Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

October 7, 2020

K_{e4} decay

$$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$$
$$p = p_1 + p_2 + k_1 + k_2$$

- both currents contribute:
 - K^+ pseudoscalar $\Rightarrow \langle \pi^+ \pi^- | V^{\mu}_{\perp} | K^+ \rangle$ p.vector, $\langle \pi^+ \pi^- | A^{\mu}_{\perp} | K^+ \rangle$ vector $\langle \{-\vec{p}_i^{\prime}\}|V^{\mu}|\{-\vec{p}_i\}\rangle = \langle \{-\vec{p}_i^{\prime}\}|P^{\dagger}PV^{\mu}P^{\dagger}P|\{-\vec{p}_i\}\rangle = \mathcal{P}_{\nu}^{\mu}\eta^{\prime}\eta^{\prime}\langle\{\vec{p}_i^{\prime}\}|V^{\mu}|\{\vec{p}_i\}\rangle$ vector if $\eta' \eta = 1$, pseudovector if $\eta' \eta = -1$ similar argument for axial-vector current
 - ▶ 3 indep. hadronic momenta, can build p.vector w/ Levi-Civita tensor

$$\langle \pi^{+} \pi^{-} | A^{\mu}_{+} | K^{+} \rangle = f_{1} (p_{1} + p_{2})^{\mu} + f_{2} (p_{1} - p_{2})^{\mu} + f_{3} (p - p_{1} - p_{2})^{\mu} \langle \pi^{+} \pi^{-} | V^{\mu}_{+} | K^{+} \rangle = \frac{f_{4}}{m_{K}^{2}} \varepsilon^{\mu}{}_{\nu\rho\sigma} p^{\nu} p_{1}^{\rho} p_{2}^{\sigma}$$

 f_i real functions of $p \cdot p_1$, $p \cdot p_2$ and $p_1 \cdot p_2$ of *m*-dimension -1

- f_3 term contribution is small: using $p p_1 p_2 = k_1 + k_2$ and Dirac equation in the lepton matrix element shows $\propto m_{\ell}$ (f_1 term is $\mathcal{O}(m_K)$)
- f_4 term contribution is small: $\propto m_K(\vec{p}_1/m_K) \wedge (\vec{p}_2/m_K)$, suppressed by two powers of momentum
- estimate using PCAC gives $f_{1,2} \approx 1/f_{\pi}$

Leptonic decays of hyperons

Strangeness-conserving and strangeness-changing currents part of octet

$$(j^{\alpha})^{i}_{j} = \bar{q}^{i}\mathcal{O}^{\alpha}_{L}q_{j} - \delta^{i}_{j\frac{1}{3}}\sum_{k}\bar{q}^{k}\mathcal{O}^{\alpha}_{L}q_{k}$$

Making octet nature more explicit

$$j_{a}^{\alpha} = \bar{q}\mathcal{O}_{L}^{\alpha}t_{a}q = \bar{q}\gamma^{\alpha}(1-\gamma^{5})t_{a}q$$
$$j_{a}^{\alpha} = (j^{\alpha})^{i}{}_{j}(t_{a})^{j}{}_{j} = \operatorname{tr} j^{\alpha}t_{a}^{T} = \operatorname{tr} j^{\alpha}t_{a}^{*}$$
$$(j^{\alpha})^{i}{}_{j} = 2\sum_{a}(t_{a}^{*})^{i}{}_{j}\bar{q}\mathcal{O}_{L}^{\alpha}t_{a}q = 2\sum_{a}j_{a}^{a}(t_{a}^{*})^{i}{}_{j}$$

 t_a : SU(3) generators in the fundamental representation

$$T_a^{\mathsf{T}} = t_a, \ [t_a, t_b] = i f_{abc} t_c, \ 2 \mathrm{tr} \ t_a t_b = \delta_{abc}$$

Hadronic matrix elements (working in exact SU(3) limit)

$$\mathcal{A}^{\mu}_{a}(B
ightarrow B') = \langle ec{
ho}^{\,\prime}\,;\,B'|j^{\mu}_{a}(0)|ec{
ho}\,;\,B
angle$$

 $|ec{p}\,;B
angle=B^a|ec{p}\,;a
angle$ generic octet state, $|ec{p}\,;a
angle$, $a=1,\ldots,8$ basis baryons

p, n, etc.

