Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest
September 10, 2020

Neutrinos (contd.)

Neutrino field coupled by the charged weak interaction with P_{-}, relevant component

$$
\begin{aligned}
P_{-\nu}(x) & =\frac{1-\gamma^{5}}{2} \int d \Omega_{p} \sum_{h=R, L}\left\{b_{h}(\vec{p}) u_{h}(\vec{p}) e^{-i p \cdot x}+d_{h}(\vec{p})^{\dagger} v_{h}(\vec{p}) e^{i p \cdot x}\right\} \\
& =\int d \Omega_{p}\left\{b_{L}(\vec{p}) u_{L}(\vec{p}) e^{-i p \cdot x}+d_{R}(\vec{p})^{\dagger} v_{R}(\vec{p}) e^{i p \cdot x}\right\} \equiv \nu_{L}(x)
\end{aligned}
$$

- $\nu_{L}(x)=P_{-} \nu(x)$ annihilates a left-handed ν, creates a right-handed $\bar{\nu}$
- $\bar{\nu}_{L}(x)=\left(\nu_{L}(x)\right)^{\dagger} \gamma^{0}=\bar{\nu} P_{+}$creates a left-handed ν, annihilates a right-handed $\bar{\nu}$
$\nu_{R}(x)=P_{+} \nu(x)$ never appears in the weak Lagrangian \Rightarrow massless ν can only be left-handed and $\bar{\nu}$ can only be right-handed

Massless right-handed neutrinos and left-handed antineutrinos can exist but are sterile, not interacting with anything

P, C, and $C P$

Under P, C, vector $V^{\alpha} \equiv \bar{f} \gamma^{\alpha} f$ and axial-vector $A^{\alpha} \equiv \bar{f} \gamma^{\alpha} \gamma^{5} f$,

$$
\begin{array}{ll}
V^{\alpha} \underset{P}{\rightarrow} \mathcal{P}_{\beta}^{\alpha} V^{\beta} & V^{\alpha} \underset{c}{ }-V^{\alpha \dagger} \\
A^{\alpha} \underset{P}{\vec{~}}-\mathcal{P}^{\alpha}{ }_{\beta} A^{\beta} & A^{\alpha} \underset{c}{\vec{c}} A^{\alpha \dagger}
\end{array}
$$

$$
\mathcal{P}^{\alpha}{ }_{\beta}=\operatorname{diag}(1,-1,-1,-1)
$$

$V-A$ structure of charged interaction

$$
\mathcal{L}=\left(V^{\alpha \dagger}-A^{\alpha \dagger}\right)\left(V_{\alpha}-A_{\alpha}\right)
$$

Under P and C

$$
\mathcal{L} \underset{P}{\rightarrow}\left(V^{\alpha \dagger}+A^{\alpha \dagger}\right)\left(V_{\alpha}+A_{\alpha}\right) \quad \mathcal{L} \underset{\mathrm{C}}{\rightarrow}\left(V^{\alpha \dagger}+A^{\alpha \dagger}\right)\left(V_{\alpha}+A_{\alpha}\right)
$$

- P and C are broken

Ex.: left-handed ν transformed by P into right-handed ν, and by C into left-handed $\bar{\nu}$

- $J_{I}^{\alpha}=V_{\alpha}-A_{\alpha}$ exactly $\Rightarrow C P$ good symmetry in the leptonic sector...

P, C, and $C P$ (contd.)

