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Figure 1: Generic exchange of an intermediate vector boson between weakly interacting particles.

1 Introduction

Weak interactions are one of the four fundamental interactions in Nature. Weak interactions
are responsible for a wide variety of phenomena, including S-decays of nuclei and other hadronic
decays (pions, kaons, hyperons), decays of elementary particles (muons and taus), and reactions
of astrophysical relevance involving neutrinos. They are also fully responsible for parity-violating
effects, including in atomic spectra. All elementary particles (quarks and leptons) interact
weakly, in an essentially universal manner.

Weak interactions are the least symmetric of interactions, and violate a large number of con-
servation laws, namely P, C, C'P, TE] and most flavour symmetries. The only symmetries fully
respected are Poincaré, C'PT, baryon and lepton numberﬂ From a modern perspective, they
are described in a unified fashion together with electromagnetism in terms of a spontaneously
broken gauge theory of the group SU(2)xU(1). In the resulting theory, the electromagnetic
part of the interactions corresponds to the exchange of massless, electrically neutral photons
between electrically charged particles. The weak part corresponds instead to the exchange of
massive bosons between particles: these are the charged W bosons mediating the charged
weak interactions (my ~ 80GeV), and the Z° boson mediating the neutral weak interactions
(mz ~ 90 GeV). These are also known collectively as intermediate vector bosons (see Fig. [1)).

In this section we provide a brief historical introduction and a discussion of the most im-
portant aspects of the weak interactions. In the subsequent sections we will follow mostly a
phenomenological approach, avoiding the intricacies of the electroweak theory. A more detailed
discussion of this subject is postponed till after most of the phenomenology has been dealt with.

1.1 Historical notes

We start with a brief history of weak interactions, based on Chapter 21 of Ref. [2] and on
Chapter 3 of Ref. [3], where one can also find lists of the original references. Further sources are
the biographical pages Ref. [4], and Ref. [5] on the neutrino hypothesis.

"When CP is violated, violation of T is automatic if elementary particles are described by a Poincaré-invariant
local quantum field theory, due to the CPT theorem.

2If one insists on massless neutrinos, lepton family number is also a good symmetry. Also, tiny nonperturbative
effects are expected to violate baryon (B) and lepton (L) number separately, leaving only B— L as a symmetry [I].



From radioactivity to the neutrino hypothesis The history of weak interactions begins
with the discovery of radioactivity by Henri Becquerel in 1896. He discovered that a uranium salt
(potassium uranyl sulfate) emitted some invisible radiation that could expose a photographic
plate, even if this was wrapped in opaque paper. In 1898 this phenomenon was observed also
with thorium by Schmidt and, independently, by Marie Sktodowska Curie, who named it “ra-
dioactivity”, and new radioactive materials, polonium and radium, were discovered by Pierre
and Marie Curie with Gustave Bémont. Work on finding out what was the origin of the rays
emitted by radioactive material led to major breakthroughs, and ultimately to the establishment
of the whole new branch of particle physics. In 1899 Ernest Rutherford distinguished «, 8 and ~
rays, corresponding to radiation with increasing penetrating power. In 1900 Becquerel measured
mass and charge-to-mass ratios of the § rays and showed that they were electrons, that had been
discovered only three years earlier in 1897 by J. J. Thomsonﬂ In 1911 Rutherford established
the existence of the atomic nucleus, and in 1913 Bohr suggested that S-rays originated there.
In 1914 Chadwick showed that [-rays had a continuous energy spectrum. This was in
contradiction with the quantum-mechanical idea that nuclear energy levels were discrete, and
became a major puzzle. The possibility that a continuous spectrum was due to the effect
of interactions on their way out of the nucleus was definitively excluded in 1927 by Ellis and
Wooster. Studying the 3-decay 2{9Bi — 219Po (in modern language), they found that the energy
release of the reaction, measured in a calorimeter, did not equal the maximal possible energy
of the p-rays, but rather their average energy. One way out of this problem was to assume
non-conservation of energy (or rather, conservation only on average, in a statistical sense: this
was the position of Bohr). Another, for the times possibly more extreme solution was suggested
by Pauli in 1930: a new type of spin—% particle was emitted in the decay process, which went
undetected and carried away the missing energy. This was the neutrino hypothesis, although
Pauli initially called the new particle “neutron” and thought it was a very light constituent of
the nucleus. In 1932 Chadwick discovered the actual neutron, although this was thought by
most to be a composite object, made of a proton and an electron - except by Majorana, who
called it “neutral proton”. In 1933-34 Fermi proposed his groundbreaking theory of $-decay
based on the reactionlﬂ n — pe V., postulating that an electron and a neutrino were created
at their emission when a neutron turns into a proton (regarded at this point as elementary
particles), without being previously present in the nucleus (the same suggestion was made by
Francis Perrin in 1933). This theory achieved a good description of experimental results.

Fermi theory of 5-decay The theoretical background inspiring Fermi for his proposal were
QED, the prototype of any successful quantum field theory so far, and Heisenberg’s proposal
that proton and neutron were two different states of the same particle. QED suggests that the
interaction couples two vectors, which in the case of electromagnetism are the electric current
and the photon field. Replacing the proton electric current with a neutron-proton current,
and the gauge field with a neutrino-electron current, Fermi wrote the interaction part of the
Hamiltonian as

Hli;rétrmi = G/dgac (13(3:)7“ n(x)) (é(a:)fy“ I/(w)) +h.c., (1.1)

3In the presence of a magnetic field, o and 3 rays where deflected in opposite directions, and ~ rays not at all.
The o and v rays are now known to be helium nuclei, 3He, and highly energetic photons, respectively.

4We are running ahead of time and distinguishing neutrinos from antineutrinos, and electronic from muonic
neutrinos. These distinctions were unknown to Fermi.



where p(z), n(x), e(x) and v(z) are the fermionic fields corresponding to the various parti-
cles, “h.c.” stands for “Hermitian conjugate”, and G is a constant (now named “Fermi con-
stant”) with dimensions of inverse mass squared. Comparing predictions from his theory with
experiments, Fermi concluded that the neutrino had to be massless or very light, and that
G ~0.3-107°GeV~? (this should be confronted with the modern value G' ~ 1.1-107° GeV~2).
While the neutrino hypothesis proved to be phenomenologically successful, neutrinos remained
elusive, and could be directly detected only in 1956 by Reines and Cowan, studying the inverse
reaction 7, +p — n + €T, as proposed by Pontecorvo in 1946. An experiment by Davis in 1959
showed that neutrinos and antineutrinos were different particles[]

Theoretical progress was achieved by Gamow (1936) who generalised Fermi’s Hamiltonian
Eq. , a necessary step to allow for the description of more general 3-decay processes. Sticking
to four-fermion, non-derivative couplings one finds that the most general Hamiltonian is of the
form

Hént = —/d3a: Eﬂim(m),

5
L5 () = = Y 95 (p(e) M n(@)) (e(@) M7 v(@)) + g (p@) M; (@) (e(x) M v(x)) + hic.
j=1

(1.2)
where M7 = 1,+° ,4* y*+° 0" and R g} are (generally complex) coupling constantsﬂ The
requirement of 7" invariance imposes that g;, g;- be real. The requirement of P invariance imposes
that all the g; are zero. These seemed perfectly reasonable requirements at that moment.

The muon and universality of the weak interactions While theory underwent these
developments, from the experimental side a new particle emerged, the muon. Discovered in
cosmic rays in 1936 by Anderson and Neddermayer and initially mistaken for Yukawa’s meson,
it gained its modern status in 1947, after that Powell, Occhialini and Lattes showed that another
particle, the pion, also present in the cosmic rays, was actually Yukawa’s meson. The muon,
in fact, did not interact strongly, and was essentially a heavier relative of the electron, that
decayed weakly via 4~ — e~ . v,. The existence of two types of neutrino was later demonstrated
experimentally by Lederman and collaborators in 1962. In 1947 Pontecorvo suggested that weak
interactions coupled muons and electrons to hadrons in the same way (u-e universality), and in
1948 Puppi inferred the approximate equality of couplings in muon decay and in 8-decays. This
suggested universality of weak interactions, i.e., that they affected equally leptons and nuclei.

Parity violations Still from the experimental side, the 1950s and 1960s saw the discovery of
a large number of new hadrons, that often showed weak decays, sometimes involving leptons in
the final state (semileptonic processes) and sometimes not (nonleptonic processes). This led to
ask if a new term should be added to the Lagrangian for each new hadron, a clearly annoying
kind of situation. Before we discuss this issue, though, it is interesting to focus on one particular
puzzle that led to one of the most important breakthroughs in 20th-century physics. This was

5This is the case if lepton number is conserved. Since neutrinos actually have small but nonzero mass, it is
not excluded that they are fermions of Majorana type, identical to their own antiparticle, which would lead to
lepton number violations.

6 Terms differing by a permutation of the fields p(z), n(z), e(z) and v(x) can be reduced to those in Eq.
making use of the so-called Fierz transformations. The matrices M; are the matrices M7 with covariant indices.



the so-called 6-1 puzzle: the scalar particles then named 6 and 7 displayed the following decay
modes,
0t -t at ™, T s atal, (1.3)

which suggested that they had parity —1 and 41, respectively. Very surprisingly, these two
particles had the same mass and lifetime, a rather unexpected coincidence. In 1956 Lee and
Yang proposed that the two particles were in fact the same particle (now known as the K1), and
that weak interactions did not conserve parity. They showed that previous experiments could
not disprove parity violations in weak processes,m and suggested new experiments to test their
proposal. Such experiments were performed in 1957 by Wu and collaborators, and by Garwin
and collaborators, confirming the violation of parity in weak interactions.

V — A structure of the interaction Violation of parity was a rather shocking result, but it
led to finally understand the correct form of the weak Lagrangian, clarifying the so-called V — A
structure of the interaction: for S-decays,

_Gs

Zint _
g V2

(p(2)y*(1 = £59°) (@) (e(@)ra(1 = 2°) ve(@)) + hec., (1.4)

while for muon decays

Z = _\Cj%(ﬂ(:v)v"(l — V) (@) (e(2)7a(l = 7°) ve(x)) + hoc., (1.5)

where Gz and G, have dimensions of inverse mass squared, and gy /g4 is a real dimension-
less constant. This was understood in 1956-57 thanks to works by Salam, Landau, and Lee
and Yang; and by Feynman and Gell-Mann, Sudarshan and Marshak, and Theis. Of course,
starting from the general form Eq. , the breaking of parity implies that the couplings g;
need not vanish. The two-component neutrino hypothesis, stating that neutrinos have definite
helicity (Salam, Landau, and Lee and Yang), reduces the number of couplings back to five. This
hypothesis implies that only a specific definite-handedness part of the neutrino fields enters
the Lagrangian. This was confirmed experimentally by Goldhaber and collaborators in 1958,
showing that neutrinos were left-handed particles. Extending this assumption to all the fields
(Feynman and Gell-Mann, Sudarshan and Marshak) immediately entails Eq. and . As
anticipated above, very similar couplings were found in the two cases, with G3/G,, ~ 0.98. The
fact that the same coupling works for a pointlike particle like the muon and an extended one
like the nucleon is reminiscent of what happens with the electric charge, which is the same for a
positron and a proton. This led to the fruitful conserved vector current (CVC) hypothesis, i.e.,
that the hadronic current was a conserved current (Gershtein, 1956, and Feynman, 1958).

From hadronic currents to the quark model We now return on the proliferation of
hadrons, and how to achieve their description. It was known (Feynman, 1958) that one did
not have to add a new term for each hadron, but that only a few hadronic currents with the
appropriate quantum numbers sufficed. On the other hand, these had to be postulated, since
no fundamental description was available for hadrons. This changed in 1964 with the quark

" Actually, parity violations in weak interactions are already borne out of the experiments of Cox (1928) and
his student Chase (1930).



hypothesis (Zweig, 1964; Gell-Mann, 1964), i.e., the assumption that hadrons were bound states
of quarks, and that the fundamental objects appearing in the weak Lagrangian were the quark
currents. Nuclear S-decay and charged-pion decay would then be two manifestations of the same
decay process of the d quark, d — uwe™ I, in the first case appearing in the combination ddu of
a neutron in a nucleus, and in the other case appearing in the combination d@ of a 7w™. This
would require a quark current of the form

iy (1 —~°)d. (1.6)

However, this could not possibly be the whole story, since it would not allow strangeness-changing
processes, like the K decays of Eq. (1.3), or Kt — 7 v,. The solution proposed by Cabibbo
(in 1963, so still in terms of hadronic currents) was to modify Eq. (1.6)) to

(1 —~")d — a1 —~°) d’, d = cosfcd + sinfcs. (1.7)

This solved several standing issues at once: it made possible to explain strangeness-changing
processes, and to explain the difference between G, and Gz while essentially retaining univer-
sality of the charged current, if the latter was expressed in terms of the “rotated” quark field d'.
The angle 0¢ is known as the Cabibbo angle. From experimental results on S-decays and muon
decays one finds cosc = Gg/G,, ~ 0.98, and from the semileptonic decays of the K one finds
instead sin 8¢ ~ 0.21, which are consistent with each other.

Neutral currents and the charm quark Although Cabibbo’s proposal described very
successfully all the semileptonic processes known until 1973 (nonleptonic processes are more
complicated to describe, as they involve a yet underdeveloped knowledge of hadrons), further
theoretical work did not stop, and finally found experimental confirmation in 1973 and 1974.
Between 1963 and 1968 a unified theory of electroweak interactions was developed by Glashow,
Weinberg, and Salam (see below). This predicted, among other things, the existence of electri-
cally neutral currents, besides the well known charged ones, responsible for a new type of weak
interaction. In 1973 processes mediated by these neutral currents were observed experimen-
tally by the Gargamelle experiment (Hasert et al., 1973-74), in particular antineutrino-electron
scattering v, e~ — Dee”, and elastic (anti)neutrino scattering on nuclei, i.e., on quarks. In
1974 the J/v resonance was observed, and quickly recognised as evidence of a fourth type of
quark, the charm c. Such a particle had been proposed by Glashow, Iliopoulos and Maiani
in 1970 (GIM mechanism) to explain the experimentally observed suppression of certain weak
processes. These discoveries made a convincing case for the electroweak unified theory, and for
the microscopic theory of strong interactions that had emerged from the quark model, namely
Quantum Chromodynamics, or QCD (Gell-Mann, Fritzsch, Leutwyler, 1973), and established
what is now known as the Standard Model of particle physics.

The unified electroweak theory The ideas underlying the electroweak theory date back to
Yukawa, who in 1935 suggested that, similarly to QED, weak interactions could be mediated
by the exchange of some intermediate bosonﬁ instead of coupling directly four fermions. Such
boson would be very massive, contrary to the photon that is massless, resulting in an interaction

8In Yukawa’s intentions, this boson would have mediated both weak and strong interactions. Using different
bosons for the two interactions does not change the argument.



of very short range, compared to the infinite range of the Coulomb interaction. In fact, in the
nonrelativistic limit the effect of such exchanges is described by the Coulomb and Yukawa
potentials, respectively,

2 2

¢ I emmwr (1.8)

VCoulomb(F) = m ) VYukawa(F) = At )

where ¢ is a coupling constant and myy the mass of the intermediate boson. While in the
massless limit myy — 0 the Yukawa potential reduces to Coulomb potential, in the large mass
limit my — oo one finds insteadﬂ

g -
Wakawa (1) ———— —5-6@(7), (1.10)
i.e., it reduces to a point-like interaction with coupling G = Tg—j. Equivalently, from the rel-
w

ativistic point of view the exchange of a massive boson brings a factor g?/(m¥, — p®) in the
scattering amplitude, where p is the momentum carried by the boson. In the limit of very large
mass, this reduces to the same constant G. Notice that if one assumes that the weak coupling

¢ and the electric charge e are of the same order, g% ~ €2, one finds
2 2
g e Ao 9
my, = SEs= (90 GeV)* (1.11)

that compares well with the modern measurements myy ~ 80GeV. The main reason to go
beyond the four-fermion theory is its bad behaviour at high energy, which can be foreseen by
the mass dimension of the Fermi coupling. Introducing a massive intermediate boson does
not solve completely the problem, and a further trick is needed, namely the generation of the
boson masses via spontaneous symmetry breaking, the so-called Higgs mechanism (Higgs, 1964;
Brout and Englert, 1964; Guralnik, Hagen and Kibble; 1964). The original development of the
unified electroweak theory is due to Glashow (1961), Weinberg (1967), and Salam (1968). When
everything is put together one obtains a well-behaved theory, that has so far been very successful
in describing experiments. In this theory weak interactions are mediated by three massive vector
bosons, the W+ and the Z°: these were experimentally observed in 1983 by the UA1 and UA2
collaborations at CERN. This theory also predicts the existence of a massive scalar particle, a
leftover from spontaneous symmetry breaking: this is the Higgs boson H, observed in 2012 by
the ATLAS and CMS collaborations at CERN.

1.2 Overview

After this historical excursus, we give here an overview of the theory in its pre-electroweak
form (but in modern language). This corresponds to the low-energy limit of the electroweak
theory, in which W, Z-boson exchanges are replaced by a four-fermion local interaction. This

9To see this, notice that for any function f(7)

2 —mwyr 2 i —x =
[ )1 (7) = o [t ) = s [ g GE)

- 2 - 2 my
4mms, 4mms,

2 oo 2
- I f(O)/dQ/O deze ™ = -2 f(0).

myy —oco 4Tmyy, m%v




is due to the fact that at low energies the square of the momentum flowing in internal boson
lines is much smaller than the square of the masses of the intermediate vector bosons, and can
therefore be neglected compared to them. The W and Z propagators are then replaced by
constants, corresponding graphically to the corresponding internal lines shrinking to a point.
This approximation already provides an excellent tool to do quantitative calculations in many
cases of interest, while avoiding the technicalities of the full theory. Furthermore, it allows one
to see clearly how matter particles are coupled by the weak interactions, without distractions
from the intricacies of gauge theories. I mostly follow Ref. [6].

Low-energy Lagrangian In the low-energy limit, the weak Lagrangian reads
Lt = Bt + 4 (1.12)

with o a

j‘}[r}’tch: _ﬁ JaTJa, g&{/}fo = _ﬁ JOOCJOQ’ (113)
where “ch” and “0” refer to the charged and neutral interaction, respectively. The currents
J and J§ are the charged and neutral currents, respectively. The charged current is further

decomposed into a leptonic and a hadronic part,

Jo = JP+Jg, (1.14)
with -
T =e0f v+ i0F v, +70F v, = Y LO%uy,
l=e,pu,T (115)
Jr=d O%u+50%c+b 0%,
where
0 =71*(1-7"), (1.16)

¢ and v, are the fields of the charged leptons and of the neutrinos, u,c,t are the fields of the
positively charged quarks and

dl Vud Vus Vub d
S1=\Vea Ves Va s|=Vexkm [ s ], (1.17)
v Via Vis Vi b b

with d, s, b the fields of the negatively charged quarks. The Dirac adjoint fields are denoted with
Y = 140, Here 4* and +° are the usual gamma matrices, which read (in Dirac basis)

1 0 ; 0 ot 0 1
0 _ 1 __ ) P 5: - 0,12 3:
7= (0 _1> ’ Y= <—O’Z 0) y 0 172737 Y vy <1 0> ; (118)

with ¢! the usual Pauli matrices. The unitary matrix Vogy is the Cabibbo-Kobayashi-Maskawa
matrix, and defines the “rotated” negative-charge quark fields that interact according to the
universal charged interactionm Notice that such rotated fields are linear combinations of fields
of different definite mass, and as such they are not definite-mass fields. Stated differently, mass

0There is no need to introduce a second mixing matrix, mixing the positive-charge quarks, as it could be
reabsorbed in Vckwm.

10



Figure 2: Four-fermion charged-current interaction vertex. Fermionic lines have been labelled
for the case of the pair of leptonic currents (7,0 1) (€Orqve).

eigenstates of quarks, which are eigenstates of flavour as defined via strong interactions, are not
the eigenstates of flavour as defined via the weak interactions. In the two-family approximation,
when bottom and top quarks are neglected, or more precisely when the mixing of bottom with
down and strange can be neglected, the CKM matrix can be reduced to

[ cosOc  sinfc
Vekm — Vo = (_ sinfo  cos 90) ; (1.19)

which we may call Cabibbo matriz. The typical vertex of the charged current is shown in Fig.
The neutral current reads instead

JE=> giforf+gffonft, (1.20)
f
where f = e, u, T, Ve, vy, vr,u,d, ¢, 8,t, b runs over the fermion species,
O% =7*(1+7%), (1.21)
and the coupling gf’R are
%7 f:’/eay,uay’r7 07 f:Ve>V,LL>VT7
L _%_'_57 f:ev/J)Ta R _ ga f:ev/J)T? 1.292
9fF =9y1 _ 2 _ 9y = 2 B (1.22)
2 7 36> f_uacvta _557 f—U,C,t,
7%+% ) f:d,S,b, %57 f:d787ba

where ¢ = sin? Oy and 6y is called the weak, or Weinbergm angle. The sub/superscripts L, R
refer to chirality, as we explain below. Notice the absence of flavour-changing neutral currents:
neutral currents do not change flavour, and flavour-changing currents also change electric charge.

In the expressions above Lorentz indices have been dropped. For leptons, one has in full

notation B B
EO%V = (f))\ (O%)A)\/ (V))\/ . (123)
Quark fields have a further colour index, which is contracted trivially: in full notation
0 0% g = (@) (OF)sn Giir (2)}y - (1.24)

Here and in the following, summation over repeated indices is understood.

"7t is called so due to the fact that it was introduced by Glashow (see “Arnol’d principle” [7]).

11



Massive fermion fields It is useful to recall here the explicit expression for a free massive
fermion field,

va) = [d2, 3 {bE)u@)e ™+ d@) @)} (1.25)

—41
s=%3

where bs(p') and ds(p') are the fermion and antifermion annihilation operators, respectively, that
remove a fermion or antifermion of momentum p and spin component s in some chosen direction
from the state on which they are applied,

{bs(ﬁ), bS’(ﬁ/)T} = {ds(ﬁ)a ds'(ﬁ/)T} = 555’(271')32]?05(3) (ﬁ_ ﬁ,) ) (126)

all other anticommutators vanishing. With this normalisation, the particle states |p,s) =
bs(p)7|0), with |0) the vacuum state normalised to (0|0) = 1, obey the relativistic normalisation
condition,

(7]7") = (2m)*2p%6 (5 — 7). (1.27)
The bispinors us(p) and vs(p) are the positive-energy and negative-energy solutions of the Dirac
equation, respectively, which obey

(p—mus(p) =0,  (p+m)us(p) =0, (1.28)

with m the fermion mass, and are normalised according to
Ug! (ﬁ)us(ﬁ) =2mdgyy, Vgt (ﬁ)vs(ﬁ) = —2mdgyy . (1.29)

In the formulas above, we used the notation A = A", where A* is any four-vector, and again
@ = u'4? for the Dirac adjoint of a bispinor. The explicit expressions read

ua(F) = VIO T < 2 ) . w@) =V tm (W”) , (1.30)

pO+m TS s

where cpl,gas = cﬁl,gbs = {4, with 77 gcps = s for some unit vector 77, and s = —io2¢p} in order
for the field ¥ (z) to have simple Lorentz transformation propertiesm Notice also the following
relations,
Uy (P)vs(P') = Vs (P)us(P) =0,
g (D) us(P) = vs (0705 (P) = 2p"0s -

Finally, df), denotes the invariant integration measure in momentum space,

d3
Ay = —2 0= Tt m?. (1.32)

(2r)20

(1.31)

We also recall a few facts about gamma matrices. They obey the anticommutations relations

{47} =AY + At =2 (1.33)

’Notice that 7j- $¢, = —iif - gaggaz = qo2(7] - gnps)* = —s(—io2p;) = —sps. However, @, corresponds to an
antiparticle state with spin component +s. The reason is that while us is paired with an annihilation operator,
vs is paired with a creation operator: taking particles and antiparticles to transform in the same representation
under rotations, this requires that the two wave functions transform in representations that are one the complex
conjugate of the other for 1 to have a simple transformation law.
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Wit]ﬁ N = n* = diag(l,—1,—1,—1) the Minkowski (pseudo)metric tensor. The defining
property Eq. (1.33) makes them the generators of a Clifford algebra. The set of matrices

L, A", ok iyt 4P (1.34)

where

o' = 5" = —d e = —ien2n ™y Y = %y, (1.35)
form a basis of the vector space of complex 4 x4 matrices. Here €, is the totally-antisymmetric
tensor with £g123 = —1. The sigma matrices are the generators of the relevant representation of
the Lorentz group for the fermion fields: given an element of the (proper orthocronous) Lorentz
group A = eéw“”‘](uu), with J(#) the group generators, the matrices S(eéw“”‘](”u)) = ei@m "
provide a finite-dimensional representation of the group. Moreover, if U(A) are the unitary
operators representing Lorentz transformations on single-particle states, then

UM)"(2)U(A) = S(A)(A ),

8 o X (1.36)

UM (@)U(A) = DA 2)S(A)
Notice that S(A)f # S(A)~! (there are no finite-dimensional unitary representations of the
Lorentz group), but S(A)T7? = ~4°S(A)~!. Finally, the matrix v° anticommute with all the y*,

{y’.,7"} =0, (1.37)

and plays an important role, discussed below.

Chirality The weak interactions are said to be chiral, as they treat differently fields with
different chirality. Given a generic Dirac bispinor v, it can be always written as ¥ = ¢4 4+ ¥_
with v%14 = +p4. The eigenvalue of 7% corresponding to 1+ is the chirality of 1+. Clearly
these eigenvalues can only be £1, since (7°)? = 1. It is then possible to decompose ¥ making
use of the chiral projectors Py,

e

5 PL=P,=P?, PP =P P, =0, P,+P =1. (1.38)

Py

Clearly v’Py = +Py, so 1 = Py1. Notice that v*Py = Pry®. Since O contains only P_,
the charged current only involves the fermionic fields with negative chirality, f- = P_f E while
the neutral current has different couplings for the terms involving f_ and fi = Py f.

The concept of chirality is often conflated with that of helicity, which is the projection of
the particle’s spin in the direction of motion. As a matter of fact the two concepts coincide
only for massless fermions. It has nonetheless become customary to denote with L and R the
negative and positive chirality components of the fields, respectively, although these refer to the
“handedness” of the particle (see below).

13The first equality must be understood as a matrix equality, not a tensor equality.
"Since f = f17°, one has fy*P- = fIy%*P_ = fI4°Piy® = fIP_A04% = (P_ )19 = f-4%9".
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Neutrinos As mentioned above, chirality and helicity can be safely identified in the case of
a massless fermion. If we insist on treating the neutrinos as massless, then we are forced to
drop one of the two helicity components, as it does not appear anywhere in the interaction
Lagrangianﬁ Egs. and . In order to see this, let us work out in detail the solutions
to the Dirac equation in the massless case.
Since {@,v°} = 0, the solution of the massless Dirac equation can be chosen with definite
ChiralityE
idpL =0, Vo = ey (1.39)

Let us look first at positive-energy plane-wave solutions ) = ue~"?"*, for which pu = 0. These

read for a massless particle
| = (¢ )
u(p) = PRI I 1.40
0 =V (e (1.40)

where ¢7¢ = 1, having chosen the normalisation @y%u = 2p° = 2|7|. If we take solutions with
definite helicity, i.e., using p - 6€r 1, = ££R,1, then

wea) =V (S5 ) Puns () = Huns(p). (L1

A positive-helicity particle is said to be right-handed, while a negative-helicity one is said to
be left-handed. This means that in the massless case definite-helicity particle solutions are
also definite-chirality solutions, with chirality equal to helicity. For negative-energy solutions
Y = ve”? one again has pv =0, and

v(@) = VI (ﬁ -gg) : (1.42)

Lorentz transformation properties of the fermion field tell us that if v with a two-spinor £
represents a particle state with definite spin s in a certain direction, then the antiparticle state

described by v will have the same definite spin s in the same direction if we choose §~ = —j09&*.
Then to have a state with positive or negative helicity we need {r 1, = —iagfj‘i 1» o that
P Grr =P G(—ioa)ép = io2(p- Gér L) = F(—io2)€hy = FER,L - (1.43)
It then follows ~
- =7+ , _.
ons@) = VIF (T8 Ponls) = Fons(s). (141

This means that definite-helicity antiparticle solutions are also definite-chirality solutions, with
chirality equal to minus the helicity. It is worth mentioning that helicity is a Lorentz-invariant
quantity only in the massless case: for massive particles one can always choose a fast enough
reference frame to overtake the particle and flip its momentum, thus flipping its helicity. For
massive particles, helicity becomes better and better a quantum number as the energy increases,
for in that case the particle is closer and closer to behave as approximately massless.

150One can of course include them as non-interacting particles, the so-called sterile neutrinos. They would be,
however, almost entirely unobservable, coupling only to gravity.
161f §@fp = 0, then also i@y>y = 0, and we can form linear combinations with definite chirality.
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The results of Eqs. (1.41)) and (1.44)) imply that since the neutrino field is coupled by the

charged weak interaction with the projector P_, what is relevant is the combination

_AD i .
Povie) =257 [0, 3 {b@)u@e e + ) o)
h=R.L (1.45)

= [0, {bu s e + dn) on(@)e7 | = v 0).

The field v (x) = P_v(zx) annihilates a left-handed neutrino and creates a right-handed antineu-
trino; the adjoint field 77 (x) = (v1(x))T7° = P, creates a left-handed neutrino and annihilates
a right-handed antineutrino. Since the field vr(z) = Pyv(x) never appears in the weak La-
grangian [check also Eq. ], we conclude that massless neutrinos can only be left-handed,
and antineutrinos can only be right-handed.

P, C, and CP symmetries We conclude this overview discussing the properties of the weak
Lagrangian under the discrete transformations of parity and charge conjugation. To this end we
need the known transformation properties of the fermion bilinears V = fy*f and A* = fy*y° f,
Ve — PP Ve — —vet,
P C
(1.46)
A* — —Pog AP AT — AT
P C
where P?%; = diag(1,—1,—1,—1). The V — A structure of the charged-interaction Lagrangian
reads schematically

L = (Ve — AN (V, — Ag) = VoIV, + A% A4, — VT4, — A°TY, (1.47)
It is easy to see that under P and C

L — PP, (vﬁfv7 + AP A VBT AL 4 Aﬁm) = (vt 4 A (Vi + Ad)
(1.48)
L — VeVl 4 AAT + VAT 4+ AV = (Ve 4 AT (V, + A,) .

i.e., both P and C are brokenﬂ The clearest example is provided by neutrinos: a left-handed
neutrino is transformed by P into a right-handed neutrino, and by C' into a left-handed antineu-
trino, which do not appear in the weak Lagrangianﬁ

The schematic structure Eq. is good enough for the leptonic part of the current, and
(barring neutrino mixing for the time being) shows that the combined transformation C'P is a
good symmetry in the leptonic sector. However, Eq. is in general not good enough for
the hadronic part, which reads

Jp=d 0fu+50%c+b0t= > Y (Voxm)ae®Of o

q1=u,c,t g2=d,s,b

= Z Z (Verm)gigs (Vangr — Agaqr) = Ji (Vexm) -

q1=u,c,t 2=d,s,b

(1.49)

"The identities VeVJ = VIV and likewise follow from the bosonic nature of the bilinears, and from the
understanding that the Lagrangian is normal ordered, if we work in the operator formalism, or is just a c-number,
if we work in the functional-integral formalism.

80ne is tempted to say that they do not exist, but it is now known that neutrinos have masses, so that a
“wrong”-handedness component exists. Nevertheless, it is not coupled in the same way as the “right”-handedness
component.
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Under CP one has

T =P% Y Y (Vokmae(Vag — A00) = =P (Vi)' (150)

q=u,c,t 2=d,s,b

If Vok is real, then C'P is a symmetry. With only two families of quarks one can redefine the
fermion fields to make Vg real [see Eq. ], so there can be no C'P violation. On the other
hand, with three families there is one phase factor that cannot be transformed to 1, and so there
is the possibility of C'P violation (and thus of T" violation). In general, Vox is expressed in
terms of sines and cosines of three angles and one phase factor.

A similar C P-violating phase can appear in the lepton sector, assuming that a nontrivial
mixing matrix exists there. This is not possible if the neutrinos are massless (or more generally
mass-degenerate): any nontrivial mixing matrix Uy, could be transformed away by redefining
the neutrino fields v, = Uy, which does not affect the free part of the Lagrangian. As
a matter of fact, neutrinos are massive, and a nontrivial, physically relevant mixing matrix
Upnmns (Pontecorvo-Maki- Nakagawa-Sakata matrix) appears.

As long as weak interactions are described by a Poincaré-invariant quantum field theory,
it is guaranteed that ©® = CPT is a good (antiunitary) symmetry. This is enough to show
that particles and antiparticles have the same mass, and the same decay width/lifetime if they
are unstable. Indeed, since for a particle with quantum numbers «, momentum p and spin
component s one finds, O|a;p, s) = |a;p, —s) (with the appropriate choice of phases), where &
denotes the quantum numbers of the corresponding antiparticle, one has

(a;p', —5'|P?|a; p, —s) = (a; §", 8|01 P?O|c; p, s) = (o 7, 8’| PPl 7, 8) (1.51)

from which mg = m,, follows. Equality of decay widths will be discussed in the next subsection.

Baryon, lepton and lepton family number While the very nature of the charged currents
makes flavour not a good quantum number, both for quarks and leptons, the mixing of quarks
prevents also “quark family” from being a good quantum number. On the other hand, quark
number, or equivalently baryon number, is conserved. In the absence of a leptonic mixing
matrix, lepton family number is a conserved quantity, and so a fortior: is lepton number. The
usual assignment of lepton family numbers is I, = 1 for £ and vy, Iy = —1 for ¢ and 7y, and
ly = 0 for anything else. Of course, given a system of particles one has for I, of the system
the sum of the individual lepton family numbers. Lepton number is just L = ) ,l,. It is
now known that a nontrivial lepton mixing matrix is present, and so (small) violations of lepton
family number conservation are expected. Ignoring these, the approximate lepton family number
conservation forbids a number of processes that would otherwise be allowed using only phase-
space considerations and electric charge conservation, for example

woo—e vy, pu —e ete, (1.52)
and neutrino-nucleus scattering processes like
IN+v, =>4 N +e, (1.53)

where iN denotes a nucleus with atomic number Z and mass number A. On the other hand,
the following processes are allowed,

AIN4ve =4t N+e,  4N4b =4 'Ntet. (1.54)
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Lepton family number conservation also forbids the neutrinoless double-beta decayB

AN — 4N 4 2¢7. (1.55)

1.3 Decay of unstable particles

In the following we will deal with a wide variety of decays of unstable particles. Here we briefly
summarise the main technical points required to deal with the theoretical description of these
phenomena.

The decay rate of an unstable particle is the probability per unit time that it decays in any
of the allowed final states. It is also called the (total) decay width, and is usually denoted with
the symbol I'. The probability per unit time to decay into a final state with a specified set of
products, i.e., into a specific channel, is called partial width. The ratio of a partial width over
the total width is the branching ratio (or fraction) of the given channel, and tells us how likely
a certain decay mode is among all those allowed for the unstable particle under consideration.
For a large sample of (independent) unstable particles, one expects an exponential decay of the
population with lifetime 7 = 1/T.

The probability per unit time for the unstable particle to decay into a specific channel
with a specified final state (i.e., with definite momenta and/or spins) is called differential decay
rate/width. For an unstable particle with four-momentum p decaying into an n-particle final
state, the differential decay rate dT'("™ is given by

| Mg|?
2pY

dr = do™ (1.56)

where d®(™ is the infinitesimal element of invariant n-particle phase space,

n

n d p’L
do™ = (27)4@ ( sz) HW’ (1.57)

and My is the matrix element of the decay operator between the initial and final states. We
will not need here to fully develop the formal theory of decay since, given the weakness of weak
interactions, the first-order perturbative approximation will almost always suffice. In such an
approximation the relevant matrix element is

@ﬂWW&—RM@z—/ O (FIHE (2O i) (1.58)

where |i) and |f) are the initial and final free-particle states, with relativistic normalisation, and
Hit(29) is the weak interaction Hamiltonian in the interaction picture, which since there is no
derivative coupling reads

Hin /ﬁ At /@ LW (fi(), (@), (1.59)

19This process would be allowed if neutrinos were massive, truly neutral particles, coinciding with their an-
tiparticle (Majorana fermions), in which case of course they could not be assigned any nonzero conserved charge.
(If massless, the two helicity states can still be interpreted as different particles independently of lepton family
number conservation.)
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where we made explicit the dependence on the fermion fields {f;, f;} (which are here fields in
the interaction representation). Substituting Eq. (1.59) in Eq. (1.58)) we find

Ms = (FLL(5(0), F;(0))]3) (1.60)

having used translation invariance to integrate over spacetime, and having dropped the momen-
tum-conserving delta function. These matrix elements are efficiently evaluated making use of
Feynman diagrams, and of the Feynman rules in momentum space. These are easily derived
based on the following considerations. The interaction vertex couples four fermionic fields, or
more precisely two fermionic currents j{* and j§, that can create or annihilate initial or final
(anti)particles. The vertex couples them in the form —% J1'J2a, and therefore

1. for each vertex, draw a dot and include a factor —-%.

V2

The currents are of the general form gqp,f,O%f, with ga, some coupling (e.g., Voxm matrix
elements) and O a combination of gamma matrices. Depending on the process, we will then
include Dirac bispinors w, and wj corresponding to the fields f, and f; creating or destroying
particles in the initial and final states, as follows:

2. a bispinor ug(p) for each particle in the initial state;
3. a bispinor us(p) for each particle in the final state;
4. a bispinor v4(p’) for each antiparticle in the initial state;

5. a bispinor vs(p') for each antiparticle in the final state.

These are represented as oriented external lines attached to the vertex containing the field
responsible for the creation/annihilation of the corresponding particle, either flowing in the
vertex (initial particle/final antiparticle) or out of the vertex (initial antiparticle/final particle).
All remaining fermion fields must be contracted with each other, yielding fermion propagators
that connect different vertices. These are represented as oriented internal lines, running from the
vertex containing the field f to that containing the field f of the relevant contraction. At this
point the Lorentz indices of the bispinors and of the propagators must be contracted according
to the structure of the currents, and all missing factors should be included:

6. connect bispinors and propagators along each uninterrupted fermion line, starting from
the end and moving backwards, and including the appropriate vertex factors along the
way;

7. contract the Lorentz indices of currents coupled at a vertex.
The first of these rules simplifies a lot in the case of a single vertex:

6’ (for a single vertex) connect the pairs belonging to the same current with the appropriate
factor O% (e.g., Of for charged currents), forming bilinears of the type w,O%ws, including
the appropriate g4, factor.

At this point all that is left is standard practice:

8. impose conservation of momentum at each vertex;
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9. integrate over internal momenta (i.e., momenta flowing through the propagators) with
4
measure (ST()IM
10. include minus signs for each fermionic loop, and each fermionic line crossing the diagram
from top to bottom (i.e., an antifermionic line across the whole diagram);

11. include the appropriate numerical factors counting the number of ways a certain diagram
can be obtained.

We conclude this subsection showing that CPT-invariance implies equality of the lifetimes
of an unstable particle and the corresponding antiparticle. In fact, since (working in the rest
frame of the decaying particle)

1 1 . )
- (n) : 2_ - (Tl) int .
M= om 2 [ M= 5 > [ ol (e

for a decay governed by an interaction Hamiltonian density #™, using completeness of the set

of states |n) one finds

- %(', S| (0) A (0)]d, 5) (1.62)

Using CPT invariance, one has then for the decay width I' of the antiparticle 7z (notice that the
two particles must have the same mass)

D= o (sl A OO, 5) = - (i, — sl A (02 O) i, —s)
271n 2m (1.63)
_ int int ; —
= 2m<z,s\% (0)2™(0)]i,s) =T,

where in the last passage we have used rotation invariance (which by the way implies that the
total decay width is independent of the polarisation of the unstable particle).
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Figure 3: Muon decay.

2 Muon decay

We now begin to discuss applications to phenomenology, starting with the simplest example,
namely, the main decay mode of the muon (see Fig. ,

P e Dy (2.1)
Following Eq. (1.60]), the relevant quantity to compute is

My = jé@—(k, 50) 7e(01) vu(@2) (7 (0)OF 1(0) ) ((0)Ora ) I~ (b 5)) - (22)
where we have already selected the only combination of currents that contributes. Here p,, . and
Su,e are the four-momentum and the spin of muon and electron, and ¢; 2 are the momenta of the
neutrinos. We assume neutrinos to be massless, so there is no need to specify their helicity since
it is fixed. This matrix element is easily evaluated going over to momentum space, or directly
using the Feynman rules listed above in section and equals

My = = () (@) O3 p.5,)) (1) (.5 O™ () (23

Here we have conveniently changed the notation for the Dirac bispinors in an obvious way. The
decay width dI' involves the absolute value square of this matrix element,

G2
Ml = = (8 (@) 03 (9, 5,)) (@) (b, 5,) OFu ()

< () (k. 50)Onav) (@1)) (807 (@) Opsu (k. 5.))