Represent flavour part of $|\vec{p}; a\rangle$ in the linear space of traceless 3×3 matrices $|\vec{p}; a\rangle \rightarrow t_a |\vec{p}\rangle$ (instead of an 8-component complex vector)

- Flavour wave function = traceless 3×3 matrix $B = B^a t_a$
- Hilbert space with positive-definite scalar product $(B', B) \equiv 2 \operatorname{tr} \bar{B}' B$ $\bar{B} = B^{\dagger}, \ \bar{B}^a = B^{a*}$

$$(B',B) = \bar{B}'^{a}B^{b} \operatorname{2tr} t_{a}t_{b} = \bar{B}'^{a}B^{b}\delta_{ab}$$

• under SU(3) transformation $B
ightarrow UBU^{\dagger}$ (adjoint representation)

$$\begin{split} UBU^{\dagger} &= B^{a}Ut_{a}U^{\dagger} = t_{b}(U_{\mathrm{adj}})_{ba}B^{a} \\ UBU^{\dagger}|_{U\simeq1} &= (\mathbf{1} + i\epsilon_{a}t_{a})B(\mathbf{1} - i\epsilon_{b}t_{b}) = B + i\epsilon_{a}[t_{a}, B] \end{split}$$

Matrix elements $\mathcal{A}^{\mu}_{a}(B \to B')$ trasform in the adjoint representation under SU(3) transformation of baryon states, find most general object

- linear in B, antilinear in B', linear in the current
- transforming in the adjoint

$$\Longrightarrow \mathcal{A}^{\mu}_{a}(B \to B') = C_{1}^{\mu} \cdot 2 \operatorname{tr} \bar{B}' t_{a} B + C_{2}^{\mu} \cdot 2 \operatorname{tr} B t_{a} \bar{B}'$$

Use symmetric and antisymmetric combinations

$$\begin{aligned} \mathcal{A}^{\mu}_{a}(B \to B') &= (D^{\mu} + F^{\mu}) \cdot 2 \operatorname{tr} \bar{B}' t_{a} B + (D^{\mu} - F^{\mu}) \cdot 2 \operatorname{tr} B t_{a} \bar{B}' \\ &= D^{\mu} 2 \operatorname{tr} \bar{B}' \{ t_{a}, B \} + F^{\mu} 2 \operatorname{tr} \bar{B}' [t_{a}, B] \\ &= D^{\mu} d_{abc} B^{b} B'^{c} + F^{\mu} i f_{abc} B^{b} B'^{c} \\ &= D^{\mu} d_{abc} B'^{b} B^{c} + F^{\mu} (-i f_{abc}) B'^{b} B^{c} \\ &= D^{\mu} B'^{b} (\tilde{T}_{a})_{bc} B^{c} + F^{\mu} B'^{b} (T_{a})_{bc} B^{c} \end{aligned}$$

 $(T_a)_{bc} = -if_{abc}$ (generators in the adjoint representation), $(\tilde{T}_a)_{bc} = d_{abc}$ Flavour structure of matrix elements fully determined, matrix elements parameterised in terms of two unknown objects D^{μ} and F^{μ}

- contain both vector and axial vector parts
- do not depend on the baryons involved in the process
- constrained by Lorentz invariance

 $p,\ p':$ initial and final momenta, q=p-p'

Small mass differences in the octet \rightarrow small q, can work in static approximation q = 0 for matrix elements

$$D^{\mu} = \bar{u}(p)\gamma^{\mu}(D_{V} + D_{A}\gamma^{5})u(p) \qquad F^{\mu} = \bar{u}(p)\gamma^{\mu}(F_{V} + F_{A}\gamma^{5})u(p)$$

$$D_{V} = f_{D1}(0) \qquad D_{A} = g_{D1}(0) \qquad F_{V} = f_{F1}(0) \qquad F_{A} = g_{F1}(0)$$

SU(3) symmetry also determines D_V, F_V Take $j^{\mu}_{Va}(t, \vec{x})$ vector part of the current Spatial integral of $j^0_{Va}(0, \vec{x})$ equals generator \mathbf{T}_a of SU(3)

$$\int d^{3}x \langle B' | j_{Va}^{0}(0, \vec{x}) | B \rangle = \langle B' | \mathbf{T}_{a} | B \rangle = \bar{B}'^{b} B^{c} \langle b | \mathbf{T}_{a} | c \rangle$$

$$(2\pi)^{3} \delta(\vec{q}) \langle B' | j_{Va}^{0}(0) | B \rangle = (2\pi)^{3} \delta(\vec{q}) 2p^{0} \bar{B}'^{b} B^{c} (T_{a})_{bc}$$

$$\langle B' | j_{Va}^{0}(0) | B \rangle |_{\vec{q}=0} = 2p^{0} \bar{B}'^{b} B^{c} (T_{a})_{bc}$$

$$\bar{B}'^{b} B^{c} (D_{V}(\tilde{T}_{a})_{bc} + F_{V}(T_{a})_{bc}) \bar{u}(p) \gamma^{0} u(p) = 2p^{0} \bar{B}'^{b} B^{c} (T_{a})_{bc}$$

$$\bar{B}'^{b} B^{c} (D_{V}(\tilde{T}_{a})_{bc} + F_{V}(T_{a})_{bc}) = \bar{B}'^{b} B^{c} (T_{a})_{bc}$$

$$D_{V}(\tilde{T}_{a})_{bc} + F_{V}(T_{a})_{bc} = (T_{a})_{bc}$$

 $ilde{\mathcal{T}}_{a}$ symmetric, \mathcal{T}_{a} antisymmetric \Rightarrow linearly independent

