since mc � mµ � me and mc � mu,d,s the leptons and lighter quarks can be treated as
massless.

Charmed particles creation The creation of charmed particles would be preferably done by
shining muonic neutrino beams on strange-quark-rich targets, but due to the lack of such things
one has to settle for second-best and use down-quark-rich targets (i.e., essentially anything).
Creation of charmed particles via neutrino beams and their subsequent semi-leptonic decay
results in dileptonic events, i.e.,

νµ s→c µ−

�

s `+ ν` .
(7.9)
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Leptonic decays Purely leptonic decays are also possible, including into a τ lepton. The
width for leptonic decays of charmed mesons is obtained with a calculation completely analogous
to the one for pion decays: the relevant hadronic matrix elements have the same structure
(although, obviously, involving different constants), since the only vector available is the charmed
particle four-momentum (incidentally, only the axial current contributes since D and Ds mesons
are pseudoscalars). For the ratio of semi-leptonic decay widths the unknown constants cancel
out and all that matters is the mass dependence. One easily finds

Γ(D+ → τ+ ντ )

Γ(D+ → µ+ νµ)
=

m2
τ

(
1− m2

τ

m2
D+

)2

m2
µ

(
1− m2

µ

m2
D+

)2 ' 2.5 ,

Γ(D+
s → τ+ ντ )

Γ(D+
s → µ+ νµ)

=

m2
τ

(
1− m2

τ

m2

D+
s

)2

m2
µ

(
1− m2

µ

m2

D+
s

)2 ' 9.6 .

(7.10)

Notice that the processes appearing in the first row are Cabibbo-suppressed. The origin of
the factor (mτ/mµ)2 lies in the chiral nature of the charged weak interaction, which makes
it counterintuitively more likely for the charmed mesons to decay into taus than into lighter
leptons.

7.2 The third quark family and the CKM matrix

The existence of a third quark family was suggested in 1973 by Kobayashi and Maskawa. As we
will see below, this allows for violations of CP in the weak Lagrangian.

The b quark The lighter element of the third family, the bottom quark b, was discovered
in 1977 at Fermilab by Lederman and collaborators. Using a proton beam against a platinum
target, they studied the process

p p→ `+ `−X , (7.11)

where a pair of charged leptons `± is created among other things (everything else is bundled
into the symbol X). They were mostly looking for muons, which due to their penetrating
power could survive the necessary filtering required to remove all the uninteresting hadrons
from the final products. Looking at the invariant mass of the µ+µ− system, they found a
narrow bump at

√
s = 9.46 GeV. This was identified as the Υ (upsilon), a bound state of a

new type of quark, the b quark. The Υ is the ground state of bottomonium, i.e., the bound
state bb̄ of a bottom and antibottom quarks. The Υ can also be seen in lepton collider via the
process e+ e− → Υ → hadrons. The Υ resonance is characterised by sΥ = 1, mΥ = 9.46 GeV
and ΓΥ = 44.3 keV, corresponding to a lifetime τΥ = 1.2 · 10−20 s. The narrow width and
corresponding long lifetime are due to the smallness of the coupling of the Υ to hadrons (cf.
the OZI rule); this is however still stronger than the electromagnetic coupling, which leads to
the observed lifetime being intermediate between typical hadronic and typical electromagnetic
lifetimes. The bottom quark has mb = 4.2 GeV i.e., half the mass of the Υ), and electric charge
qb = −1

3 . The lightest mesons with nonzero “bottomness” are the B mesons B0 = db̄ and
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B+ = ub̄, with masses mB ' 5.3 GeV. The B0 − B̄0 system has many similarities with the
K0 − K̄0 system, e.g., it displays oscillations of “bottomness”.

The t quark The last quark discovered so far is the top quark t, observed in 1995 by the CDF
and DØ collaborations at Fermilab. The top quark is extremely heavy, mt = 173 GeV, which
makes it the heaviest elementary particle, and has electric charge qt = 2

3 . No top-antitop bound
states have been observed: in fact, the top quark decays in about 10−25 s, so having not enough
time to hadronise.

The CKM matrix The inclusion of a third family of quarks has important consequences for
the symmetries of the weak interactions.39 As we show now, three is the minimal number of
families for which CP violating effects can appear explictly in the Lagrangian.

Recall that in general, assuming the existence of n families of quarks and universality of the
charged weak interactions, one would write for the charged hadronic current

Jαh =
n∑

f,f ′=1

ᾱfOαLκf ′Vff ′ , (7.12)

where the quark fields αf and κf from the fth family,(
αf
κf

)
, (7.13)

and V is a n× n unitary matrix, V †V = 1. Unitarity is required so that there are appropriate
linear combinations,

κ′f =
n∑

f ′=1

Vff ′κf ′ , (7.14)

of κ-fields that interact with the corresponding field αf in the same way that leptons and
corresponding neutrinos do.

Let us now determine the number of physically relevant parameters contained in V . A
general complex n× n matrix contains 2n2 real parameters. Unitarity implies∑

k

VikV
∗
jk = δij , (7.15)

and so n real relations
∑

k |Vik|2 = 1 and n(n − 1)/2 complex relations
∑

k VikV
∗
jk = 0 for

i 6= j, corresponding to n(n− 1) real relations. All in all there are n+ n(n− 1) = n2 relations,
reducing the number of real parameters in V to 2n2 − n2 = n2. Not all of these are physically
meaningful: in fact, it is possible to redefine the phases of the α and κ fields independently
(without affecting the QCD Lagrangian underlying the hadronic interactions, which has a U(1)2n

flavour symmetry). Redefining αf → eiφfαf and κf → eiψfκf , we have that changing

Vjk → e−i(φj−ψk)Vjk (7.16)

39We note in passing that the existence of three and only three families of leptons with light neutrinos has been
extablished experimentally at LEP.
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has no observable physical effect. This can be used to set to zero the phase of a certain number
of matrix elements. The number of independent phase factors e−i(φj−ψk) can be determined by
writing

φj − ψk = (φ1 − ψ1) + (φj − φ1)− (ψk − ψ1) . (7.17)

One can choose the first term on the right-hand side arbitrarily; there are then n−1 independent
differences φj−φ1 and n−1 independent differences ψk−ψ1. This results in 1+2(n−1) = 2n−1
independent phase factors. Another way to see this is that one can change all the 2n phases
φj and ψk by the same amount without changing the phase differences entering Eq. (7.17).
This reduces the number of independent phase factors from 2n to 2n − 1. Either way, the
number of physically meaningful real parameters in V is n2 − 2n + 1 = (n − 1)2. In general,
the space of n × n unitary matrices contains the space of n × n real orthogonal matrices as
a subspace. A general orthogonal matrix in n dimensions depends on n(n − 1)/2 angles, so
among the n2 real parameters of a unitary matrix there are n(n − 1)/2 angles; the remaining
n2 − n(n− 1)/2 = n(n+ 1)/2 are phases. In our case not all the phases are physical, but only
n(n+ 1)/2− 2n+ 1 = (n− 1)(n− 2)/2 are.

Summarising, there are n(n−1)/2 quark mixing angles and (n−1)(n−2)/2 physical phases.
Let us check a few cases:

n = 1 family: 0 angles, 0 phases (nothing to mix);

n = 2 families: 1 angles, 0 phases (V is real);

n = 3 families: 3 angles, 1 phase (V complex; CP violation possible).

(7.18)

The matrix V is known as the Kobayashi-Maskawa or Cabibbo-Kobayashi-Maskawa matrix. A
possible parameterisation is obtained by treating the quarks (d, s, b) as coordinates (z, y, x) and
using Euler angles θ1,2,3: the most general three-dimensional rotation is obtained by a rotation
of θ3 around the z axis, followed by a rotation of θ1 around the new x axis, in turn followed by
a further rotation of θ2 around the new z axis. Denoting ci = cos θi and si = sin θi, we have1 0 0

0 c2 s2

0 −s2 c2

 c1 s1 0
−s1 c1 0

0 0 1

1 0 0
0 c3 s3

0 −s3 c3

 . (7.19)

To make the remaining phase surely physical we can include it in the (3, 3) element of the second
factor in Eq. (7.19), 1 0 0

0 c2 s2

0 −s2 c2

 c1 s1 0
−s1 c1 0

0 0 eiδ

1 0 0
0 c3 s3

0 −s3 c3

 , (7.20)

since in this way it cannot be removed by a phase redefinition. Carrying out the multiplications
we find

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c1 s1c3 s1s3

−s1c2 c1c2c3 − eiδs2s3 c1c2s3 + eiδs2c3

s1s2c2 −c1s2c3 − eiδc2s3 −c1s2s3 + eiδc2c3

 . (7.21)

It is an experimental fact that the d and s quarks have small mixing with the b quark. One then
expects θ2,3 to be small, in which case V reduces to

V '

 c1 s1 0
−s1 c1 0

0 0 eiδ

 . (7.22)

103



It is then easy to identify θ1 ' θC . More generally, retaining the leading contributions, one finds

V '

 1 s1 s1s3

−s1 1 s3 + eiδs2

s1s2 −s2 − eiδs3 eiδ

 , (7.23)

which shows that the main processes involve the transitions d↔ u, s↔ c and b↔ t. This make
the concept of families physically meaningful, as the dominant decays involve transitions within
families.

Experimental results for the first row of the CKM matrix are

|Vud| = 0.97420(21) , |Vus| = 0.2243(5) , |Vub| = 3.94(36) · 10−3 . (7.24)

From this one finds |Vud|2 + |Vus|2 + |Vub|2 = 0.9994(5), in good agreement with the expected
unitarity. From |Vub|/|Vud| = |s3| ' 2 · 10−2 it follows that indeed θ3 is small. Similarly, |Vtd| is
found to be small, resulting in small |s2| and so small θ2.

8 Towards the Standard Model

In this section we describe in some detail the Standard Model (SM) of particle physics. After
discussing the limitations of the four-fermion theory we introduce the tools required for the
formulation of the SM, namely the theory of spontanteously broken symmetries, gauge fields,
and the Higgs mechanism.

8.1 Limitations of the four-fermion theory

The most evident limitation of the four-fermion theory is its lack of renormalisability: due to
the presence of a coupling with negative mass dimension, one keeps encountering new types of
divergences as one increases the perturbative order, which requires the introduction of infinitely
many counterterms, and thus results ultimately in a lack of predictivity of the theory. This last
statement requires qualification: one can in fact treat the four-fermion theory as an effective
theory, valid only up to a certain energy scale. Once the theory has been renormalised up to,
say, n counterterms, it will be predictive until the effects of the (n + 1)th type of divergence
become phenomenologically relevant.

When does the effective theory break down? One can show that problems with unitarity are
present at high energy already at tree level. These can be cured only going to higher orders of
perturbation theory, which brings us back to the problem of non-renormalisability. To see when
the effective theory fails, one can look at e νe elastic scattering. Since the amplitude is necessarily
a polynomial in the four-momenta, it is polynomial in cos θCM, where θCM is the angle between
the incoming and outgoing trajectories in the centre-of-mass frame. This means that in a partial
wave expansion of the amplitude, only a finite number of partial waves fJ will appear. On the
other hand, simple dimensional analysis shows that the total cross section behaves as σtot ∼ G2s
at high energy.40 But since σtot ∝ p−1

∑
(2J+1)|fJ |2 (with p the magnitude of the initial spatial

momenta in the centre-of-mass frame), and since |fJ |2 ≤ Im fJ due to unitarity of the S-matrix,
it follows that at some point at least one of the partial wave amplitudes will violate the unitarity

40The cross section has dimensions of m−2, and since a factor G2 of dimension m−4 is present, and
√
s is the

only relevant energy scale at high energy, the result follows.
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bound. Looking for simplicity at the contribution of the charged current only, one find for the
J = 0 partial wave f0 = Gs/(2

√
2π). The unitarity bound implies |Re f0| ≤ 1/2, and since the

tree-level amplitude is real one finds the bound

Gs√
2π
≤ 1 , (8.1)

which means that unitarity will be violated above
√
s =

√√
2π/G ' 600 GeV, signaling the

breakdown of the theory.
How could one improve the situation? A possibility (already considered by Yukawa in the

1930s) is to replace the four-fermion interaction by the exchange of an intermediate massive
vector boson. One finds for the differential cross section41

dσ

d|t|

∣∣∣∣
FF

=
G2

π
−→ dσ

d|t|

∣∣∣∣
IVB

=
G2

π

m4
W

(m2
W + |t|)2

, (8.2)

where “FF” and “IVB” stand for “four fermion” and “intermediate vector boson”, respectively,
and mW is the mass of the intermediate boson. The effect of boson exchange shows up in the
propagator factor 1/(m2

W + |t|2), which implies that all partial waves are present, and that cuts
off the contribution of large transferred momentum. In fact, since 0 ≤ |t| ≤ s (we ignore the
electron mass here), one has

σ|FF =

∫ s

0
d|t| dσ

d|t|

∣∣∣∣
FF

=
G2

π
s −→ σ|IVB =

∫ s

0
d|t| dσ

d|t|

∣∣∣∣
IVB

=
G2m2

W

π

s

s+m2
W

. (8.3)

In the IVB case, the total cross section rises linearly with s at low energy, while approaching
a constant at high energy. Unitarity is therefore respected, and the unitarity bound becomes a
bound on mW .

An important point is that the coupling constant in the IVB theory leading to Eq. (8.2)
is g2

W = Gm2
W , which is dimensionless. This raises the hope that the theory might be renor-

malisable. Unfortunately, this is not the case. The massive vector propagator in fact contains
a term pµpν/p

2m2
W which is of order O(1) at high energies, thus bringing back a problematic

high-energy behaviour of the theory. This term would not be problematic if the IVB were cou-
pled to a conserved current, since it would give no contribution, but this is not the case here:
neither the vector nor the axial-vector currents are conserved, the first one because of the mass
difference between electron neutrino, and the second one since they are not both massless. Even
worse, even if the leptons were massless and the weak current therefore conserved, the massive
vector bosons we need must be electrically charged, and their electromagnetic interaction is not
renormalisable. One has moreover problems with unitarity showing up in the boson-boson cross
section, which could however be cured if a further, neutral boson were also introduced.

