Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

November 18, 2020

The Standard Model: Summary

Electroweak sector of the Standard Model with three fermion generations

- gauge group $G = SU(2)_L \times U(1)_Y$
- $3 \times 15 = 45$ Weyl fermion fields
- 3 massive (W^{\pm} and Z) and 1 massless (γ) vector particles
- 1 Higgs scalar
- 18 free parameters
 - 2 gauge couplings $e, \sin \theta_W$
 - 3 lepton, 6 quark masses (Yukawa couplings)
 - 3 Cabibbo angles, 1 Kobayashi-Maskawa phase
 - ► W-boson and Higgs-boson masses m_W , m_η (corresponding to vev v and mass parameter μ)
 - Higgs self-coupling λ

Strong sector: Quantum Chromodynamics (QCD), gauge group $SU(3)_C$ (colour SU(3)), full gauge group $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$

- \bullet quarks: $\mathrm{SU}(3)_{\mathcal{C}}$ fund. triplet, other matter particles: colour singlets
- \bullet include eight massless gluon (gauge boson) fields of $\mathrm{SU}(3)_C$ group
- 1 more parameter: dimensionless strong fine structure constant $lpha_{\mathcal{S}}$

Reasons to extend the Standard Model:

- theoretical/aesthetical (but **no** compelling experimental reason):
 - unification of electroweak and strong interactions: Grand Unification Theories (GUTs)
 - hierarchy problem/fine-tuning/naturalness: supersymmetric extensions, extra dimensions,...
 - quantisation of gravity
- experimental:
 - neutrino oscillations \Rightarrow massive neutrinos
 - dark matter

Reasons to extend the Standard Model:

- theoretical/aesthetical (but **no** compelling experimental reason):
 - unification of electroweak and strong interactions: Grand Unification Theories (GUTs)
 - hierarchy problem/fine-tuning/naturalness: supersymmetric extensions, extra dimensions,...
 - quantisation of gravity
- experimental:
 - neutrino oscillations \Rightarrow massive neutrinos
 - dark matter

Neutrino oscillations

History of neutrino masses is long and complicated:

- Pauli proposal (1930) and Fermi theory (1933): neutrino must be very light, but no particular reason to believe it is massless
- Two-component neutrino hypothesis (1956-57): neutrino assumed to have definity chirality/handedness, requires masslessness
- Around the same time: ideas about massive neutrinos and oscillations between types (Pontecorvo)

Late '60s: R. Davies et al. detect solar neutrinos (Homestake experiment)

• Experimental technique (Pontecorvo): use neutrino-capture reaction,

$$\nu_e$$
 + ³⁷Cl $\rightarrow e^-$ + ³⁷Ar

- Measured flux significantly lower than theoretical prediction (Bahcall et al.) ⇒ solar anomaly, confirmed by others (KamiokaNDE, ...)
- Most natural explanation: right amount of ν_e produced in the Sun, but turn into different flavour along the way and escape detection (only ν_e could be detected)

Matteo Giordano (ELTE)

More neutrino anomalies:

• In atmospheric neutrinos:

$$\begin{array}{ccc} \pi^+ \to \mu^+ \; \nu_\mu & \pi^- \to \mu^- \; \bar{\nu}_\mu \\ & \downarrow e^+ \; \nu_e \; \bar{\nu}_\mu & \downarrow e^- \; \bar{\nu}_e \; \nu_\mu \end{array}$$

- expected muonic to electronic flux ratio: 2:1
- measured ratio sensitive to direction in which flux is measured
 - fluxes coming from above show expected ratio
 - ▶ fluxes coming from below (after crossing Earth) show ratio 1 : 1
- \bullet In electronic antineutrinos from nuclear reactors (KamLAND, \ldots): flux depends on distance from the reactor

All three anomalies can be explained by neutrino oscillations

Quantum mechanical description of neutrino oscillations:

- consider two families, assume neutrinos masses ma,b
- no reason to assume that weak flavour eigenstates (neutrino states coupled directly to e, μ, τ) are also mass eigenstates (recall discussion of Yukawa couplings)
- weak flavour eigenstates are in general linear superpositions of mass eigenstates
- Neutrinos produced in a weak process has definite flavour (i.e., lepton family number) as it comes together with a charged lepton
- ② As they propagate in space, the evolution of the quantum state is determined by their content in mass eigenstates (tiny chance of interacting along the way ≈ free temporal evolution)
- Neutrinos detected in states that are again flavour eigenstates (detection is signalled by production of charged lepton)