2

(2.4)
G v —(v o _
=t (u( #)(g2) @™ (g2) OZul (p, 5,.) @™ (p, su)Oﬁ)

< tr (v (1)) (g1)Opu® (k, 5)) (b, 5) O ) -

We now study the amplitude with an increasing degree of detail.
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An alternative but equivalent form of My is obtained making use of the following Fierz identity,

(@OLd) (€OLad) = — (aO7d) (€OLab) , (2.5)
derived in Section below. This results in the following alternative form of Eq. ,
G
— 7 (g o, (ve) (e)
M = 5 (3 (@)020") (@) ) (5 (k50 Onau (0.5, ) (2.6)

The complex conjugate of this can be combined with Eq. (2.3)) to yield the following equivalent form

of Eq. ,

Ml =~ L (509 (0)0) (02)) (89 (0. ,)010u) (. .))
; (4% (a2)00u) (p, 5,) ) (8 (k. 5)OL50 ) (a1)) .

= =2 (1 (@)05u) (@2)) (8 (@) OFu (p, 5,))

% (@9, 5,) 000t (k. 5.)) (59, 5) 050 (@) )

We will use the form Eq. (2.4), commenting on how the calculation develops when using instead the
alternative expression Eq. (2.7)).

2.1 Unpolarised muons, electron spin not measured

In this case we have to sum the decay width over the spin of the electron, and average over the
spin of the muon. To this end, for m # 0 one makes use of the following completeness relations,

Zus(ﬁ)as(ﬁ) =p+m, sz =p—m, (2.8)

while for massless fermions of definite helicity h = 41 the bispinors satisfy

— h~o 5
@) = @) =g

Summing over spins in Eq. (2.4, and taking into account that h = —1 (resp. h = +1) for
neutrinos (resp. antineutrinos) one then obtains

IMal) = 3 1Ml = Tt (4,08 + m)OF) r (4,0sk + m)OL) . (210

s;l«vse

having used #O% = #’ya(l — %) = 1= 7 (1 — %) = O%. The terms proportional to the
fermion masses drop, since they involve traces of an odd number of gamma matrices (v° counts
as four gamma matrices) which automatically vanish. We are then left with

2
(Mal?) = & tr (4,08907) r (4,009K0%0 )
G2
=5t (%’Y"(l ") (1 - 75)) tr (fll’m(l ) a(l — 75)> (2.11)
2

= % dtr (%vamﬁ(l — v5)) tr (gﬂﬂk%(l - 75)) :
having used (1 —~+°)? = 2(1 — ~°).
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Starting from the alternative expression Eq. ([2.7]) one obtains the following single-trace formula instead

of Eq. (2.10),

2
(M) = St g, 039,08 (9 + m) Ok +me) O
(2.12)

G? o
= —tr 4,084,00pOLa k015 .

The terms linear in m, and m. vanish since they contain the trace of an odd number of gamma
matrices, while the term proportional to m,m,. vanishes since OroOrs = Ya(l — 7°)y3(1 —7°) =

Yol =) +7°)y3 =0.

We now need the following identities for traces of products of gamma matrices:

tryHy ey yP =4 (n“an”'g — ™ 4 P n”a) = 45Hh
(2.13)
tr Pyt y P = —dighevh

with €8 the totally antisymmetric tensor with €212 = 1. Using the symmetries of the two
tensors we can drop crossed terms in Eq. (2.11]) and write

G2 1% N v, . g
(IMa ) = - 4% (5707 48P ) (Spas + ipsma ) ta,pualh

(2.14)
= 32G2 (Suauﬁspaoﬁ + 5May/35paaﬁ> QQ,upuqny
A straightforward calculation shows that
SHBS e = 2 (6",0%, + 6",0%,) . (2.15)
The other contraction reads instead
Mg g = 2 (8,87, — 61,0, . (2.16)

Proof: The left hand-side in Eq. (2.16) is a Lorentz-invariant tensor T}y = TH By, mpe, With
THvef invariant, and antisymmetric in both the first and second pair of indices, and symmetric
under exchange of the two pairs. It is furthermore invariant under parity. The only such tensor is
THvel = A(pkonyB —ntfn®) for some constant A, so Ty = A(*,6%, —*,6",). Contracting p with

p and v with o, TI' = 124 = Euwﬁguauﬂ = —24, where the last passage follows from counting the
nonzero entries of the Levi-Civita tensor (which are 4! = 24), recalling that they are equal to 1, and
that £0123 = —60123 = —1.
Plugging Eqgs. (2.15) and (2.16)) into Eq. (2.14) we find
(| Mg]*) = 128G*6",6" ,q2upvafk” = 128G (p - q1)(k - q2) , (2.17)

for the square amplitude summed over spins.

If one wants to use instead Eq. (2.12)) to find the decay width, then one needs the following identities:

’YQAB’Y(J =4A4. Ba ’YQAB¢'%¢ = *2¢‘B/Aa (218)

22



which can be proved straightforwardly making only use of the anticommutation relations of gamma
matrices. Using these, one shows that

tr g, 054,00 pOLakOrs = tr g 7 (1 —7°)d, 7" (1 = V" )pra(l — 4°)kys(1 — 7°)
= tr glfyo‘%*yﬁpfya}é’yﬁ(l — %)% = —16tr glp’yﬁ%%*}/ﬁ(l — %) = —64tr glp(k Sq2)(1—~°) (2.19)
—64tr g p(k - g2) = —256(p - q1)(k - q2) ,

from which Eq. follows.

Taking into account a factor 1/(2s 4+ 1) = 1/2 due to averaging (not summing) over the muon
spin, according to Eq. (1.56) the differential decay width reads in the muon rest frame

L«‘Mfﬂ >>d<I> 32G? 2 q) (k- go)dd®) . (2.20)

dl' =
2mu 2 mu

The phase-space element reads

d3]€ d3q1 d3QQ

<I>(3): ) 45@) (0 _ 1. _ —
d @m0 e =k =0 = 92) e (P2, (2n)P2n

(2.21)

where E = k0 = 4/ k2 + m? and w; = q? = |@|- Four-momentum conservation imposes that
p—k = q1 + ¢2 be a timelike or lightlike vector, as it satisfies (p — q)? = (q1 + ¢2)? = 2q1 - @2 =
2wiwa(1 — cos Br12) > 0, where 015 is the relative angle between the trajectories of the neutrinos.
As a consequence, the electron energy in the muon rest frame is bounded by mi—i—mz—QmuE >0,
ie.,

m? +m?
EgM:@(HO(ZZE)) . (2.22)
m

Typically neutrinos are not detected, and measurements are made only on the electron. We
then integrate over the neutrino momenta, and get

32G?  d3k &3 &3
dr — / ql/ L5k - ) a) (k- a2)

2my, 2

my (27)58E
G? Bk
kA, k 2.23
8771“71'5 E a0 — k), ( )

d3 d3
/ o / 1 (g —q1 — ©2)q1aq25 -

Evaluation of I,3(q) is made easier by exploiting its properties under Lorentz transformation:
since it must be a symmetric tensor of mass dimension 2 built out of ¢, one must have

Iop(q) = A¢*nap + Baags , (2.24)

with A and B dimensionless functions of ¢?. Since there is no other dimensionful invariant
available besides ¢2, they must simply be numerical constants. Next, notice that thanks to the
delta function one can replace ¢> — 2q; - ¢2 in the integrand, and so

a3 d3 2
1P I0s(q) = *(4A + B) = / QI/ QQ6(4)q—q1—q2)q1-q2=%C,

d3 d3 212
" lasla) = (€)' (A+ D) / 3 / 2 a—a— @) (@ @) = QC

4 )
d3Q1 dSQ2
q —q1 — QQ) .
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The resulting system of equations for A and B is easily solved to give A = C'/12, B = C'/6. Since
C is a Lorentz invariant it can be equivalently evaluated in any frame. Since g1 2 are lightlike
vectors, due to the delta function imposing ¢ = g1 + g2 one has that I,3(g) can be nonzero only
if ¢ is a timelike vector@ so we can choose the frame where ¢ = 0, which is the centre-of-mass
frame of the neutrino-antineutrino system. Upon integration we then find

Bqy [ d3 . d
/ q1/ 2 54 —wl—m)é(?’)(%-l-%):/wafs(q — 2w1)

. ! (2.26)
/dQ/ wlwl 0 %q —wp) =27,

T
Lop(a) = & (¢°Nas + 24ads) - (2.27)

The case where neutrinos are replaced by particles of arbitrary mass is discussed in Section
Plugging this result back into Eq. (2.23)) we find

and so

G? &k, g7
= s 5 75 (0= )05 + 200 = Falp — K)s)

G2 Bk )
_Wf((p—k)p-k+2p-(p—k)k.(p_k))
:iﬂ((p2+k2_2P'k)p'k—2(p2—p-k)(k2—p-k)) (2.28)

48mu7r4 F .

G2 Bk, . s
= B B B0 TR k=4l k)~ 2p%)

G? Pk

= B B (3(m>, + m2)m,E — 4(m,E)* — 2m2m?) .
We now make approximations based on the fact that the electron mass is much smaller than
the muon mass, so that the last term is much smaller than the first (in which we can ignore the
electron mass), since m2/(m,E) < me/m,, < 1, and that the electron is typically ultrarelativis-
tic (we will check this assumption self-consistently at the end of the calculation) me JE < 1,
so that the last term is much smaller than the second. We can therefore neglect m? in the first
term, and the last term altogether, and write
G* &k G* &’k
= ————(p-k) (3p> —4(p- k — m2E (3m, — 4E 2.29

48m“7r4 E (p ) ( P (p )) 48mu7r4 E ’I?’L ( m# ) ) ( )
up to terms of order (me/m,)?%, (me/my)(me/E), and (m./E)?. Integrating over the direction
of the electron, and using kdk = EdFE, we get

G?
dl' = 18 47rdEE\/E2 —m2m 3m” —4F)

. (2.30)
G*m
_ a4 3 2 2
= m, —4E) E\/E? —mZdE .
1273 ( H ) e
20T the case of lightlike ¢, ¢> = 0, the integral vanishes, since it receives contributions only from the sets of
zero measure where ¢1 - g2 = 0, corresponding to collinear neutrinos, or where w1 = |§i| = 0 or w2 = |g2| = 0,

corresponding to neutrinos of vanishing energy.
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3

Figure 4: Probability distribution function for the energy of the electron produced in the muon
decay =~ — e~ Vevy.

The maximal energy that the electron can reach is Eyax = %, up to corrections of relative
order O(mZ/m?,), and expressing dI" in terms of the variable ¢ = E/FEax = 2m,,/E we find

o G (3_ 28 ) (@)3 E \/( E )2_< me >2 dE
1273 my/2 2/ my/2\ \my/2 mu/2) my/2 (2.31)
2,5
= C;G:g (3 — 2¢) e%de,
having consistently neglected the term of order (m./m,)? in the square root, since it gives a
correction of relative order O(m2/E?) to the width. Similarly, the lower limit of integration is
Me/ Emax = O(me/my,), which is negligible. In our approximation, the variable € thus runs from

0 to 1. The total width is obtained integrating Eq. (2.31]) over ¢, and equals

r Gom, 1d 3 —2) &2 G m, 2.32
= 9o J, EO2)E =155 (2:32)

This can be compared to experiments to extract the Fermi constant G (after the appropriate
electromagnetic radiative corrections are included). Using Eq. (2.32]) we can recast Eq. (2.31))

as
1dl’

I' de
which provides the probability distribution function for the electron energy (see Fig. . Inte-
grating this quantity one finds out that in more than 98% of the cases one has € > 0.2, which
since € = (E/me)(2me/m,) ~ 0.01E/m, corresponds to a gamma factor v = E/m. 2 20, i.e.,
an ultrarelativistic electron.

= (6 — 4¢) €2, (2.33)

2.2 Polarised muons

The generalisation to the case when muons are polarised is rather easy, if we recall that for a
fermion of mass m with definite positive spin in direction 7 in its rest frame one has
L+7°%

u(p; s)alp, s) = (p+m)—5—. (2.34)
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Here s is a spacelike vector that in the fermion rest frame reads s = (0,7), and in a generic
reference frame is transformed td?]

s:<77'p,ﬁ+ P p) ) (2.35)

m m(p® + m)

Clearly, s> = —772 = —1 and s - p = 0. In the most general case, Eq. (2.4)) is then equal to

2
Mal? = Tt (1,08 m) (14 274,)08) i (4, 015k + mo)(1+4%4,)0r0 )
2
- % o (%ﬂ“(? +m) (14774, (1 - 75)) tr (ﬁnﬁ(% +me)(1+7°4)7a(1 - 75))

(2.36)
The polarisation vectors of the muon and of the electron will be denoted simply with 7, = 77 and
Te = 5 From Eq. we recover {(|Mg|%)) by replacing s, . — 0 and multiplying by a factor 4,
which exactly corresponds to summing over the two spin values. If we want to discuss partially
polarised muons, we have to average this expression over 7 with some probability distribution,
and since s is linear in 7, we simply have to replace 77 — (i) in the expression for s, i.e.,
s(7) — s({i7)) = 5. Notice that while one still has 5-p = 0, in general —1 < 52 < 0.

Since the two factors in Eq. have the same structure, it suffices to study only the
first one to make progress. The only terms coming from (p + m,)(1 + 75}9,5“) that contribute
to the trace are those containing an odd number of gamma matrices, and so we can replace
(p +mu)(1+ ’y%u) — (p+ fy5muﬁu). Furthermore,

fr (gg‘”v%mﬁ (1- 75)> = tr (9127“#“7575(1 - 75)> = —tr (szzv“ﬁ,ﬂﬁ (1- 'f’)) . (237)

This means that in practice all that we have to do is replace p — (p — mys,)/2 and k —
(k — mese)/2 in Eq. (2.17)), and obtain in the most general case

IMg|* = 32G°[(p — mysy) - qu][(k — mese) - g2l (2.38)

and thus
16G?

i

1
dl = %Wﬁy?d@@ = [(p — mus,) - q1)[(k — mese) - qa]d®® . (2.39)
17

Integrating over the momenta of neutrinos we find

G? &Pk
e — — o — B -
dl’ 16m“7r5 I (p musu) (k —mese) Ia,@(p k)
G2 Pk 9

+2(p = k) (p— mpusy) (0 — k) - (k —mes)] .

21To prove Egs. (2.34) and (2.35)), check first that they are correct in the rest frjaugle of a massive particle using
the explicit expressions Eq. (1.30). Notice that if 7- &y = ¢, then pp’ = H’% The validity of Eq. (2.34)
in a general reference frame follows from Lorentz invariance, after showing that Eq. (2.35) provides the Lorentz
transformed of s under a pure boost in direction ‘i

5 (without any further rotation around \%I) with gy = ‘%‘
starting from the rest frame.
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Setting p = p — m,s,, k=Fk— meSe, we have for the term in square brackets

.]=(@-k)’p-k+20—k)-pp—Fk) k
=(P—k)?(p-k—mus,-k)+2[(p—k)-p+mys, - Kl(p-k— k)
= B)lp—k>+20p—k) -
mu[( ) k—2(p'k—k‘2)su-k‘]—2k2(p—k)-p
= (p-k)(3p° —4p k+ k)

—mu(p* =20k + ks, k—2(p-k— ks, - k| - 2k*(p® —p- k).

(2.41)

Since m, > m,, we can neglect k? = m?2 against p? = mi and p-k = Emy,, and against

p-k= my(E — 5 E) In this approximation,

= (0 B3 = 4p- k) — mu[(p? — 2p- ks, - K — 2p- s, - K. (2.42)

If we sum over the electron spin states, this becomes

[...] p——" [(p-k)(3p* —4p - k) —mys, - k(p* —4p - k)] . (2.43)
and so @ P
= —_— . 2 —_— . —_— . 2 —_— .
T = St B [(p - k)(Bp® — 4p - k) — mysy, - k(p® — 4p - k)]
G Bk ) ,
~ B B [muE(?)m# —4m, E) 4+ m,i - |k|(m — 4mME)] (2.44)
G2 3 2 — —»‘E‘ 2
= 487r4d k|(3my, —4m,E) +17 - nf(mu —4dm,E)|

where 7 is the direction of the electron momentum. Going over to € and neglecting powers of
me/m,, we find

G?m}, dQudec?
r— L — 2+ A(1—2
d 487r 3 (3—2e+4177-7i( £))
G*m ds?
= — 247771 (1 — 2)) dee®—
967r3 (3 e+ ( g)) dee ym (2.45)
_Gm B (3 —2e+cosf (1 — 2¢)) dec*d cos b
= 1923 e+ cosf ( €)) dee*d cos

=T(3—2¢+4 (1 —2¢)cosh) e*ded cos b,

where 6 is the angle between the electron momentum and the muon polarisation. Integrating
over energy we find the angular distribution of the electron

1 dr Lo, 1 1
- - —9 1—2 =—(1=-= . 2.4
T Zoos0 /0 dee” (3 —2e+( g)cosf) 5 < 3 cos@) (2.46)

If we do not sum over but instead observe the electron spin, considering the (typical) high-energy
case E > m., we have that

C

+ M

ol

MeSe = (5 Ea m65+ E ) = E(E ﬁ) (L ﬁ) = (5 ﬁ)k7 (247)
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e, k~(1- - )k, and so

e (U= C D {( WB — p ) = s kG dp-R)} . (249

To obtain the differential decay width we then have to multiply Eq. (2.44) by %(1 - 7). Going
over to € we then get

G*m? - a2
I = PA—-C-A)(3—2e+7-7(1—2 2
d 1927r3( C-1)(3—2e+7-7i( €)) dee i (2.4
S dQ
=T(1-¢ @) (B3—-2e+7-7(1 —25))d5524—.
T
If we choose to measure the azimuthal angle of 7 from 5, then
cosp— ST Q- [i-7-A)] _  ¢-A-(7-OW-7) _ {-i—cosbeoss )

== Ol =Ml [~ (57 &2\/1 - (- )2 sin 0 sin 0

where cosd =17 - f We have then 5 71 = cos 6 cos d + sin #sin é cos ¢, and

dr dQ
T~ (1 — cosfcosd —sinfsind cos @) (3 — 2e + cosb (1 — 2¢)) d5524— . (2.51)
T
Notice that if we average over the muon polarisation in Eq. (2.49), we get
dr - dQ  1—cosf .
= (1-¢-7)(3—2¢) d5524— = % (3 — 2¢) dec®d cos (2.52)
iy

with 6 the angle between the electron momentum and polarisation.
Before discussing the implications of these results, let us derive the corresponding formulas
in the case of antimuon decay,

Pt et e, (2.53)
The relevant amplitude is easily seen to be
G
Mﬁ = E ('f)(y’)(p7 SM)O%U(VH)(q2)> (ﬁ(ye)(ql)OLoﬂ)(e)(ka Se)) ) (254)

and all that is required to obtain the desired decay widths is to make the replacements

(p—i—m#)l—i_;s#“ — (p—mH)HﬁL, (}é+me)1+;5¢€ — (%—me)l—:%, (2.55)
which after evaluating the traces boils down to the replacements
P —Mys, — P+ mys,, k—meSe = k + mese (2.56)
in the matrix element, which in turn corresponds simply to
i— -7, (——C. (2.57)

The phase-space element is left unchanged, and so we find in the most general case of polarised
muons and measured electron spin
ds)
) (3 —2e+17-7(1 —25))d5£24—,
T (2.58)

. s
dly+ =T(1+ (@) (3—2e—ij-ii(1 —25))d5524—,
™

—

dr,- =T(1—¢

where we have also reported the u~ decay width for comparison.

28



2.3 Qualitative discussion
Let us highlight the most interesting features of the results Egs. (2.32)) and ([2.58)).

e The muon mass dependence I' mi follows for dimensional reasons from
I'= muF(Gmi, me/my,), (2.59)

for some dimensionless function F', once we take into account that m./m, < 1, so that it
can be neglected, and that to the given perturbative order F(z,0) = Fya?, i.e.,

r= muF(Gmi,O) = mu(Gmi)QFo. (2.60)

e The decay widths in Eq. (2.58) break both parity and charge conjugation symmetry. In-
deed, under these transformations

—
—

7 (73, 7,C) — 2 (7,7, C) # Uy (7,7,

R L= L (2.61)
dF,LL:F (n7 n, ) ? dF,u:F(_nv , ) = dF,LLi (TL, 7C) )
which also shows that the combined transformation C'P is instead a symmetry,
7 (71,7, C) — Ty (71,77, () = dU s (7,77, C) —» dT5 (7, 7,C) (2.62)

This is reflected, for example, in the different angular distributions of the electron and the
positron (summed over final spins),

1 dr L 1 dr L
T dcosd| =4 (1— 3cosb), Tdcosd| . =5 (14 5 cosb) . (2.63)

e The breaking of parity can be inferred also from the fact that the decay of unpolarised
muons produces polarised electrons (with polarisation that can only be along the same
direction of their momentum due to rotation invariance).

—

e The factor (1 — ¢ - 1) suppresses high-energy electrons with polarisation parallel to their
momentum. This is a consequence of the chiral coupling of the charged currents, which
suppresses massless particles (resp. antiparticles) with positive (resp. negative) helicity,
and of the obvious fact that a high-energy particle effectively resembles a massless one.

e The angular asymmetry in the emission of electrons is a consequence of angular momentum
conservation and of the fixed helicity of neutrinos and antineutrinos (see Fig. [5]). For
e~ 1, one has (p — k)? ~ mi —2muE ~ 0, 50 q1 - g2 = wiwa(1l — cosb,) ~ 0, and since
low values of w; o are suppressed by the phase-space element as dg;/w; = d€;dw;w;, one
has cosf, ~ 1, i.e., the neutrino and the antineutrino momenta are parallel. This means
that their spins add up to zero in the direction of their motion, leading to a state of zero
angular momentum@ Furthermore, in the high-energy limit the electron has essentially
negative helicity, and since its spin must be in the same direction as that of the muon, it

22The neutrino-antineutrino system in this case is a zero-mass system with zero helicity, so a system with
vanishing total angular momentum.

29



= <,
- 1
e ‘ >

pooe — '
- = —
Figure 5: Alignment of momenta and spin in the decay of the muon at high (top) and low
(bottom) energy. Thin lines correspond to momenta, white arrows to spins.

must be emitted in the direction opposite to the muon spin. In the low energy limit k~0
one has instead that the neutrino and antineutrino travel in opposite directions, so that
their spins add up to 1 in the direction of the antineutrino. This means that the electron
spin must be opposite to the muon spin, and parallel to the direction of motion of the
neutrino. Since negative helicity is favoured by the chiral coupling, the electron is then
emitted preferentially in the direction of the muon polarisation (see Fig. |5)).

2.4 Appendix: Fierz identities

Equation (2.5)) is a particular case of the so-called Fierz identities. The proof of these identities
revolves around the basic fact that the set of sixteen matrices {T'4},

T ={1; ¥,0<pu<3; o™, 0<u<v<3; i 0<pu<3; A}, (2.64)

provides a basis of the linear space of complex 4 x 4 matrices. This is in fact a 16-dimensional
space, and the matrices I'4 are necessarily linearly independent since they transform differently
under proper orthocronous Lorentz and parity transformations. In particular, this implies that
trI'TP = 0 unless A = B: the object tr ' T'® must in fact be a symmetric, Lorentz- and
parity-invariant object. No invariant can be obtained from matrices transforming differently
under Lorentz and parity, and so this object must vanish unless T4 and I'® are of the same
type, i.e., they belong to the same Lorentz multiplet. The only symmetric invariants can be
built using n*¥, and one can then show that tr TATB = 04648, The values of a4 are obtained
noticing that

trl1l =4,
tr ’7a76 — %tr {,ya’,yﬁ} — 417045’
tr [O_uuaaﬁ]g<u — _tr [,Yu,_yy,ya,y/j]u<l/ _ _4[77#1/?704,8 _ n,uanl//a’ + nuﬁnua]l;z; — 477;;017]1/,87 (265)

<B a<f —
trin’yin®y” = try*” = 4’
try5y® =4.

If we denote with I'4 the matrix obtained lowering the Lorentz indices with the metric tensor,
then it follows that
LT g =045, (2.66)
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Using this identity one proves straightforwardly the linear independence of the I'4 (write any
linear combination, and extract the single coefficients by taking the appropriate trace). The {4}
thus form a complete set, and one can write a generic 4 x 4 complex matrix as M =), C A4,
with

TtrMT 4 =13 5CptrTPT 4 = Cy. (2.67)

Therefore

M = Zitr[MFA]FA’ Z4tr [MT 4] FA Z4Mk FA )ijv (2.68)
A

and since this must hold for any matrix M, the following completeness relation follows,
0535 = 5 DTy (2.69)
A

This can be contracted with any pair of matrices F' and G to yield
FLah =1 Y (MY (FTAG),, (2.70)
A

and further with bispinors a, b, ¢ and d to get

(@Fb)(eGd) = 1 > _(el'b)(@FT AGd). (2.71)
A

This is the starting point to derive a number of useful relations by taking such F' and G that
lead to a Lorentz-invariant object on the left-hand side, e.g., I'= G =1, F' = 4" and G = 7,
and so on.

The case of interest for us is ' = OF, G = Or,. We can show that

01010 =7 (1 =" )7a(1 —=7°) = 1*1a(1+7°)(1 =7°) =0,

02" OLa = 7*(1 = V)V ya(l = 7°) = 27y 74 (1 — 7°) = —4y#(1 — 7°) = —40¥,

70" OLa = 7" (1 =7°)0"7a(1 =7°) = 10" 7a(1+7°)(1 =7°) = 0, (2.72)

O%iy W Ory = =iy’ O O = 42’75(’)ﬁ = 40},

O%fy‘%’)m = —75O%OLQ = 0,

where on the second line we used the identity
YN, = Y¥(207, — Yayt) = 29H — AyH = =294 (2.73)

From this it follows that

(@OFH) (€0Lad) = 1 (~4(E,b)(@0%d) + 4(ein ,b) (@i0}d))

2.74
= () @Ok) + (e D@0k = @Oy .
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2.5 Appendix: phase-space integral

We compute here the phase-space integral I,5(q) of Eq. (2.24)) in the general case of final particles
of masses m; and meo. Using relativistic normalisation for the integration measure, let

(q) = /qu1 /qu2 2m)*0"W (g — a1 — @2) Q10 @25 » (2.75)

d3q;
dQ, = ——— 9=\ /q? 2. 2.76
qi (27.‘.)32%() ? 4; 4a; + m; ( )

Clearly, Z,5 and I,g differ only by a numerical factor,

where

Zaplq) = (2.77)

The four-vectors g1 2 are timelike, and so is their sum. The delta function in Eq. has
therefore nonvanishing support inside the integration domain only if ¢ is timelike; since it also
imposes ¢> = (q1 + ¢2)?, and (q1 + q2)®> > (m1 + m2)?, this support is further restricted by
q> > (mq + ms)?. Lorentz invariance of the integration measure implies that Znp(q) must take
the form

Zas(q) = A(¢*)a°nap + B(4%)qaqs - (2.78)

In fact, Z,3 must be a rank-2 Lorentz tensor, and 7,3 and g.gg are the only two independent
structures that can be constructed with a single four-vector. The quantities A and B are Lorentz
scalars, that can depend only on ¢2, as well as mq 2. From dimensional analysis it follows that
they must be dimensionless. In order to find out their values, we will compute naBIag and
qo‘qﬁl'ag, so dealing with scalar quantities which are easier to manipulate. We have

1 Tapla) = GAP) + Bl = [ 0%, [ i, @2n)'600 -0~ e)ar- e

= /deh /dQQQ 27r 45 )( —q1 — CI2) % (q2 — m% — m%) (2'79)
= q _ml m2)C(q )

where

¢*) = /de /quz 2m)* (g — a1 — @) - (2.80)

By the same arguments used above, this is a Lorentz-invariant quantity with support in ¢? >
(m1 + mg)?. To derive Eq. (2.79) we have used the fact that due to the delta function, inside
the integral one can identify ¢* = (q1 + g2)* = m? +m3 + 2q1 - ¢2. Furthermore

" Tapla) = (AG) + B@)) = [ a2 [ a9 2000 - 0 - @) e 0o e
b md )} () O) @81
=1 () = (mi - m})*) C(a?),
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having used m% = q% =(qg—q)? = ¢ —i—m% —2q-q1, that holds for the arguments of the integrand
thanks to the delta function, and a similar relation with the roles of ¢; and g2 interchanged. In
conclusion,

m2 m2
IA(P) + B(¢) = + <1 — 1t2> C(q%),

2 q
1 m2 — m2\?2 (2.82)
A(d") + B(d") = § [1 - (1 p 2) C(d*).
Subtracting the second equation from the first and dividing by 3 we find
C(¢?) [ om2amd 1 1 (m?-md\?
Ald?) = 1™ 2+ 1 1 2
(¢°) 6| 2 5T 5 2
_O@) [, 2mitmd) | (miemd)® o (2mimy)?
12 q2 ¢ Q2
- (2.83)

~ C(g?) - m? +m2\ > ([ 2mamg 2
12 q2 q2

o s |

The value of B can be similarly determined, but it is more convenient instead to rearrange

Eq. (2.78) as follows,
Top(q) = A(G*)(@*Nap — Gads) + (Al6) + B(¢%))dags , (2:84)
obtaining directly from Egs. (2.82) and ([2.83))

C(q? mi1 + ma)? mi — ma)?
2 m2 — m2\ 2 :
P o

We are left with the calculation of C(g?). Since it is Lorentz-invariant and supported in the
timelike domain ¢? > (m; + m2)?, we can compute it in the most convenient frame, which in
this case is the “rest frame” qr = (qOR, dr = 0), where q% = \/q? > mq + mo. We then find

3 3
C(q% :/( i /( e 2m)*5(q% — &) — 63)6® (@1 + @)

2m)32q) J (2m)324 (2.86)
1 d3Q1 )
_ S(a® — o0 — 0
4(271')2 / (27r)3q[1)q(2) (q q1 QQ) 9
where now q? = \/tfl2 + m% and qg = cff + m% Going over to polar coordinates,
1 & dx 22
C(q* —/dQ/ 6<q0—\/m2+w2—\/m2+m2>
(@) 4(2m)? 0 /m?+a2y/mi+ 22 R ! 2

-1 (2.87)

1 [ dz x? x x
= - + 5(:1;_1'*)7
Am Jo  /mi+a2y/m3 + a2 \/mi+a2  /md+a?

33



where x, is the unique positive solution of the equation q% = \/ mé + z2 + \/ m% + 22, to be
determined below. The integral in Eq. (2.87)) is now trivial, and we find

o0
1 dr Ty Ty

— 0x —xy) = = .
N RO B R T e

Our last task is to find z,. Here is the derivationﬂ
q% — \/m%+x2 = \/m§+x2,
(q%)? +m] 4+ 2% — 2¢%\/m? + 22 = m3 + 2?2,
(qp)* +mi — m3 = 2qp\/mi + 22, (2.89)

C(q?) = (2.88)

((qR)* +mi — m3)* = 4(qp)*(m3 + 2?),
((qR)? +m3 —m3 — 2qm1)((qR)* + mi — m3 + 2qpma) = 4(q%)*a>,
(g% — ma)? = m3)((qk + m1)* — m3) = 4(qp)*=>.

Simple manipulations show that the left-hand side equals

2 2

(g —m1)? — m3)((gk + m1)* —m3)
= (g% — m1 — m2)(gx — m1 + m2)(qgx + m1 — m2)(qy + m1 + m2)
= ((gg)* = (m1 +m2)*)((q)* — (m1 — m2)?)

= (¢* = (m1 4+ m2)*)(¢* — (m1 —ma)?),

(2.90)

where in the last passage we made Lorentz invariance manifest. We can now solve Eq. (2.89)
for 22, obtaining
> (¢ = (m1 +m2)*)(¢* — (m1 —m2)?)

T, = 4q2

5 (- )

that has real solutions if and only if ¢> > (m; + mo) @ Taking the positive solution for x, we

conclude
x2 (mq + m2) (mq1 — m2)2
1-— 2.92
e \/ 2 87r\/ \/ ( )

if % > (my + mg) and C(¢°) = 0 otherwise. Setting M = mj 4+ mgy and p = m; — mg, we then

have
1 M? u? |1 M? u?
Zap(q) = 30, 1- q2\/1 - qg{g (1 - q2> (1 - q2> (¢*Nap — 4agp)

M2 MZ
*Q‘q2f>%%}

23 If solutions exist for ¢% > m; + ma, then both sides of each equation in Eq. are positive. Replacing
them with their squares leads therefore to an entirely equivalent equation under the restriction on ¢%, i.e., their
solutions are in one-one correspondence.

24Notice that (m1 + m2)2 > (m1 — TTZQ)Q if mio > 0.

(2.91)

(2.93)
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Let us discuss a few simple cases. When my = ms = m, we have u = 0 and so

1 4m? | 1 4m?
Taplq) = 55y [1 - 2{3 (1 - q2> (@° 70 — ddp) + qacm} :

q

If furthermore m = 0 we recover Eq. (2.24]),

1 1 1
IaB(Q) {(‘fﬁaﬂ - QaQ6) + QaQB} = %{‘fﬁaﬁ + QQaQB}-

T 32713

If instead m; = 0, ma = m, we have M = |u| = m and so

2 2
m 2m
IaB(Q) = an_ <1 - q2> {q277a6 + QQOLQB - ?(QQUQB - QaQB)

m2 2
+ <q2> (@*Nap — 44aqs) ¢ -
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3 Strangeness-conserving semileptonic processes

In semileptonic processes where the strangeness is conserved, the relevant term of the Lagrangian
is (we ignore heavy quarks b and t)

0 = _\C/;i cos Oc(uO7d)Jjo + hec.. (3.1)

For initial/final hadronic states |h; ¢) and initial/final leptonic states |¢; ¢), the relevant matrix
elements are (in lowest-order perturbation theory)

Mg = —E cosc(H" Ly, + flaf/a) ,

V2
H® = (hy|(uOzd)(0)[hi) , L = (| J 0]

H* = (hs|(@O7d)(0)'|y), L% = (4| 72(0)"]63)

(3.2)

having used Eq. . Depending on the quantum numbers of the states |h; r), either one or
the other term in Eq. will only be nonzero. In fact, the current uO%d has electric charge
Q = 1 (also isospin I3 = 1, and hypercharge Y = 0) while its Hermitian conjugate dO%u has
@ = —1 (isospin I3 = —1, and hypercharge Y = 0), so they cannot both have a nonzero matrix
element with given initial and final states. We will simplify the notation in the following and
drop the unnecessary tilde.

To lowest perturbative order, the hadronic states |h; ¢) are determined by strong interactions
alone, with corrections suppressed by powers of the weak coupling constant. However, at low
momentum transfer the matrix elements H® of interest cannot be studied using perturbative
QCD, since its low-energy dynamics is inherently nonperturbative. Nonetheless, a lot can be said
about them based simply on symmetries. Decay amplitudes are in fact determined by translation
and Lorentz invariance up to a few functions of the transferred momentum squared. These can
be studied using nonperturbative techniques, e.g., numerical calculations on the lattice, or, more
pragmatically, treated as phenomenological parameters that can be determined experimentally.
The relevant parameters for different processes are furthermore related, to a certain degree
of approximation, by the known (approximate) symmetries of the strong interactions, namely
isospin and (to a lesser extent) flavour SU(3) symmetry.

3.1 Isotopic spin (isospin) invariance

If we organise the up and down quark into an isospin doublet,

¢= (g) , (33)

then the two relevant currents are part of the isovector triplet

_ T, _ T, _ T,
Tl = qOﬁ;“q = qv“;“q - qv“'f’;”q = Vi — Al (3.4)

which is the sum of a vector-isovector and an axial vector-isovector current. Here 7, denotes
the Pauli matrices (the usage of 7, instead of o, is standard in this context). In particular,
the charged weak current @(’)‘L‘d and its conjugate dO%u correspond to JE = (j@f%q, where

74 = 71 £ 7. Notice that (V) = qT'y“T'yOTiq = qiOyir_q = V*
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Conservation of the vector current The vector part V! of the charged current and its
Hermitean conjugate V" are components of the same isotriplet as the isotriplet part of the
electromagnetic current. Stated more simply, the electromagnetic current receives a contribution
from VI, since
VE =

em

dy*d = § (uy'u — dy'd) + § (ay"u + dy*d) = V' + 5", (3.5)

W=

uyHu —

wIN

where S* is a vector-isoscalar current. A first consequence of this is that, since Vi, is conserved,
9, V& = 0, the vector current must be conserved as well in the limit of exact isospin invari-
ance. This implies first of all that V{* and S# must be conserved separately, due their different
transformation properties under isospin rotations; and that the whole isotriplet V' must be con-
served, since its components are related to each other by isospin transformations. Conservation
of a current J* has an important and well-known consequence on its matrix elements between
momentum eigenstates. Using translation invariance, we have in general that

(0"10uJ" (@)[5) = 8" TH (2)|7) = 8 (| T*(0)e ™" 7)

N = o - o . - (3.6)
= 0 PP T0)|7) = Due” T (B[ TH(0)|F) = —ie” T qu (5[ TH(0)]F)

and setting x = 0,
(#'10, T (0)[) = —iqy (p"|T*(0)|F) - (3.7)

Conservation of the current, 9,J*(x) = 0, implies that the matrix elements of J#(0) are trans-
verse to g = p —p/,
qu{p"|7"(0)[p) = 0. (3.8)

Isospin selection rules — Wigner-Eckart theorem A more direct consequence of isospin
invariance is that matrix elements of the current J; can be nonzero only between initial and
final states with total isospin I; y differing by AI = Iy — I; = 0, £1. This follows from the usual
composition rules of SU(2) representations. In particular, the matrix elements of the vector-
isovector current between states A and B belonging to the same isospin multiplet, Iy = I; = I,
must have the form

(A[V}|B) =ty (T) g, (3.9)

with Tél) the generators in the representation R = 2I + 1 of dimension R = 2741 corresponding
to a multiplet of total isospin I FE] The reason is that under an isospin rotation of A and
B these matrix elements must transform like an isovector, resulting from the composition of
representations R® R =R ® R = @gfld. Since each representation appears only once in the
decomposition, there is a single tensorial structure that can be formed, and that is provided by
T CE]). Similarly, for the vector-isoscalar current one finds
gy — o 50
(A15#1B) = Cfy 8Ll (310
since the (2I + 1)-dimensional identity matrix is the only scalar structure that can be formed
out of R ® R. These are particular instances of the Wigner-Eckart theorem.

25The axial-vector current matrix elements have the same form, of course with a different coefficient, but this
does not turn out to be as useful.
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We can now combine these results with Eq. (3.5 to find a useful relation. Take A and B
to be I3 eigenstates in a multiplet of isospin I, and consider the matrix elements of the vector
currents V', V{', and S#. We find

(LIVET I) = Cly (T gy 1y = Cliy VTT+1) = (T + 1) 81y 1,1
(LI Is) = Oy (T3 g 1y = Clyy T by 1y (3.11)

(I T4|SMI I3) = é(’j,) 811, -

Here we assumed the Condon-Shortley convention on isospin eigenstates. If we subtract the
diagonal matrix elements of V4" with isospin I3 4+ 1 and I3 we find

Clhy = (I Is + V| I + 1) — (T 3|V |T I3)
= (I 15+ 1|VE + SHI I3+ 1) — (I 3| VA + SH|I Is) (3.12)

= I3+1VE I3+ 1) — (I I3|VE |1 I3) .

Combining this with the first equation in Eq. (3.11)) we obtain

<113+1|Vf\113>=\/I(I+1)—13(13+1)[<113+1|V3“|Hg,+1>—<113|V3“|Ug,>} 513
3.13

= VII+1) -+ 1) [(113 SV LT+ 1) — (1'13\%’&!113@ .
Weak charge The Noether charges associated with the vector-isovector current read

T, = / BrVi(z). (3.14)
Here z¥ is arbitrary due to conservation, so we take #° = 0. For the matrix element between
isospin and momentum eigenstates A and B, with respectively isospin I’, I4 and I, I3 and mo-
menta p” and p, we have

(AT, B) = / P (AVO(x)|B) = / dae T (A (0)|B) (3.15)

= (2m)°6@(q)(AIV,(0)|B)

with ¢ = p'— p”’, and so for the + component, with the usual relativistic normalisation of states,
we find

[ (VOB = (AIT41B) = 8118y 1 VT + 1)~ Tl + D 2050(@) . (3.16)

Comparing with Eq. (3.15]) we conclude that

<A‘V£(O)‘B>‘q’zo = 2p05[,151é13+1\/1(1 + 1) — Ig([3 + 1) = 2p0(5[/[(51é [3+1Qw(f, 13) . (317)

An analogous derivation leads to the following result for the — component of the vector current,

(AIV2(0)B)lg=0 = 20°6116 15 1—1 VI + 1) — Is(Is — 1) = 2p°6 10167 1,1 Qw (1, I5) . (3.18)
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In the case of transitions where the initial and final state belong to the same isospin multiplet,
the amplitude in the static limit ¢ = 0 is determined entirely by the weak charge, Qw (I, I3).
(Notice that in this case also ¢" = 0, since states in the same multiplets have the same mass.)
Analogously, for the electromagnetic current we have

/d?’x (A]Van ()| B) = (A|Qem| B) = 80rQ(2m)*20°5™(q), (3.19)

from which it follows that
(AIV2,(0)|B)|g=0 = 20%000Q - (3.20)
This is not in contradiction with Eq. (3.13)): in fact, combining the two equations one finds

Q(Is + 1) — Q(I3) = 1, which implies that Q(I3) is a linear function of I3; but this follows
directly from Eq. (3.5). (In fact, we know that Q = Is+ %Y, the Gell-Mann—Nishijima relation.)