One way out of this problem would be to use massless rather than massive vector bosons
as the exchanged particles. In this case the theory would be renormalisable, even including
electromagnetic interactions. This seems however a non-starter: weak interactions are known
to be short-ranged, while massless bosons would lead to long-range intaractions, like with the
photon in electromagnetic interactions; and as soon as we add a mass term to the Lagrangian,
non-renormalisability kicks back. There is however one more trick that can be used: if the vector
bosons are not given a mass “by hand”, but they acquire it dinamically due to the spontaneous
breaking of a symmetry, then renormalisability remains.

41We ignore here the term qµqν/m
2
W in the propagator, considering |t| � mW .
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8.2 Massive vector bosons

While the discussion above was qualitative, in this subsection we give a detailed analysis of the
problems with massive vector bosons. The Lagrangian describing free massive vector particles
(the Proca Langrangian) reads

LProca = −1
4FµνF

µν + 1
2m

2WµW
µ , Fµν = ∂µWν − ∂νWµ . (8.4)

The corresponding equations of motion are

∂LProca

∂Wµ
− ∂ν

∂LProca

∂(∂νWµ)
= 0 ,

m2Wµ − ∂ν(−F νµ) = 0 ,

(2 +m2)Wµ − ∂µ∂νW ν = 0 .

(8.5)

Taking the divergence ∂µ of this equation we find

(2 +m2)∂µW
µ −2∂νW

ν = m2∂µW
µ = 0⇒ ∂µW

µ = 0 , (8.6)

which we can plug back into Eq. (8.5) to get the system of equations

(2 +m2)Wµ = 0 ,

∂µW
µ = 0 .

(8.7)

These equations are most easily solved in momentum space. One finds

Wµ(x) =

∫
dΩp

3∑
j=1

{
εµj (~p )e−ip·xaj(~p ) + εµj

∗(~p )eip·xb†j(~p )
}
, (8.8)

where p0 =
√
~p 2 +m2 and dΩp is the invariant phase-space measure. The polarisation vectors

εµj (~p) satisfy p · εj(~p ) = 0, as the second equation demands. There are three independent
solutions, that we can choose as follows:

εµ1,2 = (0, ~s1,2 ) , ~p · ~s1,2 = 0 , ~si · ~sj = δij , i, j = 1, 2

εµ3 = 1
m(|~p |, p0p̂) .

(8.9)

Notice that

εµ3 =
pµ

m
+

m

p0 + |~p |(−1, p̂) . (8.10)

With this choice εµi = εµi
∗. In general one chooses them so that

εi · ε∗j = −δij , i, j = 1, 2, 3 . (8.11)

These vectors form an orthonormal basis of the three-dimensional space transverse to the four-
momentum p, hence they satisfy

3∑
j=1

εµj (~p )ενj
∗(~p ) = −ηµν + pµpν

m2 , (8.12)
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as one can verify explicitly for our choice Eq. (8.9).
A large class of interacting theories can be obtained adding a term of the form −Wµj

µ to
the Lagrangian, coupling the massive vector boson to a current jµ. The equations of motion are
obtained replacing m2Wµ → m2Wµ − jµ in the last equation in Eq. (8.5), and read

(2 +m2)Wµ − ∂µ∂νW ν = jµ . (8.13)

Taking the divergence we find this time

m2∂µW
µ = ∂µj

µ , (8.14)

that can be plugged back into Eq. (8.13) to obtain

(2 +m2)Wµ =

(
ηµν +

∂µ∂ν

m2

)
jν . (8.15)

One can easily read off the Green’s function, or propagator, Dµν(x), that connects the solution
of the equation to the current,

Wµ(x) =

∫
d4y Dµν(x− y)jν(y) . (8.16)

One has

Dµν =

(
ηµν +

∂µ∂ν

m2

)
1

2 +m2
. (8.17)

In momentum space this reads

D̃µν =
−ηµν + pµpν

m2

p2 −m2
, (8.18)

ignoring the choice of prescription to deal with the pole at p2 = m2. The second term in the
numerator can lead to bad high energy behaviour: in momentum space the propagator couples
to the Fourier transform ̃µ of jµ, and the second term originates a factor pµ̃

µ. If the current is
conserved, ∂µj

µ = 0, then pµ̃
µ = 0 and the potentially dangerous term has no effect. Moreover,

only the second term of the longitudinal polarisation vector ε3 in Eq. (8.10) contributes to
Feynman diagrams, and no troublesome high-energy behaviour come from it. This is the reason
why one can give the photon a mass without spoiling the renormalisability of the theory despite
the loss of gauge invariance. On the other hand, if pµ̃

µ 6= 0 then the pµpν term cannot be
dropped, and makes the theory non renormalisable due to its bad high-energy behaviour. For
this reason, one cannot give mass “by hand” to the intermediate vector bosons that one wants
to use in the description of weak interactions.

8.3 Spontaneous symmetry breaking and the Goldstone theorem

The trick that will be used to give a mass to the intermediate vector boson combines gauge
invariance with the appearance of massless scalar particles in a theory with a spontaneously
broken symmetry. In this section we discuss what the spontaneous breaking of a symmetry is
and why massless particles appear in the spectrum. Such particles, known as Goldstone bosons,
result from the breaking of a global continuous symmetry due to the non-invariance of the
vacuum. In fact, even if the equation of motion of a system show a certain symmetry, this does
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not mean that every solution should show it as well. If this happens to the solution of minimal
energy, and the symmetry is continuous, then this solution cannot be unique, and moving from
one such solution to another costs no energy, hence giving rise to massless modes. The Goldstone
theorem states that there is one such massless mode for every generator of the symmetry which is
broken by the vacuum. If the symmetry that is “broken” is a gauge (local) symmetry,42 then the
“would-be” Goldstone modes are absorbed by the gauge bosons as longitudinal (zero helicity)
modes, thus making the bosons massive. More precisely, the gauge bosons corresponding to
the broken generators acquire a mass, while the unbroken ones remain massless. The reason
why Goldstone theorem is not applicable when the symmetry is local is simply that one of its
hypothesis is violated. In fact, quantisation of a gauge theory requires to choose a gauge, thus
breaking explicitly the local symmetry, and if one asks that the Hilbert space contains only
physical states then the gauge choice cannot respect Lorentz covariance, which is required by
the theorem. Examples of “physical” gauges are the Coulomb gauge (i.e., ~∇ · ~A = 0) or the
axial gauge (i.e., A3 = 0). Covariant gauges exist, like the Lorenz gauge (i.e., ∂µA

µ = 0), in
which the theorem must therefore apply. On the other hand, Lorenz gauge contains unphysical,
negative-norm states corresponding to the remaining gauge modes (gauge fixing is only partial),
and the Goldstone mode happens to be a gauge mode decoupled from the physical states.

Let us now discuss in some detail how Goldstone modes appear. Consider a system of N
scalar fields φi(x) described by the following Lagrangian density,

L = 1
2∂µφi∂

µφi −U (φ) , (8.19)

where the potential U (φ) is some polynomial which includes the mass (quadratic) terms, and
has to be at most of order four to ensure renormalisability. We will treat the fields as classical,
having in mind path-integral quantisation. Assume that the set of scalar fields provides a basis
for the representation space of some N -dimensional unitary representation of some Lie group G,

φi(x)→ (gφ)i(x) = Dij(g)φj(x) , (8.20)

with D(g) N × N unitary matrices satisfying D(g1)D(g2) = D(g1g2) for all g1, g2 ∈ G. Such
matrices can be written as

D(g) = eεa(g)Ta , εa(g) ∈ R , (8.21)

where summation over a = 1, . . . n = dimG is understood, and T a are N ×N real antisymmetric
matrices providing a representation of the group algebra [T a, T b] = −fabcT c.43 Since we are
dealing with real fields, the representation must be real and therefore orthogonal. This setting
is fully general, since any set of complex scalar fields ϕi(x) can always be reduced to Eq. (8.19)
by separating their real and imaginary parts, ϕi = ϕRi + iϕIi , that can be collected in a vector
of 2N real fields φi = ϕRi , i = 1, . . . , N , φi = ϕIi−N , i = N + 1, . . . , 2N . The general unitary
representation under which the ϕi transform gives rise to an orthogonal representation under
which the φi transform. Explicitly, if ta are the Hermitian generators of the representation for
the complex fields, δϕ = iεat

aϕ, then δφ = εaT
aφ where the real antisymmetric matrices T a are

given by

T a =

(
−Im ta −Re ta

Re ta −Im ta

)
. (8.22)

42A gauge symmetry cannot be broken due to Elitzur’s theorem. What can be broken is the remaining global
symmetry after gauge fixing, which is required to carry out the quantisation procedure.

43Alternatively, one can write T a = iT̃ a with T̃ a purely imaginary and Hermitian, and satisfying [T̃ a, T̃ b] =
ifabcT̃ c.
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Assume further that the Lagrangian density is invariant under group transformations, which
amounts to ask that U (gφ) = U (φ). In other words, the system has an internal symmetry
corresponding to G. The energy functional corresponding to Eq. (8.19) is

E[φ] =

∫
d3x

[
1
2∂0φi∂0φi + 1

2
~∇φi · ~∇φi + U (φ)

]
. (8.23)

This functional is bounded from below if U is. We assume that this is the case, and set its
minimum to zero by adding to it an irrelevant constant. In this way we ensure that E[φ] ≥ 0. The
ground state of the system (also called the vacuum state in the context of relativistic quantum
field theories) is the one with minimal energy (i.e., zero), which is easily seen to correspond to
a constant field configuration (so that there is no contribution from the derivative terms) which
minimises the potential U . Since by construction min U = 0, the ground state is given by
φi(x) = φ0 i with U (φ0) = 0. However, due to the symmetry of the system under G one has for
any g that U (gφ0) = U (φ0) = 0, and since in general it can happen that gφ0 6= φ0, more than
one ground state can exist. One then defines the manifold M of ground states,

M = {φ0 | U (φ0) = 0} , (8.24)

which by construction is left invariant by the action of G, i.e., GM =M. If M contains more
than one state, we say that the symmetry G is broken, since any ground state in M will not
be left invariant by a generic symmetry transformation. Given φ0 ∈ M, its G-orbit is the set
{gφ0 | g ∈ G}. We assume that any ground state can be reached from any other by means
of a symmetry transformation:44 the cases we will be considering are all of this type. This is
tantamount to saying thatM is equal to the G-orbit of any ground state. We further define the
stability group H as

H = {h ∈ G | hφ0 = φ0} . (8.25)

Clearly, H is a subgroup of G,45 the one that leaves the ground state invariant. The group H is
the unbroken part of the symmetry group G.

Strictly speaking, one should define H(φ0) as the stability group of the ground state φ0. However,

since we assumed that M is equal to the G-orbit of φ0, for any other ground state φ′0 we have

φ′0 = gφ0. If h ∈ H(φ0), then g−1φ′0 = φ0 = hφ0 = hg−1φ′0, so that ghg−1φ′0 = φ′0 = h′φ′0 with

h′ = ghg−1. Conversely, given h′ ∈ H(φ′0), one shows that h = g−1h′g ∈ H(φ0). The stability

groups H(φ0) are therefore all isomorphic, and we can simply denote with H the corresponding

equivalence class.

We finally define the (right) cosets as the sets gH = {gh | h ∈ H}. These sets are clearly left
invariant by right multiplication with any element of H. Each coset corresponds uniquely to
an equivalence class with respect to the relation g1 ∼ g2 if g1 = g2h for some h ∈ H, or in
other words to the elements of G modulo elements of H. The set of cosets/equivalence classes
is the (right) coset space, denoted G/H. Choosing some φ0, any element of M can be written
as gφ0, but the choice of g is not unique since ghφ0 = gφ0 if h ∈ H belongs to the stability
group. On the other hand, gφ0 corresponds uniquely to a coset gH, and therefore one has that
M = G/H.46 One distinguishes three cases:

44In mathematical terms this is asking that the action of G on M be transitive.
45If h1,2 ∈ H then h1h2φ0 = φ0 and so h1h2 ∈ H. Clearly the neutral element belongs to H, and for any h ∈ H

one has h−1φ0 = h−1hφ0 = φ0, i.e., h−1 ∈ H.
46The equality sign stands here for “diffeomorphic to”.
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• H = G: the ground state is invariant under the whole symmetry group, so φ0 is unique,
M = {φ0}, and the symmetry group G is unbroken;

• H = {e} (the neutral element): the ground state is not invariant under any transformation,
and G is completely broken;

• H ⊂ G is a proper subgroup: G is broken down to H.

In what follows it is convenient to choose the generators {T 1, . . . Tn} of G in such a way as to
contain also the generators of H. More precisely, one chooses the first n′ = dimH generators
{T 1, . . . , Tn

′} to be the generators of H (i.e., they span the Lie algebra of H which is a subalgebra
of the Lie algebra of G), and the remaining n− n′ generators {Tn′+1, . . . , Tn} to span the rest,
thus “generating” G/H.47 Since Hφ0 = φ0, one has that T aφ0 = 0 for a = 1, . . . , n′, while
T aφ0 6= 0 if a = n′+ 1, . . . , n. Also, no nontrivial linear combination caT

a, a = n′+ 1, . . . , n can
annihilate φ0, for otherwise caT

a would belong to the algebra of H, against the hypothesis.

Example 1: G = SO(2) Let the symmetry group be SO(2), and let the scalar multiplets
belong to the defining representation (i.e., N = 2). Since for the group SO(N) of proper

rotations in N dimensions one has dimSO(N) = N(N−1)
2 , we have n = 1. For n = 1, N = 2 the

group generator is

T =

(
0 1
−1 0

)
. (8.26)

Let the potential be

U (φ) =
λ

2
(φ2

1 + φ2
2 − a2)2 , (8.27)

where λ, a ∈ R and λ > 0. A potential of the type Eq. (8.26) is known as Mexican-hat potential
for obvious reasons (try to draw it). The ground state manifold is defined by U (φ) = 0, and
easily found to be

M = {φ | φ2
1 + φ2

2 = a2} ∼ S1 , (8.28)

i.e., it is the two-dimensional sphere (circle). The wholeM is obtained as Gφ0 for any φ0 ∈M.
No point inM is left invariant by any rotation, so that H = {e} and the symmetry is completely
broken. In fact, G has no proper subgroups, so the symmetry is either unbroken or completely
broken. The only solution to Tφ = 0, which is equivalent to asking invariance under SO(2), is
the point φ1 = φ2 = 0 /∈M.