Let $|\ell_{1,2}\rangle$ be flavour eigenstates, $|a,b\rangle$ mass eigenstates with masses $m_{a,b}$ Most general parameterisation of flavour eigenstates

Two families \Rightarrow extra phases can be reabsorbed by redefining phases of eigenstates

$$egin{array}{ll} |\ell_1
angle = \cos heta|a
angle + \sin heta|b
angle \ |\ell_2
angle = -\sin heta|a
angle + \cos heta|b
angle \end{array}$$

 θ : mixing angle

$$|\psi(t)
angle = e^{-iH_{\rm free}t}|\psi(0)
angle$$
, assume $|\psi(0)
angle = |\ell_1
angle$ with definite \vec{p}
 $|\psi(t)
angle = \cos\theta e^{-iE_at}|a
angle + \sin\theta e^{-iE_bt}|b
angle \qquad E_{a,b} = \sqrt{\vec{p}^2 + m_{a,b}^2}$

Probability to detect flavour ℓ_1 at time t

$$\begin{aligned} |\langle \ell_1 | \psi(t) \rangle|^2 &= |\cos \theta e^{-iE_a t} \langle \ell_1 | a \rangle + \sin \theta e^{-iE_b t} \langle \ell_1 | b \rangle|^2 \\ &= |\cos^2 \theta e^{-iE_a t} + \sin^2 \theta e^{-iE_b t}|^2 \\ &= \cos^4 \theta + \sin^4 \theta + 2\cos^2 \theta \sin^2 \theta \cos(E_a - E_b)t \end{aligned}$$

For small $m_{a,b}$ neutrinos are produced ultrarelativistic, $|ec{p}\,| \gg m_{a,b}$ \Rightarrow

$$E_{a} - E_{b} = \frac{E_{a}^{2} - E_{b}^{2}}{E_{a} + E_{b}} = \frac{m_{a}^{2} - m_{b}^{2}}{E_{a} + E_{b}} \simeq \frac{m_{a}^{2} - m_{b}^{2}}{2|\vec{p}|} = \frac{\Delta m^{2}}{2|\vec{p}|}$$

Distance covered from production process $x \simeq t$ Neutrino flux $\Phi_1(x(t)) \propto |\langle \ell_1 | \psi(t) \rangle|^2 \Rightarrow$

$$\Phi_1(x) = A + B \cos \frac{\Delta m^2}{2|\vec{p}|} x$$
$$\frac{A}{B} = \frac{\cos^4 \theta + \sin^4 \theta}{2\cos^2 \theta \sin^2 \theta} = \frac{1 + \cos^2 2\theta}{1 - \cos^2 2\theta}$$

Neutrino oscillation can explain anomalies, but requires non-degeneracy of neutrino masses \Rightarrow at least one of the neutrinos must be massive Oscillations have been observed experimentally:

- must abandon assumption of massless neutrinos
- lepton flavour (family number) not conserved anymore

Generalisation to three families:

- mixing matrix parameterised in terms of three angle and one ineliminable phase (other phases unphysical)
- three mass-square differences

Experimental results:

$$\Delta m_{21}^2 = 7.55^{+0.20}_{-0.16} \cdot 10^{-5} \text{eV}^2 \qquad \qquad |\Delta m_{31}^2| = \begin{cases} 2.50 \pm 0.03 \cdot 10^{-3} \text{eV}^2 & \text{(NO)} \\ 2.42^{+0.03}_{-0.04} \cdot 10^{-3} \text{eV}^2 & \text{(IO)} \end{cases}$$

$$\sin^2 \theta_{13} = \begin{cases} 2.160^{+0.083}_{-0.069} \cdot 10^{-2} & (\text{NO}) \\ 2.220^{+0.074}_{-0.076} \cdot 10^{-2} & (\text{IO}) & \frac{\delta_{CP}}{\pi} = \begin{cases} 1.32^{+0.21}_{-0.15} & (\text{NO}) \\ 1.56^{+0.13}_{-0.15} & (\text{IO}) \end{cases}$$