 $\Rightarrow D_V = 0, \ F_V = 1$

Exact SU(3), static approximation:

$$\begin{aligned} \mathcal{A}^{\mu}_{a}(B \to B') &= \bar{u}(p)\gamma^{\mu} \left\{ (T_{a})_{bc} + \left[F_{A}(T_{a})_{bc} + D_{A}(\tilde{T}_{a})_{bc} \right] \gamma^{5} \right\} u(p)\bar{B}'^{b}B^{c} \\ &= \bar{u}(p)\gamma^{\mu} \{ \left[(D_{V} + F_{V})2\operatorname{tr}\bar{B}'t_{a}B + (D_{V} - F_{V})2\operatorname{tr}Bt_{a}\bar{B}' \right] \\ &+ \left[(D_{A} + F_{A})2\operatorname{tr}\bar{B}'t_{a}B + (D_{A} - F_{A})2\operatorname{tr}Bt_{a}\bar{B}' \right] \gamma^{5} \} u(p) \end{aligned}$$

Need the invariants $\operatorname{tr} \bar{B}' t_a B$ and $\operatorname{tr} B t_a \bar{B}'$ for the relevant currents

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \frac{\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \hline \Xi^{-} & \Xi^{0} & | -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}$$

 p, n, Σ^0 , etc. are wave-function components Assignment of components to $\mathbf{8}_{\mathrm{SU}(3)}$ states from I, Y values

$$\vec{t} = \left(\frac{\vec{l} \mid 0}{0 \mid 0}\right) \quad Y = \frac{1}{3} \left(\frac{1 \mid 0}{0 \mid -2}\right) \qquad B = \left(\frac{\Sigma \mid N}{\Xi \mid 0}\right) + \frac{1}{\sqrt{6}} \Lambda \left(\frac{1 \mid 0}{0 \mid -2}\right)$$
$$[\vec{t}, B] = \left(\frac{[\vec{l}, \Sigma] \mid \vec{l}N}{-\vec{l}^{T} \Xi \mid 0}\right) \qquad [Y, B] = \left(\frac{0 \mid N}{-\Xi \mid 0}\right)$$

Weak Interactions

Exact SU(3), static approximation:

$$\begin{aligned} \mathcal{A}^{\mu}_{a}(B \to B') &= \bar{u}(p)\gamma^{\mu} \left\{ (T_{a})_{bc} + \left[F_{A}(T_{a})_{bc} + D_{A}(\tilde{T}_{a})_{bc} \right] \gamma^{5} \right\} u(p)\bar{B}'^{b}B^{c} \\ &= \bar{u}(p)\gamma^{\mu} \{ \left[(D_{V} + F_{V})2\operatorname{tr}\bar{B}'t_{a}B + (D_{V} - F_{V})2\operatorname{tr}Bt_{a}\bar{B}' \right] \\ &+ \left[(D_{A} + F_{A})2\operatorname{tr}\bar{B}'t_{a}B + (D_{A} - F_{A})2\operatorname{tr}Bt_{a}\bar{B}' \right] \gamma^{5} \} u(p) \end{aligned}$$

Need the invariants $\operatorname{tr} \bar{B}' t_a B$ and $\operatorname{tr} B t_a \bar{B}'$ for the relevant currents

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \frac{\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \hline \Xi^{-} & \Xi^{0} & | -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}$$

 p, n, Σ^0 , etc. are wave-function components Assignment of components to $\mathbf{8}_{\mathrm{SU}(3)}$ states from I, Y values

$$\vec{t} = \left(\frac{\vec{l} \mid 0}{0 \mid 0}\right) \quad Y = \frac{1}{3} \left(\frac{1 \mid 0}{0 \mid -2}\right) \qquad B = \left(\frac{\Sigma \mid N}{\Xi \mid 0}\right) + \frac{1}{\sqrt{6}} \Lambda \left(\frac{1 \mid 0}{0 \mid -2}\right)$$
$$[\vec{t}, B] = \left(\frac{[\vec{l}, \Sigma] \mid \vec{l}N}{-\vec{l}^{T}\Xi \mid 0}\right) \qquad [Y, B] = \left(\frac{0 \mid N}{-\Xi \mid 0}\right)$$