Example 2: G = SU(2) Consider a doublet Ψ of complex fields,

Ψ =

(
ψ1

ψ2

)
,

{
ψ1 = φ1 + iφ2 ,

ψ2 = φ3 + iφ4 ,
(8.29)

transforming under the defining representation of SU(2) (N = 4, n = 3). The Mexican-hat
potential in this case is

U (Ψ) = λ
(

Ψ†Ψ− a2
)2

= λ
(
ψ∗1ψ1 + ψ∗2ψ2 − a2

)2
= λ

(∑4
i=1φ

2
i − a2

)2
, (8.30)

47The space G/H is in general not a Lie group, unless H is a normal subgroup, i.e., gHg−1 = H for any g ∈ G.

It is however a manifold of dimension n − n′, and {Tn
′+1, . . . , Tn} are a basis of its tangent space at the point

corresponding to the neutral element eH = H ∈ G/H.
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with λ, a ∈ R and λ > 0. A generic SU(2) matrix reads

g =

(
c d
−d∗ c∗

)
, |c|2 + |d|2 = 1 , (8.31)

so that SU(2) ∼ S3 (the four-dimensional sphere). Clearly (gΨ)†(gΨ) = Ψ†Ψ, since this is the
very definition of unitary matrix. The ground state manifold is

M =
{
φ | ∑4

i=1φ
2
i = a2

}
∼ S3 , (8.32)

so diffeomorphic to the group G. No element of M can be left invariant by any subgroup of G:
in fact, G =M = G/H, so H = {e} and the symmetry is completely broken.

Example 3: G = SO(3) Consider a triplet of real fields transforming under the defining
representation of SO(3), or equivalently the adjoint representation of SU(2),

φ =

φ1

φ2

φ3

 , (8.33)

and let

U (φ) = λ
(∑3

i=1φ
2
i − a2

)2
. (8.34)

The ground state manifold is now the three-dimensional sphere,

M =
{
φ | ∑3

i=1φ
2
i = a2

}
∼ S2 . (8.35)

Choosing φ0 = (0, 0, a), it is easy to identify the stability group H = {h(α) , α ∈ [0, 2π)} as
comprising the rotations

h(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (8.36)

There is therefore a nontrivial SO(2) ∼ U(1) stability group, and indeed the ground state
manifold is G/H = SO(3)/SO(2) = S2 = M. This example show how not only the group but
also the choice of representation plays an important role in the symmetry breaking pattern.

We now discuss the main result.

Goldstone theorem: if G with dim G = n is broken down to H with dim H = n′, then there
are n−n′ massless bosons (Goldstone bosons) in the spectrum, one per “generator” of the coset
space.
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Proof: By assumption, U (φ) = U (gφ). Under an infinitesimal transformation g = eε·T '
1 + ε · T ,

U (φ) = U (gφ) = U (φ+ ε · Tφ) ' U (φ) +
∂U

∂φi
(φ) (ε · T )ij φj , (8.37)

from which it follows due to the arbitrariness of εa that

∂U

∂φi
(φ)T aijφj = 0 , (8.38)

for any field configuration φ. We can take one more derivative with respect to φk, and find

∂2U

∂φk∂φi
(φ)T aijφj +

∂U

∂φi
(φ)T aik = 0 . (8.39)

Setting now φ = φ0 ∈M, we have that ∂U
∂φi

(φ0) = 0 since it minimises the potential and so

∂2U

∂φk∂φi
(φ0)T aijφ0 j = 0 . (8.40)

The matrix

M2
ki ≡

∂2U

∂φk∂φi
(φ0) (8.41)

is the matrix of the coefficients of the quadratic part of the potential U , and as such it is the
mass matrix of the fluctuations φ̃ of φ = φ0 + φ̃ around the ground state φ0:

U (φ) = U (φ0 + φ̃) = 1
2 φ̃kM

2
kiφ̃i + higher orders . (8.42)

Eq. (8.40) therefore reads
M2
kiT

a
ijφ0 j = 0 . (8.43)

This tells us that as long as it is nonzero T aφ0 is an eigenvector of M2 with eigenvalue zero, i.e.,
a massless fluctuation. For a = 1, . . . , n′ one has T aφ0 = 0, so Eq. (8.43) is trivially satisfied.
For a = n′ + 1, . . . , n one has instead that T aφ0 6= 0 are linearly independent, which proves the
existence of n− n′ massless modes, one per broken generator of G.

The Goldstone modes can be taken to be the linear combinations φ̃iT
a
ijφ0 j , a = n′+1, . . . , n: in

fact, taking the scalar product of the fluctuations φ̃ with any of the T aφ0 automatically removes
the contributions of massive modes, since these correspond to eigenvectors of the symmetric
matrix M2 with nonzero eigenvalue and are therefore orthogonal to the massless modes. These
combinations are linearly independent: if φ̃icaT

a
ijφ0 j = 0, a = n′ + 1, . . . , n for all φ̃, then

caT
aφ0 = 0 which contradicts our hypotheses. Notice that if for a given configuration φ̃iT

a
ijφ0 j =

0 for all a then there is no contribution from the Goldstone modes.

Example: G = SO(2), doublet of real scalars Consider the case discussed above in example
1, corresponding to a doublet of real scalar fields with potential given by Eq. (8.27). Choosing
as ground state

φ0 =

(
a
0

)
(8.44)
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one can recast the Lagrangian as

L = 1
2∂µφ̃1∂

µφ̃1 + 1
2∂µφ̃2∂

µφ̃2 − λ
2

(
(a+ φ̃1)2 + φ̃2

2 − a2
)2

= 1
2∂µφ̃1∂

µφ̃1 + 1
2∂µφ̃2∂

µφ̃2 − λ
2

(
φ̃1(2a+ φ̃1) + φ̃2

2

)2

= 1
2∂µφ̃1∂

µφ̃1 + 1
2∂µφ̃2∂

µφ̃2 − λ
2

(
4a2φ̃2

1 + 4aφ̃1(φ̃2
1 + φ̃2

2) + (φ̃2
1 + φ̃2

2)2
)
,

(8.45)

from which one reads of the masses m1,2 of the fluctuations φ̃1,2 to be m2
1 = 4λa2 and m2

2 = 0.
Notice that φ̃iTijφ0 j = −aφ̃2 is precisely the Goldstone mode. Perhaps a more transparent way

to see the appearance of the Goldstone mode is to set ϕ = φ1+iφ2√
2

and recast the Lagrangian as

the Langrangian of a single complex field with a U(1) internal symmetry,

L = ∂µϕ
∗∂µϕ− λ

2

(
2ϕ∗ϕ− a2

)2
. (8.46)

Parameterising the fluctuations around the ground state ϕ0 = a√
2

as

ϕ(x) = 1√
2
ρ(x)ei

θ(x)
a = 1√

2
(a+ η(x))ei

θ(x)
a , (8.47)

one gets

L = 1
2∂µη∂

µη − 2a2λη2 + 1
2∂µθ∂

µθ − λ
2

(
4aη3 + η4

)
+
(
η
a + η2

2a2

)
∂µθ∂

µθ . (8.48)

The first three terms constitute the quadratic, free part of the Lagrangian, while the others
describe the interactions. One clearly sees that the field η is massive with m2

η = 4λa2, while θ is
the massless Goldstone mode. The symmetry under θ → θ+c for any constant c guarantees that
a mass term will not be generated in higher orders of perturbation theory. This parameterisations
shows clearly the origin of the Goldstone mode. The ground state manifold is just |ϕ| = ρ = a,
and so a change of phase as described by a fluctuation in the field θ corresponds to moving
along the valley of minima of the potential, which comes at no cost in energy. A change in
the amplitude ρ = a+η√

2
instead displaces the system from the minimum of the potential, and

encounters an inertia which corresponds to nonzero mass.

8.4 Gauge theories

Gauge theories are characterised by the presence of a local symmetry, rather than just a global
one. An example is the theory of electromagnetic interactions, which possesses a local U(1)
symmetry under a local change of phase of the electron field, and thus of the electron (and
positron) states:

ψ(x)→ eiα(x)ψ(x) , ψ̄(x)→ e−iα(x)ψ̄(x) . (8.49)

What is the motivation for assuming the existence of local symmetries, and what are its conse-
quences?

One of the basic tenets of a relativistic theory is locality: interactions do not propagate
instantaneously, but rather take place locally between fields, and then propagate compatibly
with the finiteness of the speed of light. No event can therefore affect anything outside of its
future lightcone. We also know that the overall phase of the quantum state vector of a system
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is experimentally unobservable, and can therefore be chosen arbitrarily. For example, we could
decide that the phase of ever electron state be rotated by a factor eiϕ, and no experimental
consequence would follow. If all observers agree on this phase redefinition, one speaks of a
global U(1) transformation; since this leaves physics invariant, the system possesses a global
U(1) symmetry. On the other hand, while we make this phase redefinition another experimenter
outside our lightcone might want to change the phase of electron states in a different way, and
combining the two statements above this should not have any experimental consequence neither
for the other observer nor for us. It should therefore be possible to choose the phase of the
electron field, which creates and destroys electrons and positrons anywhere in the Universe, in
different way in different places. This amounts to asking invariance under the local U(1) trans-
formations Eq. (8.49), i.e., that the system is invariant under a U(1) local or gauge symmetry.
This symmetry principle is called the gauge principle. In the remainder of this subsection we
discuss this principle in some detail.

Consider first a theory of scalar fields, either real or complex, invariant under a global
symmetry group G,

L (φ) = 1
2∂µφi∂

µφi −U (φ) , L (φ) = ∂µφ
∗
i ∂

µφi −U (φ) , (8.50)

with L (gφ) = L (φ) for any g ∈ G, where

(gφ)i(x) = Uij(g)φj(x) , Uij(g) = eiεa(g)Ta , (8.51)

with U(g) providing a unitary representation of the group, therefore with real εa, and Hermitian
T a representing the generators of the group, [T a, T b] = ifabcT

c. As already discussed before, in
the case of real scalar fields the representation is orthogonal and T a are purely imaginary and
antisymmetric. Invariance under G amounts to asking U (gφ) = U (φ). We are assuming the
potential to be a function of φ only and not its derivatives.

The parameters εa in Eq. (8.51) are independent of x, indicating that we are performing a
global transformation. What happens if we promote it to a local one? Since the potential is a
local function of φ(x) only, U = U (φ(x)), it makes no difference whether the transformation is
global or local, and so U (g(x)φ(x)) = U (φ(x)). On the other hand, the kinetic term depends
on the derivatives of the field, and is not left invariant by a local transformation:

∂µφi(x)→ ∂µ(Uij(x)φj(x)) = Uij(x)∂µφj(x) + ∂µ(Uij(x))φj(x) . (8.52)

The first term would cancel, but for a nontrivial x-dependence also the second term contributes
and invariance is lost. In order to have invariance we are led to introduce a new set of fields, the
gauge fields Aaµ(x), a = 1, . . . ,dimG, one for each generator of the local symmetry group G, to
reabsorb the extra term in Eq. (8.52). These fields must be Lorentz vectors, transforming like ∂µ
under Lorentz transformations, and transform almost like adjoint objects under an internal G
transformation. Let us now replace in Eq. (8.50) the ordinary derivative ∂µ with the covariant
derivative Dµ,

(Dµφ)i ≡ ∂µφi − igT aijAaµφj , (8.53)

where g is a dimensionless coupling constant, and ask for Aaµ to transform in the appropriate way
to make Eq. (8.50) invariant under the combined transformation φ(x) → U(x)φ(x), Aaµ(x) →
A′aµ (x). Denoting with Aµ = AaµT

a we have

(∂µ − igAµ)φ→ U∂µφ+ (∂µU)φ− igA′µUφ = U [∂µ − ig(U−1A′µU + i
gU
−1∂µU)]φ , (8.54)
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and asking for invariance we find

Aµ = U−1A′µU + i
gU
−1∂µU =⇒ A′µ = UAµU

−1 − i
g (∂µU)U−1 . (8.55)

With this transformation rule
Dµφ(x)→ U(x)Dµφ(x) , (8.56)

and since U−1 = U † or U−1 = UT for unitary or orthogonal matrices, Eq. (8.50) with ∂µ → Dµ

becomes invariant under local transformations.
Gauge fields and the covariant derivative are analogous to the connections and the covariant

derivative one encounters in general relativity, although there is an important difference, namely
that the gauge connections act in some internal space, while the spacetime connections act on
the tangent space of spacetime itself. The non-homogenous transformation rule Eq. (8.55) is
also analogous to the transformation rule of the connections in general relativity. In the case at
hand, the first term corresponds to the transformation rule for a multiplet of fields Aaµ in the
adjoint representation, as anticipated; the second term however spoils this property.

Notice that what is the particular representation U of the group and T a of the generators of
the algebra is not important, as the transformation rule can be expressed in terms of the gauge
fields Aaµ only. This is most easily done by considering infinitesimal transformations; any finite
transformation can be obtained from these due to the Lie nature of the symmetry group. For
infinitesimal U(x) = 1 + iεa(x)T a we find

A′aµ T
a = (1 + iεbT

b)Aµ(1− iεcT c)− i
g (∂µiεaT

a)(1− iεbT b)
= AaµT

a + iεbA
c
µ[T b, T c] + 1

g∂µεaT
a = AaµT

a − εbAcµfbcaT a + 1
g∂µεaT

a .
(8.57)

For semi-simple groups (see below) one has cyclic, totally antisymmetric structure constants
fabc and so fbca = fabc. We then find

δAaµ ≡ A′aµ −Aaµ = −fabcεbAcµ + 1
g∂µεa . (8.58)

Notice that as anticipated there is no reference to the representation under which the scalar
fields are assumed to transform, and that there are both a g-independent homogenous term,
and a g-dependent inhomogenous one.

The symmetry groups, or gauge groups, we are interested in are direct products of simple
groups and Abelian groups, i.e., G = ×iGi with Gi either simple or Abelian. For example, the
special unitary groups SU(N) are simple; the special orthogonal groups SO(N) are simple; the
groups SU(N)× SU(N) are semisimple; the groups U(1) and SO(2) are Abelian.