 $\begin{array}{l} \mathsf{NO} = \text{``normal ordering'': } \Delta m_{32}^2 > 0 \Rightarrow m_1 < m_2 \ll m_3 \\ \mathsf{IO} = \text{``inverted ordering'': } \Delta m_{32}^2 < 0 \Rightarrow m_3 \ll m_1 < m_2 \\ \end{array} \\ \text{Which ordering is realised is not determined by current experiments} \end{array}$

Matteo Giordano (ELTE)

How to modify the Standard Model to account for neutrino masses? Simplest possibility: add Yukawa coupling of neutrinos to Higgs field

 $f_{AB}^{(\nu)}(\bar{\tilde{\ell}}_A)_L\tilde{\phi}(\nu_B)_R$

 $(\nu_A)_R$: right-handed (more precisely: negative chirality) neutrino fields $f_{AB}^{(\nu)}$ not necessarily diagonal, neutrino mixing allowed

RH fields needed for *Dirac mass term* $\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L$, generated from the above after spontaneous symmetry breaking

RH neutrino not coupled to any of the other particles in the Standard Model: *sterile* neutrino

Neutrino masses (contd.)

Mass matrix:

$$M_{AB}^{(\nu)} = \frac{v}{\sqrt{2}} f_{AB}^{(\nu)} = S^{(\nu)\dagger} M_{\text{diag}}^{(\nu)} T^{(\nu)}$$

Leptonic current $\bar{\nu}_A \mathcal{O}_L^{\alpha} \ell_A$ in terms of definite-mass charged lepton fields $\ell_A \Rightarrow$ neutrino fields ν_A have definite lepton family number (by definition) Definite-mass neutrino fields obtained by means of unitary transformation

$$\nu_L = S^{(\nu)} \nu_L^{(\text{mass})} \qquad \nu_R = T^{(\nu)} \nu_R^{(\text{mass})}$$

 $S^{(\nu)} \equiv U_{\text{PMNS}}$: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

- relates mass and lepton-family (left-handed) eigenstates
- 3×3 unitary matrix, parameterised (up to unphysical phases) in terms of three angles and one phase
- lepton number still conserved, lepton family number not anymore

RH neutrino field ν_R is SU(2)_L singlet with vanishing U(1)_Y charge $-y(\ell) + y(\tilde{\phi}) = 1 - 1 = 0$

 \Rightarrow invariant under whole gauge group G, no problems with the anomaly

Majorana neutrinos and the see-saw mechanism

Dirac mass term: simple solution, but

- introduces essentially unobservable particles
- no chance of explaining why neutrino masses are so small

 ν_R (with definite flavour) is a *G*-singlet, truly neutral fermion field \Rightarrow can take *Majorana mass term* (possibly in addition to Dirac mass term)

Majorana's neutrality condition: $(\nu_R)^c = \nu_R$

$$(\nu_R)^c \equiv C \bar{\nu}_R^T \quad C = -i\gamma^2 \gamma^0 \Rightarrow (\nu_R)^c = -i\gamma^2 \nu_R^*$$

Majorana mass term

$$\mathcal{L}_{\text{Maj}} = \frac{1}{2} m_M \bar{\nu_R} (\nu_R)^c + \text{c.c.}$$

More generally: $\nu_{\ell R} M_{\ell \ell'} (\nu_{\ell' R})^c$, can be diagonalised yielding Majorana terms

- violates lepton number but no other symmetry
- experimental signature: neutrinoless double-beta decay processes (unobserved so far)
- $(
 u_R)^c$ is a LH field \Rightarrow Majorana u $(= \bar{
 u})$ appears with both chiralities

Majorana neutrinos and the see-saw mechanism (contd.)