Weak Interactions

Exact SU(3), static approximation:

$$\begin{aligned} \mathcal{A}^{\mu}_{a}(B \to B') &= \bar{u}(p)\gamma^{\mu} \left\{ (T_{a})_{bc} + \left[F_{A}(T_{a})_{bc} + D_{A}(\tilde{T}_{a})_{bc} \right] \gamma^{5} \right\} u(p)\bar{B}'^{b}B^{c} \\ &= \bar{u}(p)\gamma^{\mu} \{ [(D_{V} + F_{V})2\operatorname{tr}\bar{B}'t_{a}B + (D_{V} - F_{V})2\operatorname{tr}Bt_{a}\bar{B}'] \\ &+ [(D_{A} + F_{A})2\operatorname{tr}\bar{B}'t_{a}B + (D_{A} - F_{A})2\operatorname{tr}Bt_{a}\bar{B}']\gamma^{5} \} u(p) \end{aligned}$$

Need the invariants $\operatorname{tr} \bar{B}' t_a B$ and $\operatorname{tr} B t_a \bar{B}'$ for the relevant currents

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \frac{\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \hline \Xi^{-} & \Xi^{0} & | -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}$$

p, n, Σ^0 , etc. are wave-function components Assignment of components to $\mathbf{8}_{\mathrm{SU}(3)}$ states from I,Y values

$$\vec{t} = \left(\frac{\vec{l} \mid 0}{0 \mid 0}\right) \quad Y = \frac{1}{3} \left(\frac{1 \mid 0}{0 \mid -2}\right) \qquad B = \left(\frac{\Sigma \mid N}{\Xi \mid 0}\right) + \frac{1}{\sqrt{6}} \Lambda \left(\frac{1 \mid 0}{0 \mid -2}\right)$$
$$[\vec{t}, B] = \left(\frac{[\vec{l}, \Sigma] \mid \vec{l}N}{-\vec{l} \top \Xi \mid 0}\right) \qquad [Y, B] = \left(\frac{0 \mid N}{-\Xi \mid 0}\right)$$

Weak Interactions

Exact SU(3), static approximation:

$$\begin{aligned} \mathcal{A}^{\mu}_{a}(B \to B') &= \bar{u}(p)\gamma^{\mu} \left\{ (T_{a})_{bc} + \left[F_{A}(T_{a})_{bc} + D_{A}(\tilde{T}_{a})_{bc} \right] \gamma^{5} \right\} u(p)\bar{B}'^{b}B^{c} \\ &= \bar{u}(p)\gamma^{\mu} \{ \left[(D_{V} + F_{V})2\operatorname{tr}\bar{B}'t_{a}B + (D_{V} - F_{V})2\operatorname{tr}Bt_{a}\bar{B}' \right] \\ &+ \left[(D_{A} + F_{A})2\operatorname{tr}\bar{B}'t_{a}B + (D_{A} - F_{A})2\operatorname{tr}Bt_{a}\bar{B}' \right] \gamma^{5} \} u(p) \end{aligned}$$

Need the invariants $\operatorname{tr} \bar{B}' t_a B$ and $\operatorname{tr} B t_a \bar{B}'$ for the relevant currents

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \frac{\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \hline \Xi^{-} & \Xi^{0} & | -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}$$

 p, n, Σ^0 , etc. are wave-function components Assignment of components to $\mathbf{8}_{\mathrm{SU}(3)}$ states from I, Y values

$$\vec{t} = \left(\frac{\vec{l} \mid 0}{0 \mid 0}\right) \quad Y = \frac{1}{3} \left(\frac{1 \mid 0}{0 \mid -2}\right) \qquad B = \left(\frac{\Sigma \mid N}{\Xi \mid 0}\right) + \frac{1}{\sqrt{6}} \Lambda \left(\frac{1 \mid 0}{0 \mid -2}\right)$$
$$[\vec{t}, B] = \left(\frac{[\vec{l}, \Sigma] \mid \vec{l}N}{-\vec{l} \cdot \Xi \mid 0}\right) \qquad [Y, B] = \left(\frac{0 \mid N}{-\Xi \mid 0}\right)$$

Weak Interactions

Exact SU(3), static approximation:

$$\begin{aligned} \mathcal{A}^{\mu}_{a}(B \to B') &= \bar{u}(p)\gamma^{\mu} \left\{ (T_{a})_{bc} + \left[F_{A}(T_{a})_{bc} + D_{A}(\tilde{T}_{a})_{bc} \right] \gamma^{5} \right\} u(p)\bar{B}'^{b}B^{c} \\ &= \bar{u}(p)\gamma^{\mu} \{ \left[(D_{V} + F_{V})2\operatorname{tr}\bar{B}'t_{a}B + (D_{V} - F_{V})2\operatorname{tr}Bt_{a}\bar{B}' \right] \\ &+ \left[(D_{A} + F_{A})2\operatorname{tr}\bar{B}'t_{a}B + (D_{A} - F_{A})2\operatorname{tr}Bt_{a}\bar{B}' \right] \gamma^{5} \} u(p) \end{aligned}$$

Need the invariants $\operatorname{tr} \bar{B}' t_a B$ and $\operatorname{tr} B t_a \bar{B}'$ for the relevant currents