A few definitions. An Abelian group is such that all its elements commute with each other. Its

algebra is correspondingly generated by commuting elements, and is thus the direct sum of one-

dimensional commuting algebras. If there are non-commuting elements the group (and its algebra)

are called non-Abelian. A simple Lie group G is one with a simple Lie algebra g, which in turn is a

non-Abelian Lie algebra with no nontrivial ideal. An ideal a is a subalgebra a ⊆ g, i.e., [a, a] ⊆ a,

which is left invariant by the whole algebra, i.e., [g, a] ⊆ a. For a simple Lie algebra the only ideals

are {0} and the whole algebra. A semisimple Lie group is one with a semisimple Lie algebra, which

in turn is such that it has no nontrivial Abelian ideal; equivalently, it is the direct sum of simple

algebras.
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It is an important property of non-Abelian gauge theories that there is a single, unique coupling
constant for each simple factor in the gauge group: if we have several multiplets of matter fields,
they will all be coupled with the same coupling to the non-Abelian gauge fields. This follows
from Eq. (8.58): since the coupling constant to the matter fields enters the transformation
properties of the gauge field to ensure gauge invariance, then it is uniquely defined by these
and must therefore be the same for every matter field. The difference with the Abelian case is
that there one can reabsorb the coupling constant by redefining the transformation law of the
matter fields, so that these become φ→ eigαφ (we focus on the U(1) group case for definitess),
while for the gauge field Aµ → Aµ − i∂µα. At this point nothing prevents us from choosing
different couplings for different fields. In the non-Abelian case this trick would not work, since
the coupling constant would reappear in the homogenous term in the transformation law of the
gauge fields, and would still be constrained to be unique.

Proper (non-projective) irreducible representation of the group U(1) are of the form einα with n ∈
Z. Asking for these representations only would then impose the existence of a single fundamental

U(1) coupling constant, with any other coupling an integer multiple of this. This is actually what

is observed in Nature (the fundamental coupling would be e/3).

Gauge symmetry allows dynamics for the gauge fields Aaµ, similar to that provided by the
Riemann tensor for spacetime connections. Consider the double covariant derivative,

DµDνφ = ∂µ∂νφ− igAµ∂νφ− igAν∂µφ− ig(∂µAν)φ+ (−ig)2AµAνφ . (8.59)

The first three term give an object symmetric under µ↔ ν, and so

[Dµ, Dν ]φ = −ig(∂µAν − ∂νAµ − ig[Aµ, Aν ])φ ≡ −igFµνφ . (8.60)

The field strength tensor Fµν = F aµνT
a measures the curvature of the internal space with gauge

connection Aaµ. One has explicitly

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (8.61)

The first term is familiar from QED, while the second one is typical of non-Abelian gauge
groups, and shows that in this case the gauge fields are self-interacting, even in the absence of
matter. Moreover, the coupling constant is once again the same. The transformation properties
of Fµν can be obtained by direct calculation from those of Aµ, using the simple fact that
U(∂µU

−1) = −(∂µU)U−1, and turn out ot be very simple:

Fµν → F ′µν = UFµνU
−1 . (8.62)

The fields F aµν thus transform properly as an adjoint multiplet, with no inhomogenous term. For
infinitesimal transformations

δF aµν = −fabcεbF cµν . (8.63)

It is now easy to build a gauge-invariant kinetic term for the gauge fields:

LYM = −1
4F

a
µνF

aµν = −1
2trFFµνF

µν , (8.64)

where tr F denotes the trace in the fundamental representation and we have used the usual
normalisation of the corresponding generators tr taF t

b
F = 1

2δ
ab. The Lagrangian Eq. (8.64)is

known as the Yang-Mills(-Shaw) Lagrangian.
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The last ingredient of a realistic gauge theory are fermion multiplets. To promote the usual
globally invariant Dirac Lagrangian to a locally invariant one, one follows the same procedure
as with the scalar fields, replacing the derivative with the covariant derivative,

ψ̄(i/∂ −m)ψ → ψ̄(i /D −m)ψ , (8.65)

where /∂ = ∂µγ
µ, /D = Dµγ

µ, and
Dµ = ∂µ − igAaµta , (8.66)

with the same g but not necessarily the same representation ta of the group generators, [ta, tb] =
ifabct

c. All in all, the Lagrangian of a general gauge theory reads

L = −1
4F

a
µνF

aµν + 1
2(Dµφ)i(D

µφ)i −U (φ) + ψ̄(i /D −m)ψ = LYM + Lmatter , (8.67)

where scalar fields are taken to be real without loss of generality. The first term contains the
A−A interactions, the second one the φ−A interactions and the last one the ψ−A interactions,
all with the same coupling constant. In particular, the FF term reads explicitly

F aµνF
aµν = (∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)

+ 2g(∂µA
a
ν − ∂νAaµ)fabcA

bµAcν

+ g2fabcfadeA
b
µA

c
νA

dµAeν ,

(8.68)

so that both cubic and quartic interactions are present. In Eq. (8.67) a mass term m2AµA
µ

is forbidden by gauge invariance. A term εµνρσF
aµνF bσρ is allowed by gauge invariance but is

forbidden by parity. Furthermore, it is a total derivative which does not affect the equations of
motion.48

Equations of motion are derived in the usual way. One has

∂L

∂(∂µAaν)
= −1

2

∂Fmρσ
∂(∂µAaν)

Fmρσ = −F aµν ,

∂LYM

∂Aaν
= −1

2

∂Fmρσ
∂Aaν

Fmρσ = −gfmabAbµFmνµ = gfabmA
b
µF

mµν = −ig[Aµ, F
µν ]a ,

∂Lmatter

∂Aaν
≡ −Jaν ,

(8.69)

from which it follows in matrix notation

∂µF
µν − ig[Aµ, F

µν ] = Jν . (8.70)

Explicitly, denoting with

(D(A)
µ )ab = δab ∂µ + gfacbA

c
µ = δab ∂µ − ig(−ifcab)Acµ = δab ∂µ − igT

(A)c
ab Acµ (8.71)

the covariant derivative in the adjoint representation, then Eq. (8.70) reads

(D(A)
µ )abF

bµν = Jaν . (8.72)

48This does not mean that it is totally irrelevant: this term is known as the θ-term in QCD, and plays an
important role in such things as, e.g., the axial anomaly and the mass of the η′ meson.
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Gauge invariance imposes that the gauge fields be massless vector bosons. We now show that
massless vector fields have only two physical degrees of freedom. To this end we consider the
free case g = 0, in which case the equations of motion for the gauge fields reduce to

∂µ(∂µAaν − ∂νAaµ) = 0 ,

2Aaν − ∂ν∂ ·Aa = 0 .
(8.73)

Differently from the massive case, taking the divergence of this equation does not lead to non-
trivial constraints, since it gives zero identically. In fact, we are free to replace Aaµ → Aaµ +∂µΛa

for arbitrary Λa and we would still get a solution of Eq. (8.73), which tells us that ∂ · A is not
determined. This redundancy of the field variables is a consequence of gauge invariance, and
further conditions must be imposed to obtain a unique solution to Eq. (8.73) (besides including
initial conditions at some time t). The general solution of Eq. (8.73) is most easily obtained in
momentum space: setting

Aaµ(x) =

∫
d4p

(2π)4
e−ip·xÃaµ(p) , Ãaµ(p) =

∫
d4x eip·xAaµ(x) , (8.74)

the differential equation Eq. (8.73) turns into an algebraic equation,

(p2δνµ − pνpµ)Ãaµ(p) = 0 . (8.75)

The solution of Eq. (8.75) can be decomposed on a complete basis of four-vectors and must be
of the form

Ãaµ(p) = ai(p)εµi (p) + b(p)p̃µ + c(p)pµ , (8.76)

where
pµ = (E, ~p ) ,

p̃µ = (−E, ~p ) ,

εµi (p) = (0, ~εi(~p )) , ~εi(~p ) · ~p = 0 , ~εi(~p ) · ~εj(~p ) = δij .

(8.77)

No relation is assumed for the time being between E and ~p. Clearly p · εi = p̃ · εi = 0, and
furthermore p and p̃ are linearly independent, although p · p̃ = −(E2 + ~p 2). Imposing Eq. (8.76)
we find

p2(ai(p)ενi (p) + b(p)p̃ν + c(p)pν)− pν(b(p)p · p̃+ c(p)p2) = 0 ,

p2(ai(p)ενi (p) + b(p)p̃ν)− p · p̃pνb(p) = 0 .
(8.78)

The term proportional to c(p) drops out of the equation, showing that it is completely arbitrary
and therefore unphysical. Contracting Eq. (8.78) with p̃ we find

[p2p̃2 − (p · p̃)2]b(p) = 0 ,

[(E2 − ~p 2)2 − (E2 + ~p 2)2]b(p) = 0 ,

4E2~p 2b(p) = 0 .

(8.79)

This is solved by b(p) = 0 for arbitrary p.49 Contracting with either of the εi yields instead

p2ai(p) = 0 , (8.80)

49Alternatively, one can choose arbitrary b(p) if either E = 0 or ~p = 0, or both. Zero energy and nonzero
momentum would however yield a negative mass squared, so a tachyonic mode which leads to instabilities. In
general, the constraints on E and ~p are incompatible with the Lorentz transformation properties of the field, so
these solutions must be excluded.
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which is solved by arbitrary ai(p) if p2 = 0 (or otherwise by ai = 0 if p2 6= 0, but this would give
a trivially vanishing field). The solution of the equations of motions is thus

Ãaµ(p) = ai(p)εµi (p) + c(p)pµ , p2 = 0 , (8.81)

for arbitrary ai and c. Since c is unphysical, there are only two degrees of freedom, corresponding
to the transverse polarisations εµi (~p ).

8.5 Spontaneously broken gauge theories: the Higgs mechanism

It is now time to combine gauge theories with spontaneous symmetry breaking, to find that in
this case there are no Goldstone bosons. We discuss first a few examples, before presenting the
general theory.

Example 1: G = SO(2) or G = U(1) It is more practical to use the U(1) version, where the
two real scalar fields are combined into a single complex field. The Lagrangian reads

L = −1
4FµνF

µν + (Dµϕ)∗(Dµϕ)− λ
2 (2ϕ∗ϕ− a2)2 , λ > 0 , (8.82)

where
Fµν = ∂µAν − ∂µAν , Dµ = ∂µ + ieAµ , ϕ = 1√

2
(ϕ1 + iϕ2) . (8.83)

This is an Abelian gauge theory of a complex field with charge −e. The minimal energy is
achieved with Fµν = 0, which implies Aµ = 0 (up to gauge transformations), and with ϕ(x) = ϕ0

with ϕ∗0ϕ0 = a2

2 . We now choose the ground state to be ϕ0 = a√
2
, Aµ = 0, and parameterise

ϕ(x) = 1√
2
(a+ η(x))ei

θ(x)
a . (8.84)

In order to extract physical statements, either classically by solving the Cauchy problem or in
the framework of quantum field theory by quantising the system), we need to fix the gauge. By
means of a U(1) transformation we can always set

ϕ(x)→ e−i
θ(x)
a ϕ(x) = 1√

2
(a+ η(x)) , (8.85)

i.e., impose that ϕ be real. For the gauge field

Aµ(x)→ Aµ(x)− i

−e(∂µe
−i θ(x)

a )ei
θ(x)
a = Aµ(x) +

1

ea
∂µθ(x) ≡ Bµ . (8.86)

Denoting for clarity Fµν(B) = ∂µBν − ∂νBµ and Dµ(B) = ∂µ + ieBµ, we find that

Lgauge fixed = −1
4Fµν(B)Fµν(B) +

(
Dµ(B)a+η√

2

)∗ (
Dµ(B)a+η√

2

)
− λ

2 ((a+ η)2 − a2)2

= −1
4Fµν(B)Fµν(B) + 1

2(∂µη + ieBµ(a+ η))∗(∂µη + ieBµ(a+ η))− λ
2 (η2 + 2aη)2

= −1
4Fµν(B)Fµν(B) + 1

2∂µη∂
µη + 1

2e
2BµB

µ(a+ η)2 − λ
2 (η2 + 2aη)2 .

(8.87)
There are two remarkable aspects in Eq. (8.87). First of all, a mass term has appeared for the
gauge boson Bµ, with mB = ea. Moreover, the would-be Goldstone mode, θ(x), has disappeared,
becoming the longitudinal component of the massive vector boson Bµ. The remaining scalar
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field η, the Higgs field, is massive, with mη = 2a
√
λ. The gauge defined by Eq. (8.85) is called

unitarity gauge, and allows to read explicitly the spectrum of the theory. In fact, the gauge-fixed
Lagrangian Eq. (8.87) can be quantised without the appearance of unphysical modes, and its
particle content is transparent. In terms of the real field multiplet φ = (ϕ1, ϕ2) the vacuum
choice and the gauge choice Eq. (8.85) correspond to imposing

φ0 =

(
a
0

)
, φ =

(
a+ η

0

)
≡ φ0 + φ̃ , (8.88)

which in terms of the SO(2) generator T (see Eq. (8.26)) reads

φ̃TTφ0 = φ̃iTijφ0j = 0 . (8.89)

To see that nothing got lost along the way, let us count the number of degrees of freedom before
and after symmetry breaking:

before after

2 real scalars η, θ = 2 1 real scalar η = 1

1 massless vector Aµ = 2 1 massive vector Bµ = 3

= 4 = 4

(8.90)

so that the totals match.

Example 2: G = SU(2) Consider a doublet ψ of complex scalar fields as in Eq. (8.29), coupled
to the non-Abelian SU(2) gauge fields through Dµψ,

Dµ = ∂µ − igAaµ σ
a

2 , a = 1, 2, 3 . (8.91)

The field strength tensor reads

F aµν = ∂µA
a
ν − ∂νAaµ + gεabcA

b
µA

c
ν , (8.92)

and the Lagrangian of the model is

L = −1
4F

a
µνF

aµν + (Dµψ)†(Dµψ)− λ(ψ†ψ − a2)2 , λ > 0 . (8.93)

The ground state is Aaµ = 0 and ψ†0ψ0 = a2. We choose ψ0 = (0, a) and we write

ψ(x) = ei
θa(x)
a

σa

2

(
0

a+ η(x)√
2

)
. (8.94)

This is the most general field configuration, expressed in terms of a real fluctuation η around
the vacuum ψ0 and of an SU(2) rotation, parameterised by three real fields θa. If we now
choose the gauge by imposing that ψ only has a real ψ2 component, i.e., if we make the gauge

transformation Ω(x) with Ω(x) = e−i
θa(x)
a

σa

2 ∈ SU(2),

ψ′(x) = Ω(x)ψ(x) ,

A′µ(x) = Ω(x)Aµ(x)Ω(x)† − i
g (∂µΩ(x))Ω(x)†

(8.95)
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where Aµ = Aaµ
σa

2 , then

(Dµψ
′)†(Dµψ′) =

(
1√
2
(0, ∂µη) + ig(0, a+ η(x)√

2
)A′µ

)(
1√
2

(
0
∂µη

)
− igA′µ

(
0

a+ η(x)√
2

))

= 1
2∂µη∂

µη + ig√
2

(
(0, a+ η(x)√

2
)A′µ

(
0
∂µη

)
− (0, ∂µη)A′µ

(
0

a+ η(x)√
2

))

+ g2(0, a+ η(x)√
2

)A′µA
′µ

(
0

a+ η(x)√
2

)
.