Putting together Dirac and Majorana mass terms

$$\mathcal{L} = \frac{1}{2} \bar{\nu}^{c} M \nu \qquad \nu = \begin{pmatrix} \nu_{L} \\ (\nu_{R})^{c} \end{pmatrix} \qquad M = \begin{pmatrix} 0 & m_{D} \\ m_{D} & m_{M} \end{pmatrix}$$

 ν : doublet of LH fields

Diagonalise *M*, eigenvalues
$$m_{\pm} = \frac{1}{2} \left(m_M \pm \sqrt{m_M^2 + 4m_D^2} \right)$$

 m_M : origin of *L*-breaking, naturally assumed large – scale of new physics? In the limit $m_M \gg m_D$, eigenvalue and definite-mass fields

$$egin{aligned} m_+ &\simeq m_M & m_- &\simeq -rac{m_D^2}{m_M} \ N &\simeq (
u_R)^c + rac{m_D}{m_M}
u_L &
u &\simeq
u_L - rac{m_D}{m_M} (
u_R)^c \end{aligned}$$

Sign of m_- not problematic, can be changed by redefining $\psi \to \gamma^5 \psi$

- N: large mass, small coupling to active neutrino field $\nu_L \Rightarrow$ heavy neutrino weakly interacting with other matter
- $\nu \simeq \nu_L$: naturally small mass: reasonable expectation is m_D of same order of corresponding charged lepton, m_D/m_M leads to strong suppression (*see-saw mechanism*)

Matteo Giordano (ELTE)

Standard Model gauge group: $G_{\rm SM} = {
m SU}(3)_c imes {
m SU}(2)_L imes {
m U}(1)_y$

Different coupling for each factor, not truly unified, i.e., containing a single coupling constant governing all the types of interactions

Some find it an unsatisfactory aspect: look for further unification

Basic idea: find bigger gauge group G with a single coupling constant, get Standard Model gauge group $G_{\rm SM}$ via symmetry breaking

Minimal possibility: use group SU(5)

- \bullet contains ${\it G}_{\rm SM}$
- rank 4, same rank as $G_{\rm SM} \Rightarrow$ four commuting generators that can be identified with t_3, t_8, T_3, Y
- only rank-4 group admitting complex representations (required by chiral structure) which can accommodate matter spectrum of SM (including electric charge) without introducing new matter

Grand Unification Theories (contd.)

 ${
m SU}(5)$: 24-dimensional Lie group of 5-dim unitary unimodular matrices

- simple group \Rightarrow single coupling constant
- besides known gauge bosons, 24 (8 + 3 + 1) = 12 new ones

Among diagonal generators there is λ^{24}

$$\lambda^{24} = \frac{1}{\sqrt{15}} \operatorname{diag}(2, 2, 2, -3 - 3)$$

 $\lambda^{24} \sim$ hypercharges of SM particles up to common normalisation:

• First three entries \propto hypercharge Y of $d_L^c \sim d_R^*$

• Last two entries \propto hypercharge Y of ℓ_L $\psi_L^c = C \bar{\psi}_R^T = -i\gamma^2 \gamma^0 \bar{\psi}_R^T = -i\gamma^2 \psi_R^*$

Embed ${
m SU}(3)_c$ and ${
m SU}(2)_L$ factors of $G_{
m SM}$ in upper and lower corners

$$egin{pmatrix} {
m SU(3)}_c & 0 \ 0 & {
m SU(2)}_L \end{pmatrix} \quad \Rightarrow \quad [\lambda^{24},\,G_{
m SM}] = 0 \end{cases}$$

Needed:

- group representations for matter particles
- suitable symmetry-breaking pattern

Matteo Giordano (ELTE)

Weak Interactions

SU(5) GUT: matter multiplets

 $\mathbf{\bar{5}}_{F}$ (antifundamental):

use for three colours of negatively-charged quark and the leptons of one SM generation Representations of $SU(3)_c \times SU(2)_L \subset G_{SM}$:

- First three components: $(\bar{3}, 1)$
- Last two components: (1,2)

10 (antisymmetric part of $\mathbf{5}_F \otimes \mathbf{5}_F = \mathbf{10} \oplus \mathbf{15}$):

- $\begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ 0 & u_1^c & u_2 & d_2 \\ 0 & u_3 & d_3 \\ 0 & 0 & e^+ \end{pmatrix}$ **10** (antisymmetric part of $\mathbf{5}_F \otimes \mathbf{5}_F = \mathbf{10} \oplus \mathbf{15}$): use for remaining matter fields Top-left block: $(\mathbf{\bar{3}}, \mathbf{1})$ (antisymmetric part of colour $\mathbf{3} \otimes \mathbf{3} = \mathbf{\bar{3}} \oplus \mathbf{6}$, and $\mathrm{SU}(2)_L$ singlet)
 - Top-right block: (3, 2)
 - Bottom-right block: (1,1) (antisym. part of $\mathbf{2} \otimes \mathbf{2} = \mathbf{1} \oplus \mathbf{3}$ of $\mathrm{SU}(2)_L$, corresponds to e_R

 $\mathbf{5}_{F}$ (fundamental): would contain RH fields, not used

SU(5) GUT: matter multiplets (contd.)