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \frac{\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \hline \Xi^{-} & \Xi^{0} & | -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}$$

 p, n, Σ^0 , etc. are wave-function components Assignment of components to $\mathbf{8}_{\mathrm{SU}(3)}$ states from I, Y values

$$\vec{t} = \left(\frac{\vec{l} \mid 0}{0 \mid 0}\right) \quad Y = \frac{1}{3} \left(\frac{1 \mid 0}{0 \mid -2}\right) \qquad B = \left(\frac{\Sigma \mid N}{\Xi \mid 0}\right) + \frac{1}{\sqrt{6}} \Lambda \left(\frac{1 \mid 0}{0 \mid -2}\right)$$
$$[\vec{t}, B] = \left(\frac{[\vec{l}, \Sigma] \mid \vec{l}N}{-\vec{l} \cdot \Xi \mid 0}\right) \qquad [Y, B] = \left(\frac{0 \mid N}{-\Xi \mid 0}\right)$$

Weak Interactions

Currents of interest

$$\begin{split} \bar{u}\mathcal{O}_{L}^{\mu}d &= j_{1}^{\mu} + ij_{2}^{\mu} = j_{1+i2}^{\mu} \\ \bar{u}\mathcal{O}_{L}^{\mu}s &= j_{4}^{\mu} + ij_{5}^{\mu} = j_{4+i5}^{\mu} \end{split}$$

... and their h.c.

$$t_{1+i2} = t_1 + it_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad t_{4+i5} = t_4 + it_5 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$2 \operatorname{tr} \bar{B}' t_{1+i2} B = \left(\frac{1}{\sqrt{2}} \bar{\Sigma}^0 + \frac{1}{\sqrt{6}} \bar{\Lambda}\right) \Sigma^- + \bar{\Sigma}^+ \left(-\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda\right) + \bar{p}n,$$

$$2 \operatorname{tr} B t_{1+i2} \bar{B}' = \bar{\Sigma}^+ \left(\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda\right) + \left(-\frac{1}{\sqrt{2}} \bar{\Sigma}^0 + \frac{1}{\sqrt{6}} \bar{\Lambda}\right) \Sigma^- + \bar{\Xi}^0 \Xi^-$$

$$2 \operatorname{tr} \bar{B}' t_{4+i5} B = \left(\frac{1}{\sqrt{2}} \bar{\Sigma}^0 + \frac{1}{\sqrt{6}} \bar{\Lambda}\right) \Xi^- + \bar{\Sigma}^+ \Xi^0 + \bar{p} \left(-\sqrt{\frac{2}{3}} \Lambda\right)$$

$$2 \operatorname{tr} B t_{4+i5} \bar{B}' = \bar{p} \left(\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda\right) + \bar{n} \Sigma^- + \left(-\sqrt{\frac{2}{3}} \bar{\Lambda}\right) \Xi^-$$

Coefficients of
$$ar{u}\gamma^\mu u$$
 $(D=D_V,~F=F_V)$ and $ar{u}\gamma^\mu\gamma^5 u$ $(D=D_A,~F=F_A)$

Strangeness-conserving processes: including $\cos \theta_C$

Strangeness-changing processes: including $\sin \theta_C$

n ightarrow p :	$\cos \theta_C (D+F)$	$\Lambda o p$:	$-\sin\theta_C \frac{1}{\sqrt{6}}(D+3F)$
$\Xi^- ightarrow \Xi^0$:	$\cos heta_C (D-F)$	$\Xi^-\to\Lambda:$	$-\sin\theta_C \frac{1}{\sqrt{6}}(D-3F)$
$\Lambda \to \Sigma^+$:	$\cos \theta_C \sqrt{\frac{2}{3}}D$	$\Sigma^0 o ho$:	$\sin \theta_C \frac{1}{\sqrt{2}} (D-F)$
$\Sigma^- \to \Lambda:$	$\cos\theta_C \sqrt{\frac{2}{3}}D$	$\Xi^- \to \Sigma^0$:	$\sin\theta_C \frac{1}{\sqrt{2}}(D+F)$
$\Sigma^0 o \Sigma^+$:	$-\cos\theta_C\sqrt{2}F$	$\Sigma^- o n$:	$\sin\theta_C(D-F)$
$\Sigma^- o \Sigma^0$:	$\cos \theta_C \sqrt{2}F$	$\Xi^-\to \Sigma^+$:	$\sin heta_C(D+F)$

Not all relevant for actual processes in real, SU(3) non-symmetric world E.g.: $\Lambda \rightarrow \Sigma$ forbidden since $m_{\Sigma} > m_{\Lambda}$

Including γ -matrices, using $D_V = 0$, $F_V = 1 \Rightarrow$ hadronic matrix elements