... but not in the hadronic sector

$$
\begin{aligned}
J_{h}^{\alpha} & =\bar{d}^{\prime} \mathcal{O}_{L}^{\alpha} u+\bar{s}^{\prime} \mathcal{O}_{L}^{\alpha} c+\bar{b}^{\prime} \mathcal{O}_{L}^{\alpha} t=\sum_{q_{1}=u, c, t} \sum_{q_{2}=d, s, b}\left(V_{\mathrm{CKM}}\right)_{q_{1} q_{2}} \bar{q}_{2} \mathcal{O}_{L}^{\alpha} q_{1} \\
& =\sum_{q_{1}=u, c, t} \sum_{q_{2}=d, s, b}\left(V_{\mathrm{CKM}}\right)_{q_{1} q_{2}}\left(V_{q_{2} q_{1}}^{\alpha}-A_{q_{2} q_{1}}^{\alpha}\right) \equiv J_{h}^{\alpha}\left(V_{\mathrm{CKM}}\right)
\end{aligned}
$$

Under CP
$J_{h}^{\alpha} \underset{C P}{\longrightarrow}-\mathcal{P}^{\alpha}{ }_{\beta} \sum_{q_{1}=u, c, t} \sum_{q_{2}=d, s, b}\left(V_{\mathrm{CKM}}\right)_{q_{1} q_{2}}\left(V_{q_{2} q_{1}}^{\beta}-A_{q_{2} q_{1}}^{\beta}\right)^{\dagger}=-\mathcal{P}^{\alpha}{ }_{\beta} J_{h}^{\beta}\left(V_{\mathrm{CKM}}^{*}\right)^{\dagger}$

- Two families: redefining phase of fermion fields one makes V_{CKM} real $\Rightarrow C P$ is a symmetry
- Three families: one ineliminable phase factor $\Rightarrow C P$ violation possible

Similar $C P$-violating phase can appear in the lepton sector, assuming a nontrivial mixing matrix, if neutrinos are not massless (or mass-degenerate)

P, C, and $C P$ (contd.)

Even if P, C and $C P$ are broken, $\Theta=C P T$ is conserved: for any local Poincaré-invariant QFT, Θ good (antiunitary) symmetry (CPT theorem)
\Rightarrow particles and antiparticles have the same mass and lifetime

$$
\begin{aligned}
\left\langle\bar{\alpha} ; \vec{p}^{\prime},-s^{\prime}\right| P^{2}|\bar{\alpha} ; \vec{p},-s\rangle & =\left\langle\alpha ; \vec{p}^{\prime}, s^{\prime}\right| \Theta^{\dagger} P^{2} \Theta|\alpha ; \vec{p}, s\rangle=\left\langle\alpha ; \vec{p}^{\prime}, s^{\prime}\right| P^{2}|\alpha ; \vec{p}, s\rangle \\
& \Rightarrow m_{\bar{\alpha}}=m_{\alpha}
\end{aligned}
$$

particle with quantum numbers α (antiparticle $\bar{\alpha}$), momentum \vec{p} and spin component $s \Rightarrow$ $\Theta|\alpha ; \vec{p}, s\rangle=|\bar{\alpha} ; \vec{p},-s\rangle$ (with the appropriate choice of phases)

Baryon, lepton and lepton family number

Structure of charged currents + quark mixing + barring lepton mixing

- quark/lepton flavour not conserved
- quark/baryon/lepton number conserved
- "quark family" not conserved number
- lepton family number conserved

$$
L_{\ell}\left(\ell^{-}, \nu_{\ell}\right)=1, L_{\ell}\left(\ell^{+}, \bar{\nu}_{\ell}\right)=-1, L_{\ell}=0 \text { otherwise, } L_{\ell}\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)=\sum_{i=1}^{n} L_{\ell}\left(X_{i}\right)
$$

leptonic mixing matrix nontrivial, small violations are present
L_{ℓ} conservation forbids otherwise allowed processes

$$
\mu^{-} \rightarrow e^{-} \gamma \quad \mu^{-} \rightarrow e^{-} e^{+} e^{-} \quad{ }_{A}^{Z} \mathrm{~N}+\nu_{\mu} \rightarrow{ }_{A}^{Z+1} \mathrm{~N}+e^{-}
$$