• $\mathbf{\bar{5}}_{F}$ and $\mathbf{10}$ fit precisely one SM generation

• number of generations unexplained in this framework SM charges:

$$T_3 = \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & \tau^3 \end{pmatrix}$$
 $Q = T_3 + \frac{Y}{2} = T_3 + c \frac{\lambda^{24}}{2}$ $c = -\sqrt{\frac{5}{3}}$

$$Y(\mathbf{\bar{5}}_{F}) = (+\frac{2}{3}, +\frac{2}{3}, +\frac{2}{3}, -1, -1) \qquad Q(\mathbf{\bar{5}}_{F}) = (+\frac{1}{3}, +\frac{1}{3}, +\frac{1}{3}, -1, 0)$$

$$Y(\mathbf{10}) = \begin{pmatrix} 0 & -\frac{4}{3} & -\frac{4}{3} & +\frac{1}{3} & +\frac{1}{3} \\ 0 & 0 & +\frac{1}{3} & +\frac{1}{3} \\ 0 & 0 & -\frac{2}{3} & +\frac{2}{3} & -\frac{1}{3} \\ 0 & -\frac{2}{3} & +\frac{2}{3} & -\frac{1}{3} \\ 0 & -\frac{2}{3} & +\frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & +\frac{1}{3} & -\frac{1}{3} \\$$

 $\begin{array}{l} Y(10) = Y_{\rm row}(5) + Y_{\rm column}(5) = -(Y_{\rm row}(\bar{5}) + Y_{\rm column}(\bar{5})) \\ Q(10) = Q_{\rm row}(5) + Q_{\rm column}(5) = -(Q_{\rm row}(\bar{5}) + Q_{\rm column}(\bar{5})) \end{array}$

Y, Q match SM + correct representations of $SU(3)_c imes SU(2)_L$

SU(5) GUT: gauge bosons

Gauge bosons transform in **24** representation (adjoint) Can be organised as follows $(\mathbf{5} \otimes \mathbf{\overline{5}} = \mathbf{1} \oplus \mathbf{24})$

$$A_{\mu} = \begin{pmatrix} G^{i}_{j\mu} + \frac{2}{\sqrt{30}} B_{\mu} \delta^{i}_{j} & X^{1c}_{\mu} & Y^{1c}_{\mu} & \\ X^{2c}_{\mu} & Y^{2c}_{\mu} & \\ X^{3c}_{\mu} & Y^{3c}_{\mu} & \\ X^{1}_{\mu} & X^{2}_{\mu} & X^{3}_{\mu} & \frac{1}{\sqrt{2}} W^{3}_{\mu} - \sqrt{\frac{3}{10}} B_{\mu} & W^{+}_{\mu} & \\ Y^{1}_{\mu} & Y^{2}_{\mu} & Y^{3}_{\mu} & W^{-}_{\mu} & -\frac{1}{\sqrt{2}} W^{3}_{\mu} - \sqrt{\frac{3}{10}} B_{\mu} & \end{pmatrix}$$

 $G_i^i \sim (\mathbf{8}, \mathbf{1})$: gluons $W^{\pm,3} \sim (\mathbf{1},\mathbf{3})$: intermediate vector bosons $B \sim (\mathbf{1}, \mathbf{1})$: hypercharge generator (mixes with W^3 to yield Z^0 and γ) $X, Y \sim (\bar{\mathbf{3}}, \mathbf{2})$: 12 new gauge bosons (notice $X^c, Y^c \sim (\mathbf{3}, \bar{\mathbf{2}})$)

Electric charges:

$$Q^{\dagger}A_{\mu}Q = (Q(\mathbf{ar{5}}) + Q(\mathbf{5}))A_{\mu}$$

X, Y have fractional charges $Q_X = -\frac{1}{3} - 1 = -\frac{4}{3}$, $Q_Y = -\frac{1}{3} + 0 = -\frac{1}{3}$