Axial current and chiral symmetry If quarks were massless, the SU(2) isospin symmetry
could actually be extended to a chiral isospin symmetry SU(2); ® SU(2)g, with the two factors
acting independently on the two chiralities of the quark. In that case the corresponding chiral
currents would be conserved, and therefore both the vector and the axial current would be
exactly conserved, as they are the sum and the difference of the chiral ones. In the real world
the light quarks have small but finite masses, which leads to conservation of the axial current
being only partialﬁ the current divergence being proportional to the light quark masses.

On the other hand, even in the massless quark limit the vector and axial part of the chiral
symmetry are realised in different ways: while the vacuum is invariant under a vector isospin
rotation, it is not under an axial one. Chiral symmetry is therefore spontaneously broken, and
being a continuous symmetry it generates massless bosons through the Goldstone mechanism.
These are nothing but the pions, whose nonzero mass is due to the explicit but soft breaking of
chiral symmetry due to the small light quark masses, and which would vanish in the massless
limit.

Partial conservation of the axial current (PCAC) was correctly guessed before the discovery
of quarks and of QCD. If the axial part of the chiral symmetry is spontaneously broken, then
Goldstone bosons 7, are generated, one for each broken generator. Such bosons are coupled to
the axial current,

(0[AL(0)|ms) = ip" fab , (3.21)
with f,; some constants. The form of the right-hand side is dictated by Lorentz invariance. If
the vector part of the symmetry is not broken, then isospin invariance implies

(0[AZ(0)|my) = ip" frdap - (3.22)

The reaﬂ quantity fr is the pion decay constant, for reasons that will become clear soon, and

26We know that the light quark masses are also different from each other, so that the vector current is also not
exactly conserved, but this has a smaller effect on physical quantities.

2TExploiting invariance under the antiunitary transformation © = CPT and the transformation property
O A*(2)@ = —A*(—z) of an axial-vector fermion bilinear, one finds

(01©" AL ()8 () = —(0] AL (0) w6 () = —ifxbarp" = (O|AL(0)|mo(—5))" = (i frbarp”)” .
having used the transformation property

Olma(P)) = nrnepnc|Ta(p)) = |ma(P)) -
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it has dimensions of a mass. Taking the divergence on both sides [see Eq. (3.7)]

(010, AL(0)|mb) = (—i)pyuip" frab = M3 frbap - (3:23)
The PCAC hypothesis is the generalisation of Eq. (3.23]) to an operator relation,
0 Al (x) = frm2¢a(z), (3.24)

with ¢, the pion fields (of mass dimension 1), normalised to have amplitude 1 between the
vacuum and the one-particle states,

(0]¢a(0)|75) = dap - (3.25)
Here the states |7,) are related to the physical pion states |7°) and |7%) as [70) = |m3) and
+
7%) = L 1,0y = TR E ) (3.26)

V2 vz

and the fields ¢, (z) are related to the neutral pion field 7%(z) = 7%(x)" and to the charged pion
fields 7t (x) and 7~ () = 7 *(2)!, normalised such that

(nn°(0)0) =1,  (F[x=(0)|0) = 1, (3.27)
as 10 = m3 and V27T = ¢1 F i¢. Indeed, taking the complex conjugate

1 , .
(0277 (0)7*) = ﬁ<0|(¢1(0) Figo(0))(Im) £ilm)) = V2, (3.28)
as required. These fields form an isotriplet: by construction the effect of a unitary isospin
transformation U on |m,) is U|m,) = U3 |mp), with U3 the representative of the transformation
in the adjoint (triplet) representation, s

(m|Ua(0)UT|0) = U3T) 2 (me|$4(0)0) = U, = Ua (0 Z U3,6:(0). (3.29)

While 9, A% () is trivially “a” pion field, as it can create pion states out of the vacuum having
the right quantum numbers, Eq. tells us that pions can be excited using a total divergence.
This has nontrivial consequences in the form of low-energy theorems (see Chapter 5 in Ref. [10]).

From a modern perspective, the PCAC relation Eq. is the transcription in terms of
an effective mesonic field of the Ward identity for the axial current,

O Al (x) = 2myqPy(x), (3.30)

where P, 5T“q is the pseudoscalar density, and m,q is the light quark mass in the isospin
limit. T he 1dent1ty Eq. (3.30) is an exact result in the isospin limit of QCD. Comparison with
Eq. shows that the pion mass square is proportional to the light-quark mass (in the limit
of small mass where the other states excited by P, can be neglected), a relation known as the
Gell-Mann—QOakes—Renner relation.

Notice that the states |m4) are C' eigenstates, and that the (arbitrary) residual phase nr for the T' transformation
is chosen so that nrnpnc = 1, where np and nc are the intrinsic parity and charge-conjugation phases. From the
equation above it follows that fr; = fr.

Z8This treatment is appropriate for free pion fields, like, e.g., the ones appearing in the interaction picture, that
only create one-particle states out of the vacuum. For the fully interacting fields, one should start from the isospin
invariant action, from which the symmetry generators are obtained via Noether’s theorem. Their action on the
pion states, defined as the lightest states created by the interacting fields, follows then from the transformation
properties of the fields.
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3.2 Pion decays

Let us apply the general results of the previous subsection to concrete cases.

Leptonic decays of charged pions We begin with the decays
at =y, T =L, (3.31)

Since pions are pseudoscalars, a fully leptonic decay of a pion can only be mediated by the
axial current, i.e., (0|VE |7*) = 0. This matrix element is in fact an axial vector under Lorentz
transformations, but no axial vector is available. The axial current matrix element is instead a
vector, and Lorentz invariance dictates it to be of the form [see Eqs. (3.22)), (3.26]) and (3.28])]

(0| AL |mE) = iv2frp”, (3.32)

with real constant f; of mass dimension 1. It should now be clear why f; is called the “pion
decay constant”. The value of f; is the same for both charged pions, even away from the isospin
limit: in fact, CP symmetry is sufficient to show that this is the case; C'PT symmetry implies
furthermore that f is real@ The choice of signs in Eq. follows from isospin conservation,
or, from a quark model perspective, from the fact that 77 = du and 7~ = 4d, so that the
currents cf(’)gu and wOYd are respectively needed to annihilate themm These are respectively
coupled to 7,04 ¢ and (O} v.

Let us focus on 7+ — £ v, for definiteness: C'P symmetry implies that the same width is

29The transformation laws for fermion bilinears under ©® = CPT and CP read
O'Y(@)Ty(2)0 = P(=2)7* T y(—2)  (CP)'P(a)Te(x)CP = (xp)y " C'TTCy ¢(xp)

where zp = (2°,—%) and C = i7?7° = —C' is such that CTv*C = —(5*)T. For the charged pions and the
axial-vector current one has

(0le' A% ()8 ™ (7)) = —(0|A(0)|x™ (7)) = —ifprp" = (OJAL(0)lx™ (=5))" = (ifr-p")",
OICP)YTALO)CPIxT () = =0 (0| AL (0) |7 (7)) = —if s Pp = nenp (0| ALL(0)l7™ (=) = ifr-ppncnr

with p¥ = (p°, —p). In the equation above we made use of

7570 [7#75 (Tl + 7:7_2)}1"}/0’}/5 _ 757075707M707075(71 _ iTQ) _ _,Y;L,y5 (7_1 _ iTg) 7

VT Y (11 +i72)]TCy° = A°CTA T CHO (11 — ima) = =17 (11 — i) = =y A (1 —im)
The exact CPT symmetry implies f,+ = f’_, so that they might differ only by a phase. Since np = —1 and
nc = 1 for pions, CP symmetry further implies f,+ = f,— = f*,. CP is a good symmetry as long as the heaviest
quarks can be ignored, so this relation is expected to be very accurate. At the present level of approximation,

where hadronic matrix elements are computed considering only strong interactions, C'P is exact, and so is 7.
One could then use directly 7' invariance and the transformation property A% (x) — n** A4 (xr) to show that

fat = fo = fr is real,

ifenp" = 0" (0| AL (0)|m (7)) = (OITT AL (O)T | ™ (7)) = (0| AL (0)|n ™ (=) “npmc = (=npnc)ifzn™ p" .

30Notice that with this definition of 7 the corresponding isospin state is —|1 1), if we adopt the usual Condon-
Shortley convention.
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obtained for 7= — ¢~ y. We have for the decay amplitude

G ‘ -
Ms = 5 0880 iV2 (¢ 1| 0L, )(0)0)

= iG cos ¢ [0y (D) (L = 7" )vie) (P))
= 1G cos ¢ fﬂﬂ (P(u))(}b(y) + }75(@))(1 - 75)1)(@ (p(é)) (3'33)
(1+ 75)¢(5)’U(z) (pee))

= —iG cos Oc frmetiq,) (147" v (per))

@)
= iG cosb¢ fri()

where we have used momentum conservation and the Dirac equation. Taking the absolute value
square,

IMg|* = G? cos® O frmiii) (1 + 7% v (pe) ) (@) (1 — ) ug) , (3.34)
and summing over spins (recall Eq. (2.9) for the neutrino bispinors)
Mel2) = G2 cos? O F2m2tr (1 4~ 1P 1+4°
(M) = G2 cos? 6 f2mite (1+99) (g, —m)(1~27)p,,,
2 .2 22 5
= G* cos”O¢ fimj 2tr (p(e) - mg)p(y)(l +77) (3.35)

= 2G? cos?0¢ fﬁm? trpw)p(y) = 8G? cos® ¢ fﬁm% ) Pw) -

Taking the square of the momentum conservation relation, pi;) = p(s) + p(,), we find

m2 =mj +2pu) - Pw) » (3.36)
and so
(I Mal) = 4G? cos® b f7mi(mz —m}), (3.37)
which is a constant. The total decay width is found integrating the differential width,
r= [ [ap Q) QMGED [ g UMY o 5.38)
2m7-|- 2m7r 2mﬂ' ’ ‘
where

oy Ppuy
(2m)32E, (2m)32E,,

with E = p° = \/p2 + m?2 the particle energy. The two-body phase-space integral is Lorentz
invariant, so is most conveniently obtained in the pion rest frame as follows (for generality we
include a neutrino mass m,,):

d*p &3
2) _ (£) p(z/) 4o(4
e _/ (27r)32E4/ Gmp2E, ) 0 () — Py — Pw)

d®® = 2m)*6 (p(r) — Py — Pw))

(3.39)

1 $Bpey [ dPpe) 3) (= -
= (4ﬂ)z/ B, E (mx — By — Ey)3® (50) + Plw))

1 d*pe)
(4m)? | E,E,

1 [ dp p? 2
= 6| mg —y/mj +p?—/m2+p? ).
TJo o Jm? 4 p?/m2 + p?
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The delta function can be recast as

-1
BB,
3 (1 =\ = VA ) = (B ) b= p) = P s p), a0

™

where p, is the magnitude of the spatial momentum of the final particles in the rest frame of
the pion, obtained by solving the following equation:

mw—\/wz \/mf+p2
mz = 2mq/mg + p? + my, + p* = mi + p? (3.42)
m2 4+ m2 —m? = 2mg/m2 + p?
(m3 +my, —m3)? = dmZ (m}, + p?).
Since at each step we are squaring positive quantities, we are always solving an equivalent
equation. From the last line we finally find

(mz +my —m§)? 5 [mi — (my +me)’[m3 — (my —my)?]

It follows that - )
1 dpp” BB, Px
o = 5(p—ps) = : 3.44
ar Jo BB, pm, (p = p) 4dmm, ( )
In the case at hand m, = 0, so
2 2\ 2
2 My — My
S (R S—— 3.45
= (M) (3.45)
and ) )
o2 — LGﬂ (3.46)
8mmz
We are now ready to write the final result for the total width:
1 m2 — m?
r= T 4G? cos? Oc f2m2(m?2 — m?)gﬁT% .
_ G? cos? Oc f2m? (m2 — m2)? = G? cos? O f2 mom2 (1 — mif 2 '
4drm3 i ¢ 4 me m2)

As a function of the lepton mass, I' is suppressed both near m, which is a threshold effect due to
the limited available phase space, and near 0. This suppression is due to the definite handedness
of the current: for a very light lepton helicity is almost a good quantum number, and almost
only left-handed leptons and right-handed antileptons appear. Since the pion has zero spin, the
spins of the fermions in the final state must be opposite, and since also their spatial momenta
are opposite this requires that the two fermions have the same helicity; being a lepton and an
antilepton, this cannot happen if they are both massless. For this reason, despite the limited
phase space available, the dominant decay mode is 7+ — p* v, instead of 77 — e v,. In fact
(using m,+ = 140MeV, m, = 106 MeV, m, = 0.5 MeV)

| IS me\? (m2 —m2\’
Zrtoetve _ < e) <H) ~1.2-107%. (3.48)
Fw+—>u+ vy my Mg —m




Pion beta decay Next we consider the three-body decay (“pion beta decay”)
= rleT .. (3.49)

(Why do we not consider also 77 — 7% u%1,?) Let p; and ps be the initial and final pion
momenta, and p(.) and p(,) the positron and neutrino momenta. The decay amplitude is

Mg = —% cos 00<7r0\(c?(’)ﬁu)(O)\7r+><e+ue](DeOLue)(0)\0>
G (3.50)
= =75 cosbelm IV 7)) (o)1l = 7)o (o)

since only the vector current can have a nonvanishing hadronic matrix element (no axial vector
is available). This matrix element must be of the form

(m@VHEt) = fo(@)" + F-(a7)g" (3.51)

where p = p1 + p2, ¢ = p1 — p2, and f1 are dimensionless rea]lﬂ functions of qQ@ In the isospin
limit, conservation of the vector current implies

0= Q,u<7rolvf‘ﬂ'+>’iso = q2f— (q2)’iso ’ (352)

so that f_|isc = 0. (Obviously, the subscript “iso” means that we take the isospin limit.)
Of course, there must be a mass difference between the pions for the decay to take place.
Nonetheless, if we expand in the symmetry-breaking parameter A = m_+ — m_ o we find

F (@) = F-(@)iso + ALY (@@liso + - = AL (@) iso + -, (3.53)

where fﬁl) = Jf_/OA. Furthermore, the transferred momentum must be small,

¢* =m2i +mio —2p1-po < miy +miy = [(Mgs +mq0)? —mZ, —m2o) (3.54)

= mi+ + mfro — 2me e = A2
which reflects the fact that there is little phase space available due to the small mass difference.
We thus see that the term f_(¢?)¢" in Eq. (3.51) is of order A2, and moreover that f,(¢%) =
f+(0) + O(A?). Since the transition is between states belonging to the same isospin multiplet,

in the isospin limit we can use Eq. (3.18]), telling us that in the static limit the amplitude is
governed by the weak charge. Since I =1, I3 = 1, I} = 0, we find

F(@iso =0 = F+(0)]is0 20] = 200V2 = f4(0)}iso = V2. (3.55)

31This is shown again using T invariance, which implies
' (7 () [VE(0) [ ¥ (1)) = (x°(52) I T VE(O) T |t (5)) = (" (—p2) [VE (0) |7 (=p) " (mpme) “niné
= "7 () [VE(0) | (1)) = fr = fi,
having used the properties of the explicit form, Eq. (3.51)), and having made the usual choice 77% = 1% for the
charge-conjugation phase of the charged pions (which is automatic in the isospin limit as 7+ and 7° are in the
same triplet).
2

32In general they must be scalar functions of p and ¢, so functions of ¢%, ¢-p = moy — mfro and p? = ¢* +4q - p,
and therefore can be written as functions of ¢? and the pion masses.
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One can show that corrections due to isospin breaking are of order A%, and so we can write
(TOVH|rT) = f1(0)]iso " + O(A?) = V2P + O(A?). (3.56)
Neglecting the mass difference in the matrix element thus gives the correct result up to O(A?).

The fact that corrections to fyliso are of second order in the symmetry-breaking parameter is a
consequence of the analogue of the Ademollo-Gatto theorem (see Section in the case at hand. Let
I3 and It denote the isospin generators in the unperturbed limit of exact isospin symmetry, and treat
the symmetry-breaking term in the Hamiltonian as a perturbation. Let this term be proportional to
some small parameter §. In the perturbed theory the energy eigenstates are generally mixtures of the
unpertubed energy and isospin eigenstates, but since I3 is still an exact symmetry only states with
the same eigenvalue of I3 can mix. Moreover, for small § one can still associate the perturbed states
uniquely with the unperturbed ones. We write then |I I3)s for the perturbed states that are exact
eigenstates of I3, and that as § — 0 become the I%and I3 eigenstates |I Is)g = |I I3)iso. Starting now
from the commutation relation [I;,]_] = 215, and taking its expectation value on a hadronic state
|I I3)s we find
25(I Is|I3|1 Is)s = 213 = s (I I3|[I+, I-]|I I3)s

= Z 5([[3|I+‘77,>55<ﬂ|[,‘][3>5 - 5<II3|I,|n>5§<n|I+|Ilg>5 (3 57)

=D ls(nlI-|T Is)s|* = |s(n| L+ |1 I3)s*,
n
having inserted a complete set of states. Among the states |n)s we now separate those corresponding
to the same isomultiplet as |I I3)s, and write
213 = |s(I Iy — UI_|I I3)s|* — |s(I I3 + 1|14 |1 I3)s|?
+ Z s(n| |1 Is)s|* = |s(n| I | I3)s],

where the sum extends now only on states corresponding to multiplets other than that of the state of
interest. Since the symmetry-breaking term in the Hamiltonian is proportional to §, this sum must
be at least of order 62, since the matrix elements themselves are at least of order & (they vanish in
the isospin limit). On the other hand, in the isospin limit

(3.58)

|iso<II3 - 1|I7‘IIB>iso‘2 - ‘iso<I-[3 + ]-|I+‘IIB>iso‘2

=[I{I+1)-I3(I3—-1)] = [I(I+1)—I3(I3+1)] =213, (3:59)
and so
|1 I3 = LI |1 I3)s|* — |5 I + 1| L4 |1 I5)s* (3.60)
= liso{I I3 = L|I_|T I3)iso|® = liso (I I3 + 1[I |I I3)iso|* + O(6%) = 215 + O(67) .
Applied to the states |7F) = —|11) and |7°) = |10) this gives
|s(r 1|7 T)s|* = [V2P* + O0(6%). (3.61)

Notice that here we used states with unit normalisation, rather than the relativistically normalised
ones. Adapting the proof is straightforward, and requires only a multiplicative factor 2p°. Including
this factor, we have (2p°) ~HmC|VO|m+)|sz0 = (20°) " HmO| I |77)|3=0 = f+(0) = V2 + C, with C real
(since fy is real) and vanishing in the isospin limit. Then from Eq. 0(5?%) = f+(0)2 =2 =
(V2 +C)? -2 =2y2C + C?, and so C = O(4?). For the meson masses, one finds instead that the
leading order correction in perturbation theory is of order §, as it comes from the diagonalisation of
the symmetry-breaking part of the Hamiltonian, restricted to the given (degenerate) multiplet, and
so A o< 6. In conclusion, f,(0) = v/2 + O(A?), which is what we wanted to show.
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To next-to-leading order in A we thus have

G _
Mg = — 5 0c V20" (p))7u(1 — 7°)v(e) (Pe))

_ 3.62
= —G cos Ocp () (p))Vu (1 = 7°)v(e) (D(e)) » (3.62)

(Mg |* = G? cos® Ocp" D" () ()1 (1 — 7)) (Pe)) V) (P(e) )10 (1 — Y7 ) (o)) »
and summing over spins
(M%) = G2 cos? beps" ey (1~ ) (g, — me)w(L —7)p,

= 2G cos fop!p'tr (1+ ") (P ) — me)wp,
= 2G? cos” fop!p"tr (147" )3 o Wb, (3.63)
= 8G* cos” fop''p” [p(e)up(u)y + PPy — M (P(e) " P(v)) — i€uauﬁp&)pfy)]
=8G%cos” 0 [2(p - pe)) P - P)) — P (De) - Pw))] -

The differential decay width is then

4G? cos? 0¢

M+

dl’ = 2(0 - pe)) (- D)) — P*(Pre) - Pvy)] dBP (3.64)
where we recall that the term in square brackets is correct to leading and first subleading order
in A. In order to get the total width we write

4G? cos? O¢ / d3py
(

I =
- 2m)32E, ¢

"p" 122 (q) — NI ()] (3.65)

where, since ¢ is timelike (see below), we can use the general result Eq. (2.93) for Z,,,(q), which

in the case at hand reads
1 m? 1 m2\ > 9 m2\?
IaB(Q) = 39 <1 - q;) {3 (1 - q;> (g Nap — QaQ,B) +|1- (q;) dadqp ¢ - (3.66)
m2 2 q2 m2 2
1—( £ = (1-=2] . 3.67
<q2 > 16m ( q > (3.67)

The contraction 7, can be computed straightforwardly,
2 2 2\ 2
q m m
A =+ [(1-=¢ 1 e
(0 327r< q2>{< q2> i
Contracting the tensorial structures in Eq. (3.65]) with p#p” we find
1 m?2 1 m2\ >
Y2 l/I y - 1 _ e - 1 _ e 2 2 _ . 2
PP’ L (q) 3%( q2>{3< q2>(pq (p-9)%)

1— <ZL§>2] (p.q)Q}, (3.68)

+




We then plug this into Eq. (3.65) to get
Q= pMpV[QI;W(Q) - nquaa(Q)]

([ 33w

N2

](p q) (3.60)
2

3

The various Lorentz invariants read (2m = m+ + my o)

q2 = mfrJr + mio —2m + Lo,
PP =mii + mfro +2m +Eo = q¢®> +4m,+ Es, (3.70)
q-p:mfrJr —m?ro =2mA,

Notice that ¢ must be positive, hence ¢* is a timelike vector, and furthemore ¢ is bounded
from above:

@ =) +pw)’ =ml, @ <mii4+mio—2mpimg = A%, (3.71)

We still have to integrate over the neutral pion momentum. To this end, taking into account
that Eq. (3.69)) depends only on F5 and not on the angular variables, we can replace

d3p2 47-[- P2max dep% 1 Eomax
/(27T)32E2 - 2(27T)3/0 Es (27r)2 /E 2 2~ Mho ( )

2min

We further relate (notice that here ps denotes the magnitude of the spatial momentum of the
neutral pion, not its four-momentum)
m72_r+ "I_ m72r0 - q2

Ey =
2 2m7|—+ )

2 2 2\ 2
miy +mio —¢ 2
—m2,

2m+

2 _ g2 2
P2 2 m ( (3.73)
2

(M2, — (mgo + w)?|[m2 — (M0 —w)?]




where w? = ¢ and we have used Eq. (3.43). We can further manipulate the expression for p%
and p? to get

[mﬂ+ — My0 — w] [7n7rJr + Mo + w] [an+ — Mgo + w] [mgﬁ + Mgo — w]

2
P2 = P
am:

(A — w]2m + w][A + wl2m o] [A% = w?um? — o) (3.74)

2
am? am?

p2:4<m2+(%)2)—w2:4m2+A2—w2

The most convenient integration variable is w. We only have to determine the integration range
and the Jacobian:

Winin = \/ oy = Me Wmax = V @ax = A, 2wdw = —2m+dFE; . (3.75)
The integration measure Eq. (3.72)) becomes
d3p2 1
iR d 2][4m? — w2 3.76
/ (2m)P2E; | (2m)22m2, /m ww/[A7 m* — i, (3.76)

while the integrand becomes

1 2\ 2 92 2 2
Q:m<1_$§> {4m2A2<1+%)—(4m2+A2—w2)w2<1+23)}' (3.77)

It is convenient to rescale w — Aw and write

/ d3py . A32m
(2m)32E,  (2m)22m?2,

Q= AS:T”Q <1 s 2) { E AW) — (14 2201 -w?)) ? <1+2ZL;M> } (3.78)

A2m? .
67 '

All in all we have
4G% cos’ 0 A32m  A?m?
mee (2m)22m2, 6

G2 cos? O AP m -
- 67T3C <m +) / dww\/l—wQ 4m2 W Q(w).

We now set ¢ = m2/A? and drop orders of A/m higher than (A/m)! to get

2 2 5 1
r= G bl (1_3A>/ du/T— 2
NG

673 2m
(-G (5 o)) e

4m?

1
dwu)\/ [1—w?][1 — 2% w2,

= e dww\/l—w2 1-— %aﬂ]@(w)

(3.79)

G? cos? o AP 3A
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The calculation of K(g) is particularly annoying. Let us change variables to z = w? to get

K(a)zi/jdz@(l—if [<1+2§> —z<1+ €>] . (3.81)

2z
Expanding the polynomial part of the integrand we obtain

31

<1—;) |:<1+Z>_Z<1+22’):| :1_Z+§5_5 (3""%)?—’_25 ;a (382)

which leads to

1t 1
K(g):/ dzx/l—z[l—z+§5—82(3+§)22+2€ (3.83)
3

2 23
The exact evaluation is left for later (see Appendix . For the time being we will be content
with finding the lowest order approximation. This requires some care: if the integrand were
regular at zero, it would suffice to expand K(g) = K(0)+eK'(0)+..., but K’(0) does not exist:
among the various contributions there is that coming from deriving the integral with respect to
its lower integration limit, which is minus times the integrand, which blows up at the origin. To
circumvent this problem we isolate the most singular part of the integrand, and write

! 1 LS| ! 1
/ dz 1zn:/ dzn/ dz(1—+v1—-2)—
3 z 3 z 3

zn
11t ! 1
= — | dz(1=VI=2)— (3.84)
n—1zr"1l¢ /6 “( ?) 2"
_ L L e singul
= ol ess singular .

Integrating exactly the first two terms and retaining only the leading contributions of the rest
we find

K(e)~ + [g(l —e)ite(l—e)2 — 35% + 2531] ~ — (1 - 5e) . (3.85)

2
Shoving this into Eq. (3.80)) we finally get

G? cos® O A\ 3AN\ 1 G? cos? o AP 3A m2
r« ———/—(1-—)]-(1-5¢)=——~—(1———-5-"L 3.86
677 < 2m> 5(1=5) 3073 ( 2m A2> ’ (3.86)

N

which is correct to O(£) and O(%5).

3.3 Neutron beta decay

We move to one of the most important decay processes governed by weak interactions, namely
the beta decay of the neutron,
n—pt+e +. (3.87)

This process is the basic process behind all nuclear beta decays. In turn, the fundamental
process behind it at the quark level is

d—u+e + i, (3.88)
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which turns the neutron, n = (udd) in terms of quarks, into a proton. p = (uud). This is clearly
the same fundamental process behind 7~ — 7% 4+ e~ + .. The relevant term in the Lagrangian
is thus

— \% cos 0 (uOFd)(eOrave) , (3.89)

and the decay amplitude reads

G .
Mg = ~ 75 O H e (p(e))Va (1 — 7°)ve(p)) 5 (3.90)

where

H* = (p|(uOLd)(0)[n) = V¥ — AT,
Vit = (pl(uy*d)(0)[n) , (3.91)
AL = (p[(uy*4°d)(0)|n) .
The subscript + refers to the fact that these are the + components of isovector currents. While
it is very difficult to obtain the hadronic matrix elements of Eq. from first principles (and

this requires techniques beyond perturbation theory), it is nevertheless possible to constrain
their form by means of symmetry considerations. In fact, Lorentz invariance imposes

<p|Vf‘n> _ ap<pp,3p) <f1(q2),-ylﬁ 4 fz(qQ)ig“V% + f3(q2)2(];;> Un(pnasn)
= Up(Pp, 5p) M" (q)un(Pns $n) ,

. (3.92)

q
+ gs(q2)2m> Yo (Pn, 5n)

uv qy

BIAL 1) = 0y ) (P + aalaPio™

= ap<pp7 Sp)Mg(Q)Un(pn, Sn) )

where ¢ = p, — pp, m = %(mp +m,), and fi, g; are real dimensionless functions of ¢? called
form factors (see Appendix for details). In fact, these are the most general linearly inde-
pendent structures one can build out of D = (3,0) & (0, 3) and its conjugate D that transforms
respectively like a vector and an axial vector under Lorentz transformations. The form fac-
tors can be determined experimentally by means of (anti)neutrino-nucleon scattering, since the
same hadronic matrix elements appear there. For the same reason, the matrix elements of the

electromagnetic current must read

_ . v ql/ qu
(pIVE Ip) = Up(p), s7) <fp1(q2)'y“ + fp2(g?)io* 7+ fpz(qz’)fm ) Up(Pps Sp)
P P

" (3.93)

m — = A 2\ 1 2\, _pv Qv 2\ ¢
(V) = 00050 (For(@1 4 o™ S5 a0 ) ).

where f,; and f,; are the electromagnetic form factors of the proton and the neutron, that can
be studied by means of electron-nucleon scattering.

We can further constrain the hadronic matrix element by recalling that the electromag-
netic current is conserved, which implies that the matrix elements of V&, are transverse, i.e.,
4V = 0. Since a(p', s")gu(p, s) = u(p’, ')y — p)u(p,s) = a(p/,s')(m — m)u(p,s) = 0, and
oM is antisymmetric, this implies that fpg(q2) = fn3(¢?) = 0. In the case of exact isospin
invariance, this implies conservation of the vector current (the isovector and isoscalar part of
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the electromagnetic current must be conserved separately), qMVf = 0. This implies that also
f3(¢?) = 0. Alternatively, one can use the behaviour of the vector current under G-parity to
drop this term in the isospin limit (see Appendix [3.7)). There is actually more: applied to the
nucleon isospin doublet (I = %) relevant to neutron decay, Eq. implies

(pIVEIn) = (pIVEalp) — (n[Viun) , (3.94)
and so in the isospin limit
fild®) = fpild®) = faild®), i=1,2,3. (3.95)
These relations are particularly useful in the limit ¢ — 0. Recalling Eq. ,

<p|‘/:e(1]rn(0)‘p>’§:0 = fp1(0)@p(p, 3;)70%(197 Sp) = fp1(0)2p05s;,sp
= QPOQp(ss;,,sp = zpoés;,,sp )

0 B Sy 0 0 (3.96)
<n“/em(0)|n>’¢f=0 = fnl(o)un(pa Sn)7 un(p7 Sn) = fnl (0)2]) 65%,sn
= 2pOQnds;ﬂsn =0,
it follows that
fl(o):fpl(o)_fnl(o):Qp_anl- (3'97)

Alternatively, since the n — p transition is a Al = 0, strangeness-conserving transition, at

zero transferred momentum it is governed by the weak charge QW(%, —%) = 1, i.e., recalling

Eq. (B17),
(PIV2(0) )]0 = f1(0)tp(p, 5p)7 tn (P, ) = f1(0)2p"0s, s,

(3.98)
= 2p065p,sn \/ % + i = 2p055p,sn 5

we again find f1(0) = 1. Yet another way to find this result is to consider the decay process at
the quark level, and compute the matrix elements of the current between the appropriate quark
states. Schematically,

ud—du | ud—du \ __ ud—du | ud
(usdgelud|arzge) = (o] -2 (24
The form factors fp ,2(0) at zero momentum are instead related to the response of the particles

to an external static magnetic field, and are known as the anomalous magnetic moments of the
proton and the neutron. These are well known experimentally:

ud—du
V2 > —2

du _ 1 1 _
ﬁ>) —1-2l42l=1. (3.99)

F(0) =179, fun(0) = —191, (3.100)

from which it follows that
f2(0) =3.7. (3.101)

This terms is known as “weak magnetism”. The third term is known as “effective scalar” since
it can be expressed as a scalar through

Q" (1 —~°)ue = uy (¢, +¢.)(1 — Y e = 1, (1 + 75)geue = meti, (1 + ) ue . (3.102)
All in all then

_ o 10
BIVEI) = Bypsy) (24 4 i, 20

) U (P, Sn) - (3.103)
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A more precise treatment is as follows. Near the exact isospin point, expand in the isospin-breaking
parameter A = m,, —m,. The transferred momentum satisfies ¢> = (p(e) + p())* > m2 and ¢* =
m2 + m; — 2mpE, < (m, —mp)*> = A% In the isospin limit A = 0, and expanding in A, f; =
fi(o) + A fi(l) + ... we find from current conservation in the isospin limit that féo)(qz) = 0, while for
f1(02) one finds nonzero values. Since ¢ = O(A), we find that the f; term is O(1), the faq term is O(A),
and the f3q term is O(A?), so if we work to order A we can neglect it. We can furthermore neglect
deviations from f; 2(0) since they also are O(A?).

We now proceed with the axial vector matrix element. In the isospin limit, the second term
(“weak electrism”) is forbidden by G-parity, since it is G-even while the axial current is G-odd.
Since we are working at order A we can therefore drop it. We then approximate again the form
factors with their values at zero, and obtain

A1) =ty 50) (71(0) + 00 ) P 2. (3.10)

What can we say about the axial form factors? The PCAC hypothesis, Eq. (3.24)), implies
— igu(pl AL (0)n) = frm{p|6+(0)In), (3.105)

and using the known pole structure of the nucleon matrix element (see Appendix in partic-

ular Eq. (3.216))) we find

. . gerN(q2) —
— g, (p| AL (0)[n) = 2Zf7rm3rm“p(pp, $p)7 Un (D, $n) » (3.106)

with grnn(g?) the pion-nucleon-nucleon vertex function. On the other hand, using the general
structure of the axial current matrix element we find

- 2 293(q2) 5 2 gnNN(q2) - 5
_up(pp7 Sp) ¢91(q ) +q Y un(pm Sn) = 2f7rmﬂ-ﬁup(ppa Sp)’}/ un(pny Sn) ,

2m mi —q
2 293(a%) _ 2 9xnn (¢°)
(myp +mn)g1(q”) — q o 2fwmnm,
(3.107)
Setting ¢? = 0 we find (m, = m,, = m)
mg1(0) = frgann(0). (3.108)

The quantity g1(0) is known experimentally, comparing Eq. with measurements of neu-
tron [ decay, and is g1(0) ~ 1.267. On the other hand, from the experimental study of nucleon-
nucleon scattering one can obtain (under the assumption that pion exchange dominates the
amplitude) the physical value g = g,yn(m?2) of the pion-nucleon coupling, with g ~ 13.169. If

we further assume that g, nyn does not vary much between zero and the pion mass squared, then
we obtain the Goldberger-Treiman relation

mg1(0) = frg, (3.109)

which is satisfied within 2 =+ 3%.
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Is it worth noting that in the limit of massless pions the axial current becomes exactly
conserved, and so we obtain the relation

93(q?) _ 2mgi (%)

2
293(¢7) _ @)

2m 2m q

2mg1(q°) — q (3.110)
which implies the presence of a pole at zero in g3. This massless pole is a consequence of the
spontaneous breaking of chiral symmetry, and indicates the presence of massless particles in the
theory, i.e., the pions.

There is another, more phenomenological way to see the origin of the pole. Since nucleons are
not elementary, their coupling to the leptonic weak current is not pointlike, but rather a “blob”
taking into account the internal structure. Contributions to this blob run over the possible ways
in which the final products can be obtained from the neutron, and include a pointlike neutron-
proton-leptons four-fermion interaction, and a pointlike neutron-proton-pion interaction with
the pion subsequently decaying into a lepton pair. The latter involves the coupling to a leptonic
current as discussed in the previous subsections. The effective Lagrangian is

Gcose
V2

with N the nucleon doublet of fields and g4 = g1(0). We then have to sum two contributions,
corresponding respectively to the g; and the g3 terms in the decay amplitude i Mg,

geff —

[NTi*(1 = gay’)N ey, (1 = ¥°)v + hee] + igNTY° N, (3.111)

1G
g1 term : WQAUpVH’WUn )
Z_ 2fwgqﬂ o (3.112)
(Z\ffw #) = e

gs term : i(igV2)upy un——— . ey

[
that have to be contracted with the leptonic current ) Or,v ().

To leading order we can then set set ¢ = 0 and just keep the terms proportional to f;(0) =
gy = 1 and ¢1(0) = g4, obtaining for the decay amplitude

G _ _

Mg = 7 cos O tpy" (1 — ay®)up ey (1 — 7)oy, (3.113)
where o« = ¢1(0)/f1(0) = ga/gy. This is the starting point to derive phenomenological con-
sequences. Let us include a polarisation for the neutron and the electron, with corresponding
polarisation vectors

STL g (077777/) s Se — (ﬁe.];e,ﬁe Ee(Ee'ﬁe) ) . (3114)

Me Me (Ee+me)

Summing over the unobserved proton spin we find

5
Z Mg ’2 G? cos ectr’y#(l _ 0575)(?"‘ mn)l—i_;ﬁn'yl’(l _ 0475)(}7)/ +my)
(3.115)
1+7°%,

X try, (1 — 75)5{7(1,)%(1 - 75)(ke + me) 92
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We already know how to deal with the second trace, which is equal to

5
tr (1 =) Kyl =) (ke + m6)1+2m

_ L. . a 1.8
= 4{k(V)uk(e)# T Ewwken = Muwke) - ke — “uauﬁkwk(e)} :

= tr (1+9°) vk oy W ke .16

with 12:6 = k. — meSe. For the first trace we have instead, taking into account that the trace of
an odd number of gamma matrices vanishes,
tr (1 = an®)(p 4+ ma) (L +9°4,)7" (1 = ar”) (' +my)
= tr (14 ay’)* (P + 7 mag )P + tr (1= (7)) (mn — 7 ph, )7 myp
=tr(14a?+ 20475)7“(]]) + ’Yan,}én)’y”p' + (1 — &) try*(my, — 'yE’pﬁn)'y”mp (3.117)
= try*[(1 + a2)p — 2amn¢n]*y”p’ — tr oM (1 + a2)mn$n — Qap]’y”p'
+(1- az)mnmptr Y+ (1 — a2)mptr 757“%4”7” )

Since the electron and neutrino energies and momenta (as well as the electron mass) are of order

A = my, —my, Eq. (3.116)) is of order A?. We will retain only the leading order in Eq. (3.117)),
which means in practice setting m,, = m, = m and p’ = p. This simplifies the calculation,

leading to
try# (L= an®) (P +ma) (L +7°4,)7" (1 — ar”)(p +my) —
4{(1 + a?)(2ptp” — m2n) — 2am(stp” + sph) + im(1 + az)e“a/”ﬁlsm,pﬁ/
+(1-a?) |:m277,ul/ _ imﬁ”alﬁ/ypalsnﬁl} } (3.118)
= 8{(1 + o®)pHp” — aPmPnp — am(shp” + sypt) + iaZme“O‘/”ﬁ/sm/pg/} )

Contracting Eq. (3.116) and Eq. (3.118) and including the missing factors we find

G? cos? 0 g
Z |IMg|? = — 042{(1 +a?)pp” — aPmPp — am(stpY + sVpt) + ia®met Vs Sna/pﬂ/}
Sp

) _ - s
X {k(V)uk(e)u k@ ke — k) ke — Ze#dl/ﬁk(u)k(e)}
= 8G? cos® 0o 2(1 + a®)p - kyp - ey — (1= a®)m?kqy) - hee)

+2m[(0® — )sy - keyp - k) — (@2 + a)sp - kg)p - if(e)]} :
(3.119)
Let us consider now several cases.

