# Weak Interactions 

## Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest
September 17, 2020

## Conservation of the vector current

Electromagnetic current has isosinglet + isotriplet part

$$
V_{\mathrm{em}}^{\mu}=\frac{2}{3} \bar{u} \gamma^{\mu} u-\frac{1}{3} \bar{d} \gamma^{\mu} d=\frac{1}{2}\left(\bar{u} \gamma^{\mu} u-\bar{d} \gamma^{\mu} d\right)+\frac{1}{6}\left(\bar{u} \gamma^{\mu} u+\bar{d} \gamma^{\mu} d\right)=V_{3}^{\mu}+S^{\mu}
$$

$$
S^{\mu}:(\text { Lorentz) vector-isoscalar current }
$$

Vector charged current $V_{ \pm}^{\mu}$ and isotriplet EM current $V_{3}^{\mu}$ : same isotriplet
Conservation of EM current implies in the exact isospin limit $\left(m_{u}=m_{d}\right)$

$$
\partial_{\mu} V_{\mathrm{em}}^{\mu}=0 \Longrightarrow \partial_{\mu} V_{3}^{\mu}=0, \partial_{\mu} S^{\mu}=0 \Longrightarrow \partial_{\mu} V_{a}^{\mu}=0
$$

Matrix elements current divergence $\partial_{\mu} J^{\mu}$ between momentum eigenstates

$$
\begin{aligned}
& \left\langle\vec{p}^{\prime}\right| \partial_{\mu} J^{\mu}(x)|\vec{p}\rangle=\partial_{\mu}\left\langle\vec{p}^{\prime}\right| J^{\mu}(x)|\vec{p}\rangle=\partial_{\mu}\left\langle\vec{p}^{\prime}\right| e^{i P \cdot x} J^{\mu}(0) e^{-i P \cdot x}|\vec{p}\rangle \\
& =\partial_{\mu} e^{i\left(p^{\prime}-p\right) \cdot x}\left\langle\vec{p}^{\prime}\right| J^{\mu}(0)|\vec{p}\rangle=\partial_{\mu} e^{-i q \cdot x}\left\langle\vec{p}^{\prime}\right| J^{\mu}(0)|\vec{p}\rangle=-i e^{-i q \cdot x} q_{\mu}\left\langle\vec{p}^{\prime}\right| J^{\mu}(0)|\vec{p}\rangle \\
& \Longrightarrow\left\langle\vec{p}^{\prime}\right| \partial_{\mu} J^{\mu}(0)|\vec{p}\rangle=-i q_{\mu}\left\langle\vec{p}^{\prime}\right| J^{\mu}(0)|\vec{p}\rangle
\end{aligned}
$$

For conserved current $\partial_{\mu} J^{\mu}(x)=0$, matrix element transverse to $q=p-p^{\prime}$

$$
q_{\mu}\left\langle\vec{p}^{\prime}\right| J^{\mu}(0)|\vec{p}\rangle=0
$$

## Isospin selection rules - Wigner-Eckart theorem

Isospin invariance $\Rightarrow$ matrix elements of $\left\langle A\left(I_{f}\right)\right| \mathcal{J}_{a}^{\mu}\left|B\left(I_{i}\right)\right\rangle \neq 0$ (possibly) only if $\Delta I=I_{f}-I_{i}=0, \pm 1$ (composition rules of $S U(2)$ representations)
For $A, B$ in the same multiplet, $I_{f}=I_{i}=I$

$$
\begin{aligned}
\langle A| V_{a}^{\mu}|B\rangle & =C_{(I)}^{\mu}\left(T_{a}^{(I)}\right)_{A B} \\
\langle A| S^{\mu}|B\rangle & =\tilde{C}_{(I)}^{\mu} 1_{A B}^{(I)}
\end{aligned}
$$

$T_{a}^{(I)}:$ generators in representation $I, \vec{I}^{2}=I(I+1)$ $1^{(1)}$ : $(2 I+1)$-dimensional identity matrix

- Isovector current:
- $V_{a}^{\mu}$ isovector $\Rightarrow$ transforms in the $I=1$ representation, i.e.

$$
D_{A^{\prime} A}^{(I) *}\left\langle A^{\prime}\right| V_{a}^{\mu}\left|B^{\prime}\right\rangle D_{B^{\prime} B}^{(I)}=D_{a^{\prime}}^{(1)}\langle A| V_{a^{\prime}}^{\mu}|B\rangle
$$