To be sandwiched between initial and final hadron bispinors

$$\begin{split} n &\to p \, e^{-} \, \bar{\nu}_{e} : & \cos \theta_{C} [\gamma^{\mu} + (D_{A} + F_{A}) \gamma^{\mu} \gamma^{5}] \\ \Sigma^{\pm} &\to \Lambda \, e^{\pm} \, \nu_{e}(\bar{\nu}_{e}) : & \cos \theta_{C} D_{A} \gamma^{\mu} \gamma^{5} \\ \Lambda &\to p \, e^{-} \, \bar{\nu}_{e} : & -\sqrt{\frac{3}{2}} \sin \theta_{C} [\gamma^{\mu} + (F_{A} + \frac{1}{3} D_{A}) \gamma^{\mu} \gamma^{5}] \\ \Sigma^{-} &\to n \, e^{-} \, \bar{\nu}_{e} : & -\sin \theta_{C} [\gamma^{\mu} + (F_{A} - D_{A}) \gamma^{\mu} \gamma^{5}] \\ \Xi^{-} &\to \Lambda \, e^{-} \, \bar{\nu}_{e} : & \sqrt{\frac{3}{2}} \sin \theta_{C} [\gamma^{\mu} + (F_{A} - \frac{1}{3} D_{A}) \gamma^{\mu} \gamma^{5}] \\ \Xi^{-} &\to \Sigma^{0} \, e^{-} \, \bar{\nu}_{e} : & \frac{1}{\sqrt{2}} \sin \theta_{C} [\gamma^{\mu} + (F_{A} + D_{A}) \gamma^{\mu} \gamma^{5}] \\ \Xi^{0} &\to \Sigma^{+} \, e^{-} \, \bar{\nu}_{e} : & \frac{1}{\sqrt{2}} \sin \theta_{C} [\gamma^{\mu} + (F_{A} + D_{A}) \gamma^{\mu} \gamma^{5}] \end{split}$$

Decay rates parameterised by D_A , F_A and θ_C

- neutron β decay fixes $D_A + F_A = g_A = 1.25$
- best fit $D_A = 0.80$, $F_A = 0.45$, $\sin \theta_C = 0.23$ (= 0.21 from K-decay)

Strangeness-changing non-leptonic interactions

- Responsible for $\Sigma \to N\pi$, $K \to 2\pi, 3\pi, \ldots$
- Involve product of two hadronic currents
- Restrict to lightest quarks, relevant part of \mathcal{L}_W

$$-\frac{G}{\sqrt{2}}\bar{d}'\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d' = -\frac{G}{\sqrt{2}}[\cos^{2}\theta_{C}\bar{d}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d)]$$

$$d' = \cos \theta_C d + \sin \theta_C s$$

Strangeness-changing non-leptonic interactions

- Responsible for $\Sigma \rightarrow N\pi$, $K \rightarrow 2\pi, 3\pi, \ldots$
- Involve product of two hadronic currents
- Restrict to lightest quarks, relevant part of \mathcal{L}_W

$$-\frac{G}{\sqrt{2}}\bar{d}'\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d' = -\frac{G}{\sqrt{2}}[\cos^{2}\theta_{C}\bar{d}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d]$$

$$d' = \cos \theta_C d + \sin \theta_C s$$

Strangeness-changing non-leptonic interactions

- Responsible for $\Sigma \rightarrow N\pi$, $K \rightarrow 2\pi, 3\pi, \ldots$
- Involve product of two hadronic currents
- Restrict to lightest quarks, relevant part of \mathcal{L}_W

$$-\frac{G}{\sqrt{2}}\bar{d}'\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d' = -\frac{G}{\sqrt{2}}\left[\cos^{2}\theta_{C}\bar{d}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d + \sin^{2}\theta_{C}\bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \sin\theta_{C}\cos\theta_{C}\left(\bar{d}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}s + \bar{s}\mathcal{O}_{L}^{\alpha}u\bar{u}\mathcal{O}_{L\alpha}d\right)\right]$$

$$d' = \cos \theta_C d + \sin \theta_C s$$

Strangeness-changing non-leptonic interactions (contd.)

Recalling $\mathcal{O}_{L}^{\alpha} = 2\gamma^{\alpha}P_{L}$ with $P_{L} = \frac{1-\gamma^{5}}{2}$, interesting part

$$\mathcal{L}_{\mathrm{SCNL}} = -2\sqrt{2}G\sin\theta_C\cos\theta_C\left(\bar{s}_L\gamma^\alpha u_L\bar{u}_L\gamma_\alpha d_L + \bar{d}_L\gamma^\alpha u_L\bar{u}_L\gamma_\alpha s_L\right)$$

- strangeness-changing, realises effectively $s \rightarrow d$ but not through a flavour-changing neutral current
- strangeness either decreased or increased by 1 \Rightarrow selection rule $|\Delta S| = 1$
- isospin: $\Delta I_3 = \pm \frac{1}{2}$,