Unpolarised neutron, no spin measurement In this case we sum over electron spin and
average over neutron spin. The result is obtained replacing s, — 0, k) — k(), and including
a factor of 4/2 = 2 in the decay width. We find

2 .2
dI‘:SG cos 60{
m

2(1 + o*)m?E.E, — (1 — o*)m*(E.E, — k) - E(e>)}dq)(3) (3.120)

= 8G? cos? HCmEeEV{(l +3a?) + (1 — o?) e cos 9}d¢(3) ,
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where G, = % is the electron velocity and 6 the relative angle between the electron and

neutrino trajecteories. The phase space element reads
1 d3kd3k, d3p/
S (p—p —kyy —k
8(27T)5 Ee Ey Ep (p p (I/) (6))
1 dked®k, 1
8(2r)® E. E, E,

do®) =

(3.121)

d(mp — E, — E, — E),

where E2 = m? + (K, + ke)2. Since

(p—1')? = (k) + k@)* = me
my +m; — 2mpE, > m?, (3.122)

(mn—mp)Q—mZ>2mn(Ep mp)
we have A2 )
—m 2 2
E,—m, < ¢ =&, ey
PUPT Cor ) (3.123)
2
Eu—i‘Ee:mn_mp_(Ep_mp):A"’"O(%Q’%)'

To leading order in A we can then replace £, with the proton mass, neglecting the proton recoil
7,

5% = B2 —m? = (Ep — my)(Ep — my + 2my,) = 2m,, - O(22, 72 (3.124)
We find
1 3ke B3k, 1
dd®) ~ T dEk dEk —6(E, + E. — A)
(27) e m (3.125)
=~ dE.E./E2 — m2dQ . dE,E?dQ0(E, + E, — A).
8(277)5mE€E,, e — MeQii(e) v (V)(S( + )

Since the overall orientation of the electron-neutrino pair can be integrated out trivially, from
Eq. (3.120)) we can read off the angular correlation C(cos ) between electron and neutrino (that
can be measured indirectly by measuring the proton recoil, see below), namely

dr\' dr 1—a?
> 3, cos. (3.126)

9 — :1 _
Cleosb) (dEe dE.dcosd 17302

This measures the distribution of electrons and neutrinos in the relative angle, for fixed electron

energy. In order to find the energy distribution %% of the electron we integrate over the angles
and find 1
dl = 8G? cos® O (1 + 3a2)8(2 E (47)2dE,E.\/E2 — m2(A — E,)?
T
(3.127)
G? cos® ¢
=55 I+ 30%)dE.E.\/E2 — m2(A — E.)?.
Finally, the total decay width is
G2 29 A
D=5+ 3a2)/ dEE./E2 — m2(A — E,)?
, T ) e (3.128)
G* cos” Oc 2\ AB T/ e
= T(1+3a JAT("%),
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where
I(2) :/1 drxv/x? — 22(1 — 2)2. (3.129)

The integral I(z) can be calculated explicitly, and reads

2 1 5 1 1
I(z)=-<4—-(1—-2%)2+ §z4arccoshf +-v1-22|1- 322 . (3.130)
3 ) 8 z 4 2
Notice I(0) = 1/30. For me = 0.51 MeV and A = 1.29 MeV we have z = 0.395, and I(z)/I(0) =

0.47, so
2 a2
G* cos” b (3.131)

I =047 (1+3a2)A5.

Om3

Unpolarised neutron, electron spin measurement In this case we have to average over

the neutron spin and keep the electron spin:

4G? cos? 6 ~ 7
T — TC{QU +a?)p - koyp - E — (1— a)m?k,, - k(e)}dq)(&%)
4G? cos? 0o 2N 92 70 N 2,71 70 A
_ O Ve (1 _ _ (3)
= — {2(1 +a)ym By ki, — (1= a)ym*(E k) — Ky ke)}c@ (3.132)
A2 o2 2y _(e _ a2 v e 3)
4G cos QCmEVEe{(1+3a )Ee +(1-« )Ez/ Ee}dq) .

If we integrate over the neutrino momenta (including over the relative angle between the electron
and neutrino trajectories), we can read off the electron polarisation P, from

k0 7ok
&) =g Tl (3.133)

Polarised neutron In this case we sum over the electron spin, obtaining
8G? cos® 0
dl' = TC{Q(l + Oé2)p : k(l,)p : k(e) - (1 - a2)m2k(y) . k(e)
+ 2m[(a® — a)sy, - keyp - k) — (@ +a)sy - ko - k:(e)]}d@(?’)
(3.134)

= 8G? cos® HcmEeEl,{2(1 +a?) — (1 —a?)(1 — Becosb)

9 [(oﬂ — )i - Z — (a2 + @) - Z] }d<3><1>.

Integrating over everything but the direction of the electron or that of the neutrino, we are left

with
dr\ dr 2(a% = Q) 7, - ke 2(a? — a) |ke| cos 0,
<dEe> dE.dcos 0, 1+302 E, 1+ 3a2 E, (e correlation),
dr\ dr 2(a2 + @) T - Ky 2(a® +a) E, cosf,
=1 =1 % lation) .
(dE€> dE.dcosb, 1+302 E, + 1+ 302 E, (7 correlation)
(3.135)
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Summary of free neutron decay Let us collect the results concerning free neutron decay

when no measurement is made on the electron spin. The differential decay width in the static
approximation (¢ ~ 0) reads

G? cos? 6 1—a? - > —a = o’ + o
ar = =22 70 32{1 ——2 5@ _2[7 -~ T2 ~}}
o5 (W3O g e e = 2 g e i — g (3.136)
S, d :
X 2 I YdE.F.\/E2 — m2(A — E.)?.
T 7

The coefficients of ,61 Ty, 5} -1i, and 71, - 77, give the angular correlation between the momenta of
the electron and the neutrino, between the neutron polarisation and the electron momentum, and
between the neutron polarisation and the neutrino momentum, respectively. From the electron-
neutrino angular correlation, measured from the proton recoil, ]5’5 = 2mp(E3+l_€E+2EV|Ee| cos @),
one can obtain |o| = |ga/gv|, which since gy ~ 1 yields the axial charge. The sign of « is
obtained instead from the angular correlation of the electron with the neutron spin in polarised
neutron decay. Combining the result for o with the experimental values of the neutron lifetime
and of the Fermi constant G obtained from muon decay, one can then determine | cosf¢]|.
The energy spectrum of the electron is given by the function

A
F(x,Wy) = 2/ 22 — 1(Wy — x)?, r=L Wy=—, (3.137)

e Me
up to constant factors. This is the Fermi function for the energy spectrum in the case of free
neutron decay, and provides a first approximation of the energy spectrum in the case of nuclear
S~ and BT decays. The inclusion of effects due to the form factor f2(0), i.e., due to weak mag-
netism, leads to a modification of the Fermi spectrum to F'(z, Wy) — F'(z, Wp)(1 + ex) for 5T
decays. Such effects are hard to detect in neutron decay since the vector current is dominated by
the weak charge contribution, but they become the leading contribution from the vector current
in decay processes involving the transition between nuclei belonging to different isomultiplets,
since in this case f1(0) vanishes. A good example is provided by the transitions between the
isotriplet (2B, '2C*,12N) and the isosinglet '2C, which are respectively a 37, 7, and ST transi-
tions. The electromagnetic transition '2C* — 2C is a magnetic dipole transition governed by
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the electromagnetic form factor f$™(0), which since AI =1 contains only a contribution from
the isovector current and none from the isoscalar. This belongs to the same isotriplet as the
charge weak currents governing the BT decays of (12B and 2N), and so the weak form factor
f2(0) can be obtained from f$™(0) as determined by an experimental study of 2C* — 12C,
and the value of € in the modified spectrum can be predicted. The result is in agreement with
experiments (see Ref. [11]).

Fermi and Gamow-Teller nuclear transitions The vector and axial vector current matrix
element between proton and neutron read, in the non-relativistic limit

<p|V_{f]n> = gVap’Yuun = QV(SMOU;Un = 2mgV5M055psn )

3 3
_ (3.138)
(p‘A/_f_’n> = gAUpru75un =~ gA Z 5MjuLUjun =2mga Z 5'uj (Uj)sp57L .
p =1

Only the temporal component of the vector current and the spatial components of the axial
current contribute. In the beta decay of a m-nucleon nucleus N — N’, one has instead for the
relevant components

(N'[VEIN) = 2mgy / @l @) (S, 01)) el =g (1),

(N'|AL|N) = 2mga / @l ) (2 VF O, P18

) f's'.fs
) s, IR ) = 045).

where Wy and Wy, are the wave functions of the initial and final nuclei, carrying collective
isospin and indices f = f1...fn, and s = s1...5,, as well as a dependence on the momenta
D1, - - -y Pn- The index ¢ runs over the n nucleons in N. Since the isospin matrix TJ(:) has non-zero
matrix element only if nucleon i is in a neutron state in IV and in a proton state in N’, the sum
over i (together with the antisymmetrisation of the wave functions) covers all possible ways in
which the transition takes place through the beta decay of a neutron of N into a proton of N’.
Transitions for which (1) # 0 and (&) = 0 are called Fermi transitions, those for which (1) =0
and (7 ) # 0 are called Gamow-Teller transitions, and those for which both terms are nonzero
are called mixed transitions. Denoting

XH = <<N’|VO|N>, —<N'|A’|N>) : (3.140)
we have for the decay amplitude squared
2 * 1 B
|IMg|* o< XHXY (kj(e)#k(y)y + k‘(e)yk(y)“ — T]/Wk‘(e) . k:(l,) — Zeuw,lgk(ay)k(e)> , (3.141)
where we have summed over the electron spin. If we are interested in the correlation between
the electron and neutrino trajectories, we need to keep only terms that are either independent

of the spatial momenta or that depend on both of them, while terms depending only on one of
the momenta drop out after integration over the overall orientation of the final products. We
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find
M| relevant X X°X*O2E,E, + X' X7* (ko ikyy j + kyike;) — X - X*(BoEy — ke - k)
— i(XOXT* — XTXO)eq ke,
[2(gv [(1)])? = (gv (W) + (9al(G))?] BBy + (XX + XIX ™) ke ik 5
+ X X'k Ky +i(XOX* — XX%)  ky A ke
= [k} + k4] BBy + (X°X7* 4+ XIX™Vkeikyj + X - X*ke -
+i(XOX* = XXk A ke,

(3.142)
where

kv = (ovI(DD?, &4 = (9al(@)). (3.143)
Furthermore, we are generally not interested in the spin of the final nucleus, and we do not know
the polarisation of the initial nucleus, so we sum over the final spin and average over the initial
one. Up to a constant factor this amounts to average over all the spins, and since the result
must be invariant under spin rotations it has to boil down to the replacement

XX — Lsix. Xr. (3.144)

average

We then find
’Mﬁ’2|relevant 08 (FJ%/ + H124)E€EV + (,‘g%/ — %ﬂi)%@ . ];;V

1

3

2 _ 1,2 3.145
K K
= (k¥ + K4)E.E, 1+V72Aﬁecos0 x 1—¢&Becosb ( )
/<cV + K
For a Fermi transition the electron-neutrino correlation coefficient is ¢ = —1, while for a Gamow-

Teller transition it is £ = % For the decay of a free neutron, where both the vector and axial
current contribute, we have instead

a? -1

3.4 Hyperon decays

We conclude this section discussing the beta decay of the hyperons ¥+,
t = Aetu,, YT s Ae . (3.147)

Since my+ = 1.1894 GeV, my- = 1.1974 GeV, and mpy = 1.1157 GeV, we have that A, =

Mmy+ —mp = 73.7 MeV and A_ = my- — my = 81.7 MeV, so decay into muons is forbidden.

The quark content of the hyperons is X% = (uus), £~ = (dds), and A = (uds), so strangeness

is conserved in these processes. The relevant currents are then dO%u and its conjugate a0} d,

respectively. We can write the relevant matrix elements as (2M = mp + mx+)
byt T[S — 2w ¢"

AV = Al ) = o (A + i oma, + i ) use. s

_ N . g2 q/J'
(AIA215) = (Nl oPuls ) = ax (o0 + 1500, + ) 2P
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and similarly for the decay of ¥~. Due to the small mass difference we can take the form
factors at ¢? = 0, with corrections of order ¢ = O(A%). In the isospin limit, f1(0)]is, = 0 since
»* and A belong to different isomultiplets, so f1(0) is of the order of the isospin breaking
parameter, O(my+ — my-) = O(AL — A_), after symmetry-breaking effects are included.
Current conservation in the isospin limit also implies

2 2

0= UA <f1(q2)|isog + f3(q2)|iso2qu> Uyp+ = UA <f1(q2)|isoA+ + f3(q2)|i502q]\4> U+, (3149)

and for f1(¢?)]iso/q* = O(1) near zero we find that f3(0)]iso/(2M) = O(A ), hence f3(0)/(2M) =
ALO(A+ — A_). Finally, in the isospin limit the form factor fs can be related to the corre-
sponding term in the electromagnetic decay X% — A, and is some number of order one, so that
the weak magnetism contribution is of order A,. All in all, the vector current is suppressed
with respect to the axial current, as long as ¢1(0) # 0, so it is the latter that dominates the
decay. In the isospin limit the relevant matrix element has the same value for ¥ and X7, so
the ratio of the two decay widths is determined uniquely by the available phase space. Since
this is proportional to A%, as one can see by adapting the result obtained for the neutron, we

find s
(Xt — Aetre) Ay
=—] ~06. 1

X" — Ae 1) <A_ 0-6 (3.150)

This agrees with experiments.

3.5 Appendix: evaluation of K(¢)

We want to compute the integral defined in Eq. (3.83)), reported here for convenience,

1 [t 1 1
K(e) = 2/ dzv1—z [1 —z4+3c-23+¢ ) +2€3Z] . (3.151)
€

Changing integration variable to z — 1 — z this reads

1

K@= [ i+ ie-2649)

1 1
5 5+ 253] : (3.152)

(1-2) (1-2)3

Integration of the first two terms is straightforward. For the other two terms it is convenient to

write
1 1—e 1 V1—e¢ ) 1
T G A e

- /oﬁd"’” [(1 T —;2>n1] |

We only need n = 2,3. For n > 0 these integrals can be treated by elementary methods by
replacing

(3.153)

1 1 1
(1—‘T2>n:(1—l‘) 1—|—£L‘ ZA (1_$j+(1+x)j>7 (3154)
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and finding the appropriate A; (the same coefficient appears for both pole terms due to the
xr — —x symmetry). We have

1 1 1\ 24
1) ‘A1<<1—x>+<1+x>> -

1 24 N 245(1+2%)  2A;(1 — 2?) + 245(1 + z?)
(1—22)2  (1—22?) (1—22)2 (1—22)2 ’ (3.155)
1 24 245(1 4+ 22)  2A3(1 + 32?) ’
G- (-2 (-7 (-2
C245(1 — 227 + 2%) + 245(1 — 2t) + 2A3(1 + 32?)
N (1 —22)3 ’
which are solved by
1
n=1 A1 =z,
2
1
n=2: A1:A2:1, (3.156)
3 1
=3: A=Ay = — Az =—.
n=3 1 2= 15" 373
One can then integrate Eq. (3.154]) to get
1 l+z =~ A4 1 1
dr —— = A1l J — — 4 1
R e R e W e (e e

j=2
and in the cases of interest
1 1 1+2
do —— = ~1
/x(1—x2) 2 BT 4
1 1 142 1 1 1 1 142 1 T
do ———— = ~log =~ 4 = - =1 -
/x(l—x2)2 4Og1—x+4<(1—x) (1—|—x)> 1% Ta )
/d 1 3 g LT, B 1 AR 1 1
r——-—"=—10 — — — —
1-228 16 P1-z 16\(1-2) (1+a)) 16\1-22 @1+a)2
3 142 3 T 1 T

=2 ° - .
16512 "8(1—2%)  4(1-22)

(3.158)
We then have

1 [l-e 1 1 =z 1. 1+g1Vis
- d . — Zlog — =
2/0 Z‘/g(1—z)2 [2(1—3:2) 4 Ogl—x]o :




We can then combine these two contributions to get

;/01_5 dzv/z [—52(3 + %)<1 _12)2 + 263 ! ]

(1-2)°
1v1— 1 1v1— 1v1— 1
g LYz L) pps(lvize 1Vi—e 1) (3.160)
2 € 2 4 g2 8 ¢ 8
3
iL—§\/1—5(2E+€ ) ,
where L = log 1& fvl £. The other two integrals are

1 [ 5
/ dzv/22 = (1—6)5,
0

2
- (3.161)
1 [ 3
/ dzv/z = (1 —€)2.
2 Jo
Putting everything together we find
1 1 3 1
K(e) = 5(1 _5)% + 56(1 —5)% + iL— f\/l —e(2e + €%
1 2 3e?
= V1 —5{5(1 — )2 te(l—c)— (25—1—52)} + %L
(3.162)
1 2 9 8 4 3e?
=—V1l—ed{-—-e— - —L
2 5{5 5° 7 5° } *
1 9 1552 1+v1-¢
=_-3V1I—¢e|1—=e— 4 ] .
U e e
We can finally look for the lowest-order approximation in &,
1
K(e) ~ 5(1 —be), (3.163)

which agrees with Eq. (3.85]).

3.6 Appendix: form factors

The matrix element of interest are of the form (H'(p/, s")|V*|H (p, s)), (H'(p', s")|A*|H (p, s)), for
momentum and spin component eigenstates of some spin—% fermions H and H’, and for vector
or axial-vector operators V# and A*. In general, the matrix elements of any observable O can
be written as

(H'(p, )| O|H(p, s)) = iy (5" )To(p, p)us (7). (3.164)
To see this, notice that the left-hand side is in general a 2 x 2 matrix labelled by s, s’ = :l:%, and

recall that
, 3.165
XS) (3.165)

5 X
us(p> = vp0+m< p‘-&s

pO+m
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so writing I'» in block form
Mi(p,p') Ms(p,p

one has

g (P )Co(p,p)us(p)

- =

B o VA t ' n_b-o
= VO + m) (0 + m)x], (Ml(p,p)+M2(pap)pg+m (3.167)
]7,‘53 / ﬁ/& / ﬁ&
_ P9 o -2 " M
PO +m 3(p.P) - 4(p,p)p0+m) Xs »

and any 2 X 2 matrix can be written this way (in fact this is redundant, as it suffices to choose
M, appropriately and set M 34 to zero: only four complex parameters are needed). The form
Eq. is convenient in order to parameterise matrix elements with simple tranformation
properties under Lorentz transformations. For O = V* we have

(H'(p', s")[VI(0)|H (p, 5)) = Gy (5")TH (p, p')us (D) , (3.168)
and Lorentz invariance dictates
(H'(p, U (W) TVH(0)U(A)|H (p, )
= AJ(H' (P, )V (0)|H (p, 5)) = ALty (p7)I (p, p')us(P)

= STUH (A, ) VEO0) H (Ap, 5) 22 (W (A) 22 (W (A))*

5,5

(3.169)
— 1 (AT (Ap, Apyus (A7) 22 (W (A) 22) (W (A))*
=y (7)S(A) T (Ap, Ap)S (A)us (7)

The matrix T'*(p, p) can always be written as a linear combination of the sixteen 4 x 4 matrices
4 = 1,i7%, 4*, ~Py#* o discussed above in Section and the objects @y (§")T4us(F) have
simple transformation properties under Lorentz transformations. Still working in full generality,

s (5T (p, P )us(F) = s (57) (' (p, )1 + +c5 (0, 9)in® + b, (p, 0 )7”

, o B (3.170)
+ch, (0,07 + &, (0.0 p) us ()

The various terms correspond to a scalar, a pseudoscalar, a vector, an axial-vector, and a
rank-2 tensor. The Lorentz transformation property Eq. , the availability only of two
independent vectors that we take to be P* = p# 4+ p’ and ¢* = p* — p’, and of a single
independent Lorentz scalar (besides the particle masses), that we take to be ¢, and of no axial
vector and no pseudoscalar then dictates

A (p,p) = c11(@®)P* + c12(¢%) g,
M AN
02 (pvp ) - 07
c,(p,p) = &1(q°)0", + c32(¢*) P* P, + cs3(¢*) P'qy + c34(¢*)¢" Py + c35(4°)q"qv s (3.171)
" no_
C4V(p7p ) - 0?
Shup(0:0") = (e51(6%) P + 5.2(a*)a") (Poap — Poav) + (c5,3(a°) Py + e5,.4(6%)q)8"

63



Moreover, since

Pty (B')" us () = mig (5" )us(p) ,
Py s (P)y us(F) = m'ay (p")us (7).,
Pugp = Pogv = (v +1,)(pp — 1),) — (P + 1)) (D0 — 1))
= 2(p,pp — Ppbu)
(Puap — Ppgu)ug (P")0"Pus(p) = —2i(p,pp — 0ypw) s (B')7" 7 us (P)
= —2i[p,pps (B )V us(F) — pypuiie (B7) (2077 — 4Py Jus(P)]

)
= —dilmm/uy (p")us(p) — p - puy () us(9)]
(3.172)
the contributions coming from c32, ¢33, and c571 are of the same form as those coming from
c1,1, and the contributions from c3 4, ¢35, and c52 are of the same form as those coming from
c1,2. This leaves three independent structures to parameterise the matrix elements. A similar
argument can be made for an axial vector operator.

Instead of proceeding as above, we first simplify the argument for the vector operator.
From here on we drop spin indices for simplicity. The matrix element on the left-hand side
of Eq. is a vector that must be built using only the vectors P, ¢*, and the structures
a(p T4 (p) The are then only five vector structures,

Pra(pu(p), ¢a(@)ulp), a@ )y ulp), a@)oulp)P,, a@p)o"u(p)q, . (3.173)

As we showed above, these can be reduced to three independent structures. The simplest way
to do this is to use the generalised version of the Gordon identity. Since

a(p)y* 7 ulp) = a(p')n*Pu(p) + alp')ic* u(p), (3.174)

contracting with p and p’ and using the Dirac equation we find
a(p')y*pu(p) = ma(p' )y ulp) = pa(p)ulp) + a(p')ic*’psu(p) ,
a(p) )y u(p) = m'a(p )y ulp) = pPu(p)u(p) + alp')ic*’pLu(p) .

After relabelling 8 — « in the second equation, we find by adding and subtracting the two
equations that

(3.175)

(m +m)a(p )y u(p) = P*u(p’)u(p) + a(p')ic*’ qzu(p) ,
(m —m)a@)y*u(p) = ¢*a(p’)u(p) + u(p')ic™ Psu(p) ,

which allow us to express the first and fourth terms in Eq. (3.173)) as linear combinations of the
other three. In passing, we get in the case m = m’ the Gordon identity, which reads

(3.176)

u(p' )y u(p) = gu(p/)U(p)—l—ﬂ(p/)iaaﬁq—’B

5 2mu(p) . (3.177)

In the axial vector case we have other five structures,

Pra(p )y ulp),  ¢"a@ ) ulp), a2 ulp), a@)o"y ulp)P,, a@)o™~ ulp)ay,
(3.178)
but also in this case Gordon-type identities allow us to drop two of them. Indeed,

a(p' )y P u(p) = a(p )"’ +*u(p) + a(p)ic* v u(p) (3.179)
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and proceeding as above we find

u(p )y py ulp) = —mﬂ(p’)'yau(p) *a(p' )y u(p) + a(p')ic* v pau(p) (3.180)
— N BB I=(. I\~ B / af 5,/ :
u(p)p'y "7 ulp) = m'u(p’)y u(p) = (p )y u(p) + a(p)ic yplu(p) .
Combining the two equations we find
(m' —m)a(p")y*u(p) = Pu(p' )y u(p) + u(p")ic*’ v qzu(p) , (3181)

(m +m"a(p' )y ulp) = —¢*a(p )y ulp) — a(p)ic > Pyu(p),
which allows us to express, e.g., the first and fourth terms in Eq. in terms of the others.
One ends up with the three terms shown in Eq. .

Reality of the form factors in Eq. follows from the 7" invariance of the matrix elements
(in the approximation in which the ¢ and b quarks are neglected):

(Tp|VL|Tn)* = (p|TTVLT|n) = P, (p|VY|n)
(Tp| AR |Tn)* = (p|TTALT|n) = P*,(p| A% |n) .

Since T'|p, s.) = ¢(—1)5"5z| —p, —s,) for some phase ¢, which is the same for proton and neutron,

(3.182)

and using 70y v us(p)* = (—1)%+su_ (—p'), we find

(Tp|VE(Tn)* = {(=1)3 7 1y(Ppp, —5p) MV (Pg)un(Ppa, —sa) (~1) 37}
= —Up(pp, s M* POV VY un (s $n)
o(Dp 5p) [V MP (PG VYT i (P, 5n) * (3.183)
(Tpl AL Tn)* = {(=1)5 2t (Ppy, —s,) MY (Pa)un (Ppn, —sa) (~1)37°" }
= —tp(pp, $p) VYV ME (PO VYT tn (P 8) -
It is now straightforward to show that
V20902 = -1,
VPP 0qialy2q5 = —y2yhin? = —PH >
7572,)/00.;111,)/07275 =~ O_,uzﬁ[ 2 _ P/,Lapl/ﬁo,/,tl/*7
5.2.0.5.0.2.5 _ __5 (3.184)
YY1y =,
R e e e e e e e B L R e A P
PPy oy 0P = APt Iy = PE P oty
from which it follows that (recall v° = ~°*)
¥ q q”
[V y*y O MH (Pg)y AT = P, <f1(q2) 7 = fa(a?) (=i)a PE, P, £ —+ f3(q) m)
=P, (L) + fal?) o 2 +f3<q2>*ﬂ
v 2m om )’
% v 5N v q « 4"
[V y*y O ME (Pg)y 4" = P, <91(q2) v = g2(¢*)* (—i)e"*P*, PP ﬁ + 95(¢%) 2m> °
=P8, (917 + 9o gal?) ) o
v 2m 2m
(3.185)

These must equal P, M (q) and P", M¥(q), respectively, which is only possible if the f; and g;
are real.
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3.7 Appendix: G-parity

In the isospin limit it is convenient to make use of the following symmetry transformation called
G-parity, _
G = Ce™>2 (3.186)

where C' is charge conjugation and e’™2 an isospin rotation. It can be shown that
™2\ [ig) = (1)1 —43) . (3.187)

The way we are going to use this symmetry is however unrelated to the transformation properties
of the states, but rather to those of the quantum fields associated to the particles. It is a general
result (a particular case of the LSZ reduction formula) that matrix elements of operators, e.g.,
a current J#, between a proton and a neutron state can be expressed as

(', )T (2)|n(p, s
/d4 /d4xe py—pa) u(p, s)(iﬁy—m)S’l(m,y)(igw —m)u(p, s)

=a(p’, s’ F“(p p) (p, s), (3.188)
S¥(y, x) = (O|T {1hp(y)tn(x)J*(2) } 10)

Bl ) — : (i 4 4,.,i(p"y—p-x) qu _
(', p) pquhorg_sheu (p —m) {/d y/d ze S (y,:v)} (p—m),

where the limit “p,p’ — on-shell” implies that we start from off-shell momenta p,p’, compute
the Fourier transform of S*(y, x) for off-shell momenta, then multiply by the inverse propagators
and finally take p,p’ on their mass shell. Here ¢, and 1, are local, spin—% fields which annihilate
a proton and a neutron, respectively, normalised as

(Olp(@)lp(p, 8)) = ulp,s)e™ =, (Olgn(@)ln(p, 5)) = u(p, s)e™ "7 (3.189)

Of course, the form of the matrix element on the third line of Eq. is dictated by Lorentz
invariance, but in this way we have related I'* directly to the vacuum expectation value of fields.

We can now discuss the consequences of G-parity invariance. Let us assume that J* has the
simple transformation property GTJ*G = nJ* with n some phase. Under charge conjugation a
spin—% field transforms as

Ca(@)C = E@ir*P)a,  CTa(2)C = € (i1°7%)a (3.190)
Concerning the isospin rotation, p and n are the iz = +% and i3 = —% components of an isospin
doublet, and so

e_mbwp(;r)e”r[2 = —p(x), e 2 ()™ = Pp(z) . (3.191)

Putting everything together we find
555(% ) 0|T{wpa wnﬁ J'u Z } |O>
= =017 {1 a(y)CCHp5( >0J“<z>} )

= 77(0\“(%‘7“7%)5(%)( w 7 (2)}10)
= n(i7y°y* (0| {1pp(x) e } !0 7"7?) gar

(3.192)
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or in a more manageable form

: . T
S (y, ) = 1 (i7" (,y)nin°7%)" = —m°7? (S" (2, 9))" %% (3.193)
Here and below we need the following identities,
2
P = =020, T = 0200 (99%) T =1 (3.194)
Plugging Eq. (3.193) into the expression for I'* we find (the on-shell limit is understood)

TH(hsp) = - — e { / y / el g (o, y)}T 922 — m)

= —U’YO’Y2(—,’¢/T —m) {/d4y/d4xei(p'erpl'I)S“(y,a:)}T (—pT - m)fyofy2 (3.195)
= -’y {(—p —m) /d4y/d4azei(_p'y+p/"”)S“(y,x)(—p/ — m)}T'yO*y2
0

= 0y’ T#(—p, —p) T2,

o TH(',p) = =y 7T (=p, =) 7" . (3.196)
The currents we are interested in are the following vector and axial currents,
VH = ayhd, AP = ayHa0d, (3.197)

which under G transform as follows

GTVEG =VH,  GTA'G = —AM. (3.198)
In fact (recall that u and d behave like p and n as far as isospin is concerned),

GTVHG = CH (A" (—u)C = = ("7 d)ahis(win"y") g = win 'y v Tin°+?d

= 1"y d = antd = Vv,
GTAMG = CH(d)y"y* (—u)C = (7" d)a (17 )ap (@i "y ") g = win 7! (47°) T in "y d

= 17" 7° %0 d =~y d = - AP

(3.199)

The associated matrices I'f,(p', p) and I} (p/, p) must therefore satisfy

L, p) = ="VTh (=, =), ThW.p) =7 Th(=p, =) "%, (3.200)
The general form of these matrices has been given above, and each consists of three linearly in-
dependent terms proportional to ¥4, c"¥q,, 1¢*, for the vector current, and v*~°, c"**~%q,, v q*,
for the axial current, where ¢ = p — p’. Since ¢ — ¢ under p <+ —p’ it now suffices to verify that

— 02Ty 02 = k| e e BA LR —"9217%9% = -1,
T.0_.2 5 0.2 .5 0.2 5

(3.201)
V02 (PP T 092 = et Voot Ty = —ghvy Vool = 45

to show that only v# and "¢, are admissible for the vector current, and v*v® and +°¢* for
the axial current.
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3.8 Appendix: pion pole in nucleon matrix elements

We show here a particular case of a general result: vacuum expectation values or matrix elements
of products of (appropriate) fields have poles when combinations of external momenta approach
the mass shell of a physical particles. Consider the correlation function

(01, /d4 /d4 /d4ze Pee=pu=2) (0T (1), (2)ibn () da(2)} [0)
= (2m)*'8 W —p-q) / d'z / dby T 0T {1y () (1) da(0) } [0)  (3-202)
= 2m)*W ' —p— Q)galt). p,9),

where the proton and neutron fields 1, and v, are normalised as in Eq. (3.189), while for the
pion field ¢, (x) ‘
(0]pa(2)|mp) = bap e (3.203)

The LSZ reduction formula relates 4 and the proton-neutron-pion vertex, e.g.,

m —m 2 m2
out(PIn T Yin = a(p', s )p ; \}%(p D, q)}]) u(p, S)q% (3.204)

It is understood here that momenta are off the mass-shell, so the left-hand side is actually the
analytic continuation of the S-matrix element for nm™ — p (which is obviously zero for on-
shell momenta). With this proviso, we can extract the scattering amplitude for n 7+ — p from

Eq. (3.204) as

. —m 1 —m q2 — mgr
iMpy oty = (P, s ) Woial (PP @) ——ulp,s)=—— (3.205)
Similarly, using the last line of Eq. (3.202)) one finds by means of LSZ reduction
m m
ol O )i = 10, gl prg =~ P i), (3:206)

Let us now isolate, among the various time orderings in Eq. (3.202)), those in which the pion
field corresponds to the earliest time,

G0\ p,q) = / itz / dy / 0t O TTPVED 0T Loy () () } da(2)]0)0(min(a®, 40) — 2°)

+ 0T,
(3.207)
where OT indicates “other terms” We now insert a complete set of states and focus on pion
states, writing (no sum over a)

(0 p.q /d4 /d4 /d4 /koe Pee=py=a2) (0T {4, (2)dn(y) } |Ta(k))

X (ma ()| da(2)[0)0(min(a’, ) — 2°) + OT.

(3.208)
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Here it is crucial that the fields ¢, have nonzero matrix elements between the vacuum and the
pion states. Translation invariance implies

e —zk T

(OIT {¢p(2)du(y) } Ima (k) = (OIT {top(0)duly — )} Ima( )™,
<7Ta( ba(2)|0) = € (o (K )| ()|0>

and of course min(z?, y") = 20 +min(0,3° — 2°). Changing variables to 3y =y—z and 2/ = 2 —2
(and dropping the prime) we find

p p.q /d4 /d4 /d4 /koe p'—p—q)-z—p-y+(q—k)-2]

\T{wp ()} [7ma (k) (ma(k)|$a(0)]0)8(=° + min(0,4°)) + OT
= (2m)*6@ /d4 /d4 /koe —pyta—h)2) (3.210)

X (0T {4 (0)hn ()} |0 (K )O(2" + min(0,5°)) + OT,

(3.209)

where in the second line we used Eq. (3.203|). Dropping the momentum-conserving delta function,
and making use of the Fourier transform representation of the theta function,
dw o 1

O(z°) = — | — 7wz 3.211
() 27 € w+ e’ ( )

we obtain

pp, /d4/d4/d§2k/ ei(—py+(g—Fk)-2)

¢—is(=0+min(0 yO)) (o|T {% Vo (y } |7Ta )+ OT

W+ ie ze
4 o —ipy i —iw min(0,y°)
/d /dﬂk e (3.212)
x (2m)*63) (g - k)27f5(q0 — k0 = w) (0T {4 (0)¢hn(y) } |7a(k)) + OT
, 1 1 (00 _10Y mi 0
— 4, —ipy —i(¢"—k") min(0,y")
/dye 2k0q0—k0—|—iee
X (0T {¢p(0)n(y) } |ma(q)) + OT.

We now focus on the region ¢ ~ k° = /@ + m2, where the other terms can be dropped (since
they do not have a pole there), and get

. 1 1 _
/ — 4, —py - L -
ga(p y Dy Q) qONkO/d ye 2](50 0 _ %0 4 je <0|T {¢p(0)¢n(y)} ’ﬂ-a(Q»
1 i(¢° + k°) 1y e~y
_ Py (0|7 ; . 3.213
2k0 (q0)2—(j’2—m2—|—26/dye O {p(0)n(v)} Ima(d ( )

4 zpy
Ok ¢ —m2+ze/dye OIT {4p(0)dn(y)} Ima(d)
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Plugging this result into Eq. (3.206) we find

out <p|¢a(0) "nj>in
a0 ) [ O (000} @)~ ()
" (3.214)

We can then parameterise this matrix element, using Lorentz and isospin invariance and knowl-
edge of the pion pole, as

2
out (P|¢a(0)[n)in = —1 u(p, ')V rau(p, s) . (3.215)

with g,n N regular at the pion mass squared. In particular,

2
_ .gaNN\q~) _
u(p', ') rrulp, s) = 21;7?_((12)up(p', )7 un(p,s) . (3.216)

™

2
. grNN\q
out (P|@+(0)|1)in = —’ng_ing)

To understand the choice of prefactors, compute the left-hand side using an effective Lagrangian
with the following nucleon-pion coupling,

L = igh1ay Ve = (b3 Uy — YTy ) b3 + 9V 207 U0 S5 + 9V 207 S5 . (3.217)

(The factor i is required to make the Lagrangian T-invariant, since npnc = —1 for pions.
Actually: it makes the Lagrangian Hermitian.) It is straightforward to get to lowest order

1 1
o(pld+(0)[n)in = V2i(igV2) Ty un————5 = 2iglipY tn—5— ,
ou<|+( )| >1n ( )p nq2—m3r P ”m%_q2

(3.218)
so that we can identify g = g,nn(m?2) as the physical pion-nucleon-nucleon coupling.

The reason of this identification is that if one considers the S-matrix element for nucleon-
nucleon scattering, inserting a complete set of states and focussing on the unphysical region
where ¢? = (p1 —p})? is close to the pion mass squared, an argument similar to the one developed
above shows that

out<N(p/1) N(plz)|N(p1) N(p2))in

2
grNN\GQ") _ _
~ const. X (;_;ﬂ:u(pll,s&)’y‘:’mu(pl, sl)u(p/g,sé)'y57au(p2,32) (3.219)
2
NN(mZ) _ _
w const. x SNG40 )P, ) P, 52).
™

In the physical region ¢ < 0, but since the pion mass is small the pole Eq. is close to
the physical region and can dominate the scattering amplitude. The resulting contribution is
then precisely of the form corresponding to the tree-level exchange of a pseudoscalar isovector
particle (i.e., the pion) between the colliding nucleons, with coupling constant g,y (m?2).
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4 Strangeness-changing leptonic decays of hadrons

Most leptonic decays of strange particles are strangeness-changing. The relevant interaction
is the coupling of the hadronic currents 4O%s and 50%u to the leptonic currents (O%v, and
vyOFL, respectively. The lightest hadrons undergoing strangeness-changing weak decays are
strange octet mesons and baryons (as well as the decuplet 2 baryon). Kaon decays have the
following special notation in the literature:

+ - + + . - o, ot

K K" = u"y,, Ky K" = py,mrn,
+ - +,, 0 + - +, 0.0

K3 K™ —=pu vy, Ky: K —pymn, (4.1)
0 . 0 + - 0 . 0 + 0, _—

K3 : K’ —p vy, nm, K, K'—p vy, mm .

Similarly, K u2> K3 etc. are used to denote the corresponding decays of K~ into muons, and
Ké, K ei:,) etc. to denote processes with positrons or electrons in the final state. If the notation
K, K, is used, then the lepton type in the final state is summed over, i.e., one generically
considers decays into whatever type of lepton (compatibly with mass contraints, of course). No

special notation is used for hyperon decays, the most relevant of which are

A—pl vy, X7 —»nl py,
2T Al Dy, 2 x5, (4.2)
=252t 0O =01,

Decay amplitude The general form of the decay amplitude is

Mg = —% sinfcH, L™, (4.3)

where the hadronic matrix element is
H® = (fluO%sli) or H* = (f|sO0%ul|i) (4.4)
and the leptonic matrix element is
L* =u,Ofv,,, or L%=u,Ofv, (4.5)

depending on the specific process.

Selection rules The currents ©O0¢s and 507w carry a change in strangeness AS = £1, so the
selection rule |AS| = 1 follows. They also effect a change in electric charge equal to the change in
strangeness, so the selection rule AQ = AS follows. Processes that violate these selection rules
are not strictly forbidden, since they could take place in higher orders of perturbation theory,
but they are very strongly suppressed. Since u has I = % while s has I = 0, these currents

belong to isodoublets, and so the selection rule |AI| = % follows (more on this below).
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SU(3) flavour symmetry The SU(3) flavour symmetry allows one to relate strangeness-con-
serving and strangeness-changing processes. The currents uO¢d, dO%u, uO%s and 50%u belong
to the same octet of currents,

(G =70%q — 2> 7" 0% qm (4.6)

where ¢ = (u,d, s). There are two independent flavour-diagonal currents, that can be taken as

% (aOfu — dO3d) , % (aOFu + dOFd — 2505 s) . (4.7)
Both are neutral currents, the first part of an isovector of strangeness-conserving currents with
u0%d, JO%u, while the second is an isoscalar. The remaining two currents are J(’)%s and
50%¢d, which complete the isospin doublets of the strangeness-changing currents. These are
however flavour-changing neutral currents (FCNC) which do not appear in the weak Lagrangian.
The different roles played by different parts of the octet should not be surprising since weak
interactions are not SU(3) invariant. Since strong interactions approximately are, relations
among decay amplitudes follow.

4.1 Ky decays

The processes

Kt =ty (4.8)
are the analogues of the charged pion decays 7+ — f1, and would have exactly the same
amplitude in the SU(3)-symmetric limit. As in that case, the hadronic matrix elements receive

contributions only from the axial current, and read
H* = (0[503ulK ™) = iv2fxp®, (4.9)

where p® is the kaon momentum and fx is the kaon decay constant, a real quantity with
dimensions of a mass, that would equal fr in the SU(3)-symmetric limit (in which case also
mg = my). Using momentum conservation, p = py + p,, we find

G
Mg = _\ﬁ sin0c iV 2 fp® Uy, OF v = —iG sin O fi ty, p(1 — )y

= —iGsinfc fx uy, (p, +p,)(1 — Vv = —iG'sin O¢ fi Uy, (1 + 75)%1}@
= iG sin ¢ fr metiy, (1 + 7 )vg .

(4.10)

This is entirely analogous to charged pion decay, and following the same steps one obtains for
the total decay width

=

m2

G?sin?0c f2 2< m§>2
= 2 0K - ) -

Py MEm; (4.11)

Assuming knowledge of sin 8¢ ~ 0.21, of the decay times and branching ratios of pion and kaon
decays,
L(rt = ptvy,) ~T(h) = (26- 10_85)71 ,

+ + + -8\ 1 (4.12)
DK — pty,)~063T(KT)=063(1.2-10"%s)
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and of the particle masses m, = 140 MeV, mg = 497 MeV, and m, = 106 MeV, one obtains
f=/fx = 1.3. Besides a 28% of hadronic decays, significant contributions to the charged kaon
decay come from the K 3 and K3 processes. Since kaons are more than 3 times as massive as
pions, the ratio between I'(K* — e v,) and I'(K™ — pt 1) is closer to the asymptotic limit
(me/my)? =2-107° for large mass of the decaying particle.

4.2 K3 decays

The analysis of Kt — ¢t 1, 7% and K° — ¢+ v, 7~ decays is similar to that of the 8 decay of
the pion. Writing px = pr + p¢ + p» for momentum conservation, and denoting p = px + pr
and ¢ = pg — pr, we have for the relevant hadronic matrix elements

HSD = (2150 00ulKY) = £ (@)pa + £ (0%,

(4.13)
- 0 0

HY = (x~|s0r0ulK’) = £ (@*)pa + 1 (¢*)da.
which receive contributions only from the vector current. In the C'P-symmetric case fj(:’o) are
real quantities. The decay amplitude reads

G e
MG = = sin 0l 10 (@ + 1 @)= 2o (4.14)

The f£+’0) term is easily seen to be proportional to m, (just plug ¢ = p; + p, into the leptonic
matrix element), and thus it is negligible in K3 decays.