(8.96)

The middle term vanishes: in fact, since only the lower components of the row and column
vectors are nonzero, the contributions of A′1,2µ σ1,2 are identically zero and only A′3µ σ

3 could
contribute, but in this case the two terms in brackets cancel each other out. Moreover,

A′µA
′µ = 1

4A
′a
µA
′bµσaσb = 1

4A
′a
µA
′bµ(δab + iεabcσc) = 1

4A
′a
µA
′aµ . (8.97)

We conclude

(Dµψ
′)†(Dµψ′) = 1

2∂µη∂
µη + g2

4 A
′a
µA
′aµ
(
a+ η(x)√

2

)2
(8.98)

Dropping the primes, we find for the gauge-fixed Lagrangian

Lgauge fixed = −1
4F

a
µνF

aµν + 1
2∂µη∂

µη + g2

4 A
a
µA

aµ
(
a+ η(x)√

2

)2
− λη2

2

(
2a+ η√

2

)2
. (8.99)

From the quadratic part one can easily read off the degrees of freedom: there is one real massive
scalar η with mass mη = 2a

√
λ, and three massive vectors Aaµ with mass mA = ga√

2
. The SU(2)

symmetry is completely broken, and all three gauge bosons acquire a mass. None of the would-
be massless modes θa is contained in the physical spectrum, as they have been absorbed as the
longitudinal component of the massive vector fields. This is again transparent in the unitarity
gauge, Eq. (8.95). In terms of a quartet of real scalars φ = (φ1, φ3, φ2, φ4) (see Eq. (8.29)), the
gauge group representation is built out of the generators Σa/2,

iΣa =

(
−Imσa −Reσa

Reσa −Imσa

)
. (8.100)

The vacuum φ0 and the fluctuations φ̃ around the vacuum in unitarity gauge read respectively

φ0 =


0
a
0
0

 , φ̃ =
1√
2


0
η
0
0

 , (8.101)

so the unitarity gauge condition reads in this case

φ̃T iΣaφ0 , a = 1, 2, 3 . (8.102)
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This is precisely the request that the Goldstone modes be zero (see after Eq. (8.43)). Let us
check again the counting of degrees of freedom:

before after

4 real scalars η, θa = 4 1 real scalar η = 1

3 massless vectors Aaµ = 6 3 massive vectors Aaµ = 9

= 10 = 10

(8.103)

which again match before and after symmetry breaking.

Example 3: G = SO(3) Let us finally consider gauge group SU(2) with a triplet of adjoint
scalars, or equivalently a triplet of fundamental scalars with gauge group SO(3). The Lagrangian
reads

L = −1
4F

a
µνF

aµν + (Dµφ)T (Dµφ)− λ(φTφ− Λ2)2 , λ > 0 , (8.104)

with φi, i = 1, 2, 3 real fields. The covariant derivative reads

Dµ = ∂µ − igAaµT a , a = 1, 2, 3 , (T a)bc = −iεabc . (8.105)

The representation is in this case orthogonal, with (T a)T = −T a. We take as vacuum configu-
ration Aaµ = 0 and φi = Λδi3. The most general field configuration can be written as

φ(x) = ei(θ
1(x)T 1+θ2(x)T 2)

 0
0

Λ + η(x)

 = U(x)

 0
0

Λ + η(x)

 . (8.106)

No term proportional to T 3 appears in the exponent, since rotations around T 3 leave the column
vector in Eq. (8.106) invariant. In fact, such rotations constitute the SO(2) stability group of the
vacuum, to which the symmetry group breaks down. Unitarity gauge is reached by transforming
φ → φ′ = UTφ, and Aaµ accordingly. In term of the new fields (we drop primes for notational
clarity)

(Dµφ)T (Dµφ) = ∂µφ
T∂µφ+ igAaµ(φTT a∂µφ− ∂µφTT aφ) + g2AaµA

bµφTT aT bφ . (8.107)

Since φa = δa3φ3,

(φTT a∂µφ− ∂µφTT aφ) = T abc(φ
b∂µφc − ∂µφbφc) = T a33(φ3∂µφ3 − ∂µφ3φ3) = 0 , (8.108)

and
φTT aT bφ = (φ3)2(T aT b)33 = −(φ3)2εa3mεbm3 = (φ3)2(δabδ33 − δa3δb3) , (8.109)

we conclude
(Dµφ)T (Dµφ) = ∂µη∂

µη + g2(Λ + η)2(A1
µA

1µ +A2
µA

2µ) . (8.110)

The gauge fixed Lagrangian is thus

Lgauge fixed = 1
2∂µη∂

µη − λη2(2Λ + η)2 − 1
4F

a
µνF

aµν + g2

2 (Λ + η)2(A1
µA

1µ +A2
µA

2µ) . (8.111)
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This time only two of the gauge fields acquire a mass m1,2 = gΛ, while A3
µ remains massless,

corresponding to the fact that the symmetry generated by T 3 is not broken by the vacuum. The
remaining scalar field is also massive, with mη = 2Λ

√
2λ. Counting degrees of freedom we find

before after

3 real scalars η, θ1,2 = 3 1 real scalar η = 1

3 massless vectors A1,2,3
µ = 6 2 massive vectors A1,2

µ = 6

1 massless vector A3
µ = 2

= 9 = 9

(8.112)

again matching before and after the symmetry breaking.

Let us now discuss the general case. Consider a gauge theory with gauge group G, dimG = n,
broken by a set of scalar fields with a Mexican-hat type potential down to H, dimH = n′.
In the case in which G is only a global symmetry, this situation gives rise to n − n′ massless
Goldstone bosons. As we will show now, when the symmetry G is local what happens is that the
n′ gauge bosons corresponding to the generators of H remain massless, the n−n′ gauge bosons
corresponding to the broken generators acquire a mass, and no masslees scalars (Goldstone
bosons) appear in the spectrum. The relevant part of the most general Lagrangian for the
situation under discussion reads

L = −1
4F

a
µνF

aµν + (Dµφ)T (Dµφ)−U (φ) , (8.113)

with positive potential U (φ) ≥ 0, and real scalar fields φ. In a real representation, Dµ =
∂µ− igAaµT a with iT a real and antisymmetric. Assume now that ∃φ0 6= 0 for which U (φ0) = 0,
build the vacuum manifoldM = {Gφ0} (we assume that it is made up of a single G-orbit), and
identify the stability group H, Hφ0 = φ0. Setting φ = φ0 + φ̃ with φ̃ the fluctuations around
the vacuum, we impose the unitarity gauge condition

φ̃iT
a
ijφ0j = 0 , a = n′ + 1, . . . , n , (8.114)

with {T a | a = 1, . . . , n′} spanning the algebra of H. (For a = 1, . . . , n′ Eq. (8.114) is trivially
satisfied.) The condition Eq. (8.114) amounts precisely to setting the would-be Goldstone modes
to zero, and it can be shown that it is an admissible gauge condition.50 The gauge fixed
Lagrangian contains the term

(Dµφ)T (Dµφ) = ∂µφi∂
µφi − igAaµ(∂µφiT

a
ikφk − φiT aik∂µφk) + g2φi(T

aT b)ijφjA
a
µA

bµ , (8.115)

and using the unitarity gauge condition Eq. (8.114) one finds

∂µφiT
a
ikφk − φiT aik∂µφk = ∂µ(φ̃iT

a
ikφ0k − φ0iT

a
ikφ̃k) + ∂µφ̃iT

a
ikφ̃k − φ̃iT aik∂µφ̃k

= ∂µφ̃iT
a
ikφ̃k − φ̃iT aik∂µφ̃k .

(8.116)

From this term originates a cubic interaction term φ̃φ̃A. The quadratic part of Eq. (8.115) reads

(Dµφ)T (Dµφ)|quadratic part = ∂µφ̃i∂
µφ̃i + +g2φ0i(T

aT b)ijφ0jA
a
µA

bµ , (8.117)

50The proof is given in Weinberg’s “The Quantum Theory of Fields”, volume II, CUP.
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and contains a mass term for the gauge fields. The mass matrix reads

M2
ab = g2φ0i(T

aT b)ijφ0j = −g2〈T aφ0, T
bφ0〉 , (8.118)

where angular brackets denote the standard (real) scalar product 〈v, w〉 =
∑

i viwi. The mass
matrix M2 is positive definite: in fact for any set of va ∈ R

vavbM
2
ab = 〈igvaT aφ0, igvbT

bφ0〉 ≥ 0 , (8.119)

since igvaT
a is a real matrix. Since T aφ0 = 0 for a = 1, . . . , n′,

M2 =

(
0n′×n′ 0n′×(n−n′)

0(n−n′)×n′ M̃2
(n−n′)×(n−n′)

)
, (8.120)

i.e., there are still n′ massless vector bosons in the spectrum. The (n − n′) × (n − n′) block
M̃2 can be diagonalised and the masses of the remaining gauge bosons, corresponding to the
generators of the complement of the algebra of H, determined.

As we have already remarked, in unitarity gauge the spectrum of the theory is transparent.
On the other hand, the fate of renormalisability (a gauge theory is renormalisable when the
symmetries are intact) is unclear in this gauge. However, as shown by ’t Hooft and others, there
exist gauges in which renormalisability becomes apparent, at the cost of a less clear particle
spectrum. On the other hand, gauge invariance means that the physics is independent of the
particular choice one makes, so if the theory is renormalisabile in a certain gauge then it is just
renormalisable; and if Goldstone bosons are absent in a gauge, then they are just unphysical
(gauge) modes. We have then obtained a renormalisable way to give mass to gauge bosons.

9 The Standard Model

We have now all the tools to attemps a description of weak interactions in terms of the exchange
of massive vector bosons, taking these as the gauge bosons of a spontanteously broken gauge
theory in order to have renormalisability. Building the appropriate model requires three steps:

1. find the right gauge group G and unbroken subgroup H;

2. find a set of scalar fields that realises the desired symmetry breaking pattern G→ H;

3. choose the representation multiplets of the physical fields.

The phenomenologically successful model is the Glashow-Salam-Weinberg model, which is the
minimal model unifying electromagnetism and weak interactions using a spontaneously broken
gauge theory with group G = SU(2)L×U(1)Y broken to H = U(1)EM (two different U(1) groups
appear in G and H).

9.1 Finding the gauge group

Consider a model world with only e, νe, electromagnetic and weak interactions. The phenomeno-
logically known currents are

jWµ = ν̄eOLµe = ν̄eγµ(1− γ5)e , jEMµ = −ēγµe . (9.1)
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In a gauge theory, such currents are coupled to gauge bosons, leading to

LW = g(jWµ Wµ + jW †µ Wµ†) , LEM = ejEMµ Aµ , (9.2)

with g, e coupling constants, Wµ the W -boson field and Aµ the photon field. There are therefore
at least three gauge bosons, with associated vector currents that are conserved due to the
symmetry under global transformation. The corresponding charges are also conserved. These
read

T+(t) = 1
2

∫
d3x jW0 (t, ~x) = 1

2

∫
d3x (ν†e(1− γ5)e)(t, ~x) =

∫
d3x (νeL

†eL)(t, ~x) ,

T−(t) = 1
2

∫
d3x jW0 (t, ~x)† = T+(t)† ,

Q(t) = −
∫
d3x jEM0 (t, ~x) =

∫
d3x (e†e)(t, ~x) ,

(9.3)

where the factors 1
2 are conventional. Conserved charges are the generators of the symmetry

group, and are part of a Lie algebra. Taking the commutator of T+ and T− we then obtain
another element of the symmetry algebra. Using the canonical anticommutation relations for
fermion fields,

{ψiα†(t, ~x), ψjβ(t, ~y)} = δijδαβδ
(3)(~x− ~y) , (9.4)

where i, j denoted the field type and α, β are the Dirac indices, one finds

T3 ≡ 1
2 [T+, T−] = 1

2

∫
d3x

∫
d3y [νeL

†eL(t, ~x), eL
†νeL(t, ~y)]

= 1
2

∫
d3x [νeL

†νeL − eL†eL](t, ~x) .

(9.5)

This charge commutes with Q, [T3, Q] = 0, but it is independent of T± and Q (it contains the
neutrino field, and is an axial vector). This requires the introduction of a third gauge boson for
the weak interactions. Further commutators do not give rise to new charges, so we are led to a
four-dimensional gauge group.51 Instead of Q it is more convenient to use

Y = 2(Q− T3) , (9.6)

since this combination commutes with T1,2,3, having derived the Hermitian generators T1,2 from
the relations T± = T1 ± iT2. The gauge group is thus the direct product

G = SU(2)L ×U(1)Y ,

SU(2)L ⇒ {Ta | a = 1, 2, 3}
U(1)Y ⇒ Y = 2(Q− T3) .

(9.7)

where the subscript L refers to the fact that this part of the gauge group acts only on the left-
handed component of the matter fields, while the U(1)Y part acts on both the left-handed and

51An alternative would have been to include the left-handed field ēR in the same multiplet, in which case on
would find T3 ∝ Q. This is the basis of the SO(3) model of Georgi and Glashow, which was however disproven
by experiments.
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the right-handed parts.52 The group SU(2)L is the weak isospin symmetry group, while U(1)Y
is the weak hypercharge symmetry group, both entirely unrelated to the isospin and hypercharge
symmetry of the strong interactions in the SU(3) quark model. Since we have now four gauge
bosons but only one long range force associated to the conserved electric charge Q, the group G
must break down to U(1)Q if we want to obtain a realistic theory. We will denote the original
gauge bosons as W a

µ , a, 1, 2, 3, associated to T 1,2,3, and Bµ associated to Y .