- LHS transforms in $\overline{(\mathbf{2 I}+\mathbf{1})} \otimes(\mathbf{2 I}+\mathbf{1})=(2 \mathbf{I}+\mathbf{1}) \otimes(2 I+\mathbf{1})$
- Decompose $(\mathbf{2 I}+\mathbf{1}) \otimes(\mathbf{2 I}+\mathbf{1})=\oplus_{d=1}^{2(2 I+1)} \mathbf{d}$ and find $d=3(I=1)$
- $\mathrm{d}=3$ appears only once $\Rightarrow$ single tensorial structure, provided by $T_{a}^{(I)}$
- Isoscalar current: identity $=$ only scalar (invariant) structure out of $\overline{\mathbf{R}} \otimes \mathbf{R}$

$$
D_{A^{\prime} A}^{(1) *}\left\langle A^{\prime}\right| S^{\mu}\left|B^{\prime}\right\rangle D_{B^{\prime} B}^{(1)}=\langle A| S^{\mu}|B\rangle
$$

## Matrix elements of charged and electromagnetic currents

Take $A$ and $B\left(I, I_{3}\right)$ eigenstates

$$
\begin{aligned}
& \left\langle I I_{3}^{\prime}\right| V_{+}^{\mu}\left|I I_{3}\right\rangle=C_{(I)}^{\mu}\left(T_{+}^{(I)}\right)_{I_{3}^{\prime} I_{3}}=C_{(I)}^{\mu} \sqrt{I(I+1)-I_{3}\left(I_{3}+1\right)} \delta_{I_{3}^{\prime} I_{3}+1} \\
& \left\langle I I_{3}^{\prime}\right| V_{3}^{\mu}\left|I I_{3}\right\rangle=C_{(I)}^{\mu}\left(T_{3}^{(I)}\right)_{I_{3}^{\prime} I_{3}}=C_{(I)}^{\mu} I_{3} \delta_{I_{3}^{\prime} I_{3}} \\
& \left\langle I I_{3}^{\prime}\right| S^{\mu}\left|I I_{3}\right\rangle=\tilde{C}_{(I)}^{\mu} \delta_{I_{3}^{\prime} I_{3}}
\end{aligned}
$$

Condon-Shortley convention on isospin eigenstates

$$
\begin{aligned}
C_{(I)}^{\mu} & =\left\langle I I_{3}+1\right| V_{3}^{\mu}\left|I I_{3}+1\right\rangle-\left\langle I I_{3}\right| V_{3}^{\mu}\left|I I_{3}\right\rangle \\
& =\left\langle I I_{3}+1\right| V_{\mathrm{em}}^{\mu}+S^{\mu}\left|I I_{3}+1\right\rangle-\left\langle I I_{3}\right| V_{\mathrm{em}}^{\mu}+S^{\mu}\left|I I_{3}\right\rangle \\
& =\left\langle I I_{3}+1\right| V_{\mathrm{em}}^{\mu}\left|I I_{3}+1\right\rangle-\left\langle I I_{3}\right| V_{\mathrm{em}}^{\mu}\left|I I_{3}\right\rangle
\end{aligned}
$$

Relation between matrix elements of $V_{+}^{\mu}$ and $V_{\mathrm{em}}^{\mu}$

$$
\begin{aligned}
\left\langle I I_{3}+1\right| V_{+}^{\mu}\left|I I_{3}\right\rangle & =\sqrt{I(I+1)-I_{3}\left(I_{3}+1\right)}\left[\left\langle I I_{3}+1\right| V_{3}^{\mu}\left|I I_{3}+1\right\rangle-\left\langle I I_{3}\right| V_{3}^{\mu}\left|I I_{3}\right\rangle\right] \\
& =\sqrt{I(I+1)-I_{3}\left(I_{3}+1\right)}\left[\left\langle I I_{3}+1\right| V_{\mathrm{em}}^{\mu}\left|I I_{3}+1\right\rangle-\left\langle I I_{3}\right| V_{\mathrm{em}}^{\mu}\left|I I_{3}\right\rangle\right]
\end{aligned}
$$