The approximation ¢? ~ 0 is here less accurate than in the 3 decay of the pion, but it is
still reasonable. In the SU(3)-symmetric limit we can determine ff’o) (0) using only symmetry
considerations. In fact, in this limit the relevant weak current is related to one of the generators
of the SU(3) symmetry,

/d3:v (30%u) (0,%) = V_. (4.15)

Recall from the algebra of SU(3) that [I3,V_] = —3V_ and [Y,V_] = —V_, and furthermore
that [I_,V_] = 0. Taking matrix elements and using translation invariance,

(2m)* 6P (@)(f] (30%u) (O)i) = (fIV-|i) = 2°(2m)*6® (@) (V-1 , (4.16)

where double angular brackets indicate that only the flavour part of the wave functions is
involved. Using Eq. (4.13) we find

0 _
£ = (@K, A20) = (VoK) (4.17)
A look at the meson octet shows that 7~ and K© are the V3 = —% and the V3 = % members of

a V-spin doublet V = %, and sﬂ

0
£20) = VIV +1) = Va(Va = Dly_y,r = 1. (4.18)
33This is so if we choose phases as follows: KT = 5u, K* = 3d = I_K™, |n*) = du = —-W_K™, and
V2 =T 7%, V2|n7) =1_7°, ie., n° = dd\;g", T = —ud.
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Recalling that I, |7~) = v/2|7°), we can show that
(aOIVEIKT) = Sn VoK) = S{n VoI |KH) = {a VoK), (4.19)
and therefore

oy = L)

isospin limit V2 (420)

1
SU(3) limit V2
The first relation is exact in case of isospin invariance, and should therefore have the same degree
of accuracy. A result known as the Ademollo-Gatto theorem guarantees that corrections to
fJ(rO) (0) due to SU(3) symmetry breaking are only quadratic in the symmetry breaking parameter
dsu(3) (which from the modern point of view is the strange-light quark mass difference my —

Mutmd) and so fJ(FO)(O) = 1 should be a reasonable approximation.

The proof of the Ademollo-Gatto theorem is similar to the discussion of isospin breaking effects
in Egs. - In fact, the proof is the same, using V-spin instead of [-spin. Starting from
Vi, V,] = 2V3 = I3+ 2Y, one finds

2(V Vs|Vs|V Vs)) = 2V5 = (V V3| [V, V_]|[V V) ZI (IV_IVVa) [ = [{nlVi [V V)2, (4.21)

where the generators are the unperturbed ones in the SU(3) symmetric case, while the states are
the physical perturbed states including the effects of SU(3) breaking. Using |K°)) = |V, V)) with
V = V3 = =, and separating out from the sum the |7 7)) state, which is the only state in the octet
having a nonzero V_ matrix element with K°, we find

/

L= (@ [VEIKO)P + D [V [KO) [P = [(n|Vi [ KO, (4.22)
and since the matrix element in the sum are already of order dgu sy, and [{(7~ [V_|K)[2|su(3) timit =
1, we find

1+ 8(m [VLIKO)? =1 =Re (§(n~|[V_|K")) + O(5y(3)) = O(03us)) - (4.23)

where 6 (7~ |V_| K)) is the deviation from the SU(3)-symmetric limit. Since f(O)( 0) = (7 |[V_|K")
is real, it follows f{”(0) =1+ O(035)).

In the SU(3)-symmetric limit fﬁ’o (¢%) = 0 due to current conservation (which extends to the
whole octet of currents), but no theorem prevents corrections due to SU(3) breaking from being
large, and it is well possible that f£+’0) (0)/ ff’o)(O) be of order 1. Using the PCAC hypothesis
it is possible to derive the Callan-Treiman relation, which relates Ky and K3 decays:

fr(mi) + f-(m%) = fx/fx- (4.24)

Like the Goldberger-Treiman relation, this one also involves form factors at unphysical values
of their arguments (here m? < ¢*> < (mg — my)?), which have to be reconstructed through
extrapolation from experimental data. The formula is in good agreement with the experimental
results.

In the case of K, .3 it is possible to obtain a reasonably accurate theoretical prediction, since

the f_ term can be neglected. The form factor f H ( 2) is usually fitted to experimental results
with expressions of the form

2
F(e®) = £70) (1 ML > , (4.25)
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having included a quadratic term. The factor ff) (0) is approximately known from SU(3)

symmetry; fit to experimental results give )\S:r) ~ (0.03. Due to its lightness, the electron is

ultrarelativistic and its mass can be neglected. Calculation of the total decay width giveﬁ

r=

G%in&%( Sﬁ(O))2 - (mo\t "
o miy (mK) {162+ (V5988

(4.26)

B G? sin 02, ( J(r+)(0))2

5 ()
- mi {058+ 20721}

Comparison with experiments allows to determine sin 6.

4.3 K.4 decay

We conclude this subsection with a brief remark about the four-body decay process K+ —
7T 7~ et v,. Four-momentum conservation reads p = p1 + p2 + k1 + ko. In this case both terms
in the current contribute. In fact, since K is a pseudoscalar, (7" 7~ |[V{|K™T) is a pseudovector
and (nt 7~ |AY|KT) isa vectorﬁ Since there are now three independent momenta, it is possible
to build a pseudovector using the Levi-Civita tensor. One has

('t a7 |ARIKF) = fi(p1 + p2)! + falpr — p2)* + fs(p — p1 — p2)*,

_ fa
(nr n|[VE|IKT) = =5, 0" Pips
m

(4.27)

with f; real functions of mass dimension —1 of the scalar quantities p-p1, p-p2 and py - pa. The
f3 term contribution is small: in fact, p—p1 —ps = k1 + ko, and a familiar calculation shows that
this contribution is proportional to the lepton mass (while the f; term is of order mg). The f4
term contribution is also suppressed: in fact, it is proportional to mg (pi/mx) A (P2/mk ), and
so it is suppressed by two powers of momentum. An estimate using PCAC yields f12 ~ 1/ fr.

4.4 Leptonic decays of hyperons

Octet baryons undergo weak decay processes analogue to the 5 decay of the neutron, of the
general form h — h/fvy, where ¢ and vy are the appropriate combination of a charged lepton and
a neutrino or antineutrino of the same family, respecting charge and lepton family conservation,
but possibly not strangeness.

The hadronic matrix elements relevant to such leptonic decays of octet baryons, both the
strangeness-conserving and the strangeness-changing ones, are among the matrix elements of
the octet of currents ( ja)ij of Eq. . Their octet nature is made explicit by writing them as

J& = qO%eq = v (1 — Y")tuq, (4.28)

34This result differs from the one reported in Okun.

% The argument is that the matrix element M*({p;}, {5;}) = (f({8j})|V*[i({5;})) of a vector current satisfies
FUABDIPTVPLi(H ) = s FA—F DIV A—5D) = FAEDPEV (D), i M (=} (-F1}) =
NP MY ({P;},{p;}), thus transforming as a vector if nyn; = 1 and as pseudovector if ntn; = —1. As similar
argument holds for an axial-vector current.
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where t, are the SU(3) generators in the fundamental representation, obeying the usual commu-
tation relations [tq, tp] = @ fapetc and normalisation condition 2tr ¢4t = d4p. The original currents
can be recovered from the explicit expressions for the ¢,. The hadronic matrix elements we are
interested in are of the general form

Ai(B — B) = (B'li;(0)|B) , (4.29)

where |B) and |B’) are generic octet baryon states, |B) = B%|a) and similarly |B’) = B'%|a),
where |a), a = 1,...,8 are a basis for octet baryon states — not necessarily the physical one. We
are allowing here states that are linear combinations of octet baryons, even though these are
forbidden in the real world by superselection rules, because they would be allowed in the ideal,
SU(3)-symmetric world, and because they will be useful in order to find relations between the
matrix elements of interest. Any dependence on the particle spins and momenta are enconded
in the vectors |a), while B® and B’® are independent of them.

To make the abstract Hilbert space spanned by the states |a) concrete , we use the linear
space of traceless hermitian 3 x 3 matrices as representation space for the flavour part of the
wave function, thus writing B = B®, instead of |B). With this choice the basis states |a) are
associated with the basis vectors t%, i.e., the group generators; physical states are obtained as
suitable linear combinations of them, e.g., the proton corresponds to %t;prig, = %(M +its). To
make this linear space a Hilbert space we need to define a positive-definite Hermitian product:
we take this to be

(B',B)=2trB''B. (4.30)

This is easily seen to satisfy the requirements of a positive-definite Hermitian bilinear form.
Using linearity and the normalisation of the generators we can write

(B, B) = BB 2trt,t, = B"*B%,,, (4.31)

where an overbar denotes complex conjugation (B’ = B'**). It is now easy to find out the
general structure of the matrix elements Eq. (£.29). Under a SU(3) transformation, |B) —
|By) = U|B) (boldface type denotes here the abstract transformation operator), one has for
the representative vectors/matrices B that B — UBUT = B*D®)(U),ty, since they transform
according to the adjoint (octet) representation. On the other hand, UTjoU = D(S)(U)abjg“ due
to the octet nature of the currents, so

Al(By — By) = (Byli(0)|By) = (B'[UTj£(0)U|B) = D®(U)w(B'lj§ (0)| B)

= D®(U)w Ay (B = B). 32

The matrix elements A4 (B — B’) are then linear (antilinear) functionals of the matrix B
(B'), that under B — UBU' and B’ — UB'UT transform as an octet. In representation-
theoretic terms, we have to look for octet representations in the decomposition of the matrix
AL (B — B’) in irreducible components. This matrix is by construction transforming in the
8 ® 8 = 8 @ 8 representation (notice that 8 = 8 is self-conjugate). A general result is that in
the decomposition of the representation R ® R of SU(3), the octet representation can appear
at most twice. This means that there are at most two independent structures with the desired
transformation properties. These have to be bilinear in B and B’, and linear in the current
index. It is easy to write down two such structures,

2tr B'Tt, B, 2tr Bt,B'T, (4.33)
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where the factor of 2 is introduced for normalisation purposes; the general result mentioned
above guarantees that there are no more independent structures. Instead of the objects in
Eq. (4.33)) it is convenient to use their symmetric and antisymmetric combinations, and write

AYB — B') = (D* + F*)2tr B't,B + (D" — F*)2tr Bt,B'"
= DM2tr B'T{t,, B} + F"2tr B'T[t,, B] = D"da.B*B'® + F!ify,.B* B (4.34)
= D"d B B® + F*(~ifape) B’ B¢ = D' B"(T,)p.B® + F*B"(T,)p.B° .
Here (Tg)pe = —ifape are the generators in the adjoint representation, and (Ta)bc = dupe are a
second set of eight matrices. Equation (4.34) determines entirely the flavour structure of the
matrix elements up to two unknown objects D* and F*, which contain both a vector and an
axial vector part. These objects depend on the spin and momenta of the initial and final baryons,
but not on their type (in the exact SU(3) approximation considered here).
Lorentz invariance further imposes that D* and F* have the general structure

DF = DI — D" |
_ . atq q"
DY =a(p/, ) {fm((f)'y“ +ifpa(q?) 2m” + fps(q2)2m} u(p, s),
_ . oq, q"
D = (s ) {amn (P17 + i) T 2 + g ) L7t
FP = F‘l; — FZ (4.35)
B = (), 8) d (@0 + (@) T2 + fra(q®) L up, 5)
v ’ 2m 2m L
nz n
Bl 2\l g s 29" Qv 249 (.5
P = a0, {ar @ +iara(@) G 2+ ara(d) o | 0l ),

where p, s and p/, s’ are the momenta and spin compent of the initial and final baryon states, and
g = p—p'. The decays of octet baryons involve small momentum transfers due to the relatively
small mass difference, which makes it possible to work in the static approximation ¢ = 0 for the
evaluation of matrix elements. Equation then reduces to

D" = a(p)y*(Dv — Dav®)u(p),

F' = a(p)y*(Fy — Fay®)u(p) ,
with Dy = fp1(0), Da = gp1(0), Fv = fr1(0), and Fa = gr1(0).
We can further exploit SU(3) symmetry to determine Dy and Fy in the case when this

symmetry is exact. In fact, the integral over space of the vector part of j4(¢,7) is just the
(t-independent since conserved) abstract generator T, of SU(3), and so

(4.36)

/ dPx(B'|jt,(0,%)|B) = (B'|T,|B) = BB (b|T,|c) = (27)*0(q)2p°05s BB (To)pe,  (4.37)

having used the fact that the baryon octet transforms precisely in the adjoint representation,
and the relativistic normalisation of particle states. Using translation invariance on the left-hand
side we obtain

(2m)°8(2)(B'| 3, (0)|B) = (21)6(7)2p° B" B (T e,

. ; (4.38)
(B'|j14(0)|B)]g=0,s=s = 20" B" B(Tu)pe ,

77



having matched the coefficients of the Dirac delta. Using the general structures Eqs. (4.34) and
(4.35)) we find
B/bBC[DV(Ta)bc + FV(Ta)bc]a(pa S)’You(p’ 8) = B/bBC[DV(Ta)bc + FV(Ta)bc]on
= 2p"B"B(Tu)se » (4.39)
DV(Ta)bc + FV(Ta)bc = (Ta)bc .

Since T, is a symmetric while T}, is an antisymmetric matrix, they are linearly independent and
so it follows Dy = 0 and Fy = 1. In the exact SU(3), static approximation we then have

AL(B — B') = u(p,s" )" {(Ta)bc - [FA(Ta)bc + DA(Ta)bc} 75} u(p, S)B/bBC. (4.40)

In order to determine the specific form of the amplitude for the various decays of octet baryons,
it is convenient to return to the original set of structures, writing Eq. (4.40) as

AY(B — B') = u(p, s )v"{[(Dy + Fv)2tr B't,B + (Dy — Fy)2tr Bt B’

_ , 4.41
— (DA + Fa)2tr B't,B + (DA — F4)2tr Bt,B'|y°}u(p, s), (4.41)

and compute the quantities tr B't,B and tr Bt,B’ explicitly for the relevant currents. Here we
put back Dy and Fy for notational symmetry, and for allowing deviations from the SU(3)-exact
case. To this end, notice that the wave function B = B, of octet baryons can be written as
the following matrixm

A1y0 4 1 +
1 \/52 t\/gA 1 Z0 1 .
B=— % e tEh o | (4.42)
V2 = =0 2
= —= —\/;A

Here we have replaced the wave function components B® with the appropriate linear combi-
nations p, n, X0, to make explicit which component corresponds to which baryon. Eventually,
one of them will be set to 1 and the other to 0 to get the desired decay amplitudes. The form
Eq. can be obtained by direct calculation using the explicit form of the generators, or
more simply by recalling that the transformation law B — UBU identifies the traceless part
of the upper left 2 x 2 block as an isospin triplet, with hypercharge 0; the first two elements of
the rightmost column as an isodoublet with hypercharge 1; the first two elements of the bot-
tom row as a (complex-conjugate) isodoublet with hypercharge —1; and the trace part of the
top left block and the bottom right element as an isosinglet with hypercharge 0. The associa-
tion between matrix entries and baryons then follows naturally. Suitable normalisation factors
are introduced to normalise each baryonic component to % The currents of interest are the
strangeness-conserving current

uOpd = ji +ijy = i’ s (4.43)
and its Hermitian conjugate, and the strangeness-changing current

aOlLLS =Jy + ijg = jf+i5 (4.44)

36Minus signs are introduced to make the phases of the various baryon states match those required by the
Condon-Shortley convention for the matrix elements of the lowering operators of SU(2);. One could use different
phase conventions, but this does not concern us here since superselection rules do not allow one to consider linear
combinations of different baryons in physical matrix elements, and so such phases are physically irrelevant.
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and its Hermitian conjugate. Since

01 0 0 0 1
titio =11 +ita={0 0 0], taris =ta+its =0 0 0], (4.45)
0 0O 0 00

one readily finds

2tr B/tl_H‘QB =2 Z B;ﬂBgn

n

_ 1
<20 + A) YT+ 3f <—Z° + — ) +pn,
V2o Ve V2 (4.46)
2tr Bt1+rL'QB =2 Z Bgn nl

n

S

R b Y e R

Including also the cosine of the Cabibbo angle, the coefficients multiplying @(p, s')y*u(p, s) and
w(p, 8')y"+ u(p, s) in the hadronic matrix elements relevant to the various strangeness-conserving
decays of octet baryons (here and below the upper sign is for V', the lower sign for A) ,

+ cosO0c[(Dy.a + Fv.a)2tr B't1ioB + (Dy.a — Fy.a)2tr Bty 12 B']

_ _ _ _ 4.47
= +cos Hc[DMA(Qtr B/t1+igB + 2tr Bt1+2‘QB/) + FMA(Qtr B/t1+iQB — 2tr Btl_HQB/)] , ( )
read explicitly
n—p: :i:COSQC(DVA+FV7A)7
=" =0. Fcosbo(Dya— Fvoa),
A— X2t :tcosﬁc\/gDVA,
(4.48)

X A :tcos@c\/gDV;A,
PRI yuu F cos HcﬁFV;A,
rT - x0 =+ cos HcﬁFv;A.

The same calculation for the strangeness-changing current gives

2r Bty 5B = QZB 1 Bay,

(\1[20 + fA> 2= —xpt=0 ( \[A) )

2tr Bt4+i5B =2 Z Bgn nl

1 _
= <20 + fA> +a%” + <—\/§A> =,
and including also the sine of the Cabibbo angle one finds for the coefficients of u(p)y*u(p) and

u(p)y"v°u(p) in Eq. ([{.41)),

=+ sin GC[(DV,A + FVVA)QtI" B,t4+i5B + (DV,A — FV’A)2t1" Bt4+7;5B,]

_ _ _ _ 4.50
= % sin Hc[DVA(Qtl" Bt4+i5B/ + 2tr B/t4+i5B) + FV,A(2t1“ B/t4+i5B — 2tr Bt4+i5B/)] , ( )
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the explicit expressions

A—p: :FsiHQC%(Dv,A+3FV7A),
T A :FsinHC%(DVA—3FVA),
¥ 5o ismﬂc\[(DvA—FvA), (4.51)
= 5. :I:sm@of(DvA—i-FVA),
YT = n: +sinfc(Dya — Fva),
=205t FsinOc(Dya+ Fya) .

Not all these matrix elements are relevant for actual physical processes in the real, SU(3) non-
symmetric world: for example, the decay A — X is forbidden since the Sigmas are heavier
than the Lambda. Including the relevant gamma matrices and our knowledge of the vector form
factors, we can write the following for the important hadronic matrix elements (to be sandwiched
between initial and final hadron bispinors):

n—pe Ue: cosOc[y" — (Da + Fa)y"~y°],
»E s Aet Ve(e) : — cos QCDA’YM’Y5 )
A—pe v —\/>Sln00 — (Fa+ 3Dav"’],
YT s ne U —sinfc[y" — (Fa — Dao)YHy ], (4.52)

—ANe D, : \/gsin Oy — (Fa — lDA)’y“'y5] ,
— Y 1, %sin@c[’y (Fa + D)%),
—Yte b —sinfc[y* — (Fa + DaA)Y*Y°].
The decay rates of all these processes are parameterised by the three quantities D4, F4 and
fc, which can be determined by fitting the experimental data. Measurements of the neutron

decay fix Dg + Fa = ga = 1.25. A best fit to experimental results yields D4 = 0.80, Fy = 0.45
and sinf¢c = 0.23 (to be compared to sin fc = 0.21 obtained from kaon decays).
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Figure 7: Strangeness-changing non-leptonic decay processes: L+t — nnt (top) and K+ —
7t 7% (bottom).

5 Strangeness-changing non-leptonic interactions

Non-leptonic interactions are responsible for process like K — 27,37 or ¥ — N7 (see Fig. [7)).
They involve the product of two hadronic currents (see Fig. . Restricting to the lightest quarks,
and recalling d’ = cos 0cd + sin ¢ s, the relevant part of the weak Lagrangian is

—%J’O%uﬂ(’)Lad’ = —% [ cos? GCJO%M_L(’)Lad + sin? 0c50TuuOrqs

_ 5.1
+ sin O¢ cos O¢ (EO%uH(’)Lad + d@%uﬂ(’)Las)] ) 5-1)

The first two terms are neutral interactions that do not change the flavour content of the
system, while the term in brackets is the strangeness-changing non-leptonic interaction we are
after. Recalling that Of = 2y*Pr, with Py, the left-handed chiral projector, we can write the
interesting part as

— 2v/2G sin O cos O (ELWO‘ULEL%(dL + JL’yauLﬁL*yasL) . (5.2)

This term realises effectively a transition s — d, but not directly through a flavour-changing
neutral current. Since strangeness is either decreased or increased by 1 by this interaction, the
selection rule |[AS| = 1 follows. Processes with higher |AS| are not strictly forbidden but strongly
suppressed, since they take place in higher orders of perturbation theory. Concerning isospin,
the terms spy*ur, and uyv.sr are clearly part of isodoublets, while @y v,dr and its Hermitian

conjugate contain the representations % ® % =0® 1. Since 0 ® % = % and % ®R1= % &) %, the
selection rule |AI| = %,% on total isospin follows. Moreover, since the field d carries I3 = —%

(and so d carries I3 = %), for I3 one has the selection rule Alz = j:%, the sign being plus if the
first term in Eq. (5.2) is involved, and minus if it is the second term instead.
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Figure 8: Four-fermion interaction vertices for strangeness changing non-leptonic interactions.

5.1 Suppression of Al = % transitions

Let us elaborate further on the issue of isospin. Take the second term in Eq. (5.2]) (an entirely
analogous argument works for the first one) and write it as

2d Y uLtiYasn = (ALY uLiinYasn — Gr Y urdryasy)

+ (dy*urinYast + ULy urdryasy) = M— + My . (5:3)

The combinations M4 can be written as
My = (dp ® g £ g @ dp)aing (VUL @ YaSL)aib) » (5.4)
where the Dirac indices a,b = 1,...,4 and colour indices i,j = 1,2,3 have been written ex-

plicitly. The first factor is a symmetric or antisymmetric product of two isospin doublets and
fundamental (3) colour representations, and therefore an isotriplet I = 1 transforming in the
colour 6 representation, when taking the plus sign, or an isosinglet I = 0 transforming in the
colour 3 representation, when taking the minus sign. The second factor has clearly I = %, SO
that overall the antisymmetric combination mediates |AI| = % transitions, while the symmetric
combination mediates both |[AI| = % and |AI| = 3 transitions. Setting Z3 = M_ + h.c. and
T¢ = My + h.c., we can write for the relevant part of the Lagrangian

&L = —V2Gsinbc cosbc (T3 + Ig) - (5.5)

Although there is no particular difference between the |AI| = 1 and |AI| = 3 parts of the

Lagrangian, it is an experimental fact that |AI| = % transitions are around one order of mag-
nitude enhanced (in amplitude) with respect to the |AI| = % transitions. The reason for this
is therefore dynamical in nature, and enhancement and suppression result from the interplay of
weak and other interactions, mainly the strong ones.

To get a handle on how strong interactions contribute to the relevant matrix elements of Z3 ¢
one would like to use perturbation theory, but doing so is not straightforward. Perturbatively,
strong interactions are described by the exchange of gluons between the quarks participating in
the process (as well as by more complicated virtual processes involving gluon self-interactions
and quark-antiquark pair creation). To do this accurately, one should use for each interaction
vertex the so-called running coupling constant, gs(u), where p is an energy scale, and the de-
pendence of the running coupling on p is determined by the theory. One should then choose
p judiciously, depending on the process under consideration. For gluon exchange, this scale is
set by the amount of energy transferred by the gluon. In QCD, due to a phenomenon known
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as asymptotic freedom, the running coupling constant becomes small at high energy, while it is
large at low energies. For this reason, high-energy processes can be dealt with perturbatively,
while low-energy ones cannot. One should then separate the exchange of “soft gluons”, i.e.,
with low transferred momentum, and the exchange of “hard gluons”, i.e., with high transferred
momentum: while the latter can be treated perturbatively, the former cannot. Adopting a
description of hadrons as bound states of quarks and antiquarks (and gluons), the effects of
soft-gluon exchange should be included in the wave functions that describe the various hadronic
states, while hard-gluon exchange between the constituents can be treated perturbatively. The
separation scale between soft and hard gluons should then be taken around the inverse of the
confinement scale p ~ 1/lconf, as gluons of longer wavelength than l.on¢ do not resolve the inside
of the hadron, determining instead their long distance properties as encoded in the wave func-
tion. The relevant scale is then of the order of p ~ 1/lcons ~ 100 MeV + 1 GeV. Given gluons
carrying four-momentum ¢, for ¢> < p? we speak of soft gluons, while for ¢> > 2 we speak of
hard gluons.

In the context of weak hadronic interactions, the effects of soft-gluon exchange is then in-
cluded in the (anyway unknown) wave functions of the hadrons, while hard-gluon exchange can
be studied explicitly in perturbation theory. The Lagrangian . in Eq. becomes then the
“bare” Lagrangian, % .re, describing only weak-interaction effects at the level of quark and anti-
quarks, that should be “dressed” by including the effects of further hard-gluon exchanges on top
of W-boson exchanges. Notice that since y < my, we can still treat the exchange of a W boson
effectively as a four-fermion interaction when including the effects of hard-gluon exchange. The
resulting Lagrangian can then be used to describe weak-interaction effects at the constituent
level; eventually, one should fold the resulting amplitudes with suitable wave functions.

Let us see how the perturbative approach works in practice at a qualitative level. One type
of diagrams are those in which we add gluons to W-boson exchanges between different quark
lines. In the low-energy limit where the interaction becomes a local four-fermion interaction
they look like those in Fig. [9] where one should add any possible number of gluons. Effectively
these diagrams reduce to the original vertex except that the Zz and Zg parts receive different
contributions and have therefore different prefactors. After “dressing” with gluons one has then

to replace [see Eq. (5.5))]
Lrare = —V2G sin O cos O (I + Tg) — —V/2G sin ¢ cos O (asTs + agTs) - (5.6)

A second type of diagrams is obtained by including gluon exchanges to the emission and subse-
quent reabsorption of a W-boson in the same quark line, see Fig. After emitting the W, the
s quark can turn into a u or a ¢ quark, but the sign of the coupling is opposite in the two cases.
The two diagrams would therefore cancel exactly if m, = m¢, but since m,, < m, they do not.
The effective four-fermion interaction obtained from these diagrams and the more complicated
ones obtained by further adding gluons exchanged between the quark lines is of a new type, and
is described by the operator

Ir = —(dy*Nsp) (irVa A ur + drYaA"dR) (5.7)

where A\ are the Gell-Mann matrices, and summation over a, a = 1,...,8, is understood. Since
the first factor is I = % while the second is an isosinglet, I = 0, this term carries Al = % This is
referred to as the “gluonic monopole vertex”. The main differences with the other contributions
is that this one involves colour, and most importantly also the right-handed component of the
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Figure 10: Lowest-order contributions to gluonic monopole vertex.

quark ﬁeldsE] All in all, the effective, “dressed” Lagrangian reads
Liressed = —\/§G sin ¢ cos O (a31.3 + agZe + aRIR) . (5.8)

A perturbative calculation yields ag ~ 3, ag ~ 0.6, ar ~ 0.12 (see Ref. [0] for details about

the estimate), and since Al = % transitions are mediated only by Zg, one sees that these are

suppressed compared to the Al = % transitions. However, the degree of suppression obtained
with this perturbative estimate is not enough to agree with experiments.

Of course, in order to take fully into account the effects of strong interactions one should
rather employ a non-perturbative technique. Good agreement between the experimentally ob-
served degree of suppression and the prediction of QCD has been recently obtained using lattice

techniques [§].

5.2 Non-leptonic decays of kaons

The most relevant non-leptonic decays of kaons are into two or three pions,
K K° — ntn=, 72020, KO K° — 7t 720 2072979

K* o 7% 470 , K+ & Wi7r+7r7, atn0r0.

3TA second term, 7y, is also present, obtained by replacing ur,dr — ur,dr in Eq. (5.7), but since its overall
coupling is small it can be neglected compared to Is.

(5.9)

84



5.2.1 Neutral kaons

An important aspect of neutral kaons concerning their weak decays is that the eigenstates of
strangeness produced in strong interaction processes, K°(ds) and K°(—sd), are not eigenstates
of CP (nor of C'). At the same time, weak interactions are C'P invariant as long as we ignore
the third generation of fermions, while they do not conserve strangeness. For this reason it is
more convenient in this context to use the linear combinations of neutral kaons that are C'P
eigenstates rather than strangeness eigenstates, as these will have definite decay properties.
Using linear combinations of neutral kaons is physically allowed since K° and K° differ only in
strangeness, for which there is no superselection rule, and are mixed by a second-order weak
interaction to form the physical eigenstates with definite decay properties (we will come back
to this below).

Since kaons are pseudoscalars, P|K?) = —|K?) and P|K") = —|K"), and choosing phases
such that C|K") = |K?), and C|K") = |K"), the C'P eigenstates are

K9 — KO
’K?>:Ta CP‘K?>:’K?>7
0 —0 (5.10)
o K+ K 0 0
’K2>:75 CP|K2>:_|K2>-

Two- and three-pion states with definite orbital angular momenta are also eigenstates of C'P.
Working in the centre-of-mass frame and writing the definite ¢ states |7%7% ¢), a,b = 0, =, in
terms of definite momentum states |7%(p)w®(—p)) and a suitable wave function f,(7), with

fo(=p) = (=1)* fe(P), one has
weatst) = [ oy | @)at () 1). (5.11)

A 77~ system has CP = 1 independently of its orbital angular momentum /:
C'P]7T+7F;£> = /dﬂp CP|W+(ﬁ)W7(—ﬁ)>fg(ﬁ) = (—I)Q/de |7 (— _’)7r+(ﬁ)>fg(ﬁ)
(5.12)
= [ a9y 1x* @) ) = a0,

having used in the last passage the symmetry of the state vector, due to the bosonic nature of
pions. For a 797Y system one has instead

CP|n’7%¢) = /dﬂp CP|r°(7)x°(—p)) fo(7) = (—1)2/dﬂp\7?0(—13)770(17)>fe(ﬁ)
— [ 49, @) (P f-5) = (-1 % (513)
= [ 49, ) ) i) = 177050,
having used the change of variable p’ — —p to get the second line from the first, and again the
symmetry of the state vector to get the third one from the first. We then find that a 7%7°

system has CP = (—1)¢, but must also have CP = 1, so it cannot exist in an odd ¢ state. A
neutral two-pion state with definite ¢ therefore always has CP = 1.
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For the three-pion system one can consider states |r%7%7¢; ¢, L) with definite values of two
orbital angular momenta, one corresponding to the 777~ pair or one pair of 7s, that we will
denote again with £, and a second one corresponding to the motion of the third pion with respect
to the centre of mass of the other two, that we will denote with L. Since the kaon has spin zero,
one must have ¢ = L. For the state 777~ 7% we have shown above that the charged pair is CP
invariant, while for the neutral pion the only effect is an intrinsic parity factor and a change
P — —p'in the corresponding wave function f7, (see the second line of Eq. ), and so

CPlrtn 7% 4,0) = —(=1)¢|nTn~ 7% 0,0) = (-1) xTn 704, 0) . (5.14)

For the 797070 case we get a factor (—1)* from the first pair if it has orbital angular momentum
¢, and also a factor (—1)Y = (—1)* from the third pion and so

CP|r%7%7%¢,0) = —(—1)27%2%70; 0, 0) = —|77=0; 0, ¢) . (5.15)

In summary, one has CP = 1 for two-pion final states, and for three-pion 777~ 7 if £ of the
charged pair is odd, although this process is relatively suppressed for phase-space reasons; and
CP = —1 for three-pion 77970 states and for three-pion 777~ 7 states if £ of the charged pair
is even.

In the approximation of conserved CP, K and K9 correspond exactly to the “short” and
“long” kaons K % ;, that come from the diagonalisation of the effective Hamiltonian that describes
the temporal evolution of the neutral kaon state on the kaon subspace (see below), and have
therefore a definite mass and decay width. “Short” and “long” clearly refer to their lifetime.
Imposing C' P conservation one has predominantly K — 27 and exclusively K9 — 3. The first
process violates parity, while the second one conserves it, and since P-preserving and P-violating
interactions have the same strength at the level of the Lagrangian, the difference between the
widths of the two types of processes comes from the difference in the available phase space.
Since there is less kinetic energy available for three pions than for two, the available phase
space is smaller in KJ decays, so the width of the K9 is smaller than that of the K and its
lifetime longer. In other words, KY = K9 and K9 = K. Indeed, the decay rate of K — 2m
is about three orders of magnitude larger than that of K3 — 37, with 71 = 1/T'; ~ 107! s and
73 = 1/Ty =~ 5-107%s. The two states K7, (identified with K7 ;)also differ slightly in mass,
with Am = mg —m; = 3.5- 10712 MeV. We will see below how this mass difference can be
measured experimentally

5.2.2 Isospin wave functions in two-pion decays and ratios of decay widths

Isospin conservation can be used to predict the ratios of kaon decay widths based on symmetry
considerations alone. To this end, we write a generic two-pion state as follows,

’7T7T> :AaBb ’ﬂ-aﬂ-b>7 aab: 172737 (516)

where

+ —
T T T3=T, (5.17)

) Ty = —F—=

and A and B are three-component complex vectors. Although the electric charge superselection
rule forbids the physical realisation of superpositions of states with different charge, we are still

T =
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allowed to build these combinations in the Hilbert space. In this language, the transformation
properties of the pions under isospin rotations are passed on to A% and B®, which are therefore
I =1 isotriplets. Since A*B? is the composition of two isotriplets, it can be decomposed in the
usual way into I =0, I =1 and I = 2 parts that transform irreducibly under isospin rotations:

—

A°BY = LA . B 4 Le (AN B)° + ] (A“Bb +ABT - 24. E(S“b) : (5.18)

1=0 =1 I—2

Bose-Einstein symmetry requires that the total pion wave function be symmetric, so for a £ = 0
state like those involved in kaon decays the flavour wave function must be symmetric, and so
the I = 1 component must be absent. Furthermore, in K? — 777, 7%7% one has I3 = 0 in the
final state, so both I = 0,2 can be present, while in K — 777 one has I3 = 1 and so only
I = 2 is present.

If |AIl = % transitions were completely suppressed and the |Al| = % enhancement turned
into an exact selection rule, then since kaons have I = % one could only get final states with
% ® % = 0@ 1, and therefore the process KT — 7770 would be forbidden, and only the I = 0
component would be present in the K? decay. In this case one would have for the amplitude
the simple form M A-B , and for the width

A BP?

D(KY — 27) o e,
|A]?|B|* + |A* - B|

(5.19)

where the numerator takes care of the normalisation of the state. In the exact isospin limit
considered here, the proportionality factor is the same for the two two-pion decay processes,
as it involves the same (I = 0) decay amplitude, and a phase-space factor that is identical for
charged and neutral pion pairs. For K ? — 7™, we can take

A= 75(1,4,0), B_f(l —i,0), A-B=1, |A?=|B?*=1, A*-B=0. (5.20)

For KY — 7970 we take instead
A=(0,0,1), B=(0,01), A-B=1, |A?=|B)®= A B=1. (5.21)
We then find
DK} »7tr7) 1)1
(K9 — n070) — 1/2

=2, (5.22)

The experimental value is 2.255(5), estimated identifying K? with the short kaon K2, and using
current values for the K3 branching fractions [9).

As matter of fact the process KT — 7770 is not strictly forbidden, but it takes place
mediated by Zg (see Egs. and ), which carries also a I = % component. This means
also that the I = 2 component of two-pion state wave function can contribute to the decay
amplitude. Let us then include both the I = 5 and [ = contrlbutlons and refine the analysis
above. To this end, notice that the relevant part . of the interaction Lagrangian can be written
as

, (5.23)

L = §O%uﬂOLad + g@%uﬂOLQS = O% 1+ O% 1
, the sum of four terms Ojp, carrying total isospin I = %,% and third component I3 =

l Notice that O Il and O; _y are transformed into each other by Hermitean conjugation, as

|

2
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well as by a CP transformation, (CP)'O;,(CP) = O;_y,. Using the known Clebsch-Gordan
coefficients we can decompose the states Oy ,|KT) = Oy 1|3 4+ 3) and Or 1,|K°) = Oy 1|5 — 3)
into total isospin eigenstates:

0y _ 11y 1 _

O31|K") =0s1]3 —3) = 55 (20)k = [10)k) ,

011|K%) = 01115 —3) = 5 (110)x — [00)x) (5.24)
+y 1, 1y _ V3

O%%\K >—O%%]2 +3 =% 2Dk +11)k) .

One can decompose the two-pion states in a similar manner:

[t 77} = L2000 + /2000,
2
70 7%) = /2[20)+ — 1:[00)., (5.25)
lr T 7% = 121),
The subscripts K and 7 are used to distinguish the two sets of isospin eigenstates pertaining to

the kaon and the two-pion systems. When considering KV decays, we can use the fact that the
two-pion states of interest have Is = 0 and C'P = 1 to show that

(wrl0;y + Oy 4 KD} = 5 [(wrlO;  |K°) = {wmlO; 4 1K)
=% [<M|OI%|K°> - (7r7r|(C’P)TOI%(CP)\KO>} (5.26)

= V2(r 7O} 1| K°) .

All in all, we can parameterise the three relevant amplitudes in terms of two definite-isospin

amplitudes,
(7| LKD) = L 2(20120)k — /22(00000)x = LAy — /340,
(n° 7|2 |KT) = \@ (20120)x + L= <(00[00) = \[Ag + LA, (5.27)
(rF a0 LK) = B 212 1) = L2 (20120 = LA, .
In the case discussed above of an exact |AI| = % selection rule, only Ay entered the decay
amplitudes. In the real world |AI| = % transitions are suppressed but not perfectly, so we

expect |Az| < 1 but nonzero. We then get for the ratio of widths

2
D(KD = atn™)  po (%«42 - \/ng) px 2JAo? + [A2f? — 2v2Re A5 A
T'(K} — 7070) Do ‘\/EAQ—F\I[A()F Do ’A0‘2+2’A2‘2+2\/§Re¢4§¢40

( L \fReAzA()) p+ (5.28)
|Ao|? po’
(Kt = 7ta?) 3| Az 3| A
T(KO = 2m)  |Ao|2+|A22 — 4]Ao2’
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where I'(KY — 27) = T(KY — n77n7) + T(KY — 797%). We also included a factor that takes
into account the slight difference in the phase space of the two final states of K decays, i.e., the
ratio p4/po ~ 0.99 of final-state momenta in the centre-of-mass frame for the charged pion and
the neutral pion pair. From experiments one gets a suppression factor for KT against K¢ decay
of about 670 [9], corresponding to |Asz|/|Ao| ~ 0.045, which a posteriori justifies neglecting

[ A2[?/| Ao[* terms in Eq. (5.28).

5.2.3 Neutral kaon oscillations

As already remarked above, the neutral kaons produced by strong interactions are eigenstates of
strangeness: for example, one can produce a beam of K directing a beam of negatively charged
pions on ordinary matter via the process 7~ p — K?A, but one cannot similarly produce a
beam of K°. On the other hand, decays of neutral kaons are governed by weak interactions
which are (almost) C'P-conserving but not strangeness-conserving, and decays into two or three
pions proceed respectively through the C'P-even and C' P-odd components of the neutral kaons.
A consequence of this is the possibility for K and K° to oscillate into each other: since both
can decay into two pions, they can also oscillate into each other through a pion loop, i.e., via a
decay of the (say) K into two (virtual) pions and their subsequent annihilation to form a K.
Due to this oscillation, if one prepares a beam of K at time ¢ = 0, then at some later time ¢
the beam (thinner, due to real decay processes taking place) will contain a linear superposition
of K9 and KO states. The oscillation of K? and K" into each other is possible since the charge
distinguishing them (strangeness) is not exactly conserved in Nature, differently from, e.g.,
neutron and antineutron (differing in baryon number). We now show that in the approximation
of exact CP symmetry the frequency of this oscillation is given by the mass difference of the
K ?,2 particles.
The exact, unitary temporal evolution of a neutral kaon state at rest that at t = 0 equals
| K%) reads
TR = o (1)K + eo(t) | K°) + [R(2)) (5.29)
where |R(t)) accounts for the non-kaon states in which the neutral kaon can decay. The projec-

tion |KO(t)) = (|KO) (K| + |K°)(K°|)e~"H*| KO) of the neutral kaon state at time ¢ on the kaon
subspace (thus projecting out the states into which it can decay) reads then

|KO(t)) = c1(8)|[KO) + ca(t)|KP) . (5.30)

Due to the projection, the evolution of | K°(t)) is not unitary. Nonetheless, under certain approx-
imations ( Weisskopf-Wigner approzimation) it can be described in terms of a non-Hermitian
effective Hamiltonian Heg as |[K0(t)) = e~#ei!| K0) (see Ref. [2], Appendix I, for details). The
corresponding effective Schrodinger equation reads

.0
i [KO() = Hor| K(1)) (531)
and can be solved in the usual way by diagonalising H.g. Since this is not a Hermitean operator,

its eigenvalues are generally complex. This procedure yields the “short” and “long” neutral
kaons, K& L

Heff’Kg,L> = (mS,L - %FS,L) ’Kg,ﬁ ) (5.32)
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where by definition I's > I'f, (assumed to be non-degenerate), and one can show that I's 7, > 0 [2].
The real part of the eigenvalue is naturally identified with the particle mass. The imaginary
part of the eigenvalue governs instead the exponential decay with time of the corresponding
component of the wave function, thus providing the decay width of the two eigenstates. Since
the eigenvalues are different, in the limit of exact C'P symmetry the eigenstates of H.g must
also be eigenstates of CP, and since K is the short lived one (it has a larger decay rate since
it decays in two rather than three pions) we have K? = Kg and K9 = K%, so mg,, = m12 and
I's =T1p.
For a state coinciding with K° at t = 0,
_|K7) +|K3)

|K°(0)) = |K°) = A (5.33)

we have at time ¢,

‘Ko(t» _ % <€z(mlll;1>t‘K§)> 4 ez(mzl?>t‘Kg>> , (5'34)

and the probability of observing the neutral kaon as a K? or a K at time ¢ is the absolute value
square of the amplitudes

(KO KO(8) = § <ei(m”?>f + e@'(mﬂ?)t) |

(5.35)
. . . .T
(ROIK°(8)) = —3 (e"“““* - <’”>> |
The number of K and K observed in the neutral kaon beam at time ¢ is thus equal to
Ngo(t) = 3 (e*mt + e 12! 4+ 2 cos((ma — m)t) e*@t) ,
(5.36)

INESS
Ngo(t) =1 (eiFlt + e 12t — 2cos((mg — my)t) e*%ﬂ .