J

- $\bar{s}_L \gamma^{\alpha} u_L$ and $\bar{u}_L \gamma_{\alpha} s_L$ part of isodoublets $I = \frac{1}{2}$
- $\overline{u}_L \gamma_\alpha d_L$ and h.c. contain $\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$ $\frac{1}{2} \otimes (0 \oplus 1) = \frac{1}{2} \oplus (\frac{1}{2} \oplus \frac{3}{2})$

 \Rightarrow selection rule $|\Delta I| = \frac{1}{2}, \frac{3}{2}$

Take the second term (first term analogous)

$$\begin{aligned} 2\bar{d}_L\gamma^{\alpha}u_L\bar{u}_L\gamma_{\alpha}s_L &= (\bar{d}_L\gamma^{\alpha}u_L\bar{u}_L\gamma_{\alpha}s_L - \bar{u}_L\gamma^{\alpha}u_L\bar{d}_L\gamma_{\alpha}s_L) \\ &+ (\bar{d}_L\gamma^{\alpha}u_L\bar{u}_L\gamma_{\alpha}s_L + \bar{u}_L\gamma^{\alpha}u_L\bar{d}_L\gamma_{\alpha}s_L) = M_+ + M_- \\ M_{\pm} &= (\bar{d}_L\otimes\bar{u}_L\pm\bar{u}_L\otimes\bar{d}_L)_{ai,bj} (\gamma^{\alpha}u_L\otimes\gamma_{\alpha}s_L)_{ai,bj} \end{aligned}$$

Lorentz indices $a, b = 1, \ldots, 4$, colour indices i, j = 1, 2, 3

- Second factor has $I = \frac{1}{2}$
- First factor (anti)symmetric product of isodoublet $I = \frac{1}{2}$, fundamental (3) colour representations
 - symmetric (+): isotriplet I = 1, colour **6** representation
 - antisymmetric (–): isosinglet I = 0, colour $\overline{\mathbf{3}}$ representation

 $\mathsf{Overall} \Rightarrow$

- antisymmetric $I_3 = M_- + h.c.$ mediates $|\Delta I| = \frac{1}{2}$ transitions
- symmetric $I_6 = M_+ + h.c.$ mediates $|\Delta I| = \frac{1}{2}, \frac{3}{2}$ transitions

$$\mathcal{L}_{\text{bare}} = -\sqrt{2}G\sin\theta_C\cos\theta_C\left(I_3 + I_6\right)$$

Experimental fact: $|\Delta I| = \frac{1}{2}$ transitions are around one order of magnitude enhanced (in amplitude) wrt $|\Delta I| = \frac{3}{2}$ transitions

- no particular apparent difference between $|\Delta I| = \frac{1}{2}$ and $|\Delta I| = \frac{3}{2}$ parts
- reason must be dynamical, enhancement and suppression result from interplay of weak and other interactions
- "bare" Lagrangian before further interactions "dress" it What is the effect of strong interactions?
 - strong interactions \approx exchange of gluons between quarks
 - soft gluon exchange, with low transferred momentum $q^2 < \mu^2$
 - hard gluon exchange, with high transferred momentum $q^2 > \mu^2$
 - accurate perturbative treatment requires *running coupling constant* Depends on energy scale of the process
 - in QCD due to *asymptotic freedom* the running coupling constant becomes small at high energy, while it is large at low energies
 - high-energy processes (like hard gluon exchange) can be dealt with perturbatively, low-energy ones (like soft gluon exchange) cannot
 - separation scale $\mu \sim 1/{\it L}_{\rm confinement} \approx 100~{\rm MeV} \div 1~{\rm GeV}$

In the context of weak hadronic interactions

• effect of soft gluon exchange included in hadronic wave functions

• effect of hard gluons can be studied explicitly in perturbation theory First type of diagrams: add g to W exchanges between different q lines

- \bullet low-energy limit \rightarrow local four-fermion interaction
- effectively reduce to original vertex $I_{3,6}$ receive different contributions

$$\textit{I}_3 + \textit{I}_6 \rightarrow \textit{a}_3\textit{I}_3 + \textit{a}_6\textit{I}_6$$

Second type of diagrams: add g exchanges to emission and subsequent reabsorption of W in the same q line

- after emitting W, s turn into u or c but with opposite coupling
- would cancel exactly if $m_u = m_c$, but $m_u \ll m_c$ so they do not
- new effective four-fermion interaction (also including more g)

$$I_{R} = -(\bar{d}_{L}\gamma^{\alpha}\lambda^{a}s_{L})(\bar{u}_{R}\gamma_{\alpha}\lambda^{a}u_{R} + \bar{d}_{R}\gamma_{\alpha}\lambda^{a}d_{R}),$$

 λ^a : Gell-Mann matrices, $a = 1, \dots, 8$

$$I_{R} = -(\bar{d}_{L}\gamma^{\alpha}\lambda^{a}s_{L})(\bar{u}_{R}\gamma_{\alpha}\lambda^{a}u_{R} + \bar{d}_{R}\gamma_{\alpha}\lambda^{a}d_{R}),$$