## Weak charge

Noether charges associated to vector-isovector current

$$
T_{a}=\int d^{3} x V_{a}^{0}(x)
$$

$x^{0}$ arbitrary due to conservation, take $x^{0}=0$
$A\left(I^{\prime}, I_{3}^{\prime}, \vec{p}^{\prime}\right)$ and $B\left(I, I_{3}, \vec{p}\right)$ isospin and momentum eigenstates

$$
\begin{aligned}
\langle A| T_{a}|B\rangle & =\int d^{3} x\langle A| V_{a}^{0}(x)|B\rangle=\int d^{3} x e^{i\left(\vec{p}-\vec{p}^{\prime}\right) \cdot x}\langle A| V_{a}^{0}(0)|B\rangle \\
& =(2 \pi)^{3} \delta^{(3)}(\vec{q})\langle A| V_{a}^{0}(0)|B\rangle
\end{aligned}
$$

$$
\vec{q}=\vec{p}-\vec{p}^{\prime}
$$

$\int d^{3} x\langle A| V_{+}^{0}(x)|B\rangle=\langle A| T_{+}|B\rangle=(2 \pi)^{3} \delta^{(3)}(\vec{q})\langle A| V_{+}^{0}(0)|B\rangle$

$$
=\delta_{I^{\prime} I} \delta_{I_{3}^{\prime} I_{3}+1} \sqrt{I(I+1)-I_{3}\left(I_{3}+1\right)}(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{q})
$$

relativistic normalisation of states + Condon-Shortley

## Weak charge (contd.)

$$
\begin{aligned}
\left.\langle A| V_{+}^{0}(0)|B\rangle\right|_{\vec{q}=0} & =2 p^{0} \delta_{I^{\prime} I} \delta_{l_{3}^{\prime} I_{3}+1} \sqrt{I(I+1)-I_{3}\left(I_{3}+1\right)} \\
& =2 p^{0} \delta_{I^{\prime} I} \delta_{I_{3}^{\prime} I_{3}+1} Q_{W}\left(I, I_{3}\right) \\
\left.\langle A| V_{-}^{0}(0)|B\rangle\right|_{\vec{q}=0} & =2 p^{0} \delta_{I^{\prime},} \delta_{l_{3}^{\prime}-1} \sqrt{I(I+1)-I_{3}\left(I_{3}-1\right)} \\
& =2 p^{0} \delta_{I^{\prime} I} \delta_{l_{3}^{\prime} I_{3}-1} Q_{W}\left(I, I_{3}^{\prime}\right)
\end{aligned}
$$

For transitions between states in the same isomultiplet, amplitude in the static limit $\vec{q}=0$ determined entirely by weak charge $Q_{W}\left(I, I_{3}\right)$

Since $m$ is the same, $\vec{q}=0 \Rightarrow q^{0}=0$
Same argument for EM current

$$
\begin{gathered}
\int d^{3} x\langle A| V_{\mathrm{em}}^{0}(x)|B\rangle=\langle A| Q_{\mathrm{em}}|B\rangle=\delta_{Q^{\prime} Q} Q(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{q}) \\
\left.\langle A| V_{\mathrm{em}}^{0}(0)|B\rangle\right|_{\vec{q}=0}=2 p^{0} \delta_{Q^{\prime} Q} Q
\end{gathered}
$$

From $V_{\mathrm{em}}^{0}=V_{3}^{0}+S^{0}$ follows $Q=I_{3}+\frac{1}{2}(\mathcal{B}+S)=I_{3}+\frac{Y}{2}$ (Gell-Mann-Nishijima relation)

## Axial current and chiral symmetry

For massless $u, d$ quarks

- extended symmetry $\mathrm{SU}(2)_{\prime} \rightarrow \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$
$\mathrm{SU}(2)_{L, R}$ acting independently on $L, R$ quark chiralities
- chiral currents conserved $\Rightarrow$ both vector and axial current conserved

Quark masses small $\neq 0 \Rightarrow$ partial axial current conservation $\partial_{\mu} A_{a}^{\mu} \propto m_{u, d}$ Even for $m_{u, d}=0, \mathrm{~V}$ and A part of chiral symmetry realised differently: vacuum invariant under vector isospin rotation, not under an axial one $\Rightarrow$

- chiral symmetry spontaneously broken
- massless bosons generated through Goldstone mechanism: pions
- small pion mass due to explicit but soft breaking of chiral symmetry due to $m_{u, d} \neq 0$, would vanish for $m_{u, d}=0$
Partial conservation of axial current (PCAC) correctly guessed before discovery of quarks and QCD