${ }_{A}^{Z} \mathrm{~N}$: nucleus with atomic number Z and mass number A
Allowed processes: ${ }_{A}^{Z} \mathrm{~N}+\nu_{e} \rightarrow{ }_{A}^{Z+1} \mathrm{~N}+e^{-},{ }_{A}^{Z} \mathrm{~N}+\bar{\nu}_{e} \rightarrow{ }_{A}^{Z-1} \mathrm{~N}+e^{+}$
L_{ℓ} conservation also forbids the $0 \nu \beta \beta$ decay

$$
{ }_{A}^{Z} \mathrm{~N} \rightarrow{ }_{A}^{Z+2} \mathrm{~N}+2 e^{-}
$$

$0 \nu \beta \beta$ allowed if $\nu=\bar{\nu}$ massive truly neutral (Majorana fermions)
(If massless, the two helicity states still are different particles independently of L_{ℓ} conservation)

Decay of unstable particles

Definitions:

- decay rate/(total) decay width Γ : decay probability per unit time (in any allowed final state)
- for a large sample one expects $N(t)=N(0) e^{-\frac{t}{\tau}}$, lifetime $\tau=1 / \Gamma$
- partial width Γ_{i} : decay probability per unit time in channel i (decay mode=specific set of products)
- branching ratio/fraction Γ_{i} / Γ : relative decay probability in channel i
- differential decay rate/width: decay probability per unit time (possibly in given channel) with definite momenta and/or spins
Decay of unstable particle, momentum p^{μ}, into n particles, momenta p_{i}^{μ}

$$
\begin{gathered}
d \Gamma^{(n)}=\frac{\left|\mathcal{M}_{\mathrm{f}}\right|^{2}}{2 p^{0}} d \Phi^{(n)} \\
d \Phi^{(n)}=(2 \pi)^{4} \delta^{(4)}\left(p-\sum_{i=1}^{n} p_{i}\right) \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 p_{i}^{0}},
\end{gathered}
$$

$d \Phi^{(n)}: n$-particle phase space element
\mathcal{M}_{f} : matrix element of the decay operator between initial and final states

Decay amplitude

Full development of formal theory of decay not needed: weak interactions are weak, first-order perturbative approximation will (almost always) suffice

$$
(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right) \mathcal{M}_{\mathrm{fi}}=-\int d x^{0}\langle f| H_{W}^{\mathrm{int}}\left(x^{0}\right)|i\rangle
$$

$|i, f\rangle$: initial and final free-particle states (relativistic normalisation)
$H_{W}^{\text {int }}\left(x^{0}\right)$: weak interaction Hamiltonian in the interaction picture

$$
H_{W}^{\mathrm{int}}\left(x^{0}\right)=\int d^{3} x \mathscr{H}_{W}^{\mathrm{int}}\left(f_{j}(x), \bar{f}_{j}(x)\right)=-\int d^{3} x \mathcal{L}_{W}^{\mathrm{int}}\left(f_{j}(x), \bar{f}_{j}(x)\right)
$$

no derivative couplings
$\left\{f_{j}, \bar{f}_{j}\right\}$: free fermion fields (fields in the interaction representation)
Decay amplitude:

$$
\mathcal{M}_{\mathrm{fi}}=\langle f| \mathcal{L}_{W}^{\operatorname{int}}\left(f_{j}(0), \bar{f}_{j}(0)\right)|i\rangle
$$