Besides the overall exponential decay of these quantities due to the various decay processes of
the neutral kaons, these expressions show that K% and K° oscillate into each other: for example,
while Ngo(0) — Nzo(0) =1 at . = 5(mg — my) one finds Ngo(ts) — Ngo(ts) = 0.

The number of K and K in the beam can be inferred by measuring the positrons and the
electrons produced in their semileptonic decays. Due to the AQ = AS selection rule,

K= etven, K= e pent, (5.37)

while K° — e~ and K% — et are forbidden. The number of positron and electron detected as de-
cay products from the beam at a certain time are then proportional to Ngo(t) and Njo(t) (with
the same proportionality factor since the two processes are related by a C'P transformation).
Another possibility is to direct the beam against a fixed target of ordinary (non-strange) matter
and observe hyperon production: while K can be absorbed through the process K%p — A,
strangeness conservation forbids the creation of hyperons from a K°. These processes depend
on the strangeness content of the kaon beam, and thus see the K%, K9 amplitudes. On the other
hand, non-leptonic decays into pions see the C'P content of the kaon beam, and thus see the K?
and K9 amplitudes. These are different, and non-compatible aspects of the quantum-mechanical
state of the kaon, much like two different components of the spin of an electron.

90



KO

QU ®»

Figure 11: Effective AS = 2 vertex.

5.2.4 Neutral kaon mass difference and the GIM mechanism

A measurement of the oscillation frequency of neutral kaons gives the mass difference Am =
mo — m1 between the two C'P eigenstates. This can be predicted from the theory. To this
end, it is convenient to express it in terms of the mixing matrix element between strangeness
eigenstates as follows: since (for states normalised to 1)

mj = Re (K} |He|K7)
my = $Re ((K°| — (K°|) Heg (|K°) — |K")) , (5.38)
my = 3Re ((K°| + (K°|) Heg (|K°) +|K°)) ,

we have
ma —my = Re ((K°|Heg| K°) + (K°|Hot| K°)) . (5.39)
Since
(KO|Heg| K°)* = (K°|Hg| K°), (5.40)
we have
My — my = % (RO Heg| K°) + (RO Heog| K°)* + (K| Hogt| K°) + (K°|Hog| K°)*)

L 7 - ” 5.41
= 5 (RO Hant| KO) + (KO HIg | K®) + (KO Hog | K°) + (RO g k) (541
= 2Re (K°|Heg | K°) |
with Heg g = %(Heﬁ‘ + Hgﬁ) the Hermitean part of the effective Hamiltonian. This can be
obtained as minus the spatial integral of the Hermitean part of a suitable effective interaction
Lagrangian density that describes the oscillation process.

Since S(K?) =1 and S(K°) = —1, the neutral kaon oscillation is a AS = 2 process which
requires a second-order weak interaction to take place. If there were a AS = 2 vertex with some

coupling G (see Fig. [11]),
LA = _Gy(dOGsdO s + 508d504d) | (5.42)
one would easily find (x = (0, %)) fro relativistically normalised states

(K°130%d od(z)|K° _
Am = 2Gs / gy BB SOLA@)5OLad(@)IKT) - G2 p i 20)5004(0)50 10 (0) [K0)

KO‘K0><K0’KO>)% mg
Sj{ Re Z K°50%d(0)|n) (n|50Lad(0)] K°) (5.43)
m—K<f<0|§0%d<0>|0><0\50Lad<0>|K°> = Gafimic
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Figure 12: GIM mechanism: four fermion loops with f; = u, ¢ and fo = u, ¢ have to be summed
up.

where in the first passage we have braved the laws of mathematics to cancel out a 6 (0) in
the numerator, coming from the spatial integral, and a 63 (0) in the denominator, coming
from the normalisation of the states, that also leave a factor ﬁ; and in the third passage we
have approximated the sum over states with the vacuum contribution, ignoring some numerical
factors that will be clarified later. The quantity fx is the same kaon decay constant appearing

in K™ — (*u, decays: in fact,
(01501d|K°) = %mygomuu(ﬂ = —ipafK (5.44)

due to isospin symmetry. Comparing Eq. with the experimental value of Am = 3.5 -
1072 MeV obtained studying kaon oscillations, one finds that one would need Gy ~ 107G

Although a AS = 2 vertex like Eq. is not present in the V — A theory, it can be
obtained as an effective vertex in second order perturbation theory. Since this effective vertex
involves a loop integral which diverges quadratically, one needs to impose a cut-off A, which
is naturally chosen to be of the order of the W-boson mass, where the whole four-fermion
interaction picture ceases to be adequate. One then obtains for the effective coupling constant
the estimate Gy = G?A? = GQm%,V ~ 10~'G. This is too big a coupling to explain the small mass
difference Am. As shown below, a possible way out of this problem is to assume the existence
of a fourth type of quark, the charm ¢, with the same charge as the v quark, and coupled in the
same way as the u to weak interactions. This quark would form a second family together with
the strange quark, and would be coupled to a combination s’ of d and s, similarly to the u being
coupled to the combination d’ of d and s.

Including the ¢ quark, the charged weak hadronic current reads aO%d'+¢0O¢s’, and removing
all unphysical, unobservable phases, the most general form of d-s mixing reads

d cosfc  sinfc (d d (Ve)ua (Vo)us) (d
<s’> (— sinfc cosfc ) \s Vo s Ve)ea (Vo)es s (5.45)
Repeating the calculation outlined above, one finds know not one but four loop diagrams, either
with identical upper and lower line corresponding to wu or cc, or with different upper and
lower line corresponding to uc cu, see Fig. The couplings corresponding to the two cases
are sin? 0¢ cos? ¢ and — sin® O cos? ¢, and so if u and ¢ had the same mass these four loop

diagrams would cancel each other out exactly. For sure, large-momentum contributions to the
loop integrals do cancel out exactly, since at very large loop momenta all quarks are effectively
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massless, and so the sum of the four loop diagrams is finite and no UV cutoff is needed. A
detailed calculation shows that the effective coupling of the AS = 2 effective vertex is

2
Gy = (gr)2 sin? 0 cos? O (me — my)?. (5.46)
The mechanism discussed above, suppressing the unwanted large mass difference by having a
fourth quark running through loops, is known as the GIM mechanism after Glashow, Iliopoulos
and Maiani who proposed it.
Going now back to the second line of Eq. , treating the neutral kaons as pure ¢g states,
K° = ds and K9 = sd, and properly taking into account the colour degree of freedom of quarks
we obtain the estimate

Am = 7%2 Re (K0[502d(0)50.0d(0)| K°) ~ 2% Re (K0[50%d|0) (0[50 0d| K°)
K K
8 G2 2 2 2 r2 2 G2 2 2 2 r2 (547)
= e (am)? sin® O cos® Oc(me — my)” fremie ~ o sin® 6 cos” Ocmz fiemi .

The factor % arises as follows. The first matrix element in Eq. can be computed pairing
the d and s fields with the d,d and s,5 quarks in the initial and final states. Colour indices
are contracted within each operator, i.e., ). 5,0%d;, and within each meson, i.e., ), |d;5;) and
ZKS,‘CL‘. There are two types of operator-state pairing: one where each 50¢d pairs with a single
state, and one where each 50¢d pairs with one quark from both states. Each of these pairings
can be done in two equivalent ways. For the first type of pairing, one has to compute in practice
the product of the matrix elements (0|507,d|K°) = > :(0[5:01ad;|d;5;) = Nc(0|5101ad1|d151)
and (K°[30%d|0) = ,(s:d;|3:0%d;|0) = N.(s1d1|510%d;|0), having taken into account that
each colour gives the same contribution. For the second type of pairing one has instead

Z Z(SiJilgakddz\())<0|§cldbk|dj§j>(0% ® OLa)ab,cd
ijkl abed

= Z Z 8i0i10;10 1 (s1d1|541d4110)(0[5c1dp1 | d151) (OF @ OLa)abed (5.48)
ijkl abed

= NC<81(Z1|§1O%d1’O><O|§10Lad1|d1§1> ,
where a, b, ¢, d are Dirac indices. The full contribution is then

_ N2+ Ne\ 0 _
2(N? + N,)(51d1|510%d1]0)(0|51Orady|d151) = 2T<K0|30Ld|0> (0|50Lad|K°), (5.49)

and setting N, = 3 one finds 2(1 + 1) = 3. Comparing with the K™ — p*v, decay width one

finds

4 cos? Ocm? i +

From the known values of T'(K™ — p* v,), cosf¢, and m,, one can predict the charm mass.
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6 7 decays

The 7 lepton was discovered in 1975 at SLAC in e™ e~ collisions. The corresponding neutrino,
vr, was immediately theorised but observed only much later by the DONUT experiment at
Fermilab in 2000. The 7 has spin %, mass m, = 1.78 GeV, and lifetime 7, = 3.4-1073 5. Under
the assumption of leptonic universality, the current 7-O¢7 has to be added to the charged weak
leptonic current with the same coupling as the electronic and muonic ones, i.e.,

JP = .05 + 7,0% 1 + 7, O%T | (6.1)

A new feature is that besides the leptonic decays 7 — £vpv;, £ = e, i, the heavy mass of the
tau lepton allows also semi-hadronic decays 7 — v, + hadrons. Since the tau is lighter than
the lightest charmed particle, m,; < mpo = 1.864 GeV (see below), only decays involving u, d, s
quarks are allowed.

Leptonic decays The decay rate for leptonic decays can be obtained exactly as in the case of
muon decay p — e Vv, Since m, < m, < m., for both decays of the 7 one can treat the final
lepton as massless. In this approximation, one thus has only to replace m, — m, in Eq. ,
and get (m, = 106 MeV, 7, =2.2-107%s)

G*m3 m,\° 11 —1
I(r—=evevy) =01 = po,v,) = 1927713 = <m> My —ever,) ~6.1-1007 s .  (6.2)
n

Semi-hadronic decays For decay or scattering processes governed by electromagnetic or
weak interactions, but producing hadrons in the final state, one can ideally separate the process
into two parts. At first, electromagnetic or weak interactions produce quarks: for example,
an ete” pair annihilates into a photon which subsequently turns into a quark-antiquark pair
q;q; pair for some flavour ¢ and colour i of quarks. After this, the hadronisation process takes
place, during which strong interactions build up hadrons from the quarks. If one is interested in
inclusive processes, it suffices to know what is the total cross section or decay width for quark
production starting from the given initial state: after this, the resulting quarks will become
hadrons with probability one, and even though we do not know well how hadronisation works
we can rest assured that it will always take place. The total hadron production rate coincides
then with the total quark-antiquark production rate.

In computing the total cross section or decay width of interest it suffices to consider the
production of a single quark-antiquark pair, since electromagnetic and weak interactions have
small coupling constants and producing more pairs is suppressed. On the other hand, this stage
of the process may receive large corrections from additional strong interaction effects in the
intermediate quark-antiquark state. However, thanks to the asymptotic freedom property of
QCD, at high energy it is possible to use perturbation theory to estimate these corrections. For
example, for hadron production in e™ e~ collisions at total centre of mass energy squared s one
has

R(s) = o(et e” — hadrons) _ dopolefe” = ff) _ SZQ?‘ <1+ as(s) +) o (63)
!

olete” = putp) olete” = utp) T

where a;(s) = gsifr)Q with g(4?) the running coupling constant of QCD, evaluated here at the

energy scale squared s. Moreover, Q) is the electric charge of quark f, and the sum runs over
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those flavours f such that 4mfc < s. The factor 3 corresponds to the number of colours. Ignoring
next-to-leading order effects, for s < 4m? one has R ~ 3( % +14 %) = 2. As the threshold for cc

production is crossed, this should increase to R ~ 2 + 3% = %S) , and further to R ~ % + 3% = 1—31
as soon as also bb production becomes possible.

Using the same idea, one can estimate I'(7 — v-+hadrons). The three processes 7 — v, u vy,
T — vrudand T — v, u§ are described by the same diagram except for the value of the coupling
constant, which is G, G cos ¢ and G sinf¢ in the three cases, respectively. The quark and the
antiquark produced in the process must have the same colour, but this can be any of the N, = 3
possible colours; all the possibile outcomes must be included in the total decay rate. Ignoring

corrections to the tree-level contributions, since they are of order O(as(m?2)), we find

r - +h r cud)+T U .
(T—= v+ a(_irons) _ (1 = vrud) + (7‘_—)1/ us) _ (cos20c +sin200)N. =3, (6.4)
I'(T = vrpoy,) I'(r = vrpy,)

I'(r—v-+hadrons)
s that 5 Tt meon

[\][N)

Total width and lifetime Using Egs. (6.2]) and (6.4) we can estimate the total width of the
7 lepton:

I'(r) =I'(r = vy + hadrons) + I'(71 = vrele) + I'(7 = v puv,) ~50(T = vy uvy),  (6.5)
from which it follows

1
- BT = v pwy)

. =33-10" s, (6.6)

which compares well with the experimental value 7, = 3.4 - 10713 s.

6.1 Semi-hadronic decay modes

We discuss now two specific decay modes of the 7 involving hadrons in the final state.

6.1.1 7 -7 v,and 7 — K v,

The decay amplitude reads

M = = FE 0, () (1 = 7)) (10 (1 = 77)) 0)]0)
Gcos\/% (6.7)
= iTCfﬂ\/iﬁu(pu)pﬂ(l - VS)UT(pT) )
where we used the already known matrix element [see Eq. (3.32)]
(77| (dya(1 = 7*)u)(0)[0)" = (0 (ara (1 —~*)d)(0)|7™) = (0l(dra(l —~*)u)(0)|7™) (6.8)

= —{0l(dvar’u)(0)|7) = =iV2fx(pr)a

The pion decay constant fr; = 92MeV is exactly the same appearing in the amplitude for pion
decay. Using now momentum conservation, pr = pr — p,, we find

ﬂu(Pu)]ﬁ,r(l - VB)UT(pT) = al/(pu)?T(l - VB)UT(pT) = mrUy(py)(1 + 75)u7(p7) . (6.9)
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Squaring the amplitude, averaging over the spins of the 7 and integrating over the phase space
of the final state, we obtain for the total decay width after including the appropriate factors
_ _ PR G2 cos? Oem2f2 1 _ B
D(r~ =7 v) = S ) (14 (7)1 () (1~ ) )
2m, 2 ”
G2 COS2 QC 2 (2) 5 5
= T, 20 (p_ 4 me) (1= 2, (14 7)
= 2G? cos? HcmTﬁ(I)(Q)pT “ Py .

(6.10)

Notice that we have integrated over phase space before evaluating the spin-summed matrix
element: this is allowed since this matrix element can only depend on Lorentz-invariant com-
binations of the final momenta, and since the process has a two-body final state where such
invariants are fixed by four-momentum conservation. Recalling that

E
o — _POM v 6.11
ArEcy 4Ammy (6.11)
and that
B B m% — m% _ mg mfr
Dr Dy =m-E,, E, = 727”7_ = 7 - miﬁ s (6.12)
we obtain
2 202 2 202 2\ 2
D= o vy) = 8 0chn, pa GTeosOcfn 5 () Mx
o 8T m2
(6.13)

2 2

2

24

=I'(r = pny, VT)miz cos® O f? <1 - 7;:27) ~0.60(1 = po,v,).
T T

The decay width for the process 7= — K~ v, is obtained from Eq. (6.13)) simply by replacing
my — mg, fr — fx and cosfc — sinfc. Using the experimental values myg = 495 MeV,
fr =1.2f:, sinfc = 0.22 and cos O = 0.97, we find

m3\ 2
- - - - fr\° (sinfc\? (1 %2
Nt~ =K v;)=T(" =7 v;) <f7r P o 0.06, (6.14)
m?
in reasonable agreement with the experimental value 0.07.
6.1.2 7 —=p v
The rho mesons are vector particles (J = 1, P = —1) forming an isotriplet (/ = 1), with
masses m, = 770MeV. Their quark content is the same as that of the pions (p* = —ud,

p° = (utt — dd)/v/2, p~ = du), but the quark spin state is S = 1 instead of S = 0. The analysis
of this decay process follows the same lines of the decay into a pion discussed above, except that
now the hadronic current matrix element has a different parameterisation:

Hy = (p~ |dya(l —~°)ul0) = (p~ |dvaul0) = gpea + foPa - (6.15)

In fact, only the vector current contributes, and there are two possible vectors, the four-
momentum p of the rho meson and its polarisation vector &, (which is a dimensionless quan-
tity). Being a vector particle, there are three independent polarisation vectors, corresponding
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to J, = 0,%£1, which satisfy p-e& = 0. This is because the polarisation vector has only spa-
tial components in the rest frame of the rho, and so must be orthogonal (in the Minkowskian
sense) to pﬁ For future utility, we notice that the sum over three independent and orthogonal

polarisations yields
S el = —pp+ 22B2 (6.16)
my

where we allow ¢ to be complex in order to describe circular polarisations. Imposing now
conservation of the vector current (we work in the isospin limit) we get

O=p-V=fm,=f,=0. (6.17)

We then have H, = V,, = g,cq, With g, a constant of mass dimension m?2.

We can now write the decay amplitude,

Mg = —% 0500920ty ()71 (1 — ) (pr) | (6.18)

and the spin-summed amplitude square,

G? Pap
(el = - cos? boa? (—naﬁ L5 ) (L3P, + e (P,
mp
= G? cos? QCgp 5) tr’YaPTVBIJV

(-
2 cos® cg? < tr P vap, + ftr}”f’ PP, >
(

(6.19)
2 cos Hcg 2trp p + —trpp PP, >
1
= 4G” cos® Ocg), <2p7 Py + —5 (20 prp - Py — Mps -py)>
My
g2
= 4G? cos 00 I 5 (20 prp Py +pr DM ) .
p
Using now p - p, = (pr — Pv) * Py = Pr - v, and 0 = p12/ = m72— + m%) — 2p - pr, we obtain
2
(| Ma[2) = 4G cos? 0~ e pu (2 pr + M)
; (6.20)
= 4G? cos? 9(; QpT Dy (2m +m ) .
p
Including all the appropriate factors we obtain for the decay width
11 9; 2m?
I =- @462 cos? 00 22 pr - pym? [ 14+ 22 ) . (6.21)
22m m?2 m2

380ne can see this condition as eliminating one component of ¢, since only three polarisations are available. In
particular, p - € is a Lorentz scalar, and so unwanted in the description of a vector particle.
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The phase space is again

E
o) — _PoM v 6.22
47TECM 47Tm7— ’ ( )

2

5= m2 — 2p; - p, = m2 — 2m, E, we find

and since m

1 E 2 9, 9 3 2m}
= I 47TmT4G cos HCm—%mTE,, 1+ —5

G? cos? 0 2 2m>
- ¢ (9'”) meE2 1+ —2 (6.23)

mp

2 2\ 2 2
_ GPcos’bo (g 3 Mp 2m;,
= my | 1——3 I+— |-
167 mp, mz mz
The unknown constant g, can be related to the electromagnetic decay process p? = et e using
isospin invariance. The amplitude for this process reads

T

AT e
Mg = q; ueqf”ve<0\Jem“]po> , (6.24)

where Jom , is the electromagnetic current, and ¢ = p.+ + p.- is the rho meson momentum.
Using conservation of the current, the hadronic matrix element can be written as

2
(0] Jem ul %) = 2 (6.25)
emulP ) = ~ Eu - .

with €, the polarisation vector and v a dimensionless constant. On the other hand, using the
explicit form of the electromagnetic current we find that

(0 Jem ] 0°) = (012 y,u — %dyud|p®) = (0] & (@yu — dyud) + & (@yuu + dyud) |p°)
=1 1=0 =1 (6.26)

= %(0]%(@7,,@ - Cz')’ud)‘p(]) = %@!ﬂ’mdlpﬁ = %gp€u7

where on the second line we used the fact that the isovector part of the electromagnetic current
and the charged weak current belong to the same isomultiplet. Comparing Eqgs. and
we find
o _ e (6.27)
mp ¥

The amplitude square summed over spins is

4o 2 qnq 2
(IMaP) = (2725 ) ey, = moy -+ mo] (= + 25
o
4o 2 1 m2
=4( =) (2 pe- +AME+ —5(20 Perq P — @PPer D) — 50
Y my mg
4o 2 2
=4< em) (pe+'pe—+3m§+2q-pe+q'pe—> :
v m2
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Since m? < m?) we can treat the leptons as massless, so that m% = 2D+ - p.— and m% = 2q " Pe+,

and so ) , )
N AT Qe my My o (ATQem
(MaPp = (T2} (224 T2 ) — g (T2 (6.29)

DN

For the decay width we then obtain (®?) = |p.+|/(47mm,) = |E«|/(47m,) = (m,/2)/(47mm,) =

1/(87))

11 4oy 2 4ra? 47 o2 m,\ >
F=g5— P dm? ( em) =3 M= g <”> ; (6.30)
mp Y Y mp Y
and so
mp .3 Mp ¢ 0 +
—+£) == I'(p" — 7). 6.31
(M) = o et o) (6.31)

Comparison with experiment yields

L= Zem =2.1+236. (6.32)

7 Heavy quarks

In this section we briefly discuss the heavy quarks charm (c¢), bottom (b), and top (t).

7.1 Decay of charmed particles

Charmed particles are those with nonzero charm C' (number of charm quarks minus number of
charm antiquarks). The lightest such particles are the pseudoscalar D and Ds mesons,

Dt =cd, D’ =ca,

D’ =wé, D =de, (7.1)

D} =cs, D, =sc.
An older notation for the p;t mesons is F'F (e.g., in Ref. [6]). The D mesons form two isospin
doublets, (D*, D% and (D° D~), while the D mesons are isosinglets. The masses of these
particles are mp+ = 1.870 GeV, mpo po = 1.865 GeV, and mpz = 1.968 GeV.

The relevant product of currents involved in charmed particles decay is (in the two-family
approximation)

(cos 0c30%c — sinOcdOFe) (Y, pOral + cos 0cuiOrad + sin 0cuOrys) + h.c., (7.2)

from which we can read off the couplings relevant to semi-leptonic decays, and to the various
possible non-leptonic decays.

Semi-leptonic decays The terms of Eq. ((7.2) involved in semi-leptonic decays are

cos 00507 cv OF L =c—=spylt,

_ 7.3
—sin 0cdOf cvy OTH =c—=dyl", (7:3)
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where we have written also the quark decay process to which they correspond. The related
decay widths are proportional to

c— supl™, I' x cos? 0.,
9 (7.4)
c—dylt, I' < sin“é..

Processes of the first type satisfy the selection rule AC' = AS, and are dominant compared to
those of the second type, which are suppressed by the tangent squared of the Cabibbo angle,
(sinfc/ cosBc)? ~ 0.05. Examples of decays of the first and second type are

first type (AC = AS) : Dt -0ty K, DY — Ty,

7.5
second type (AS=0): D =ty Df — ¢ty K°. (7:5)

Non-leptonic decays The four types of non-leptonic decays correspond to the following prod-
ucts of currents,

cos? O 50%cuOrad, cos Oc sin O 507 cuOras, (7.6)
—sin O cos Oc dOGcuOrad, —sin® Oc dO%ctiOrys . '
The corresponding quark process, decay width and selection rules are
c— sud, I « cos*Oc, AC = AS,
c—sus,dud, T xsin?0ccos?0o, AC=-1,AS=0, (7.7)
c—dus, I x sin?6c , AC = —-AS.

The dominant processes are again those with AC = AS, where a ¢ turns into an s, and a ud
pair is produced. If a us pair is produced the decay rate is suppressed, as it is if ¢ turns into d
and a ud pair is produced; if in the latter case a u3 pair is produced instead, the rate is doubly
suppressed. Due to the (trivial) colour structure of the charged weak current, the extra ¢ and ¢
always have the same colour. For this reason, approximating cos? fc ~ 1, sin? - ~ 0, one has

I'(c = sud) ~ N.I'(c = s0Tvy) =3T(c = slTv), (7.8)

where since m. > m, > m. and m. > m, g, the leptons and lighter quarks can be treated as
massless.

Charmed particles creation The creation of charmed particles would be preferably done by
shining muonic neutrino beams on strange-quark-rich targets, but due to the lack of such things
one has to settle for second-best and use down-quark-rich targets (i.e., essentially anything).
Creation of charmed particles via neutrino beams and their subsequent semi-leptonic decay
results in dileptonic events, i.e.,

VS —Cl-

7.9
Lstt v, (7.9)
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Leptonic decays Purely leptonic decays are also possible, including into a 7 lepton. The
width for leptonic decays of charmed mesons is obtained with a calculation completely analogous
to the one for pion decays: the relevant hadronic matrix elements have the same structure
(although, obviously, involving different constants), since the only vector available is the charmed
particle four-momentum (incidentally, only the axial current contributes since D and D mesons
are pseudoscalars). For the ratio of semi-leptonic decay widths the unknown constants cancel
out and all that matters is the mass dependence. One easily finds

9 2
m
1_m;)
D+

AN

(Dt —»1tu,)

(DT — pt ) -

(7.10)

AN

3
-
|
3
SR b
N———
[\

(D =717 v,)

L(DS — utv,)

3

3
=N
/\/\/D/\
|
L
+E®
~_

5 o
2 L

H 1 mzu >

Notice that the processes appearing in the first row are Cabibbo-suppressed. The origin of
the factor (m,/m,)? lies in the chiral nature of the charged weak interaction, which makes
it counterintuitively more likely for the charmed mesons to decay into taus than into lighter
leptons.

7.2 The third quark family and the CKM matrix

The existence of a third quark family was suggested in 1973 by Kobayashi and Maskawa. As we
will see below, this allows for violations of C'P in the weak Lagrangian.

The b quark The lighter element of the third family, the bottom quark b, was discovered
in 1977 at Fermilab by Lederman and collaborators. Using a proton beam against a platinum
target, they studied the process

pp— LTI X, (7.11)

where a pair of charged leptons ¢* is created among other things (everything else is bundled
into the symbol X). They were mostly looking for muons, which due to their penetrating
power could survive the necessary filtering required to remove all the uninteresting hadrons
from the final products. Looking at the invariant mass of the u™p~ system, they found a
narrow bump at /s = 9.46 GeV. This was identified as the T (upsilon), a bound state of a
new type of quark, the b quark. The T is the ground state of bottomonium, i.e., the bound
state bb of a bottom and antibottom quarks. The Y can also be seen in lepton collider via the
process et e~ — T — hadrons. The T resonance is characterised by sy = 1, my = 9.46 GeV
and T'v = 44.3keV, corresponding to a lifetime 7¢v = 1.2 - 1072°s. The narrow width and
corresponding long lifetime are due to the smallness of the coupling of the T to hadrons (cf.
the OZI rule); this is however still stronger than the electromagnetic coupling, which leads to
the observed lifetime being intermediate between typical hadronic and typical electromagnetic
lifetimes. The bottom quark has my = 4.2 GeV i.e., half the mass of the T), and electric charge
1

@ = —3. The lightest mesons with nonzero “bottomness” are the B mesons BY = db and
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Bt = ub, with masses mp ~ 5.3GeV. The B — B? system has many similarities with the
K% — K9 system, e.g., it displays oscillations of “bottomness”.

The t quark The last quark discovered so far is the top quark ¢, observed in 1995 by the CDF
and DO collaborations at Fermilab. The top quark is extremely heavy, m; = 173 GeV, which
makes it the heaviest elementary particle, and has electric charge ¢; = % No top-antitop bound
states have been observed: in fact, the top quark decays in about 1072% s, so having not enough
time to hadronise.

The CKM matrix The inclusion of a third family of quarks has important consequences for
the symmetries of the weak interactions@ As we show now, three is the minimal number of
families for which C'P violating effects can appear explictly in the Lagrangian.

Recall that in general, assuming the existence of n families of quarks and universality of the
charged weak interactions, one would write for the charged hadronic current

n

J;ll - Z dfO%l{f/fo/, (712)
Lf=1

where the quark fields oy and k7 from the fth family,

<Z‘J{ ) , (7.13)

and V is a n x n unitary matrix, V1V = 1. Unitarity is required so that there are appropriate
linear combinations,

n
Iﬁ?/f = Z fo/lﬁfl , (7.14)
fr=1
of k-fields that interact with the corresponding field ay in the same way that leptons and
corresponding neutrinos do.
Let us now determine the number of physically relevant parameters contained in V. A
general complex n X n matrix contains 2n? real parameters. Unitarity implies

Z Vit Vi = 0ij (7.15)
K

and so n real relations Y, [Vik|> = 1 and n(n — 1)/2 complex relations Y, VieVj, = 0 for
i # j, corresponding to n(n — 1) real relations. All in all there are n + n(n — 1) = n? relations,
reducing the number of real parameters in V' to 2n? — n? = n?. Not all of these are physically
meaningful: in fact, it is possible to redefine the phases of the a and k fields independently
(without affecting the QCD Lagrangian underlying the hadronic interactions, which has a U(1)2"?
flavour symmetry). Redefining oy — er o rand Ky — ek 7, we have that changing

Vi — e @iy, (7.16)

39We note in passing that the existence of three and only three families of leptons with light neutrinos has been
extablished experimentally at LEP.
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has no observable physical effect. This can be used to set to zero the phase of a certain number
of matrix elements. The number of independent phase factors e~ “%i—%k) can be determined by
writing
¢j — e = (1 = Y1) + (&5 — ¢1) — (Vk — Y1) . (7.17)
One can choose the first term on the right-hand side arbitrarily; there are then n—1 independent
differences ¢; — ¢ and n—1 independent differences )y, —1);. This results in 1+2(n—1) =2n—1
independent phase factors. Another way to see this is that one can change all the 2n phases
¢; and 1, by the same amount without changing the phase differences entering Eq. .
This reduces the number of independent phase factors from 2n to 2n — 1. Either way, the
number of physically meaningful real parameters in V is n? — 2n +1 = (n — 1)2. In general,
the space of n X n unitary matrices contains the space of n x n real orthogonal matrices as
a subspace. A general orthogonal matrix in n dimensions depends on n(n — 1)/2 angles, so
among the n? real parameters of a unitary matrix there are n(n — 1)/2 angles; the remaining
n? —n(n —1)/2 = n(n 4+ 1)/2 are phases. In our case not all the phases are physical, but only
nn+1)/2—-2n+1=(n—1)(n—2)/2 are.
Summarising, there are n(n—1)/2 quark mizing angles and (n —1)(n — 2)/2 physical phases.
Let us check a few cases:
n = 1 family: 0 angles, 0 phases (nothing to mix);
n = 2 families: 1 angles, 0 phases (V is real); (7.18)
n = 3 families: 3 angles, 1 phase (V complex; C'P violation possible).

The matrix V is known as the Kobayashi-Maskawa or Cabibbo-Kobayashi-Maskawa matrix. A
possible parameterisation is obtained by treating the quarks (d, s, b) as coordinates (z,y, x) and
using Euler angles 012 3: the most general three-dimensional rotation is obtained by a rotation
of 03 around the z axis, followed by a rotation of 8; around the new x axis, in turn followed by
a further rotation of s around the new z axis. Denoting ¢; = cosf; and s; = sin f;, we have

1 0 0 C1 S1 0 1 0 0
0 C9 S92 —S1 C1 0 0 C3 S3 . (7.19)
0 —892 Co 0 0 1 0 —S83 C3

To make the remaining phase surely physical we can include it in the (3, 3) element of the second
factor in Eq. (7.19),
1 0 0 C1 S1 0 1 0 0
0 Co S92 —S81 C1 0 0 C3 S3 s (7.20)
0 —s2 ¢ 0 0 e 0 —s3 c3

since in this way it cannot be removed by a phase redefinition. Carrying out the multiplications
we find

Vud Vus Vb c1 51C3 5153
V= Vcd Vcs Vcb = —S81C9 C1C2C3 — 6“58283 C1C283 + 6“58203 . (7.21)
Viae Vis Vw §189Cy  —C189C3 — €9cas3  —c15253 + €Pcacy

It is an experimental fact that the d and s quarks have small mixing with the b quark. One then
expects @2 3 to be small, in which case V' reduces to

C1 S1 0
V ~ —S81 C1 0 . (7'22)
0 0 €9
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It is then easy to identify 81 ~ 6. More generally, retaining the leading contributions, one finds

1 S1 8183
Vel —s 1 s3+esy |, (7.23)
S189 —sg —€Ys3 e
which shows that the main processes involve the transitions d <> u, s <> ¢ and b <> t. This make
the concept of families physically meaningful, as the dominant decays involve transitions within
families.
Experimental results for the first row of the CKM matrix are

|Vaa| = 0.97420(21), |Vus| = 0.2243(5) , Van| = 3.94(36) - 1072 (7.24)

From this one finds |Vyg|? + [Vis|? + |Vis|? = 0.9994(5), in good agreement with the expected
unitarity. From |Vip|/|Vua| = |s3] =~ 2 - 1072 it follows that indeed 3 is small. Similarly, |V;4| is
found to be small, resulting in small |s3| and so small 6s.

8 Towards the Standard Model

In this section we describe in some detail the Standard Model (SM) of particle physics. After
discussing the limitations of the four-fermion theory we introduce the tools required for the
formulation of the SM, namely the theory of spontanteously broken symmetries, gauge fields,
and the Higgs mechanism.

8.1 Limitations of the four-fermion theory

The most evident limitation of the four-fermion theory is its lack of renormalisability: due to
the presence of a coupling with negative mass dimension, one keeps encountering new types of
divergences as one increases the perturbative order, which requires the introduction of infinitely
many counterterms, and thus results ultimately in a lack of predictivity of the theory. This last
statement requires qualification: one can in fact treat the four-fermion theory as an effective
theory, valid only up to a certain energy scale. Once the theory has been renormalised up to,
say, n counterterms, it will be predictive until the effects of the (n + 1)th type of divergence
become phenomenologically relevant.

When does the effective theory break down? One can show that problems with unitarity are
present at high energy already at tree level. These can be cured only going to higher orders of
perturbation theory, which brings us back to the problem of non-renormalisability. To see when
the effective theory fails, one can look at e v, elastic scattering. Since the amplitude is necessarily
a polynomial in the four-momenta, it is polynomial in cos 8¢, where Oy is the angle between
the incoming and outgoing trajectories in the centre-of-mass frame. This means that in a partial
wave expansion of the amplitude, only a finite number of partial waves f; will appear. On the
other hand, simple dimensional analysis shows that the total cross section behaves as oo ~ G?s
at high energy@ But since oot o< p~1 > (2J+1)| f7|? (with p the magnitude of the initial spatial
momenta in the centre-of-mass frame), and since |f;|?> < Im f; due to unitarity of the S-matrix,
it follows that at some point at least one of the partial wave amplitudes will violate the unitarity

49The cross section has dimensions of m ™2, and since a factor G? of dimension m~* is present, and /s is the
only relevant energy scale at high energy, the result follows.
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bound. Looking for simplicity at the contribution of the charged current only, one find for the
J = 0 partial wave fo = Gs/(2v/2r). The unitarity bound implies |Re fo| < 1/2, and since the
tree-level amplitude is real one finds the bound

Gs
<1, 8.1
Vor 8.1)
which means that unitarity will be violated above /s = y/v27/G ~ 600 GeV, signaling the

breakdown of the theory.

How could one improve the situation? A possibility (already considered by Yukawa in the
1930s) is to replace the four-fermion interaction by the exchange of an intermediate massive
vector boson. One finds for the differential cross sectionf

do G2 do G2 m%[,

we T (md +[t)?7

fo) =, 9 8.2
e~ 7 dll] (8:2)

where “FF” and “IVB” stand for “four fermion” and “intermediate vector boson”, respectively,
and myy is the mass of the intermediate boson. The effect of boson exchange shows up in the
propagator factor 1/ (m%/v +[t|?), which implies that all partial waves are present, and that cuts
off the contribution of large transferred momentum. In fact, since 0 < |t| < s (we ignore the

electron mass here), one has
5 do G? 5 do
oler = [l GE = s —ohv = [ a7

In the IVB case, the total cross section rises linearly with s at low energy, while approaching
a constant at high energy. Unitarity is therefore respected, and the unitarity bound becomes a
bound on myy.

An important point is that the coupling constant in the IVB theory leading to Eq.
is 912/(/ = Gm%v, which is dimensionless. This raises the hope that the theory might be renor-
malisable. Unfortunately, this is not the case. The massive vector propagator in fact contains
a term p,py /p2m%/v which is of order O(1) at high energies, thus bringing back a problematic
high-energy behaviour of the theory. This term would not be problematic if the IVB were cou-
pled to a conserved current, since it would give no contribution, but this is not the case here:
neither the vector nor the axial-vector currents are conserved, the first one because of the mass
difference between electron neutrino, and the second one since they are not both massless. Even
worse, even if the leptons were massless and the weak current therefore conserved, the massive
vector bosons we need must be electrically charged, and their electromagnetic interaction is not
renormalisable. One has moreover problems with unitarity showing up in the boson-boson cross
section, which could however be cured if a further, neutral boson were also introduced.

One way out of this problem would be to use massless rather than massive vector bosons
as the exchanged particles. In this case the theory would be renormalisable, even including
electromagnetic interactions. This seems however a non-starter: weak interactions are known
to be short-ranged, while massless bosons would lead to long-range intaractions, like with the
photon in electromagnetic interactions; and as soon as we add a mass term to the Lagrangian,
non-renormalisability kicks back. There is however one more trick that can be used: if the vector
bosons are not given a mass “by hand”, but they acquire it dinamically due to the spontaneous
breaking of a symmetry, then renormalisability remains.

B GQm%V s

— (8.3)

FF VB T s+myy,

“1We ignore here the term g, q, /m3, in the propagator, considering |t| < myy .
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8.2 Massive vector bosons

While the discussion above was qualitative, in this subsection we give a detailed analysis of the
problems with massive vector bosons. The Lagrangian describing free massive vector particles
(the Proca Langrangian) reads

Lrroca = —5Fu F* + m? W, WH | F =0,W, —0,W,. (8.4)

The corresponding equations of motion are

8$Proca 9 8$Proca -0
ow, Y o(0,W,,) ’
m2WHE — 9,(—F") = 0, (8.5)
(O +m*)WH — H9,W" =0.
Taking the divergence 9,, of this equation we find
(O +m?)9, W+ —0g,W” =m?9, W+ =0=9,W+ =0, (8.6)
which we can plug back into Eq. (8.5) to get the system of equations
O+ m2)WH =0,
( ) (8.7)
o WH=0.
These equations are most easily solved in momentum space. One finds
3 . .
W(z) = / a2, Y- () ai(5) + & (7)e b (7) | | (8.8)
j=1

where p’ = \/p? + m? and d€, is the invariant phase-space measure. The polarisation vectors
59‘ (p) satisfy p-ej(p) = 0, as the second equation demands. There are three independent
solutions, that we can choose as follows:

552:(075’1,2)1 ﬁ'_’l,2:07 gzgj:dlja Za]:172 (89)
ey = 5 (71 0°p).
Notice that "
p_ P m R
gy = — + ——(—1,p). 8.10
3 m p(] + |p | ( ) ( )
With this choice e/ = £/*. In general one chooses them so that
gi-€; = —0ij, 1,7 =1,2,3. (8.11)

These vectors form an orthonormal basis of the three-dimensional space transverse to the four-
momentum p, hence they satisfy

> @)y (p) = -0t + BB (8.12)



as one can verify explicitly for our choice Eq. .