- first factor $I = \frac{1}{2}$, second factor $I = 0 \Rightarrow \Delta I = \frac{1}{2}$
- involves colour and most importantly *R*-component of the quark fields I_L with $u_R, d_R \rightarrow u_L, d_L$ also present but small overall coupling, can be neglected compared to I_3

Effective, "dressed" Lagrangian

$$\mathcal{L}_{\text{dressed}} = -\sqrt{2}G\sin\theta_C\cos\theta_C\left(a_3I_3 + a_6I_6 + a_RI_R\right)$$

- perturbative calculation: $a_3 \simeq 3$, $a_6 \simeq 0.6$, $a_R \simeq 0.12$
- $\Delta I = \frac{3}{2}$ transitions mediated only by $I_6 \Rightarrow$ suppression...
- ... but degree of suppression not enough to agree with experiments
- issues involving good understanding of hadronic interactions more complicated to study theoretically

Non-leptonic decays of kaons: neutral kaons

Main non-leptonic kaon decays: $K \rightarrow 2\pi, 3\pi$

$K^{0}, \bar{K}^{0} \to \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$	$K^{0}, \bar{K}^{0} \to \pi^{+}\pi^{-}\pi^{0}, \pi^{0}\pi^{0}\pi^{0}$
$K^{\pm} ightarrow \pi^{\pm} \pi^{0}$	$K^{\pm} ightarrow \pi^{\pm}\pi^{+}\pi^{-}, \pi^{\pm}\pi^{0}\pi^{0}\pi^{0}$

 $K^0(d\bar{s})$, $\bar{K}^0(-s\bar{d})$: S eigenstates but not CP (or C) eigenstates Produced in strong interactions with definite S and indefinite CP, decay via weak interactions which conserve CP (in two-family approx.) but not S \Rightarrow convenient to use linear combinations of K^0 , \bar{K}^0 that are CP rather than S eigenstates to study their weak decays

Physically allowed: K^0 and \bar{K}^0 differ only in S for which there is no superselection rule, mixed by a second-order weak interaction

$$\begin{split} P|K^{0}\rangle &= -|K^{0}\rangle, \ P|\bar{K}^{0}\rangle = -|\bar{K}^{0}\rangle, \text{ choose } C|K^{0}\rangle = |\bar{K}^{0}\rangle, \ C|\bar{K}^{0}\rangle = |K^{0}\rangle\\ |K_{1}^{0}\rangle &= \frac{K^{0}-\bar{K}^{0}}{\sqrt{2}} \qquad CP|K_{1}^{0}\rangle = |K_{1}^{0}\rangle\\ |K_{2}^{0}\rangle &= \frac{K^{0}+\bar{K}^{0}}{\sqrt{2}} \qquad CP|K_{2}^{0}\rangle = -|K_{2}^{0}\rangle \end{split}$$

Non-leptonic decays of kaons: neutral kaons (contd.)

 $2,3\pi$ states with definite orbital angular momentum are $C\!P$ eigenstates In the decay of neutral K

- 2π system produced with $\ell=0$ hence always CP=1
 - $\pi^+\pi^-$ system has CP = 1 independently of ℓ
 - $\pi^0\pi^0$ system has $CP = (-1)^\ell$

3π system: two orbital angular momenta, ℓ (π⁺π⁻ or one pair of π⁰s) and L (motion of third π wrt CM of other two), with ℓ = L (J_K = 0)
 π⁺π⁻π⁰: charged pair CP-invariant,

• $\pi^+\pi^-\pi^-$: charged pair CP-invariant,

$$CP|\pi^{+}\pi^{-}\pi^{0}\rangle = -(-1)^{L}|\pi^{+}\pi^{-}\pi^{0}\rangle = (-1)^{\ell+1}|\pi^{+}\pi^{-}\pi^{0}\rangle$$
$$\pi^{0}\pi^{0}\pi^{0}:$$

$$CP|\pi^{0}\pi^{0}\pi^{0}\rangle = (-1)^{3}(-1)^{\ell+L}|\pi^{0}\pi^{0}\pi^{0}\rangle = -|\pi^{0}\pi^{0}\pi^{0}\rangle$$

In summary

- CP = 1 for two-pion final states, and for three-pion $\pi^+\pi^-\pi^0$ if ℓ of the charged pair is odd (process suppressed for phase-space reasons)
- CP = -1 for three-pion $\pi^0 \pi^0 \pi^0$ states and for three-pion $\pi^+ \pi^- \pi^0$ if ℓ of charged pair is even

- R. L. Garwin, L. M. Lederman, M. Weinrich, Phys.Rev. 105 (1957) 1415
- S. Fubini, G. Furlan, Physics Physique Fizika 1 (1965) 229