translation invariance used to integrate over x

Feynman rules

Decay amplitude/matrix elements evaluated via Feynman diagrams \Rightarrow interaction vertex couples two currents/four Fermi fields $-\frac{G}{\sqrt{2}} j_{1}^{\alpha} j_{2 \alpha}$
(1) for each vertex, draw a dot and include a factor $-\frac{G}{\sqrt{2}}$
\Rightarrow currents of general form $g_{a b} \bar{f}_{a} \mathcal{O}^{\alpha} f_{b}$ with couplings $g_{a b}$ (e.g., V_{CKM} matrix elements) and \mathcal{O}^{α} a combination of gamma matrices
\Rightarrow include Dirac bispinors \bar{w}_{a} and w_{b} corresponding to the fields \bar{f}_{a} and f_{b} creating or destroying particles in the initial and final states
(2) $u_{s}(\vec{p})$: initial state particle/oriented ext. line flowing into vertex
(3) $\bar{u}_{s}(\vec{p})$: final state particle/oriented ext. line flowing out of vertex
(9) $\bar{v}_{s}(\vec{p})$: initial state antiparticle/oriented ext. line flowing out of vertex
(5) $v_{s}(\vec{p})$: final state antiparticle/oriented ext. line flowing into vertex
\Rightarrow remaining fermion fields contracted with each other
(0) fermion propagators connecting vertices/oriented int. lines (from vertex containing \bar{f} to vertex containing f)

Feynman rules (contd.)

\Rightarrow Lorentz indices of bispinors and propagators must be contracted according to the structure of the currents
(0) contract bispinors, propagators and vertex factors $g_{a b} \mathcal{O}^{\alpha}$ along each uninterrupted fermion line, moving from the end backwards (for single vertex) contract bispinor corresponding to the same current with the appropriate factor $g_{a b} \mathcal{O}^{\alpha}$ (e.g., \mathcal{O}_{L}^{α} for charged currents) \rightarrow get bilinears of the type $g_{a b} \bar{w}_{a} \mathcal{O}^{\alpha} w_{b}$
(3) contract Lorentz indices of currents coupled at a vertex
\Rightarrow Standard practice:
(8) impose conservation of momentum at each vertex
(9) integrate over internal (propagator) momenta with measure $\frac{d^{4} q}{(2 \pi)^{4}}$
(10) include minus sign for each fermionic loop, and each fermionic line crossing the diagram from top to bottom
(1) include numerical factors counting equivalent diagrams

CPT and lifetime of antiparticles

CPT-invariance $\Rightarrow \tau_{\alpha}=\tau_{\bar{\alpha}}$
In the rest frame of unstable particle, decay governed by $\mathscr{H}^{\text {int }}$,

$$
\begin{aligned}
& \Gamma\left.=\frac{1}{2 m} \sum_{n} \int d \Phi^{(n)}\left|\mathcal{M}_{\mathrm{i} \rightarrow \mathrm{n}}\right|^{2}=\frac{1}{2 m} \sum_{n} \int d \Phi^{(n)}\left|\langle n| \mathscr{H}^{\mathrm{int}}(0)\right| i, s\right\rangle\left.\right|^{2} \\
&\left.\bar{\Gamma}=\frac{1}{2 \bar{m}} \sum_{n} \int d \Phi^{(n)}\left|\mathcal{M}_{\bar{\imath} \rightarrow \mathrm{n}}\right|^{2}=\frac{1}{2 \bar{m}} \sum_{n} \int d \Phi^{(n)}\left|\langle n| \mathscr{H}^{\mathrm{int}}(0)\right| \bar{\imath}, s\right\rangle\left.\right|^{2}
\end{aligned}
$$

Using $\Theta=C P T$ invariance of the complete set $\{|n\rangle\}$ and of \mathscr{H} int

$$
\begin{aligned}
\bar{\Gamma} & \left.=\frac{1}{2 \bar{m}} \sum_{n} \int d \Phi^{(n)}\left|\langle n| \Theta^{\dagger} \mathscr{H}^{\mathrm{int}}(0) \Theta\right| i,-s\right\rangle\left.\right|^{2} \\
& \left.=\frac{1}{2 \bar{m}} \sum_{n} \int d \Phi^{(n)}\left|\langle n| \mathscr{H}^{\mathrm{int}}(0)\right| i,-s\right\rangle\left.\right|^{2}=\Gamma
\end{aligned}
$$

We used also $m=\bar{m}$ and rotation invariance (which implies that Γ is independent of the initial polarisation)

References