A large class of interacting theories can be obtained adding a term of the form —W,j* to
the Lagrangian, coupling the massive vector boson to a current j#. The equations of motion are
obtained replacing m?WH# — m?W* — j* in the last equation in Eq. , and read

(O + mQ)W“ — OH,WY = jH. (8.13)
Taking the divergence we find this time
m28uW“ = Ouj", (8.14)
that can be plugged back into Eq. to obtain

oo\ .
(O+mH)WH = (77“” +o > Jv - (8.15)

One can easily read off the Green’s function, or propagator, D*”(x), that connects the solution
of the equation to the current,

Wh(z) = / dhy D ( — )i, (). (.16)
One has . .
po | v
D (77 + > T (8.17)

In momentum space this reads

oV
DMV — _77#” + pm%
S opP-m?

ignoring the choice of prescription to deal with the pole at p?> = m2. The second term in the
numerator can lead to bad high energy behaviour: in momentum space the propagator couples
to the Fourier transform j* of j#, and the second term originates a factor p,j*. If the current is
conserved, d,j* = 0, then p,j* = 0 and the potentially dangerous term has no effect. Moreover,
only the second term of the longitudinal polarisation vector €3 in Eq. contributes to
Feynman diagrams, and no troublesome high-energy behaviour come from it. This is the reason
why one can give the photon a mass without spoiling the renormalisability of the theory despite
the loss of gauge invariance. On the other hand, if p,j* # 0 then the pp"” term cannot be
dropped, and makes the theory non renormalisable due to its bad high-energy behaviour. For
this reason, one cannot give mass “by hand” to the intermediate vector bosons that one wants
to use in the description of weak interactions.

—, (8.18)

2

8.3 Spontaneous symmetry breaking and the Goldstone theorem

The trick that will be used to give a mass to the intermediate vector boson combines gauge
invariance with the appearance of massless scalar particles in a theory with a spontaneously
broken symmetry. In this section we discuss what the spontaneous breaking of a symmetry is
and why massless particles appear in the spectrum. Such particles, known as Goldstone bosons,
result from the breaking of a global continuous symmetry due to the non-invariance of the
vacuum. In fact, even if the equation of motion of a system show a certain symmetry, this does
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not mean that every solution should show it as well. If this happens to the solution of minimal
energy, and the symmetry is continuous, then this solution cannot be unique, and moving from
one such solution to another costs no energy, hence giving rise to massless modes. The Goldstone
theorem states that there is one such massless mode for every generator of the symmetry which is
broken by the vacuum. If the symmetry that is “broken” is a gauge (local) symmetry@ then the
“would-be” Goldstone modes are absorbed by the gauge bosons as longitudinal (zero helicity)
modes, thus making the bosons massive. More precisely, the gauge bosons corresponding to
the broken generators acquire a mass, while the unbroken ones remain massless. The reason
why Goldstone theorem is not applicable when the symmetry is local is simply that one of its
hypothesis is violated. In fact, quantisation of a gauge theory requires to choose a gauge, thus
breaking explicitly the local symmetry, and if one asks that the Hilbert space contains only
physical states then the gauge choice cannot respect Lorentz covariance, which is required by
the theorem. Examples of “physical” gauges are the Coulomb gauge (i.e., VA= 0) or the
axial gauge (i.e., A3 = 0). Covariant gauges exist, like the Lorenz gauge (i.e., 9,A* = 0), in
which the theorem must therefore apply. On the other hand, Lorenz gauge contains unphysical,
negative-norm states corresponding to the remaining gauge modes (gauge fixing is only partial),
and the Goldstone mode happens to be a gauge mode decoupled from the physical states.

Let us now discuss in some detail how Goldstone modes appear. Consider a system of N
scalar fields ¢;(x) described by the following Lagrangian density,

L = 50,0i0"bi — U (9), (8.19)

where the potential % (¢) is some polynomial which includes the mass (quadratic) terms, and
has to be at most of order four to ensure renormalisability. We will treat the fields as classical,
having in mind path-integral quantisation. Assume that the set of scalar fields provides a basis
for the representation space of some N-dimensional unitary representation of some Lie group G,

¢i(x) = (90)i(x) = Dij(9)d;(x), (8.20)

with D(g) N x N unitary matrices satisfying D(g1)D(g2) = D(g192) for all ¢g1,92 € G. Such
matrices can be written as

D(g) = e« ¢,(g) €R, (8.21)
where summation over ¢ = 1,...n = dimG is understood, and T are N x N real antisymmetric
matrices providing a representation of the group algebra [T¢,T% = — fabeT C Since we are

dealing with real fields, the representation must be real and therefore orthogonal. This setting
is fully general, since any set of complex scalar fields ¢;(z) can always be reduced to Eq.
by separating their real and imaginary parts, @; = cpZR + igoil , that can be collected in a vector
of 2N real fields ¢; = gozR, 1=1,...,N, ¢; = ‘Pz'I—Nv t=N+4+1,...,2N. The general unitary
representation under which the ¢; transform gives rise to an orthogonal representation under
which the ¢; transform. Explicitly, if ¢t* are the Hermitian generators of the representation for
the complex fields, dp = i€, t%p, then ¢ = €,T%¢p where the real antisymmetric matrices T% are

—Imt* —Ret®
a __
= < Ret® —Imta> ’ (8.22)

given by

42A gauge symmetry cannot be broken due to Elitzur’s theorem. What can be broken is the remaining global
symmetry after gauge fixing, which is required to carry out the quantisation procedure.

43A~1terna‘cively7 one can write 7% = ¢T% with T purely imaginary and Hermitian, and satisfying [T“,Tb] =
Z-fabcTc .
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Assume further that the Lagrangian density is invariant under group transformations, which
amounts to ask that % (g¢) = Z(¢). In other words, the system has an internal symmetry
corresponding to G. The energy functional corresponding to Eq. (8.19)) is

El¢] = / d*z [%30¢i30¢i+ %%i~ﬁ¢i+%(¢)] . (8.23)

This functional is bounded from below if % is. We assume that this is the case, and set its
minimum to zero by adding to it an irrelevant constant. In this way we ensure that E[¢] > 0. The
ground state of the system (also called the vacuum state in the context of relativistic quantum
field theories) is the one with minimal energy (i.e., zero), which is easily seen to correspond to
a constant field configuration (so that there is no contribution from the derivative terms) which
minimises the potential %. Since by construction min% = 0, the ground state is given by
oi(x) = ¢o; with % (¢9) = 0. However, due to the symmetry of the system under G one has for
any g that % (géo) = % (¢o) = 0, and since in general it can happen that gpg # ¢o, more than
one ground state can exist. One then defines the manifold M of ground states,

M =A{¢o | %(¢o) = 0}, (8.24)

which by construction is left invariant by the action of G, i.e., GM = M. If M contains more
than one state, we say that the symmetry G is broken, since any ground state in M will not
be left invariant by a generic symmetry transformation. Given ¢g € M, its G-orbit is the set
{g00 | g € G}. We assume that any ground state can be reached from any other by means
of a symmetry transformation@ the cases we will be considering are all of this type. This is
tantamount to saying that M is equal to the G-orbit of any ground state. We further define the
stability group H as

Clearly, H is a subgroup of GE the one that leaves the ground state invariant. The group H is
the unbroken part of the symmetry group G.

Strictly speaking, one should define H(¢g) as the stability group of the ground state ¢o. However,
since we assumed that M is equal to the G-orbit of ¢y, for any other ground state ¢ we have
oy = gbo. If h € H(gy), then g 1ol = ¢g = hoog = hg~1¢}, so that ghg=1¢) = ¢, = h'¢}, with
h' = ghg=!. Conversely, given h' € H(¢{), one shows that h = g~'h'g € H(¢g). The stability
groups H(¢g) are therefore all isomorphic, and we can simply denote with H the corresponding
equivalence class.

We finally define the (right) cosets as the sets gH = {gh | h € H}. These sets are clearly left
invariant by right multiplication with any element of H. Each coset corresponds uniquely to
an equivalence class with respect to the relation g1 ~ g9 if g1 = goh for some h € H, or in
other words to the elements of G modulo elements of H. The set of cosets/equivalence classes
is the (right) coset space, denoted G/H. Choosing some ¢g, any element of M can be written
as gog, but the choice of g is not unique since ghgg = g¢g if h € H belongs to the stability
group. On the other hand, g¢g corresponds uniquely to a coset gH, and therefore one has that
M=G/H E One distinguishes three cases:

“4In mathematical terms this is asking that the action of G on M be transitive.

Brf h1,2 € H then h1hago = ¢o and so hi1he € H. Clearly the neutral element belongs to H, and for any h € H
one has h™'¢o = h™ heo = ¢o, ie., k1 € H.

46The equality sign stands here for “diffeomorphic to”.
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e H = G: the ground state is invariant under the whole symmetry group, so ¢g is unique,
M = {¢p}, and the symmetry group G is unbroken;

o H = {e} (the neutral element): the ground state is not invariant under any transformation,
and G is completely broken,

e H C (G is a proper subgroup: G is broken down to H.

In what follows it is convenient to choose the generators {T,...T"} of G in such a way as to
contain also the generators of H. More precisely, one chooses the first n’ = dimH generators
{T',...,T"} to be the generators of H (i.e., they span the Lie algebra of H which is a subalgebra

of the Lie algebra of G), and the remaining n — n’ generators {T"IH, ..., T™} to span the rest,
thus “generating” G/H@ Since Hpg = ¢p, one has that T%py = 0 for a = 1,...,n/, while
T%qy # 0if a =n'+1,...,n. Also, no nontrivial linear combination ¢, 7% a =n'+1,...,n can

annihilate ¢g, for otherwise ¢, T* would belong to the algebra of H, against the hypothesis.

Example 1: G = SO(2) Let the symmetry group be SO(2), and let the scalar multiplets
belong to the defining representation (i.e., N = 2). Since for the group SO(N) of proper

rotations in N dimensions one has dimSO(N) = w, we have n = 1. For n =1, N = 2 the
group generator is
0 1
(%)) o3
Let the potential be
A
%) = 5(61 + 65 — a¥)?, (8.27)

where A\,;a € R and A > 0. A potential of the type Eq. is known as Mexican-hat potential
for obvious reasons (try to draw it). The ground state manifold is defined by % (¢) = 0, and
easily found to be

M={¢ |7 +¢3=a’} ~ 5, (8.28)
i.e., it is the two-dimensional sphere (circle). The whole M is obtained as G¢g for any ¢y € M.
No point in M is left invariant by any rotation, so that H = {e} and the symmetry is completely
broken. In fact, G has no proper subgroups, so the symmetry is either unbroken or completely

broken. The only solution to T'¢ = 0, which is equivalent to asking invariance under SO(2), is
the point ¢1 = ¢ =0 ¢ M.

Example 2: G =SU(2) Consider a doublet ¥ of complex fields,

o — <¢1> 7 {1/11 =¢1+ Z:<Z52, (8.29)
(G Yy = ¢3 + iy,

transforming under the defining representation of SU(2) (N = 4, n = 3). The Mexican-hat
potential in this case is

w(w) = (vh - a2>2 =X (Uien + s — a?)” = A (T, 07 - a2>2 , (8.30)

!'= H forany g € G.

It is however a manifold of dimension n — n’, and {T"/H7 ...,T"} are a basis of its tangent space at the point
corresponding to the neutral element eH = H € G/H.

4"The space G /H is in general not a Lie group, unless H is a normal subgroup, i.e., gHg~
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with A\,a € R and A > 0. A generic SU(2) matrix reads

. C d 2 2

so that SU(2) ~ 52 (the four-dimensional sphere). Clearly (g¥)7(g¥) = ¥TW, since this is the
very definition of unitary matrix. The ground state manifold is

M={s|TLio! =a} ~ 5, (8.32)

so diffeomorphic to the group G. No element of M can be left invariant by any subgroup of G:
in fact, G = M = G/H, so H = {e} and the symmetry is completely broken.

Example 3: G = SO(3) Consider a triplet of real fields transforming under the defining
representation of SO(3), or equivalently the adjoint representation of SU(2),

$1
o=1¢2] ., (8.33)
®s3
and let )
%(9) =) (X1o? —a?) . (8.34)

The ground state manifold is now the three-dimensional sphere,
M={o|TLi¢=a?} ~ 5. (8.35)

Choosing ¢9 = (0,0,a), it is easy to identify the stability group H = {h(a),a € [0,27)} as
comprising the rotations
cosa  sina 0
h(a) = [ —sina cosa
0 0 1

o

(8.36)

There is therefore a nontrivial SO(2) ~ U(1) stability group, and indeed the ground state
manifold is G/H = SO(3)/SO(2) = S? = M. This example show how not only the group but
also the choice of representation plays an important role in the symmetry breaking pattern.

We now discuss the main result.

Goldstone theorem: if G with dim G = n is broken down to H with dim H = n/, then there
are n —n’ massless bosons (Goldstone bosons) in the spectrum, one per “generator” of the coset
space.
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Proof: By assumption, % (¢) = % (9¢). Under an infinitesimal transformation g = e7 ~

1+e€-T,

W)= U(gd) = U (D +c To) = U(6) + 22

5 () (€ T)y 5, (8:37)

from which it follows due to the arbitrariness of ¢, that

on

875,(@7}‘}@ =0, (8.38)
for any field configuration ¢. We can take one more derivative with respect to ¢, and find
o*w ov
—— ()T + —()T5. =0. 8.39

Setting now ¢ = ¢g € M, we have that g%/i(gbo) = 0 since it minimises the potential and so

cu .
The matrix 2
2

is the matrix of the coeflicients of the quadratic part of the potential 7%, and as such it is the
mass matrix of the fluctuations ¢ of ¢ = ¢g + ¢ around the ground state ¢g:

U(p) = U (dpo+ ¢) = %g?)kM/?lﬁf;z + higher orders. (8.42)

Eq. (8.40) therefore reads
M2TS60; = 0. (8.43)

This tells us that as long as it is nonzero T%¢ is an eigenvector of M? with eigenvalue zero, i.e.,
a massless fluctuation. For a = 1,...,n/ one has T%¢py = 0, so Eq. is trivially satisfied.
For a =n'+1,...,n one has instead that T%pg # 0 are linearly independent, which proves the
existence of n — n/ massless modes, one per broken generator of G.

The Goldstone modes can be taken to be the linear combinations gﬁiTi‘}gboj, a=n'+1,...,n: in
fact, taking the scalar product of the fluctuations (;3 with any of the T%¢y automatically removes
the contributions of massive modes, since these correspond to eigenvectors of the symmetric
matrix M? with nonzero eigenvalue and are therefore orthogonal to the massless modes. These
combinations are linearly independent: if QNSZ-CCLT{;-QSO j =0,a= n +1,...,n for all gz;, then
ca T %o = 0 which contradicts our hypotheses. Notice that if for a given configuration @-Ti‘;gbg ji=
0 for all a then there is no contribution from the Goldstone modes.

Example: G = SO(2), doublet of real scalars Consider the case discussed above in example
1, corresponding to a doublet of real scalar fields with potential given by Eq. (8.27). Choosing

as ground state
a
do = (0) (8.44)
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one can recast the Lagrangian as
- - - - 2
L = 30,010 01 + 30,6:0"05 — 3 ((a+ 61)2 + 8 — ?)
- - - - )
— 10,610"61 + 30,020" 3 — 3 (6120 + 61) + 33) (8.45)
= 10u010" 1 + 30,0000 — 3 (40%0% + 4a61(83 + 33) + (3% + 3)?) |

from which one reads of thg masses mq 2 of the fluctuations (]3172 to be m% = 4)\a? and m% =0.
Notice that ¢;T;j¢0; = —a@s is precisely the Goldstone mode. Perhaps a more transparent way
to see the appearance of the Goldstone mode is to set p = M\/Z;z and recast the Lagrangian as

the Langrangian of a single complex field with a U(1) internal symmetry,

L =0, 0" — % (2% — a2)2 . (8.46)
Parameterising the fluctuations around the ground state pg = % as
p(a) = Lp@)es = L(a+n@)e e, (8.47)
one gets
£ = 10,m0"n — 20N + 30,6010 — 3 (dan® + ') + (2 + 13 ) 0,000 (8.48)

The first three terms constitute the quadratic, free part of the Lagrangian, while the others
describe the interactions. One clearly sees that the field n is massive with m% = 4\a?, while 6 is
the massless Goldstone mode. The symmetry under 6 — 6+ ¢ for any constant ¢ guarantees that
amass term will not be generated in higher orders of perturbation theory. This parameterisations
shows clearly the origin of the Goldstone mode. The ground state manifold is just |p| = p = a,
and so a change of phase as described by a fluctuation in the field € corresponds to moving
along the valley of minima of the potential, which comes at no cost in energy. A change in
the amplitude p = HTZ" instead displaces the system from the minimum of the potential, and

encounters an inertia which corresponds to nonzero mass.

8.4 Gauge theories

Gauge theories are characterised by the presence of a local symmetry, rather than just a global
one. An example is the theory of electromagnetic interactions, which possesses a local U(1)
symmetry under a local change of phase of the electron field, and thus of the electron (and
positron) states:

Y(x) = @y (z), P(x) = e @) (8.49)

What is the motivation for assuming the existence of local symmetries, and what are its conse-
quences?

One of the basic tenets of a relativistic theory is locality: interactions do not propagate
instantaneously, but rather take place locally between fields, and then propagate compatibly
with the finiteness of the speed of light. No event can therefore affect anything outside of its
future lightcone. We also know that the overall phase of the quantum state vector of a system
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is experimentally unobservable, and can therefore be chosen arbitrarily. For example, we could
decide that the phase of ever electron state be rotated by a factor e’?, and no experimental
consequence would follow. If all observers agree on this phase redefinition, one speaks of a
global U(1) transformation; since this leaves physics invariant, the system possesses a global
U(1) symmetry. On the other hand, while we make this phase redefinition another experimenter
outside our lightcone might want to change the phase of electron states in a different way, and
combining the two statements above this should not have any experimental consequence neither
for the other observer nor for us. It should therefore be possible to choose the phase of the
electron field, which creates and destroys electrons and positrons anywhere in the Universe, in
different way in different places. This amounts to asking invariance under the local U(1) trans-
formations Eq. , i.e., that the system is invariant under a U(1) local or gauge symmetry.
This symmetry principle is called the gauge principle. In the remainder of this subsection we
discuss this principle in some detail.

Consider first a theory of scalar fields, either real or complex, invariant under a global
symmetry group G,

L(§) = 30,0:0" i — U (¢),  L($) = Dudj OV — U (9), (8.50)
with Z(g¢) = Z(¢) for any g € G, where
(90)i(x) = Ui;(g9)9;(x), Uij(g) = e=@T" (8.51)

with U(g) providing a unitary representation of the group, therefore with real ,, and Hermitian
T representing the generators of the group, [T%, T% = ifup.T°. As already discussed before, in
the case of real scalar fields the representation is orthogonal and T are purely imaginary and
antisymmetric. Invariance under G amounts to asking % (g¢) = % (¢). We are assuming the
potential to be a function of ¢ only and not its derivatives.

The parameters ¢, in Eq. are independent of z, indicating that we are performing a
global transformation. What happens if we promote it to a local one? Since the potential is a
local function of ¢(x) only, Z = % (¢(x)), it makes no difference whether the transformation is
global or local, and so % (g(x)p(x)) = % (¢(x)). On the other hand, the kinetic term depends
on the derivatives of the field, and is not left invariant by a local transformation:

Ouoi(z) = 0u(Usj(x)9;(x)) = Uij(2)0ud;(x) + 0u(Uij(2)) () - (8.52)

The first term would cancel, but for a nontrivial z-dependence also the second term contributes
and invariance is lost. In order to have invariance we are led to introduce a new set of fields, the
gauge fields AZ(&?), a=1,...,dimG, one for each generator of the local symmetry group G, to
reabsorb the extra term in Eq. . These fields must be Lorentz vectors, transforming like 0,
under Lorentz transformations, and transform almost like adjoint objects under an internal G
transformation. Let us now replace in Eq. the ordinary derivative 0, with the covariant
derwative D,,,

(Dpd)i = Oudi — igTi5 AL d5 (8.53)
where g is a dimensionless coupling constant, and ask for AZ to transform in the appropriate way
to make Eq. invariant under the combined transformation ¢(z) — U(z)p(z), Af(z) —
Ajl(z). Denoting with A, = A§T* we have

(O — igAw)d = Udud + (8,U)d — igA,U¢ = U9, —ig(U ' AU + LU, U)]¢,  (8.54)
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and asking for invariance we find
Ay =UT AU + LU0 = A, =UAU = LU U (8.55)
With this transformation rule
D,o(z) = U(z)Dyuo(x) , (8.56)

and since U~' = UT or U~! = UT for unitary or orthogonal matrices, Eq. with 9, — D,
becomes invariant under local transformations.

Gauge fields and the covariant derivative are analogous to the connections and the covariant
derivative one encounters in general relativity, although there is an important difference, namely
that the gauge connections act in some internal space, while the spacetime connections act on
the tangent space of spacetime itself. The non-homogenous transformation rule Eq. is
also analogous to the transformation rule of the connections in general relativity. In the case at
hand, the first term corresponds to the transformation rule for a multiplet of fields A}, in the
adjoint representation, as anticipated; the second term however spoils this property.

Notice that what is the particular representation U of the group and T of the generators of
the algebra is not important, as the transformation rule can be expressed in terms of the gauge
fields A7, only. This is most easily done by considering infinitesimal transformations; any finite
transformation can be obtained from these due to the Lie nature of the symmetry group. For
infinitesimal U(z) = 1 + ig,(2)T* we find

AT = (L + gy T A (1 — ie T°) — £(8,ieaT)(1 — igpT")

. (8.57)
= AT + iy A5 [T, T + 10,8, T = ALT® — ey AS froa T + 20,2aT"

For semi-simple groups (see below) one has cyclic, totally antisymmetric structure constants
fave and 80 frca = fape- We then find

SAL = At — A% = — fupeep AL + ;auaa. (8.58)

Notice that as anticipated there is no reference to the representation under which the scalar
fields are assumed to transform, and that there are both a g-independent homogenous term,
and a g-dependent inhomogenous one.

The symmetry groups, or gauge groups, we are interested in are direct products of simple
groups and Abelian groups, i.e., G = X;G; with G; either simple or Abelian. For example, the
special unitary groups SU(N) are simple; the special orthogonal groups SO(N) are simple; the
groups SU(N) x SU(N) are semisimple; the groups U(1) and SO(2) are Abelian.

A few definitions. An Abelian group is such that all its elements commute with each other. Its
algebra is correspondingly generated by commuting elements, and is thus the direct sum of one-
dimensional commuting algebras. If there are non-commuting elements the group (and its algebra)
are called non-Abelian. A simple Lie group G is one with a simple Lie algebra g, which in turn is a
non-Abelian Lie algebra with no nontrivial ideal. An ideal a is a subalgebra a C g, i.e., [a,a] C a,
which is left invariant by the whole algebra, i.e., [g,a] C a. For a simple Lie algebra the only ideals
are {0} and the whole algebra. A semisimple Lie group is one with a semisimple Lie algebra, which
in turn is such that it has no nontrivial Abelian ideal; equivalently, it is the direct sum of simple
algebras.
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It is an important property of non-Abelian gauge theories that there is a single, unique coupling
constant for each simple factor in the gauge group: if we have several multiplets of matter fields,
they will all be coupled with the same coupling to the non-Abelian gauge fields. This follows
from Eq. : since the coupling constant to the matter fields enters the transformation
properties of the gauge field to ensure gauge invariance, then it is uniquely defined by these
and must therefore be the same for every matter field. The difference with the Abelian case is
that there one can reabsorb the coupling constant by redefining the transformation law of the
matter fields, so that these become ¢ — €9%¢ (we focus on the U(1) group case for definitess),
while for the gauge field A, — A, — i0,«. At this point nothing prevents us from choosing
different couplings for different fields. In the non-Abelian case this trick would not work, since
the coupling constant would reappear in the homogenous term in the transformation law of the
gauge fields, and would still be constrained to be unique.

Proper (non-projective) irreducible representation of the group U(1) are of the form e™® with n €
Z. Asking for these representations only would then impose the existence of a single fundamental
U(1) coupling constant, with any other coupling an integer multiple of this. This is actually what
is observed in Nature (the fundamental coupling would be €/3).

Gauge symmetry allows dynamics for the gauge fields Aj, similar to that provided by the
Riemann tensor for spacetime connections. Consider the double covariant derivative,

D.Dy¢ = 0,0,¢ — igA,0,¢ — igA,0ud — ig(0,AL) ¢ + (—ig)* A ALé . (8.59)
The first three term give an object symmetric under p <> v, and so
[Dy, Dy)¢ = —ig(OuAy — 0, Ay —iglAu, AL])¢ = —igFlué. (8.60)

The field strength tensor F,, = Fj;, T measures the curvature of the internal space with gauge
connection Aj. One has explicitly

Fﬁu = aMAg - 8VAZ + gfabcAZAlc/ . (861)

The first term is familiar from QED, while the second one is typical of non-Abelian gauge
groups, and shows that in this case the gauge fields are self-interacting, even in the absence of
matter. Moreover, the coupling constant is once again the same. The transformation properties
of F,, can be obtained by direct calculation from those of A,, using the simple fact that
U0,U™Y) = —(9,U)U~1, and turn out ot be very simple:

Fu — F,, =UF,U". (8.62)

The fields F}j, thus transform properly as an adjoint multiplet, with no inhomogenous term. For
infinitesimal transformations

(5F31, = _fabchFﬁy . (863)
It is now easy to build a gauge-invariant kinetic term for the gauge fields:
Lo = — 3 FL F = —StrpFy, M (8.64)

where tr p denotes the trace in the fundamental representation and we have used the usual
normalisation of the corresponding generators tr t“Ft% = %(Wb. The Lagrangian Eq. (8.64))is
known as the Yang-Mills(-Shaw) Lagrangian.
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The last ingredient of a realistic gauge theory are fermion multiplets. To promote the usual
globally invariant Dirac Lagrangian to a locally invariant one, one follows the same procedure
as with the scalar fields, replacing the derivative with the covariant derivative,

(i —m)p — P —m)y, (8.65)
where @ = 9,4, ) = D,~v*, and
Dy = 0, —igAjt”, (8.66)

with the same g but not necessarily the same representation t* of the group generators, [t%, t’] =
i fapet®. All in all, the Lagrangian of a general gauge theory reads

L = ,%F‘Z/F“/‘V ( Md)) (D“¢) ( ) + &(ZE — m)T,Z) = M+ Latter 5 (867)

where scalar fields are taken to be real without loss of generality. The first term contains the
A — A interactions, the second one the ¢ — A interactions and the last one the ¢ — A interactions,
all with the same coupling constant. In particular, the F'F' term reads explicitly

P, P = (0,A) — 0, A7) (9" A — 9" A™)
+29(0, A% — 9y AL) fapc AW AV (8.68)
+ g2fabcfadeAZA§Ad“Aey )
so that both cubic and quartic interactions are present. In Eq. (8.67) a mass term mQA#A“
is forbidden by gauge invariance. A term €, o F'**” F%r is allowed by gauge invariance but is
forbidden by parity. Furthermore, it is a total derivative which does not affect the equations of

motion
Equations of motion are derived in the usual way. One has

0L 1 OF

P — _7#}7771,00 _ _Fa
8(811141%) 2 8(8 Aa) )
04 1OF% ‘ .
3 ;M =733 Aa —LLE™7 = —g frnab AL F™H = g fapm ALF™ = —ig[A,, F*]*, (8.69)
agmatter _ av
“oa - T

from which it follows in matrix notation
O FH —iglAy, F*] = J" . (8.70)
Explicitly, denoting with
. Ac
(DSYNYE = 680, + g fach AS = 880y — 19 (i fear) AS, = 580, — igT )" AC (8.71)
the covariant derivative in the adjoint representation, then Eq. (8.70]) reads

(DgFo = Jov. (8.72)

48This does not mean that it is totally irrelevant: this term is known as the -term in QCD, and plays an
important role in such things as, e.g., the axial anomaly and the mass of the n’ meson.
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Gauge invariance imposes that the gauge fields be massless vector bosons. We now show that
massless vector fields have only two physical degrees of freedom. To this end we consider the
free case g = 0, in which case the equations of motion for the gauge fields reduce to

0, (D" A™ — 9 A" =0,

(8.73)
OAY — 979 . A® = 0.

Differently from the massive case, taking the divergence of this equation does not lead to non-
trivial constraints, since it gives zero identically. In fact, we are free to replace Aj, — A% + 0, A"
for arbitrary A® and we would still get a solution of Eq. , which tells us that 0 - A is not
determined. This redundancy of the field variables is a consequence of gauge invariance, and
further conditions must be imposed to obtain a unique solution to Eq. (besides including
initial conditions at some time ¢). The general solution of Eq. is most easily obtained in
momentum space: setting

a d4p —ip-T fa Aa ip-T pG
@) = [ e ae). A = [deerraga). (5.74)
the differential equation Eq. (8.73]) turns into an algebraic equation,

(p*6", — p'pu) A% (p) = 0. (8.75)

The solution of Eq. (8.75)) can be decomposed on a complete basis of four-vectors and must be
of the form

A (p) = a'(p)el (p) + b(p)P" + c(p)p* , (8.76)
where
pu = (E7ﬁ) 9
ﬁﬂ = (_Evﬁ) > (877)

No relation is assumed for the time being between E and p. Clearly p-¢; = p-¢; = 0, and
furthermore p and p are linearly independent, although p-p = —(E? + p?). Imposing Eq. (8.76)

we find
p(a'(p)e¥ (p) + b(p)p” + c(p)p”) — P (b(p)p - b+ c(p)p?) =0,

p*(a’(p)ef (p) + b(p)p”) — p - Bp"b(p) = 0.

The term proportional to ¢(p) drops out of the equation, showing that it is completely arbitrary
and therefore unphysical. Contracting Eq. (8.78) with p we find

p*p° — (p- $)*]b(p) =0,
[(E® —5%)* — (E* +77)*b(p) = 0, (8.79)
AE?p%b(p) = 0.

(8.78)

This is solved by b(p) = 0 for arbitrary p@ Contracting with either of the g; yields instead
p*a’(p) =0, (8.80)

49 Alternatively, one can choose arbitrary b(p) if either E = 0 or = 0, or both. Zero energy and nonzero
momentum would however yield a negative mass squared, so a tachyonic mode which leads to instabilities. In
general, the constraints on E and p’ are incompatible with the Lorentz transformation properties of the field, so
these solutions must be excluded.
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which is solved by arbitrary a‘(p) if p*> = 0 (or otherwise by a’ = 0 if p? # 0, but this would give
a trivially vanishing field). The solution of the equations of motions is thus

A (p) = a'(p)el (p) + cp)p*,  p*=0, (8.81)

for arbitrary a’ and c. Since c is unphysical, there are only two degrees of freedom, corresponding
to the transverse polarisations ! (p).

8.5 Spontaneously broken gauge theories: the Higgs mechanism

It is now time to combine gauge theories with spontaneous symmetry breaking, to find that in
this case there are no Goldstone bosons. We discuss first a few examples, before presenting the
general theory.

Example 1: G = SO(2) or G = U(1) It is more practical to use the U(1) version, where the
two real scalar fields are combined into a single complex field. The Lagrangian reads

L = = FuF" + (Dup)* (D) — 520" 0 —a®)?,  A>0, (8.82)

where

Fu = 0uAy —0Ay,  Du=0u+ied,,  ¢=J5(p1+ip). (8.83)

This is an Abelian gauge theory of a complex field with charge —e. The minimal energy is
achieved with F},, = 0, which implies A, = 0 (up to gauge transformations), and with ¢(z) = ¢

with o = “2—2 We now choose the ground state to be ¢y = %, A, =0, and parameterise

.0(x)

p(z) = Fla+n(@)e . (8.84)

In order to extract physical statements, either classically by solving the Cauchy problem or in
the framework of quantum field theory by quantising the system), we need to fix the gauge. By
means of a U(1) transformation we can always set

0(x)

plx) = e e p(a) = J5(a+ (@), (8.85)
i.e., impose that ¢ be real. For the gauge field
? _f@)  0) 1
Ap(z) = Ap(x) — —(Ope™" @ Je o = Au(z) + Q@ﬂ(m) =B,. (8.86)

Denoting for clarity F),,(B) = 0,B, — 0,B,, and D, (B) = 0, + ieB,,, we find that

*
Ziauge tea = — 1 (B)F* (B) + (Du(B)52 ) (D"(B)S2) = 3((a+n)* - a?)?
= —1Fuw(B)F" (B) + 5(0un + ieByu(a +n))*(8"n + ieB"(a+n)) — 5(1° + 2an)?
= —1F,(B)F"™(B) + 10,m0"n + 3e*B,B"(a + n)* — 3(n* + 2an)*.
(8.87)
There are two remarkable aspects in Eq. (8.87)). First of all, a mass term has appeared for the

gauge boson By, with mp = ea. Moreover, the would-be Goldstone mode, 6(z), has disappeared,
becoming the longitudinal component of the massive vector boson B,. The remaining scalar
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field n, the Higgs field, is massive, with m, = 2a/A. The gauge defined by Eq. is called
unitarity gauge, and allows to read explicitly the spectrum of the theory. In fact, the gauge-fixed
Lagrangian Eq. can be quantised without the appearance of unphysical modes, and its
particle content is transparent. In terms of the real field multiplet ¢ = (1, p2) the vacuum
choice and the gauge choice Eq. correspond to imposing

qﬁo—(g), qﬁ—(agn)zqﬁoﬂl (8.88)
which in terms of the SO(2) generator T' (see Eq. (8.26])) reads
¢T Ty = ¢iTijo; = 0. (8.89)

To see that nothing got lost along the way, let us count the number of degrees of freedom before
and after symmetry breaking:

before after
2 real scalars n,0 =2 1 real scalar n=1
1 massless vector A, =2 1 massive vector B, =3 (8.90)

so that the totals match.

Example 2: G = SU(2) Consider a doublet ¢ of complex scalar fields as in Eq. (8.29)), coupled
to the non-Abelian SU(2) gauge fields through D,

Dy = 0, —igAL% a=1,2,3. (8.91)

The field strength tensor reads

Fﬁll = 8MAg - 8,,Az + geabcAZAlc/ ) (892)

and the Lagrangian of the model is
& = = F, P+ (D) (D) = ATy —a®)?, A>0. (8.93)

The ground state is A, = 0 and @Dgi/)o = a?. We choose 1y = (0,a) and we write

Y(z) iy ( " ) (8.94)
r)=e€ a 2 'r](z) . .
a+ V2

This is the most general field configuration, expressed in terms of a real fluctuation 7 around
the vacuum g and of an SU(2) rotation, parameterised by three real fields 6. If we now
choose the gauge by imposing that 1 only has a real ¥ component, i.e., if we make the gauge

0% (z) 0%

transformation Q(z) with Q(z) = e« 2 € SU(2),

(8.95)



where A, = AZ"Q—G, then

. x 0 . 0
(IM¢UWIW¢0==(jg@L@m)+wg®¢v+f%UAL)<:g<éué)—zwyu<a4_m@>>
= 30m0"n + % ((O,a + 2124, (a#n> — (0, 8,m) A™ (a . M)) (8.96)

0
2 @y A! Alw
+g(0,a+\/§)ANA (a+77\%)>.

The middle term vanishes: in fact, since only the lower components of the row and column
vectors are nonzero, the contributions of Aﬁ’201’2 are identically zero and only A;f’a‘g could
contribute, but in this case the two terms in brackets cancel each other out. Moreover,

Al A = LA APt = LA AT (5P 4 ie®0%) = JA A (8.97)
We conclude )
2 x
(D) (D) = §0,m0'n + G A A (a+ 22) (8.98)

Dropping the primes, we find for the gauge-fixed Lagrangian

Lrango fixed = — S FS,FOY 4 10,0 4 9 A% A% (a + %)2 A\ (2a + %)2 . (8.99)
From the quadratic part one can easily read off the degrees of freedom: there is one real massive
scalar 7 with mass m,, = 2av/\, and three massive vectors Ay, with mass mg = %. The SU(2)
symmetry is completely broken, and all three gauge bosons acquire a mass. None of the would-
be massless modes 0 is contained in the physical spectrum, as they have been absorbed as the
longitudinal component of the massive vector fields. This is again transparent in the unitarity

gauge, Eq. (8.95). In terms of a quartet of real scalars ¢ = (¢p1, @3, P2, P4) (see Eq. (8.29))), the

gauge group representation is built out of the generators %% /2,

wa _ [(—Imoc® —Reo?®
XY = < Re o —Imaa) . (8.100)

The vacuum ¢y and the fluctuations QNS around the vacuum in unitarity gauge read respectively

0 0
do=1o]: o= \2 ol (8.101)
0 0
so the unitarity gauge condition reads in this case
¢Tix 0, a=1,2,3. (8.102)
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This is precisely the request that the Goldstone modes be zero (see after Eq. (8.43))). Let us
check again the counting of degrees of freedom:

before after

4 real scalars n,0% =4 1 real scalar n=1

3 massless vectors AZ =6 3 massive vectors Az =9 (8.103)
=10 =10

which again match before and after symmetry breaking.

Example 3: G = SO(3) Let us finally consider gauge group SU(2) with a triplet of adjoint
scalars, or equivalently a triplet of fundamental scalars with gauge group SO(3). The Lagrangian
reads

L =—1FL,F 4 (D,uo)" (DFo) — A(@Tp — A%)*, A >0, (8.104)

with ¢;, i = 1,2, 3 real fields. The covariant derivative reads
D, =0,—- igAZT“, a=1,2,3, (T")pe = —iCape - (8.105)

The representation is in this case orthogonal, with (7%)T = —T%. We take as vacuum configu-
ration Aj; = 0 and ¢; = Ad;3. The most general field configuration can be written as

0 0
o(z) = pi(0 (@) T +6%(2)T?) 0 =U(x) 0 ) (8.106)
A+ n(z) A+ ()

No term proportional to T3 appears in the exponent, since rotations around 7 leave the column
vector in Eq. invariant. In fact, such rotations constitute the SO(2) stability group of the
vacuum, to which the symmetry group breaks down. Unitarity gauge is reached by transforming
¢ — ¢ =UT¢, and Aj, accordingly. In term of the new fields (we drop primes for notational
clarity)

(Dud)"(D"p) = 0,¢" 0" ¢ + igAL(¢T T 0" — O¢" T ¢) + g* ALAM T T*T . (8.107)
Since ¢a = 5a3¢37
(¢TI0 ¢ — 0" T¢) = Ty (9°0"¢° — 0" ¢"¢°) = Tia(¢°0"¢® — "¢’¢%) =0, (8.108)

and
¢TT T ) = (3)2(T°T")33 = —(¢93)*Casmebms = (93)> (033 — 9a30h3) , (8.109)

we conclude

D, )T (DH¢) =0 n@“n—l—gz A+ Z(AL AT 4 A2 A1) 8.110
o © o v
The gauge fixed Lagrangian is thus

Lyauge fixed = 301" — An* (2N + 0)* — JFLF* + %(A + )2 (AL A + AT A (8.111)
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This time only two of the gauge fields acquire a mass mj 2 = gA, while Ai remains massless,
corresponding to the fact that the symmetry generated by T° is not broken by the vacuum. The
remaining scalar field is also massive, with m, = 2Av/2\. Counting degrees of freedom we find

before after
3 real scalars n,04% =3 1 real scalar n=1
3 massless vectors A};Q’?’ =6 2 massive vectors Allf =6
, (8.112)
1 massless vector Au =2
=9 =9

again matching before and after the symmetry breaking.

Let us now discuss the general case. Consider a gauge theory with gauge group G, dimG = n,
broken by a set of scalar fields with a Mexican-hat type potential down to H, dim H = n’.
In the case in which G is only a global symmetry, this situation gives rise to n — n’ massless
Goldstone bosons. As we will show now, when the symmetry G is local what happens is that the
n’ gauge bosons corresponding to the generators of H remain massless, the n —n’ gauge bosons
corresponding to the broken generators acquire a mass, and no masslees scalars (Goldstone
bosons) appear in the spectrum. The relevant part of the most general Lagrangian for the
situation under discussion reads

&L = —1FL, F + (D) (DFo) — % (), (8.113)

with positive potential % (¢) > 0, and real scalar fields ¢. In a real representation, D, =
Oy — ig AT with T real and antisymmetric. Assume now that J¢g # 0 for which % (¢o) = 0,
build the vacuum manifold M = {G¢p} (we assume that it is made up of a single G-orbit), and
identify the stability group H, Hpy = ¢o. Setting ¢ = ¢ + ¢ with ¢ the fluctuations around
the vacuum, we impose the unitarity gauge condition

$iTiido; =0, a=n"+1,...,n, (8.114)

with {T% | a = 1,...,n'} spanning the algebra of H. (For a =1,...,n' Eq. is trivially
satisfied.) The condition Eq. amounts precisely to setting the would-be Goldstone modes
to zero, and it can be shown that it is an admissible gauge conditionﬂ The gauge fixed
Lagrangian contains the term

(Dp)" (DF¢) = 8,pi0" §i — ig AL (0" i T b — GiT330"dr) + g 0s (T T )i ALAM , (8.115)
and using the unitarity gauge condition Eq. (8.114)) one finds
¢ Tikr, — diT0" b = 0" (iTfbok — b0 Tsk) + O & Tk — i T1.0" by,
= 09Ty, — i T30 by -
From this term originates a cubic interaction term qgggA The quadratic part of Eq. (8.115)) reads
(Dud) T (D) |quadratic part = Oubi0* di + +92¢0i(TaTb)ij¢0jAZAb“7 (8.117)

50The proof is given in Weinberg’s “The Quantum Theory of Fields”, volume II, CUP.