9.2 Scalar fields

From previous experience we know that a doublet of complex scalar fields plus a Mexican-hat
potential break SU(2) completely when a vacuum expectation value is developed. We also want
this set of fields to preserve the U(1) subgroup associated to Q when the vacuum expectation
value appears. Since Q = T3 + Y

2 and T3 = ±1
2 for the upper and lower component of the

doublet, respectively, we choose Y = 1 and write53

φ =

(
ϕ+

ϕ0

)
. (9.8)

Clearly [Q,ϕ+] = ϕ+ and [Q,ϕ0] = 0. Since we want to preserve electromagnetic gauge symme-
try, it will be the lower component the one that develops a nonzero vacuum expectation value.
The covariant derivative is

Dµ = ∂µ − igtaW a
µ − i

2g
′Y Bµ , (9.9)

where g, g′ are dimensionless coupling constants, ta are generators of SU(2) in the appropriate
representation, and the factor 1

2 is conventional. Acting on φ it reads

Dµφ = (∂µ − ig τ
a

2 W
a
µ − i

2g
′Bµ)φ , (9.10)

where τa are the usual Pauli matrices, appropriate for a weak isospin doublet. The potential,
up to an irrelevant constant, reads

V (φ) = −µ2φ†φ+ λ(φ†φ)2 , λ, µ2 > 0 . (9.11)

The ground state is chosen to be

〈φ〉0 ≡ 〈0|φ|0〉 =

(
0
v√
2

)
, (9.12)

where v2 = µ2

λ corresponds to the minimum of V , Vmin = −µ4

4λ . Having in mind to impose the
unitarity gauge condition, we parameterise the most general field configuration as(

ϕ+

ϕ0

)
= U −1(~ξ)

(
0

v+η(x)√
2

)
, U (~ξ) = ei

~ξ(x)
v
·~τ
2 ∈ SU(2) , (9.13)

52The full set of global symmetries of a doublet of left-handed fields (νeL, eL) and a singlet eR is SU(2)L ×
U(1)L×U(1)R, where U(1)L,R are chiral phase transformations generated by tL = T 3− 1+γ5

2
Q and tR = − 1−γ5

2
Q,

one acting in the same way on νeL and eL and one acting on eR. Only the combination U(1)Y happens to be
gauged in nature, generated by Y = −2(tR + tL). The other independent combination 2tL + tR, corresponding to
lepton family number, happens to be only global.

53The alternative would be to choose Y = −1 and have the neutral field in the upper component and a negatively
charged field in the lower component. This is nothing but the charge conjugate of φ in Eq. (9.8), so we are not
losing generality.
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with 〈η〉0 = 0 and 〈~ξ〉0 = 0 corresponding to the choice Eq. (9.12) for the vacuum. We then
choose unitarity gauge by making the gauge transformation

φ(x)→ U (~ξ(x))φ(x) = v+η(x)√
2

(
0
1

)
= v+η(x)√

2
χ . (9.14)

The potential reads in this gauge

V = µ2η2 + λvη3 + λ
4η

4 − µ4

4λ , (9.15)

displaying a mass term and (renormalisable) cubic and quartic self interactions of the Higgs field
η. The kinetic term becomes instead

(Dµφ)†(Dµφ) = 1
2(Dµ(v + η)χ)†(Dµ(v + η)χ)

= 1
2χ
†χ∂µη∂

µη

+ 1
2(v + η)χ†(ig τ

a

2 W
a
µ + i

2g
′Bµ)χ∂µη − 1

2∂
µη(ig τ

a

2 W
a
µ + i

2g
′Bµ)χ(v + η)

+ 1
2(v + η)2χ†(ig τ

a

2 W
a
µ + i

2g
′Bµ)(−ig τa2 W a

µ − i
2g
′Bµ)χ

= 1
2χ
†χ∂µη∂

µη + 1
2(v + η)2χ†(g τ

a

2 W
a
µ + 1

2g
′Bµ)(g τ

a

2 W
a
µ + 1

2g
′Bµ)χ .

(9.16)
The second term vanishes due to the unitarity gauge choice. The third term is the (2, 2) com-
ponent of the matrix sandwiched between χ† and χ,

mass term = χ†(g τ
a

2 W
a
µ + 1

2g
′Bµ)(g τ

a

2 W
a
µ + 1

2g
′Bµ)χ

= g2

4 (W 1
µW

1µ +W 2
µW

2µ) + 1
4(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ)

= g2

2

(
W 1
µ − iW 2

µ√
2

)(
W 1µ + iW 2µ

√
2

)
+ g2+g′2

4

(
g√

g2+g′2
W 3
µ − g′√

g2+g′2
Bµ

)(
g√

g2+g′2
W 3µ − g′√

g2+g′2
Bµ

)
.

(9.17)

We now set
cos θW = g√

g2+g′2
, sin θW = g′√

g2+g′2
,

W±µ =
W 1
µ ± iW 2

µ√
2

, Zµ = cos θWW
3
µ − sin θWBµ ,

(9.18)

and write

mass term = g2

2 W
−
µ W

+µ + g2+g′2

4 ZµZ
µ = g2

2 W
−
µ W

+µ + g2

4 cos2 θW
ZµZ

µ . (9.19)

All in all, the mass terms coming from the covariant derivative and the potential terms read

µ2η2 + v2

2 [g
2

2 W
−
µ W

+µ + g2

4 cos2 θW
ZµZ

µ] = µ2η2 +
(gv

2

)2
W−µ W

+µ + 1
2

(
gv

2 cos θW

)2
ZµZ

µ . (9.20)

One then reads off

mη =
√

2µ , mW = gv
2 , mZ = gv

2 cos θW
= mW

cos θW
≥ mW . (9.21)
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All the gauge bosons have Y = 0: W 1,2,3
µ do not couple to Bµ, and Bµ is Abelian and does not

couple to itself. It follows that Q = T3 for the gauge fields, and so Q(W±) = ±1, Q(W 3) =
Q(B) = 0. The gauge bosons W±µ are electrically charged, while the neutral gauge boson Zµ,
and the orthogonal combination

Aµ = cos θWBµ + sin θWW
3
µ , (9.22)

are electrically neutral. It will soon become clear that Aµ, which remains massless after sym-
metry breaking, is nothing but the photon field.

9.3 The fermionic sector

We consider first a model world where the only fermions are e, νe, and the u and d quarks.
Since gauge interactions are chiral, left-handed and right-handed components are independent
and count as different degrees of freedom. The number of chiral (Weyl) fermions is 15: the
leptons eL, νeL and eR, and the quarks uL, dL, uR, and dR, which come in three colours each.
The SU(2)L gauge bosons couple to the left-handed fields, while the U(1)Y couples to both kinds
of handedness but with different couplings. Let us see this in detail. The conserved charges read
now

T+ =

∫
d3x (νeL

†eL + uL
†dL) ,

T− =

∫
d3x (eL

†νeL + dL
†uL) ,

2T3 =

∫
d3x (νeL

†νeL − eL†eL + uL
†uL − dL†dL) .

(9.23)

The choice of multiplets is guided by phenomenology and the known leptonic and hadronic
charged weak currents. The left-handed leptons and quarks form two weak isospin doublets,
while the right-handed electron, up and down are isosinglets

`L =

(
νeL
eL

)
, qL =

(
uL
dL

)
, eR , uR , dR . (9.24)

The electric charge reads

Q =

∫
d3x (−eL†eL − eR†eR + 2

3uL
†uL + 2

3uR
†uR − 1

3dL
†dL − 1

3dR
†dR) . (9.25)

Combining Eqs. (9.23) and (9.25),

Y = 2(Q− T3) =

∫
d3x (−νeL†νeL − eL†eL − 2eR

†eR + 1
3uL

†uL + 4
3uR

†uR + 1
3dL

†dL − 2
3dR

†dR) .

(9.26)
Clearly Y must be the same in each multiplet since [Ta, Y ] = 0, so for a left-handed doublet it
can be computed as YL = 1

2 [2(Q+− 1
2) + 2(Q−+ 1

2)] = Q+ +Q−, i.e., the total electric charge of
the doublet. For singlets clearly Y = 2Q. This can be summarised as twice the average charge
of each multiplet. We can now read off the various values:

Y (`L) = −1 , Y (qL) = 1
3 ,

Y (eR) = −2 , Y (uR) = 4
3 , Y (dR) = −2

3 .
(9.27)
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There is an important theoretical reason why a definite set of fermions with definite quantum
numbers have to be considered together. It is a general fact in quantum field theory that certain
symmetries of the action at the classical level do not survive quantisation. Such symmetries
are called anomalous. A typical example of anomalous symmetries are chiral symmetries, like
the one we are using here for our gauge theory. In the presence of an anomaly, the Noether
current Jµ associated to the global symmetry is no more conserved. This obviously breaks the
gauge symmetry as well, and we lose all the nice properties of a gauge theory. However, the
contributions to ∂µJ

µ can cancel out for the right matter content of the theory: this is what
happens if one choses fermion fields as in Eq. (9.24) and (9.27). The set of leptons and quarks
listed there constitute one generation of fermions, which is anomaly-free.

The fermionic term in the Lagrangian are of the general form

Lfermion = ψ̄i /Dψ −mψ̄ψ −LYukawa(φ, ψ, ψ̄) . (9.28)

Here

Dµψ = (∂µ − igT aWµ − i
2g
′Y Bµ)ψ ,

T a =

{
τa

2 ψ = ψL ,

0 ψ = ψR ,
Y =


− 1 ψ = `L , − 2 ψ = eR ,

+ 1
3 ψ = qL , + 4

3 ψ = uR ,

− 2
3 ψ = dR .

(9.29)

An explicit mass term is forbidden by the chiral nature of the symmetry (already at the global
level), since ψ̄ψ = ψ̄LψR + ψ̄RψL. We have to set m = 0, and rely on a different mechanism to
provide masses to the elementary fermions. This is achieved by means of the so-called Yukawa
terms of the form φψ̄ψ. More precisely, taking into account invariance under the gauge group
G, we have

LYukawa(φ, ψ, ψ̄) = f` (¯̀
Lφ)eR + fd (q̄Lφ)dR + fu (q̄Lφ̃)uR + h.c. , (9.30)

where

φ̃ = iτ2φ∗ =

(
ϕ0

−ϕ+

)
. (9.31)

This field is iτ2 the charge conjugate of φ. The latter is an anti-doublet, transforming as
φ∗ → U∗φ∗ under SU(2)L transformations, but since U∗ = τ2Uτ2 one has φ̃ → Uφ̃, i.e., a
doublet of SU(2)L, with Y (φ̃) = −1. Its introduction is motivated by out desire to give mass to
the u quark. It is now straightforward to check that each of the three terms has total Y = 0.
The dimensionless quantities f`,d,u are known as Yukawa couplings. Going over to unitarity
gauge we find

φ =

(
0
v+η√

2

)
, φ̃ =

(
v+η√

2

0

)
, (9.32)

and so
LYukawa, unitarity gauge = v+η√

2
f` ēLeR + v+η√

2
fd d̄LdR + v+η√

2
fu ūLuR + h.c. , (9.33)

from which the masses of the fermions and their coupling to the Higgs field η can be obtained
straightforwardly,

mi =
vfi√

2
, fi =

√
2mi

v
. (9.34)
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It follows that the larger the mass, the stronger the coupling with the Higgs field. If v is large,
such couplings will be small. Notice that no mass was given to the neutrino.

We finally have to read off the couplings to the physical (mass eigenstates) gauge fields W±µ ,
Zµ, and Aµ. The interaction part of the Lagrangian reads (up to a −i factor)

iLint = g ~Jµ ~W
µ + 1

2g
′JyµB

µ , (9.35)

with
~Jµ = ¯̀

L
~τ
2 `L + q̄L

~τ
2qL ,

Jyµ = −¯̀
L`L + 1

3 q̄LqL − 2ēReR + 4
3 ūRuR − 2

3 d̄RdR .
(9.36)

We now recast Eq. (9.35) in terms of physical fields. We have

iLint = g√
2

[
(J1
µ + iJ2

µ)W
1µ−iW 2µ
√

2
+ (J1

µ − iJ2
µ)W

1µ+iW 2µ
√

2

]
+
(
gJ3

µW
3µ + 1

2g
′JyµB

µ
)
, (9.37)

and taking into account that(
Z
A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

B

)
=⇒

(
W 3

B

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Z
A

)
, (9.38)

we can write

gJ3
µW

3µ+ 1
2g
′JyµB

µ =
(
g cos θWJ

3
µ − g′

2 sin θWJ
y
µ

)
Zµ+

(
g sin θWJ

3
µ + g′

2 cos θWJ
y
µ

)
Aµ . (9.39)

Since Jyµ = 2(JEMµ − J3
µ), we further have that

gJ3
µW

3µ + 1
2g
′JyµB

µ

=
[
(g cos θW + g′ sin θW )J3

µ − g′ sin θWJEMµ
]
Zµ

+
[
(g sin θW − g′ cos θW )J3

µ + g′ cos θWJ
EM
µ

]
Aµ .

(9.40)

But

g sin θW − g′ cos θW = 0 , g cos θW + g′ sin θW = g(cos θW + tan θ sin θW ) = g
cos θW

, (9.41)

and so
gJ3

µW
3µ + 1

2g
′JyµB

µ = g
cos θW

(
J3
µ − sin2 θWJ

EM
µ

)
Zµ + g sin θWJ

EM
µ Aµ

= g
cos θW

J0
µZ

µ + g sin θWJ
EM
µ Aµ .

(9.42)

Since it couples to JEMµ , the field Aµ is identified with the photon field, and the combination

e = g sin θW (9.43)

with the electromagnetic coupling constant. Summarising,

iLint = g√
2

(
J+
µW

−µ + J−µW
+µ
)

+ g
cos θW

J0
µZ

µ + eJEMµ Aµ . (9.44)

We have already found one relation between the phenomenologically accessible quantity e, and
g and θW . Other parameters of the theory that we need to fix are v and the Yukawa couplings
fi. These in turn are known once v and the fermion masses are known. It is possible to relate
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v to the Fermi constant GF , and sin2 θW to the elastic neutrino-electron cross section. In fact,
assuming that mW is large one has that low-energy processes corresponding to a single W -boson
exchange, which are given by the Feynman diagram (in the low energy approximation)(

ig√
2

)2 i

m2
W

〈f |J+
µ J
−µ|i〉 = −i g2

2m2
W

〈f |J+
µ J
−µ|i〉 , (9.45)

are equally well described by the effective interaction

Leff = − g2

2m2
W

J+
µ J
−µ = − g2

8m2
W

jWµ jWµ† = −GF√
2
j+
µ j
−µ , (9.46)

where we took Eq. (9.1) into account to make contact with the phenomenological approach of
the previous sections. We have

GF =
g2

4m2
W

√
2

=
g2

4g
2v2

4

√
2

= (v2
√

2)−1 =⇒ v = 2−
1
4G
− 1

2
F ' 250 GeV . (9.47)

This is a much larger scale than mu,d,e, making the corresponding Yukawa couplings small. A
reasoning similar to the one above shows that for low-energy processes involving the neutral
weak current, i.e., one Z-boson exchange, the relevant Feynman diagram reads(

ig

cos θW

)2 i

m2
Z

〈f |12J0
µJ

0µ|i〉 = −i g2

2 cos θ2
Wm

2
Z

〈f |J0
µJ

0µ|i〉 , (9.48)

where the factor 1
2 is introduced to avoid double counting. This can be equivalently obtained

from the low-energy effective Lagrangian

L 0
eff = − g2

2 cos θ2
Wm

2
Z

J0
µJ

0µ = − g2

2m2
W

J0
µJ

0µ , (9.49)

which shows that the same coupling appears in the charge-current and neutral-current interac-
tions. The neutral current reads explicitly

J0
µ =

∑
i

g
(i)
L ψ̄

(i)
L γµψ

(i)
L + g

(i)
R ψ̄

(i)
R γµψ

(i)
R ,

g
(i)
L,R = T 3(ψ

(i)
L,R)− sin2 θWQ(ψ

(i)
L,R) ,

(9.50)

(cfr. Eq. (1.22)) and its contribution to elastic neutrino-electron scattering is proportional to
the product of currents

1
2 ν̄eLγµνeL ēγµ(a+ bγ5)e , (9.51)

with
a = g

(e)
R + g

(e)
L = −1

2 + 2 sin2 θW , b = g
(e)
R − g

(e)
L = 1

2 . (9.52)

From experimental studies of the cross section of this process one can then determine sin2 θW '
0.22÷ 0.23. This leads to the following prediction for the W -boson mass,

mW =
∣∣∣gv

2

∣∣∣ =

∣∣∣∣ ev

2 sin θW

∣∣∣∣ =

∣∣∣∣∣∣2
− 5

4 eG
− 1

2
F

sin θW

∣∣∣∣∣∣ =
37 GeV

| sin θW |
→ 81.8 GeV , (9.53)
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in good agreement with experiments. Good agreement is obtained also for mZ .
To summarise: in the one generation case there are 15 Weyl (2-component) fermion fields with

definite chirality, 4 vector bosons (3 massive and 1 massless) and one Higgs field. The parameters
in the Lagrangian are g, g′, µ2, λ, fe, fu, fd, corresponding to the phenomenological parameters
e, sin θW ,mW ,mη,me,mu,md. Unification is not complete like in the electromagnetic case, since
there are still two independent coupling constants. By construction baryon and lepton number
are conserved. The results of the model depend heavily on having a single complex doublet of
scalar fields in the unbroken theory.

The generalisation to more generations of fermions is almost straightforward. In fact, by
simply replicating the families one is sure to have an anomaly-free theory. One thus adds four
doublets of left-handed fields and four singlets of right-handed fields, assigning hypercharge in
the same way as with the lightest fermionic generation. However, one cannot exclude mixing
of the various fermion species. To see this explicitly, let us introduce the fermion fields in the
following form,

˜̀
AL =

(
ν̃A
ẽA

)
L

, q̃AL =

(
p̃A
ñA

)
L

, ẽAR , p̃AR , ñAR , (9.54)

where
ẽA = ẽ, µ̃, τ̃ , p̃A = ũ, c̃, t̃ , ñA = d̃, s̃, b̃ , (9.55)

and assign to them weak isospin and weak hypercharge as in the single generation case. These
fields have definite transformation properties under gauge transformation, i.e., they are coupled
to the gauge fields as follows,

Ψ̄ /DΨ =
¯̃
`AL(/∂ − i

2g~τ
/~Wµ + i

2g
′ /Bµ)˜̀

AL + ¯̃qAL(/∂ − i
2g~τ

/~Wµ − i
6g
′ /Bµ)q̃AL

+
¯̃
`AR(/∂ + ig′ /Bµ)˜̀

AR + ¯̃pAR(/∂ − i2
3g
′ /Bµ)p̃AR + ¯̃nAR(/∂ + i1

3g
′ /Bµ)ñAR .

(9.56)

For the Yukawa couplings we have to allow for the mixing of fields with the same quantum
numbers. Quarks and leptons do not mix due to the different colour charges, and quarks of
type p and type n do not mix because of the different electric charges, but any other mixing is
allowed. The most general Yukawa term thus reads

LYukawa = f
(e)
AB(

¯̃
`ALφ)ẽAR + f

(p)
AB(¯̃qALφ̃)p̃BR + f

(n)
AB(¯̃qALφ)ñBR + h.c. . (9.57)

After symmetry breaking in unitarity gauge the mass matrices read

M
(i)
AB =

v√
2
f

(i)
AB , i = e, p, n . (9.58)

These are in general complex 3× 3 matrices without further structure. It is a general theorem
than any such matrix can be transformed to a real positive diagonal matrix by means of a pair
of unitary matrices, SMT † = Mdiag.54 One has then

M
(i)
AB

¯̃
ψ

(i)
ALψ̃

(i)
BR =

¯̃
ψ

(i)
L M (i)ψ̃

(i)
R =

¯̃
ψ

(i)
L S(i)†M

(i)
diagT

(i)ψ̃
(i)
R = S(i)ψ̃

(i)

L M
(i)
diag(T (i)ψ̃

(i)
R )

= ψ̄
(i)
L M

(i)
diagψ

(i)
R .

(9.59)

54As discussed in Weinberg, op. cit., it suffices to use the polar decomposition theorem to write M = HU
with H Hermitian and U unitary. In turn, H = V †DV with D real diagonal and V unitary. If we denote
with Σ the diagonal matrix of the signs of the entries of D, then taking S = ΣV and T † = U†V † one finds
SMT † = ΣV V †DV UU†V † = ΣD, which is real positive and diagonal.
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The fields ψ(i) have definite mass, although not definite gauge transformation properties any-
more. For the quarks charged current one then finds

Jh+
µ = ¯̃qALτ

+γµq̃AL = ¯̃pALγµñAL

= p̄ALγµ[S(p)S(n)†]ABnBL = p̄ALγµUABnBL ,
(9.60)

with UAB the unitary CKM matrix. One then setsd′s′
b′

 = U

ds
b

 , (9.61)

and recovers the phenomenological description of quark mixing. Of course the choice of rotating
only the Q = −1

3 quarks is purely conventional. Repeating now the calculation for the leptonic
current we find

J `+µ = ¯̃eALτ
+γµẽAL = ¯̃νALγµẽAL = ¯̃νALγµS

(e)†
AB eBL = S(e)ν̃ALγµeAL , (9.62)

since the neutrinos are taken to be massless and no corresponding matrix S(ν) appears. One
can now simply define (S(e)ν̃)A = νA, and since all neutrinos are degenerate in mass one still
has massless fields νA, coupled to eA by the charged weak current, and both the νA and the eA
still have definite gauge transformation properties. One then defines the fields νA and eA to be
the neutrinos and the charged leptons with definite lepton flavour, which is then a conserved
quantity. Non-mixing and exact lepton family number conservation would then be a consequence
of mass-degeneracy of the neutrinos. Finally, for the neutral current one has

J0
µ =

∑
i

g
(i)
L

¯̃
ψ

(i)
ALγµψ̃

(i)
AL + g

(i)
R

¯̃
ψ

(i)
ARγµψ̃

(i)
AR

=
∑
i

g
(i)
L ψ̄

(i)
ALγµ[S(i)S(i)†]ABψ

(i)
BL + g

(i)
R ψ̄

(i)
ARγµ[T (i)T (i)†]ABψ

(i)
BR

=
∑
i

g
(i)
L ψ̄

(i)
ALγµψ

(i)
AL + g

(i)
R ψ̄

(i)
ARγµψ

(i)
AR ,

(9.63)

so it has the same form in terms of the mass eigenstates.

9.4 Summary

As a final summary, let us list here the properties of the electroweak sector of the Standard
Model with three generations of fermions:

• gauge group G = SU(2)L ×U(1)Y ;

• 3× 15 = 45 Weyl fermion fields;

• 3 massive (W± and Z) and 1 massless (γ) vector particles;

• 1 Higgs scalar;

• 18 free parameters:
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– 2 gauge couplings e, sin θW ;

– 3 lepton and 6 quark masses (Yukawa couplings);

– 3 Cabibbo angles and 1 Kobayashi-Maskawa phase;

– the W-boson and Higgs boson masses mW and mη (corresponding to the vacuum
expectation value v and to the mass parameter µ);

– the Higgs self-coupling λ.

To this one should add the gauge group of Quantum Chromodynamics (QCD), to obtain the
full gauge group GSM = SU(3)C × SU(2)L×U(1)Y . Each type of quark is a fundamental colour
triplet, while all other matter particles are colour singlets. One has to add the eight massless
gluon (gauge boson) fields of the SU(3) part of the group, and include 1 more parameter, the
dimensionless strong fine structure constant αS (or equivalently the mass dimension 1 QCD
scale ΛQCD).

10 Beyond the Standard Model

Since the completion of the Standard model there has been attempts to extend it, but only one
compelling reason to amend it. An interesting idea about extensions of the Standard Model is
that of Grand Unification, i.e., the attempt to further unify electroweak and strong interactions.
Such attempts have so far failed. While theoretical appealing, Grand Unified theories are not
required to explain experimental results contraddicting the Standard Model predictions (and
usually give prediction that disagree with the experimental evidence). On the other hand, the
Standard Model with its massless neutrinos disagrees with the by now established fact that
neutrinos are actually massive.

The two topics mentioned above are briefly discussed in this section, beginning with the sub-
ject of neutrino oscillations, and concluding with the first (failed) attempt at Grand Unification.

10.1 Neutrino oscillations and the need for neutrino masses

Neutrino masses have a long and complicated history. Initially, when proposed by Pauli, it
was believed that the neutrino had to be very light, but there was no particular reason to
believe it was massless. Later, with the two-component neutrino theory that postulated that
this particle existed only with definite chirality and handedness, it was assumed that it was
massless. At the same time, ideas about neutrino having finite masses and oscillating between
the different flavours started to appear. These ideas go back to one of the most important
neutrino physicists, namely Bruno Maximovich Pontecorvo. It was Pontecorvo who ideated the
experimental technique later used by Raymond Davies to detect solar neutrinos, produced by
the nuclear reactions in the Sun. This technique is based on the following neutrino-capture
reaction,

νe + 37Cl→ e− + 37Ar . (10.1)

However, the flux of solar neutrinos measured experimentally was significantly lower than the
prediction of Bahcall et al.. This came to be known as the solar anomaly, later confirmed by
KamiokaNDE and other experiments. Since only νe could be seen by the detectors, the most
natural explanation of this deficit was that the electronic neutrinos were actually produced in
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the Sun, but along the way turned into a different flavour and so escaped detection. Another
anomaly was found in atmospheric neutrinos: given the charged pion decays,

π+ →µ+ νµ

�

e+ νe ν̄µ ,

π− →µ− ν̄µ

�

e− ν̄e νµ ,

(10.2)

one expects the muonic and electronic fluxes to be in a ratio 2 : 1. This ratio however turned out
to be sensitive to the direction in which the flux was measured: while the fluxes coming from
above showed the expected ratio, those coming from below (after crossing the Earth) showed a
ratio 1 : 1. This again can be explained away by neutrino oscillations. Finally, a third anomaly
that can be explained by neutrino oscillations comes from measurements of the flux of electronic
antineutrinos from nuclear reactors (e.g., KamLAND), which show a dependence of the flux on
the distance from the reactor.

The quantum mechanical description of neutrino oscillations is not particularly complicated.
Consider for simplicity only two families, and assume for generality that neutrinos have masses
ma,b. There is in general no reason to assume that the weak flavour eigenstates (i.e., the neutrino
states that couple directly to e, µ and τ) are also mass eigenstates, and so the former will be
linear superpositions of the latter. When a neutrino is produced in a weak process, its state
has a definite flavour, or lepton family number, as it comes together with a charged lepton. On
the other hand, as they propagate in space, the evolution of their state is determined by their
content in mass eigenstates: these are the ones the evolve simply under temporal evolution.
Given the tiny chance of interacting with anything along the way, the temporal evolution can
be treated as free. Finally, when neutrinos are detected, the state that is detected is again a
flavour/lepton family number eigenstate, as detection is signalled by the production of a charged
lepton. Denoting by |`1,2〉 the lepton-family eigenstates and by |a, b〉 the mass eigenstates with
masses ma,b, the most general parameterisation of the lepton-family eigenstates is55

|`1〉 = cos θ|a〉+ sin θ|b〉 ,
|`2〉 = − sin θ|a〉+ cos θ|b〉 , (10.3)

with θ the mixing angle. As is well known, the state of quantum mechanical system at time t is
determined by its state at t = 0 as |ψ(t)〉 = e−iHt|ψ(0)〉. In our case H is the free Hamiltonian,
and we will assume an initial state |ψ(0)〉 = |`1〉 with definite momentum ~p. Then

|ψ(t)〉 = cos θe−iEat|a〉+ sin θe−iEbt|b〉 , Ea,b =
√
~p 2 +m2

a,b . (10.4)

The probability to detect the same lepton-number eigenstate at time t as the initial one is given
by

|〈`1|ψ(t)〉|2 = | cos θe−iEat〈`1|a〉+ sin θe−iEbt〈`1|b〉|2 = | cos2 θe−iEat + sin2 θe−iEbt|2

= cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos(Ea − Eb)t .
(10.5)

55Since there are only two families, any extra phase factor can be reabsorbed by redefining the phases of the
eigenstates.
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For small ma,b the neutrinos are produced in an ultrarelativistic state, ma,b � |~p |, and so

Ea − Eb =
E2
a − E2

b

Ea + Eb
=
m2
a −m2

b

Ea + Eb
' m2

a −m2
b

2|~p | =
∆m2

2|~p | . (10.6)

Since they travel almost at the speed of light, t ' x, i.e., the distance covered in t from the
production process. Then since flux1(x(t)) ∝ |〈`1|ψ(t)〉|2 we find

flux1(x) = A+B cos
∆m2

2|~p | x , (10.7)

with
A

B
=

cos4 θ + sin4 θ

2 cos2 θ sin2 θ
=

1 + cos2 2θ

1− cos2 2θ
. (10.8)

Oscillation of the neutrino flavour would explain the three anomalies discussed above, but it
requires the non-degeneracy of the neutrino masses. This implies that at least one of the neu-
trinos must be massive. Since oscillations have been experimentally observed, it follows that we
have to abandon the assumption that neutrinos are massless. Obviously, lepton family number
is not conserved anymore.