(8.116)
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and contains a mass term for the gauge fields. The mass matrix reads
M, = g*doi(TT")ijbo; = —g* (T ¢, T" o) (8.118)

where angular brackets denote the standard (real) scalar product (v, w) = >, v;w;. The mass
matrix M? is positive definite: in fact for any set of v, € R

Ve, M2, = (igua T, igupsT o) > 0, (8.119)

since 1gv,T® is a real matrix. Since T%py =0 fora=1,...,n’,
M=, O MS”/”"*"’) : (8.120)

(n—n/)xn’ (n—n’)x(n—n’)

i.e., there are still n’ massless vector bosons in the spectrum. The (n — n') X (n — n’) block
M? can be diagonalised and the masses of the remaining gauge bosons, corresponding to the
generators of the complement of the algebra of H, determined.

As we have already remarked, in unitarity gauge the spectrum of the theory is transparent.
On the other hand, the fate of renormalisability (a gauge theory is renormalisable when the
symmetries are intact) is unclear in this gauge. However, as shown by 't Hooft and others, there
exist gauges in which renormalisability becomes apparent, at the cost of a less clear particle
spectrum. On the other hand, gauge invariance means that the physics is independent of the
particular choice one makes, so if the theory is renormalisabile in a certain gauge then it is just
renormalisable; and if Goldstone bosons are absent in a gauge, then they are just unphysical
(gauge) modes. We have then obtained a renormalisable way to give mass to gauge bosons.

9 The Standard Model

We have now all the tools to attemps a description of weak interactions in terms of the exchange
of massive vector bosons, taking these as the gauge bosons of a spontanteously broken gauge
theory in order to have renormalisability. Building the appropriate model requires three steps:

1. find the right gauge group G and unbroken subgroup H;
2. find a set of scalar fields that realises the desired symmetry breaking pattern G — H;
3. choose the representation multiplets of the physical fields.

The phenomenologically successful model is the Glashow-Salam-Weinberg model, which is the
minimal model unifying electromagnetism and weak interactions using a spontaneously broken
gauge theory with group G = SU(2)1, x U(1)y broken to H = U(1)gym (two different U(1) groups
appear in G and H).

9.1 Finding the gauge group

Consider a model world with only e, v,, electromagnetic and weak interactions. The phenomeno-
logically known currents are

]ZV — DeOLue - De'y,u(l - 75)67 ]EM = _67#6 . (91)
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In a gauge theory, such currents are coupled to gauge bosons, leading to
Ly =g W GVTWEY Ly = e M AR (9.2)

with g, e coupling constants, W# the W-boson field and A* the photon field. There are therefore
at least three gauge bosons, with associated vector currents that are conserved due to the
symmetry under global transformation. The corresponding charges are also conserved. These
read

T (t) = %/d?’xjgv(t,f) = 5/d3$ (Vi1 —~D)e)(t, &) = /d3x (verTer)(t, ),

10 =} [ sl (t2) = Tu0) (9.3)

— [ @it = [,

where the factors % are conventional. Conserved charges are the generators of the symmetry

group, and are part of a Lie algebra. Taking the commutator of T and 7_ we then obtain
another element of the symmetry algebra. Using the canonical anticommutation relations for
fermion fields,

{Wia!(t.2), (. 5)} = 6110050 (7 — ). (94)
where 4, j denoted the field type and «, 8 are the Dirac indices, one finds

Ty = L1, T /d3 /d yverler(t, ), e ver (t, §)]
(9.5)
= /d3 [VeLTVeL — €L eL](t LL’)

This charge commutes with @, [T5,Q] = 0, but it is independent of Ty and @ (it contains the
neutrino field, and is an axial vector). This requires the introduction of a third gauge boson for
the weak interactions. Further commutators do not give rise to new charges, so we are led to a
four-dimensional gauge groupﬂ Instead of @ it is more convenient to use

Y =2(Q —T3), (9.6)

since this combination commutes with 77 5 3, having derived the Hermitian generators 77 o from
the relations Ty = T7 + iT5. The gauge group is thus the direct product

G =SU©2), x U1l)y
SU©2), = {T, | a=1,2,3} (9.7)
Uy =Y =2(Q —T3).

where the subscript L refers to the fact that this part of the gauge group acts only on the left-
handed component of the matter fields, while the U(1)y part acts on both the left-handed and

51 An alternative would have been to include the left-handed field €z in the same multiplet, in which case on
would find 75 o Q. This is the basis of the SO(3) model of Georgi and Glashow, which was however disproven
by experiments.
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the right-handed parts@ The group SU(2)y, is the weak isospin symmetry group, while U(1)y
is the weak hypercharge symmetry group, both entirely unrelated to the isospin and hypercharge
symmetry of the strong interactions in the SU(3) quark model. Since we have now four gauge
bosons but only one long range force associated to the conserved electric charge @), the group G
must break down to U(1)q if we want to obtain a realistic theory. We will denote the original
gauge bosons as W, a,1,2,3, associated to 7123 and B, associated to Y.

9.2 Scalar fields

From previous experience we know that a doublet of complex scalar fields plus a Mexican-hat
potential break SU(2) completely when a vacuum expectation value is developed. We also want
this set of fields to preserve the U(1) subgroup associated to ¢ when the vacuum expectation
value appears. Since QQ = T3 + % and T3 = 42 for the upper and lower component of the
doublet, respectively, we choose Y = 1 and writ

¢ = (:jﬁ) - (9-8)

Clearly [Q, o] = ¢ and [Q, ¢Y] = 0. Since we want to preserve electromagnetic gauge symme-
try, it will be the lower component the one that develops a nonzero vacuum expectation value.
The covariant derivative is

Dy, =0, —igt'W, — %g'YBH ) (9.9)
where g, ¢’ are dimensionless coupling constants, ¢t* are generators of SU(2) in the appropriate

representation, and the factor % is conventional. Acting on ¢ it reads
Du¢ = (0, —ig5 W — 59'Bu)o, (9.10)

where 7 are the usual Pauli matrices, appropriate for a weak isospin doublet. The potential,
up to an irrelevant constant, reads

V(g) = —i*6To + MoT9)®, A p*>0. (9.11)

The ground state is chosen to be

(60 = (0]6[0) = <0> , (9.12)
V2

2 . . 4 . . . .
where v? = & corresponds to the minimum of V, Viuiy = —45. Having in mind to impose the

unitarity gauge condition, we parameterise the most general field configuration as

V2

52The full set of global symmetries of a doublet of left-handed fields (ver,er) and a singlet er is SU(2)r X

U(1)r x U(1) g, where U(1) 1 g are chiral phase transformations generated by t;, = T° — #Q and tg = — 17270 Q,
one acting in the same way on ver and er and one acting on er. Only the combination U(1)y happens to be
gauged in nature, generated by Y = —2(¢tr +t1). The other independent combination 2ty + tr, corresponding to
lepton family number, happens to be only global.

3The alternative would be to choose Y = —1 and have the neutral field in the upper component and a negatively
charged field in the lower component. This is nothing but the charge conjugate of ¢ in Eq. (9.8), so we are not

losing generality.

- 0 — E(x) 7
()= (unw) L w@ = esu), (913)
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with ()0 = 0 and (£)g = 0 corresponding to the choice Eq. (0.12) for the vacuum. We then
choose unitarity gauge by making the gauge transformation

7 _ vn(@) (0) _ vtn@)
o)+ (Ea)ola) = 2222 (1) = 22y (0.1
The potential reads in this gauge
V = p*n* 4 don® + %774 — g , (9.15)

displaying a mass term and (renormalisable) cubic and quartic self interactions of the Higgs field
1. The kinetic term becomes instead

(Do) (D"¢) = 5(Dyu(v +0)x) (D" (v +n)x)
1
2

(v +m)?x (19T Wy + 59'Bu)(—ig T Wi — 59'Bu)x
"X0.m0"n + 5w+ n)*x (gF Wi + 39'Bu) (95 Wi + 39'Bu)x -
(9.16)
The second term vanishes due to the unitarity gauge choice. The third term is the (2,2) com-
ponent of the matrix sandwiched between x' and y,
mass term = XT(g%Wﬁ + %g'B#)(g%W;f + %g'B#)X
G (WAWS 4+ W2W) + 3 (W) — o' B) (gW*™ — g'BY)

2 (W,} —iwj> <W1“+iW2“> (9.17)

Il
0ol

V2 V2

+ 92+g12

9 wi3__49 p 9w _ 9 pmn) .
4 /g2 1g2 P /g2 1" = /g2 12 /g2 1 g2

We now set

/

0 p— 7g 1 0 p— g
cos By T sin Oy vl o
11 a2 .
VVi:M Z,, = cos Oy W?2 — sin Oy B
o \/§ ) n wWW¥ WDy,
and write
mass term = LW, W + C4° 7, 70 = CWowe 4 87,70 (9.19)

All in all, the mass terms coming from the covariant derivative and the potential terms read

2
WA+ GIEW W o 7,20 = i 4 () W W L () 2,20 (9.20)

4 cos? Oy 2 cos Oy

One then reads off

— — gv — gv — _mw
my = \@M’ mw =", mz = 2cosby ~ cosfy = mw . (921)
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All the gauge bosons have Y = 0: W,}’2’3 do not couple to B, and B, is Abelian and does not
couple to itself. It follows that @Q = 73 for the gauge fields, and so Q(W*) = £1, Q(W?3) =
Q(B) = 0. The gauge bosons W/f are electrically charged, while the neutral gauge boson Z,,,
and the orthogonal combination

A, = cosOw B,, + sin QWW3 , (9.22)

are electrically neutral. It will soon become clear that A,, which remains massless after sym-
metry breaking, is nothing but the photon field.

9.3 The fermionic sector

We consider first a model world where the only fermions are e, v, and the v and d quarks.
Since gauge interactions are chiral, left-handed and right-handed components are independent
and count as different degrees of freedom. The number of chiral (Weyl) fermions is 15: the
leptons ey, v.r, and er, and the quarks uy, dy,, ugr, and dr, which come in three colours each.
The SU(2), gauge bosons couple to the left-handed fields, while the U(1)y couples to both kinds
of handedness but with different couplings. Let us see this in detail. The conserved charges read
now

T, = /dgl‘ (I/eLTeL + uLTdL) R
T = /dgl’ (eLTVeL + dLTuL) s (923)

205 = /d3$ (VeLTl/eL — €LT€L + ULTUL - dLTdL) .

The choice of multiplets is guided by phenomenology and the known leptonic and hadronic
charged weak currents. The left-handed leptons and quarks form two weak isospin doublets,
while the right-handed electron, up and down are isosinglets

0 = (ueL) 7 L = (Zi) , er, up, dg. (9.24)

€L

The electric charge reads

Q= /d?’x (feLTeL — eRTeR + %ULTUL + %URTUR — %dLTdL — %dRTdR) . (9.25)

Combining Eqgs. (9.23) and (9.25)),

Y =2(Q—-T3) = /dgx (—VeLTVeL — eLTeL — 2€RT6R + %ULTUL + %URTUR + %dLTdL — %dRTdR) .

(9.26)
Clearly Y must be the same in each multiplet since [T, Y] = 0, so for a left-handed doublet it
can be computed as Y7, = 1[2(Q4+ — 3) +2(Q— + 3)] = Q1 + Q_, i.e., the total electric charge of
the doublet. For singlets clearly Y = 2@). This can be summarised as twice the average charge
of each multiplet. We can now read off the various values:

1
3 (9.27)
g .

=
S8
2
I
|
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There is an important theoretical reason why a definite set of fermions with definite quantum
numbers have to be considered together. It is a general fact in quantum field theory that certain
symmetries of the action at the classical level do not survive quantisation. Such symmetries
are called anomalous. A typical example of anomalous symmetries are chiral symmetries, like
the one we are using here for our gauge theory. In the presence of an anomaly, the Noether
current J# associated to the global symmetry is no more conserved. This obviously breaks the
gauge symmetry as well, and we lose all the nice properties of a gauge theory. However, the
contributions to d,,J# can cancel out for the right matter content of the theory: this is what
happens if one choses fermion fields as in Eq. (9.24]) and (9.27). The set of leptons and quarks
listed there constitute one generation of fermions, which is anomaly-free.
The fermionic term in the Lagrangian are of the general form

egfermion = @lew - mlW - D%Yukawa((ba ¢7 1/;) . (928)
Here
Dty = (9, — igT*WH — Lg'Y B, )y,
a -1 w - EL ) —2 w = €R,
T — 9.29
Ta — 2 =1, Y — +% ¢ZQL, +% W =ug, ( )
0 w = ¢R7 2 —

An explicit mass term is forbidden by the chiral nature of the symmetry (already at the global
level), since Y1) = rYr + Y. We have to set m = 0, and rely on a different mechanism to
provide masses to the elementary fermions. This is achieved by means of the so-called Yukawa
terms of the form ¢i1p. More precisely, taking into account invariance under the gauge group
G, we have

Prrukawa (0,10, 0) = fo (Crd)er + fa(qLd)dr + fu (GrLd)ur + hec., (9.30)
where
B 0
¢ =iT’¢" = (_‘fﬁ) : (9.31)

This field is 472 the charge conjugate of ¢. The latter is an anti-doublet, transforming as
¢* — U*¢* under SU(2), transformations, but since U* = 72U72 one has ¢ — Ug, ie., a
doublet of SU(2) 1, with Y (¢) = —1. Its introduction is motivated by out desire to give mass to
the u quark. It is now straightforward to check that each of the three terms has total ¥ = 0.

The dimensionless quantities fy 4, are known as Yukawa couplings. Going over to unitarity

gauge we find
0 - vtn
2

Dukawa, unitarity gauge = %fz €rer + %fd drdr + erT;fu turugr +h.c., (9.33)

and so

from which the masses of the fermions and their coupling to the Higgs field 7 can be obtained
straightforwardly,
_V2m,

v

vf;

; fi (9.34)

m; =

S
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It follows that the larger the mass, the stronger the coupling with the Higgs field. If v is large,
such couplings will be small. Notice that no mass was given to the neutrino.

We finally have to read off the couplings to the physical (mass eigenstates) gauge fields Wui,
Zyu, and A,,. The interaction part of the Lagrangian reads (up to a —i factor)

i Ly = gL WH + L9/ TVB" (9.35)
with L B
Ju =050 +qL5qzL
JY = —0plL + L3 — 2éger + jurur — 3drdg .
We now recast Eq. in terms of physical fields. We have

(9.36)

. . —iW?2 . W2
i it = 5 [+ a2 WIS (gL g2 W] (g L) (9.3)

and taking into account that
(Z) _ (cF)SGW —sin0w> <W3> . <W3> _ < cqs@w sin@w> <Z> ’ (9.38)
A sinfy  cos Oy B B —sinfw cosfy ) \A
we can write
gIAWH 4 Ly Jupe — <g cos Oy J3 — & sin HWJg) Z" + <g sin Oy J? + & cos QWJ;;) AR (9.39)
Since Ji = 2(JEM — J3%), we further have that

gIaW + L4/ JY B
= [(gcosOw + ¢'sinbw)J2 — ¢’ sin Oy J7M] Z# (9.40)
+ [(gsinfw — ¢’ cos GW)JE + ¢’ cos OWJ:JM] A* .

But
gsinfy — ¢ cosby =0, gcos Oy + g’ sin Oy = g(cos Oy + tan O sin Oy ) = ﬁ , (9.41)
and so
I YL = e (O sl 0 ) 20 gt
= =N 2" + gsin Oy J7M AR '

Since it couples to J, EM , the field A, is identified with the photon field, and the combination
e = gsin Oy (9.43)
with the electromagnetic coupling constant. Summarising,
iLhne = G5 (JEW !+ Ty W) GG TN 20+ e M AR (9.44)

We have already found one relation between the phenomenologically accessible quantity e, and
g and By. Other parameters of the theory that we need to fix are v and the Yukawa couplings
fi- These in turn are known once v and the fermion masses are known. It is possible to relate

130



v to the Fermi constant G, and sin® 6y to the elastic neutrino-electron cross section. In fact,
assuming that myy is large one has that low-energy processes corresponding to a single W-boson
exchange, which are given by the Feynman diagram (in the low energy approximation)

. 2 . 2
(1) o 1) = =i (). (9.45)
V2 myy, 2miy,
are equally well described by the effective interaction
2 2

_ g +o—p 9 W Wyt _ GF.JF.,
L =——5J JH=—"FF M= —— #, 9.46
= S J Nk (9.46)

where we took Eq. (9.1) into account to make contact with the phenomenological approach of
the previous sections. We have
g g 2,/2)-1 L~
Gr = = = (v*V2) T = v=21CG
4m12/v \/§ 4 ngz \/§ F
This is a much larger scale than m,, 4., making the corresponding Yukawa couplings small. A
reasoning similar to the one above shows that for low-energy processes involving the neutral
weak current, i.e., one Z-boson exchange, the relevant Feynman diagram reads

D=

~ 250 GeV . (9.47)

2

‘g9 ¢ 1 70 70u); : 9 0 70u|;
sJ)JIHE) = ————5(f|J JH 9.48
<cosew> m22<f|2 w1 Z2cos€%vm22<f| wl ) (9.48)

where the factor % is introduced to avoid double counting. This can be equivalently obtained

from the low-energy effective Lagrangian

2 2
9 0 70 9 070
LY== gy = _ T 0 0n 9.49
off 2cosbZ,m% " 2md, (9.49)
which shows that the same coupling appears in the charge-current and neutral-current interac-
tions. The neutral current reads explicitly

I8 =" a0 + g Bl vy
o | (9.50)
g = T3(w) — sin® 0w Qv

(cfr. Eq. (1.22)) and its contribution to elastic neutrino-electron scattering is proportional to
the product of currents
%DeLVMVeL é’)/u(a + b75)€ ) (951)

with

a=gff 4o = b r2smton,  b=gf g =} 52

From experimental studies of the cross section of this process one can then determine sin? yy ~
0.22 = 0.23. This leads to the following prediction for the W-boson mass,

_‘ ev ‘ 2 feGL?|  37GeV

N

qu
2

5 81.8GeV, (9.53)

mw =

2sin Oy sinfy | |sinfw|
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in good agreement with experiments. Good agreement is obtained also for m.

To summarise: in the one generation case there are 15 Weyl (2-component) fermion fields with
definite chirality, 4 vector bosons (3 massive and 1 massless) and one Higgs field. The parameters
in the Lagrangian are g, ¢, u?, A, fe, fu, f4, corresponding to the phenomenological parameters
e, sin Oy, myy, My, Me, My, mq. Unification is not complete like in the electromagnetic case, since
there are still two independent coupling constants. By construction baryon and lepton number
are conserved. The results of the model depend heavily on having a single complex doublet of
scalar fields in the unbroken theory.

The generalisation to more generations of fermions is almost straightforward. In fact, by
simply replicating the families one is sure to have an anomaly-free theory. One thus adds four
doublets of left-handed fields and four singlets of right-handed fields, assigning hypercharge in
the same way as with the lightest fermionic generation. However, one cannot exclude mixing
of the various fermion species. To see this explicitly, let us introduce the fermion fields in the
following form,

~ 1 N % _ B _
lap = < A ) ; dar = < pa ) , €AR, DPAR, MAR, (9.54)
€A J na /g,
where o
€A=& [, 7, pa =1,6,t, na=d, 30, (9.55)

and assign to them weak isospin and weak hypercharge as in the single generation case. These
fields have definite transformation properties under gauge transformation, i.e., they are coupled
to the gauge fields as follows,

UPU = EAL( — 1g7W, + 1B aL+qar(P— 197w, — LgB)iarL
+lar@+ig B )lar+Par(@—ilg B )par +nar(@+itd B )iar.

For the Yukawa couplings we have to allow for the mixing of fields with the same quantum
numbers. Quarks and leptons do not mix due to the different colour charges, and quarks of
type p and type n do not mix because of the different electric charges, but any other mixing is
allowed. The most general Yukawa term thus reads

(9.56)

Prukawa = fﬁ; (Card)ean + f,glpf),e((fA LO)PBR + fg(q:/xm)ﬁBR +h.c.. (9.57)

After symmetry breaking in unitarity gauge the mass matrices read

i L (7 .
M,(AU)B = ﬁfﬁ‘}g, i=-e,p,n. (9.58)

These are in general complex 3 x 3 matrices without further structure. It is a general theorem
than any such matrix can be transformed to a real positive diagonal matrix by means of a pair
of unitary matrices, SMTT = Mdiagﬁ One has then

QJZ)Az)LwBR - TZJL (1) - w(l)s(l)TMc(h;gT( )QIZ) wL dlag( (Z),J)E%Z))

- wL dlag wR '

(9.59)

54 As discussed in Weinberg, op. cit., it suffices to use the polar decomposition theorem to write M = HU
with H Hermitian and U unitary. In turn, H = VDV with D real diagonal and V unitary. If we denote
with ¥ the diagonal matrix of the signs of the entries of D, then taking S = SV and TT = U'VT one finds
SMT' = SVVIDVUU'VT = £D, which is real positive and diagonal.
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The fields ¥® have definite mass, although not definite gauge transformation properties any-
more. For the quarks charged current one then finds

J£+ = GALT T YVuGAL = PALVURAL

(p) g(n)t (9.60)
=PpArYu[SPS " N apnpr =parvUaBnsL,
with Uap the unitary CKM matrix. One then sets
d/
s1=U\s]|], (9.61)
b b

and recovers the phenomenological description of quark mixing. Of course the choice of rotating
only the Q = —% quarks is purely conventional. Repeating now the calculation for the leptonic
current we find

Jﬁ+ = CALT T VueAL = DALYuCAL = IZAL')’,LLS,(:EeBL = S0 yvear, (9.62)

since the neutrinos are taken to be massless and no corresponding matrix S*) appears. One
can now simply define (S(®)77) 4 = v4, and since all neutrinos are degenerate in mass one still
has massless fields v 4, coupled to e4 by the charged weak current, and both the v4 and the ey
still have definite gauge transformation properties. One then defines the fields v4 and e4 to be
the neutrinos and the charged leptons with definite lepton flavour, which is then a conserved
quantity. Non-mixing and exact lepton family number conservation would then be a consequence
of mass-degeneracy of the neutrinos. Finally, for the neutral current one has

Z g(L)¢A L’YuwAL + 95 w ’YuwAR
= Z 54 Mapviy + g O TOTON 450
9L AL’YM ABYp T IR YAR 1 ABYBR (9.63)
Z 90 Py, + 98 O R R
so it has the same form in terms of the mass eigenstates.

9.4 Summary

As a final summary, let us list here the properties of the electroweak sector of the Standard
Model with three generations of fermions:

e gauge group G = SU(2), x U(1)y;
e 3 X 15 = 45 Weyl fermion fields;

e 3 massive (W™ and Z) and 1 massless () vector particles;

1 Higgs scalar;

18 free parameters:
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— 2 gauge couplings e, sin Oyy;

3 lepton and 6 quark masses (Yukawa couplings);

3 Cabibbo angles and 1 Kobayashi-Maskawa phase;

— the W-boson and Higgs boson masses my and m, (corresponding to the vacuum
expectation value v and to the mass parameter p);

— the Higgs self-coupling A.

To this one should add the gauge group of Quantum Chromodynamics (QCD), to obtain the
full gauge group Ggy = SU(3)¢ x SU(2)r x U(1)y. Each type of quark is a fundamental colour
triplet, while all other matter particles are colour singlets. One has to add the eight massless
gluon (gauge boson) fields of the SU(3) part of the group, and include 1 more parameter, the
dimensionless strong fine structure constant ag (or equivalently the mass dimension 1 QCD
scale Aqcp).

10 Beyond the Standard Model

Since the completion of the Standard model there has been attempts to extend it, but only one
compelling reason to amend it. An interesting idea about extensions of the Standard Model is
that of Grand Unification, i.e., the attempt to further unify electroweak and strong interactions.
Such attempts have so far failed. While theoretical appealing, Grand Unified theories are not
required to explain experimental results contraddicting the Standard Model predictions (and
usually give prediction that disagree with the experimental evidence). On the other hand, the
Standard Model with its massless neutrinos disagrees with the by now established fact that
neutrinos are actually massive.

The two topics mentioned above are briefly discussed in this section, beginning with the sub-
ject of neutrino oscillations, and concluding with the first (failed) attempt at Grand Unification.

10.1 Neutrino oscillations and the need for neutrino masses

Neutrino masses have a long and complicated history. Initially, when proposed by Pauli, it
was believed that the neutrino had to be very light, but there was no particular reason to
believe it was massless. Later, with the two-component neutrino theory that postulated that
this particle existed only with definite chirality and handedness, it was assumed that it was
massless. At the same time, ideas about neutrino having finite masses and oscillating between
the different flavours started to appear. These ideas go back to one of the most important
neutrino physicists, namely Bruno Maximovich Pontecorvo. It was Pontecorvo who ideated the
experimental technique later used by Raymond Davies to detect solar neutrinos, produced by
the nuclear reactions in the Sun. This technique is based on the following neutrino-capture

reaction,
ve + 37Cl = e~ + 37Ar. (10.1)

However, the flux of solar neutrinos measured experimentally was significantly lower than the
prediction of Bahcall et al.. This came to be known as the solar anomaly, later confirmed by
KamiokaNDE and other experiments. Since only v, could be seen by the detectors, the most
natural explanation of this deficit was that the electronic neutrinos were actually produced in
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the Sun, but along the way turned into a different flavour and so escaped detection. Another
anomaly was found in atmospheric neutrinos: given the charged pion decays,

" —uty,

bet ve,, (10.2)
e SV 7

Le™ Devy,

one expects the muonic and electronic fluxes to be in a ratio 2 : 1. This ratio however turned out
to be sensitive to the direction in which the flux was measured: while the fluxes coming from
above showed the expected ratio, those coming from below (after crossing the Earth) showed a
ratio 1 : 1. This again can be explained away by neutrino oscillations. Finally, a third anomaly
that can be explained by neutrino oscillations comes from measurements of the flux of electronic
antineutrinos from nuclear reactors (e.g., KamLAND), which show a dependence of the flux on
the distance from the reactor.

The quantum mechanical description of neutrino oscillations is not particularly complicated.
Consider for simplicity only two families, and assume for generality that neutrinos have masses
Mg, There is in general no reason to assume that the weak flavour eigenstates (i.e., the neutrino
states that couple directly to e, p and 7) are also mass eigenstates, and so the former will be
linear superpositions of the latter. When a neutrino is produced in a weak process, its state
has a definite flavour, or lepton family number, as it comes together with a charged lepton. On
the other hand, as they propagate in space, the evolution of their state is determined by their
content in mass eigenstates: these are the ones the evolve simply under temporal evolution.
Given the tiny chance of interacting with anything along the way, the temporal evolution can
be treated as free. Finally, when neutrinos are detected, the state that is detected is again a
flavour /lepton family number eigenstate, as detection is signalled by the production of a charged
lepton. Denoting by |¢1 2) the lepton-family eigenstates and by |a,b) the mass eigenstates with
masses My, the most general parameterisation of the lepton-family eigenstates i

|¢1) = cosf|a) + sin0b) ,

10.3
|l2) = —sinfla) + cosb|b) , (10.3)

with 0 the mixing angle. As is well known, the state of quantum mechanical system at time ¢ is
determined by its state at t = 0 as [)(t)) = e"¢[2)(0)). In our case H is the free Hamiltonian,
and we will assume an initial state |1(0)) = |¢1) with definite momentum p. Then

|9 (t)) = cos fe""Fat|a) + sin e D) | Eop=1/D%+ mgyb. (10.4)

The probability to detect the same lepton-number eigenstate at time ¢ as the initial one is given
by
(1] (£))[* = [ cos Be™"Pet (fy]a) + sin B~ (01 |b)[? = | cos® fe Pt + sin® G P2 |?

10.5
= cos? 0 + sin® 6 4 2 cos® O sin? § cos(E, — Ep)t . (10.5)

%5Since there are only two families, any extra phase factor can be reabsorbed by redefining the phases of the
eigenstates.

135



For small m,; the neutrinos are produced in an ultrarelativistic state, m,, < |P], and so

E_Eb:Eg—Eg:mg—mggmg—mg:AmQ. (10.6)
¢ E.+E, E.+E, 2|p| 2[p|

Since they travel almost at the speed of light, ¢ ~ x, i.e., the distance covered in ¢t from the
production process. Then since fluxy (x(t)) oc [(¢1]2)(t))|* we find

Am?
fluxy(x) = A+ B cos ——
1(z) 207

x, (10.7)

with
A_cos49+sin49_1—|—008220 10.8
B 2cos?f0sin?0 1 —cos220° (10.8)
Oscillation of the neutrino flavour would explain the three anomalies discussed above, but it
requires the non-degeneracy of the neutrino masses. This implies that at least one of the neu-
trinos must be massive. Since oscillations have been experimentally observed, it follows that we
have to abandon the assumption that neutrinos are massless. Obviously, lepton family number
is not conserved anymore.
The generalisation to three families involves the parameterisation of the mixing matrix in
terms of three angle and one ineliminable phase, and three mass-square differences, but is oth-

erwise straightforward. Here are recent experimental results about these quantities.

AmZ, = 7.551020 . 107%eV?2 |
21 —0.16 2,42f8:82 -1073eV? (I0),

L (saBaot o),
Sin” 0as = 1018 -1
5511018 10 (10) ,

) 2.50 £ 0.03-1073%eV?  (NO),
|Amg | =

sin? 619 = 3.201030 - 107,

n? 0 {2.160j8;8§g.10—2 (NO), dop _ {1.32t8;§§) (NO),
2.220750%6 - 1072 (10), ™ 1561013 (10).

(10.9)

Here NO stands for “normal ordering”, in which case Am3, > 0, while IO stands for “inverted

ordering”, in which case Am3, < 0. Which ordering is realised is not determined by current

experiments. With NO one would have mq < mgy < mg, while with IO one would have instead
ms < mp < may.

How can one modify the Standard Model to account for neutrino masses? The simplest

possibility is to add a mass term analogous to the other ones, i.e., a Yukawa coupling to the
Higgs field,

) dwn)r, (10.10)

with (v4)g the right-handed (more precisely: negative chirality) neutrino fields, and were lepton
mixing has been allowed. Right-handed fields are needed for a Dirac mass term, generated from
the coupling above after spontaneous symmetry breaking. On the other hand, the corresponding
particle, i.e., a right-handed neutrino, would not couple to any of the other particles in the
Standard Model, and would therefore be sterile. The mass matrix reads

v

- £ — g@itp) ) (10.11)

V) _
MAVB - diag
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If the leptonic current v4O¢ {4 is written in terms of definite-mass fields £4 for the charged
leptons, the corresponding neutrino fields v4 have definite lepton family number (by definition).
The definite-mass fields are obtained by means of a unitary transformation,

v = S = ) fmass) (10.12)

The matrix S®*) relating mass and lepton-family (left-handed) eigenstates is the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, a 3 X 3 unitary matrix that can be parameterised (up
to irrelevant, unphysical phases) in terms of three angles and one phase. Lepton number is still
conserved, while lepton family number is not anymore. The right-handed neutrino field vy is a
SU(2)[, singlet with vanishing U(1)y charge (since —y(¢) +y(¢) = 1—1 = 0), and so is invariant
under the whole gauge group G; as such, it causes no problems with the anomaly.

While very simple, the Dirac mass term discussed above has the obviously annoying feature
that it introduces essentially unobservable particles (which is exactly what Pauli regretted after
his proposal of the neutrino hypothesis). It also has no chance to explain why the neutrino
masses are so small. In addition to the Dirac mass term, the G-singlet field vr (with definite

flavour), which as such is a truly neutral fermion, can take a Majorana mass term. Majorana’s

condition for neutrality of vg is (vg)¢ = vg, where (vg)¢ = Cﬁg with C = —iy?7%. One then
finds (vg)¢ = —iv?v}. The Majorana mass term read
1 — c
Alaj = §mMVR(VR) +c.c.. (10.13)

Such a term violates lepton number, but no other symmetry, and incidentally leads to predict
neutrinoless double-beta decay processes, which would then provide an experimental signature
(unobserved so far). It must be noted that (vgr)¢ is actually a left-handed field so that the
Majorana neutrino, which is equally an antineutrino, appears with both chiralities. If one know
puts together the Dirac and Majorana mass terms, one finds

(vr)®

with v a doublet of left-handed fields, and M the mass matrix

e ( 0 mD) ' (10.15)

mp My

&= %ECMI/, V= < VL ) (10.14)

This matrix is easily diagonalised yield the eigenvalues

1
me =3 (mM +4/m3, +4m§)> . (10.16)

Since mp; would be the origin of lepton-number breaking, it is natural to assume that it is a
large mass scale, possibly related to new physics. In the limit mpy; > mp one then ﬁndﬂ
2
m
my >~ myy, m_ ~——L2 (10.17)
mpp

*More generally, one can introduce mass terms vgr My (ver )¢, which can be diagonalised yielding Majorana
terms.
5TThe sign of m_ is not problematic, as it can be changed by redefining @ — ~v°.
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and for the definite-mass fields

N ~ (vp)° + @VL, v~y — @(VR)C. (10.18)

mm ma

The N field has a large mass and small coupling to the active neutrino field v, so it corresponds
to a heavy neutrino weakly interacting with other matter. The v field instead is essentially the
same as vy, and has naturally a small mass: a reasonable expectation for mp would be for it to
be of the same order of the mass of the corresponding charged lepton, and the factor mp/ms
leads to a strong suppression. The suppression mechanism described above is known as the

see-saw mechanism.

10.2 Grand Unification Theories

The Standard Model has gauge group Gsm = SU(3). x SU(2)r, x Uy, with a different coupling
associated to each factor of the group. It is then not truly unified, i.e., containing a single
coupling constant governing all the types of interactions. To some, this is an unsatisfactory
aspect. The idea of further unification is based on finding a bigger gauge group with a single
coupling constant from which the Standard Model group Ggy will be obtained via symmetry
breaking. The minimal possibility to do this is to use the group SU(5). This group infact
contains Gsy and has rank 4, i.e., the same rank as Gsyr, meaning that it has four commuting
generators that can be identified with t3,¢g,73,Y. Moreover, SU(5) is the only rank-4 group
that admits complex representations (required by the chiral structure) which can accommodate
the matter spectrum of the Standard Model (including their electric charge) without introducing
new matter.

The group SU(5) is the 24-dimensional Lie group of 5-dimensional unitary unimodular ma-
trices. Being a simple group, using it as the gauge group introduces a single coupling constant.
Besides the known gauge bosons, this group would come with 24 — (8 4+ 3 + 1) = 12 new ones.
Among its diagonal generators there is
1

V15
where the first three entries are proportional to the hypercharge Y of df ~ dj, and the last
two to the hypercharge of £7. Here 9§ = Cz/_% = —i’yQ'yOzﬁg = —i’y%ﬁ}%. In other words, A2
represents the hypercharges of the Standard Model particles up to a common normalisation.
Being diagonal in its upper SU(3) and lower SU(2) subgroups, if we embed the SU(3). and
SU(2)1, factors of Ggy in the upper and lower corners,

(SUO(S) 8) | <8 SU0(2)> . (10.20)

then one finds [A2*, Gsy] = 0. One needs now group representations for the matter particles,
and a suitable symmetry-breaking pattern. Consider the 5z (antifundamental) representation,
and organise the three colours of the negatively-charged quark and the leptons of one generation
of the Standard Model matter fields as follows,

dy

ds

ds . (10.21)

A2 diag(2,2,2, -3 — 3), (10.19)



The first three components correspond to the (3, 1) representation of SU(3). x SU(2)r, C Gsw,
the last two to the (1, 2) representation. The corresponding 55 representation,

dsp | (10.22)

would contain instead right-handed fields and is not used. Next, organise the remaining matter
fields in the 10 representation of SU(5), i.e., the antisymmetric part of 5p ® 55 = 10 & 15,

0 u§ —u§ wr di
0 uf{ u9g dQ

0wy ds| , (10.23)
0 et
0/

where the entries below the diagonal are such that this matrix is antisymmetric. The top-left
block is an SU(2), singlet and contains the antisymmetric part of the 3®3 = 3®6 representation
of SU(3)., i.e., the 3. The top-right block transforms as (3,2), and the bottom-right block as
(1,1). In fact, this block is the antisymmetric part of the 2 ® 3 = 1 @ 3, i.e., the 1, and

corresponds to the field er. Eq. (10.21)) and (10.23)) display precisely the matter content of one
generation of the Standard Model. The number of generations would remain unexplained in this

framework. ertlng now
3 2 \0 7 3 ’ ’

we have for the electric charge

Y 24 5

and we find B
Y(5F) - (+%7+%7+%7 _17_1)a

Q(5r) = (+3,+3,+3,—1,0),
0 —2 _2
53
0 -3
Q(10) = 0

(10.26)

+ 4+
(9511 SUN T ]

o
—

where we used Q(10) = Qrow(5) + Qcolumn(5) = —(Qrow(5) + Qcolumn(5)). We then find that
Y and @ match those of the Standard Model, and moreover that the right representations of
SU(3). x SU(2)1, are obtained. The gauge bosons transform under the 24 representation and
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can be organised as follows (5 ® 5 =1 ® 24),

ch ch
Iz M
i 2 i 2 2
szu + \/%B N‘Szj ?éi ?’z‘;
Au = . - M 2] , (10.27)
3 +
X{L Xé Xé Wi — /108 w,
Y Y° Y —
© W © W~u —%WS — \/%Bu

where Gij ~ (8,1) correspond to the gluons, WE3 ~ (1,3) correspond to the intermediate
vector bosons, B ~ (1, 1) correspond to the hypercharge generator (eventually mixing with W3
to yield the Z° and the photon), and X,Y ~ (3, 2) are twelve new gauge bosons@ Their electric
charges can be read out of

Q'4,Q = (Q(5) + Q(5)) Ay, (10.28)
and read Qx :—%—1:—% and Qy:—%—i-():—%.

As a first step to achieve the desired symmetry breaking pattern, we need to give mass to

X and Y. With the appropriate potential for an adjoint Higgs field H, transforming in the 24
representation, one gets

(H) = v\t (10.29)

which breaks SU(5) — Gsy (recall [A*, Ggy] = 0). After that, we break Gsy — U(1)g as
was done before, and we get back the Standard Model plus new bosons. The SU(5) covariant
derivative reads

24
. N
D, = 0, +igs z_; AL (10.30)
while the Standard Model one reads
8 A& 3 7@ Y
Dy =0 +igs » G- gM +igy Wi+ ig’Bui . (10.31)
a=1 a=1

Comparing the two equations, and recalling that Y = —4/5/3A%* we find

3
B3=9=95, g = —\ﬁ% , (10.32)

g 3
tanfy = = = —y/ —. 10.33
an P 3 ( )

from which we get

From
9 tan? x

S an z
we then obtain sin® 6y, = 0.375, which differs from sin® 63" = 0.212023. Moreover, this model

predicts g3 = g, i.e., unified strong and weak coupling. This is known to be not true experi-
mentally at low energies (recall that couplings “run” with energy, i.e., are energy dependent).

(10.34)

*8Notice that X, Y° ~ (3,2).
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Figure 13: |AB| = 1 processes in the SU(5) GUT.

However, the identification of the two couplings should be done at some high energy scale Mx
of the order of the masses of the new bosons, i.e., the scale at which the full SU(5) symmetry
breaks down. The running of the Weinberg angle in the unified theory reads (for three Standard

Model families)
3 95 M

sin? Oy () = g %a(u) In Tm , (10.35)
where a(u) is the running QCD coupling and p the energy scale of the relevant process. Imposing
sin? @y = 0.22 — 0.23 at low energy (i.e., at p ~ M), we find that Oy (x) reaches the grand
unification value at u = Mx ~ 4 -10*GeV.

A drawback of this model is that while B — L is still conserved, B and L separately are
not conserved anymore. In particular, the new bosons mediate proton decay at tree level: since
leptons and quarks are in the same multiplet, this is to be expected (it is like u — d via W boson).
This makes, e.g., p — eT7% (AB = —1, AL = —1) allowed, while n — e~7nt (AB = -1, AL =
1) remains forbidden. On the other hand, AB # 0 processes are suppressed due to the large
mass of the new bosons. In any case, so far no proton decay has been observed experimentally.
The current bound on the proton lifetime resulting from this null result is Tproton > 1034 years.

4
The lifetime predicted by the SU(5) GUT model, 7 ~ % is 7 ~ 103 = 103! years, so this
P
model is experimentally disproved. Notice that 7 is very sensitive to My, which is constrained
by low-energy phenomenology (e.g., sin? fy). Variations (non-minimal, either supersymmetric

or not) exist, and all predict proton decay; still, no proton decay has been observed so far.
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