The generalisation to three families involves the parameterisation of the mixing matrix in
terms of three angle and one ineliminable phase, and three mass-square differences, but is oth-
erwise straightforward. Here are recent experimental results about these quantities.

∆m2
21 = 7.55+0.20

−0.16 · 10−5eV2 , |∆m2
31| =

{
2.50± 0.03 · 10−3eV2 (NO) ,

2.42+0.03
−0.04 · 10−3eV2 (IO) ,

sin2 θ12 = 3.20+0.20
−0.16 · 10−1 , sin2 θ23 =

{
5.47+0.20

−0.30 · 10−1 (NO) ,

5.51+0.18
−0.30 · 10−1 (IO) ,

sin2 θ13 =

{
2.160+0.083

−0.069 · 10−2 (NO) ,

2.220+0.074
−0.076 · 10−2 (IO) ,

δCP
π

=

{
1.32+0.21

−0.15 (NO) ,

1.56+0.13
−0.15 (IO) .

(10.9)
Here NO stands for “normal ordering”, in which case ∆m2

32 > 0, while IO stands for “inverted
ordering”, in which case ∆m2

32 < 0. Which ordering is realised is not determined by current
experiments. With NO one would have m1 < m2 � m3, while with IO one would have instead
m3 � m1 < m2.

How can one modify the Standard Model to account for neutrino masses? The simplest
possibility is to add a mass term analogous to the other ones, i.e., a Yukawa coupling to the
Higgs field,

f
(ν)
AB(

¯̃
`A)Lφ̃(νB)R , (10.10)

with (νA)R the right-handed (more precisely: negative chirality) neutrino fields, and were lepton
mixing has been allowed. Right-handed fields are needed for a Dirac mass term, generated from
the coupling above after spontaneous symmetry breaking. On the other hand, the corresponding
particle, i.e., a right-handed neutrino, would not couple to any of the other particles in the
Standard Model, and would therefore be sterile. The mass matrix reads

M
(ν)
AB =

v√
2
f

(ν)
AB = S(ν)†M

(ν)
diagT

(ν) . (10.11)
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If the leptonic current ν̄AOαL`A is written in terms of definite-mass fields `A for the charged
leptons, the corresponding neutrino fields νA have definite lepton family number (by definition).
The definite-mass fields are obtained by means of a unitary transformation,

νL = S(ν)ν
(mass)
L , νR = T (ν)ν

(mass)
R . (10.12)

The matrix S(ν) relating mass and lepton-family (left-handed) eigenstates is the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, a 3× 3 unitary matrix that can be parameterised (up
to irrelevant, unphysical phases) in terms of three angles and one phase. Lepton number is still
conserved, while lepton family number is not anymore. The right-handed neutrino field νR is a
SU(2)L singlet with vanishing U(1)Y charge (since −y(`)+y(φ̃) = 1−1 = 0), and so is invariant
under the whole gauge group G; as such, it causes no problems with the anomaly.

While very simple, the Dirac mass term discussed above has the obviously annoying feature
that it introduces essentially unobservable particles (which is exactly what Pauli regretted after
his proposal of the neutrino hypothesis). It also has no chance to explain why the neutrino
masses are so small. In addition to the Dirac mass term, the G-singlet field νR (with definite
flavour), which as such is a truly neutral fermion, can take a Majorana mass term. Majorana’s
condition for neutrality of νR is (νR)c = νR, where (νR)c = Cν̄TR with C = −iγ2γ0. One then
finds (νR)c = −iγ2ν∗R. The Majorana mass term reads56

LMaj =
1

2
mM ν̄R(νR)c + c.c. . (10.13)

Such a term violates lepton number, but no other symmetry, and incidentally leads to predict
neutrinoless double-beta decay processes, which would then provide an experimental signature
(unobserved so far). It must be noted that (νR)c is actually a left-handed field so that the
Majorana neutrino, which is equally an antineutrino, appears with both chiralities. If one know
puts together the Dirac and Majorana mass terms, one finds

L =
1

2
ν̄cMν , ν =

(
νL

(νR)c

)
(10.14)

with ν a doublet of left-handed fields, and M the mass matrix

M =

(
0 mD

mD mM

)
. (10.15)

This matrix is easily diagonalised yield the eigenvalues

m± =
1

2

(
mM ±

√
m2
M + 4m2

D

)
. (10.16)

Since mM would be the origin of lepton-number breaking, it is natural to assume that it is a
large mass scale, possibly related to new physics. In the limit mM � mD one then finds57

m+ ' mM , m− ' −
m2
D

mM
, (10.17)

56More generally, one can introduce mass terms ¯ν`RM``′(ν`′R)c, which can be diagonalised yielding Majorana
terms.

57The sign of m− is not problematic, as it can be changed by redefining ψ → γ5ψ.
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and for the definite-mass fields

N ' (νR)c +
mD

mM
νL , ν ' νL −

mD

mM
(νR)c . (10.18)

The N field has a large mass and small coupling to the active neutrino field νL, so it corresponds
to a heavy neutrino weakly interacting with other matter. The ν field instead is essentially the
same as νL, and has naturally a small mass: a reasonable expectation for mD would be for it to
be of the same order of the mass of the corresponding charged lepton, and the factor mD/mM

leads to a strong suppression. The suppression mechanism described above is known as the
see-saw mechanism.

10.2 Grand Unification Theories

The Standard Model has gauge group GSM = SU(3)c × SU(2)L × Uy, with a different coupling
associated to each factor of the group. It is then not truly unified, i.e., containing a single
coupling constant governing all the types of interactions. To some, this is an unsatisfactory
aspect. The idea of further unification is based on finding a bigger gauge group with a single
coupling constant from which the Standard Model group GSM will be obtained via symmetry
breaking. The minimal possibility to do this is to use the group SU(5). This group infact
contains GSM and has rank 4, i.e., the same rank as GSM, meaning that it has four commuting
generators that can be identified with t3, t8, T3, Y . Moreover, SU(5) is the only rank-4 group
that admits complex representations (required by the chiral structure) which can accommodate
the matter spectrum of the Standard Model (including their electric charge) without introducing
new matter.

The group SU(5) is the 24-dimensional Lie group of 5-dimensional unitary unimodular ma-
trices. Being a simple group, using it as the gauge group introduces a single coupling constant.
Besides the known gauge bosons, this group would come with 24 − (8 + 3 + 1) = 12 new ones.
Among its diagonal generators there is

λ24 =
1√
15

diag(2, 2, 2,−3− 3) , (10.19)

where the first three entries are proportional to the hypercharge Y of dcL ∼ d∗R, and the last
two to the hypercharge of `L. Here ψcL = Cψ̄TR = −iγ2γ0ψ̄TR = −iγ2ψ∗R. In other words, λ24

represents the hypercharges of the Standard Model particles up to a common normalisation.
Being diagonal in its upper SU(3) and lower SU(2) subgroups, if we embed the SU(3)c and
SU(2)L factors of GSM in the upper and lower corners,(

SU(3) 0
0 0

)
,

(
0 0
0 SU(2)

)
. (10.20)

then one finds [λ24, GSM] = 0. One needs now group representations for the matter particles,
and a suitable symmetry-breaking pattern. Consider the 5̄F (antifundamental) representation,
and organise the three colours of the negatively-charged quark and the leptons of one generation
of the Standard Model matter fields as follows,

dc1
dc2
dc3
e−

−νe


L

. (10.21)
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The first three components correspond to the (3̄,1) representation of SU(3)c × SU(2)L ⊂ GSM,
the last two to the (1,2) representation. The corresponding 5F representation,

d1R

d2R

d3R

e−cL
−νceL

 , (10.22)

would contain instead right-handed fields and is not used. Next, organise the remaining matter
fields in the 10 representation of SU(5), i.e., the antisymmetric part of 5F ⊗ 5F = 10⊕ 15,

0 uc3 −uc2 u1 d1

0 uc1 u2 d2

0 u3 d3

0 e+

0


L

, (10.23)

where the entries below the diagonal are such that this matrix is antisymmetric. The top-left
block is an SU(2)L singlet and contains the antisymmetric part of the 3⊗3 = 3̄⊕6 representation
of SU(3)c, i.e., the 3̄. The top-right block transforms as (3,2), and the bottom-right block as
(1,1). In fact, this block is the antisymmetric part of the 2 ⊗ 3 = 1 ⊕ 3, i.e., the 1, and
corresponds to the field eR. Eq. (10.21) and (10.23) display precisely the matter content of one
generation of the Standard Model. The number of generations would remain unexplained in this
framework. Writing now

T3 =
1

2

(
0 0
0 τ3

)
, (10.24)

we have for the electric charge

Q = T3 +
Y

2
= T3 + c

λ24

2
, c = −

√
5

3
, (10.25)

and we find
Y (5̄F ) = (+2

3 ,+
2
3 ,+

2
3 ,−1,−1) ,

Q(5̄F ) = (+1
3 ,+

1
3 ,+

1
3 ,−1, 0) ,

Q(10) =


0 −2

3 −2
3 +2

3 −1
3

0 −2
3 +2

3 −1
3

0 +2
3 −1

3
0 1

0

 ,

(10.26)

where we used Q(10) = Qrow(5) + Qcolumn(5) = −(Qrow(5̄) + Qcolumn(5̄)). We then find that
Y and Q match those of the Standard Model, and moreover that the right representations of
SU(3)c × SU(2)L are obtained. The gauge bosons transform under the 24 representation and
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can be organised as follows (5⊗ 5̄ = 1⊕ 24),

Aµ =


Gijµ + 2√

30
Bµδ

i
j

X1c
µ Y 1c

µ

X2c
µ Y 2c

µ

X3c
µ Y 3c

µ

X1
µ X2

µ X3
µ

Y 1
µ Y 2

µ Y 3
µ

1√
2
W 3
µ −

√
3
10Bµ W+

µ

W−µ − 1√
2
W 3
µ −

√
3
10Bµ

 , (10.27)

where Gij ∼ (8,1) correspond to the gluons, W±,3 ∼ (1,3) correspond to the intermediate

vector bosons, B ∼ (1,1) correspond to the hypercharge generator (eventually mixing with W 3

to yield the Z0 and the photon), and X,Y ∼ (3̄,2) are twelve new gauge bosons.58 Their electric
charges can be read out of

Q†AµQ = (Q(5̄) +Q(5))Aµ , (10.28)

and read QX = −1
3 − 1 = −4

3 and QY = −1
3 + 0 = −1

3 .
As a first step to achieve the desired symmetry breaking pattern, we need to give mass to

X and Y . With the appropriate potential for an adjoint Higgs field H, transforming in the 24
representation, one gets

〈H〉 = vλ24 , (10.29)

which breaks SU(5) → GSM (recall [λ24, GSM] = 0). After that, we break GSM → U(1)Q as
was done before, and we get back the Standard Model plus new bosons. The SU(5) covariant
derivative reads

Dµ = ∂µ + ig5

24∑
a=1

Aaµ
λa

2
, (10.30)

while the Standard Model one reads

Dµ = ∂µ + ig3

8∑
a=1

Gaµ
λaGM

2
+ ig

3∑
a=1

W a
µ

τa

2
+ ig′Bµ

Y

2
. (10.31)

Comparing the two equations, and recalling that Y = −
√

5/3λ24, we find

g3 = g = g5 , g′ = −
√

3

5
g5 , (10.32)

from which we get

tan θW =
g′

g
= −

√
3

5
. (10.33)

From

sin2 x =
tan2 x

1 + tan2 x
(10.34)

we then obtain sin2 θW = 0.375, which differs from sin2 θexp
W = 0.212023. Moreover, this model

predicts g3 = g, i.e., unified strong and weak coupling. This is known to be not true experi-
mentally at low energies (recall that couplings “run” with energy, i.e., are energy dependent).

58Notice that Xc, Y c ∼ (3, 2̄).
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Figure 13: |∆B| = 1 processes in the SU(5) GUT.

However, the identification of the two couplings should be done at some high energy scale MX

of the order of the masses of the new bosons, i.e., the scale at which the full SU(5) symmetry
breaks down. The running of the Weinberg angle in the unified theory reads (for three Standard
Model families)

sin2 θW (µ) =
3

8
− 55

24π
α(µ) ln

Mx

µ
, (10.35)

where α(µ) is the running QCD coupling and µ the energy scale of the relevant process. Imposing
sin2 θW = 0.22 − 0.23 at low energy (i.e., at µ ∼ MZ), we find that θW (µ) reaches the grand
unification value at µ = MX ∼ 4 · 104GeV.

A drawback of this model is that while B − L is still conserved, B and L separately are
not conserved anymore. In particular, the new bosons mediate proton decay at tree level: since
leptons and quarks are in the same multiplet, this is to be expected (it is like u→ d via W boson).
This makes, e.g., p→ e+π0 (∆B = −1, ∆L = −1) allowed, while n→ e−π+ (∆B = −1, ∆L =
1) remains forbidden. On the other hand, ∆B 6= 0 processes are suppressed due to the large
mass of the new bosons. In any case, so far no proton decay has been observed experimentally.
The current bound on the proton lifetime resulting from this null result is τproton > 1034 years.

The lifetime predicted by the SU(5) GUT model, τ ∼ M4
X

m5
p

,59 is τ ≈ 1030 ÷ 1031 years, so this

model is experimentally disproved. Notice that τ is very sensitive to MX , which is constrained
by low-energy phenomenology (e.g., sin2 θW ). Variations (non-minimal, either supersymmetric
or not) exist, and all predict proton decay; still, no proton decay has been observed so far.
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