Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

November 4, 2020

- Locality principle:
 - interactions are not instantaneous, take place *locally* between fields and then propagate at finite speed
 - ► No event can affect anything outside of its future lightcone
- Overall phase of state vector of a system is experimentally unobservable, can be chosen arbitrarily: e.g., changing phase of every electron state has no experimental effect
 - ► if all observers agree on phase redefinition: global U(1) transformation; leaves physics invariant ⇒ global U(1) symmetry
 - ▶ if we redefine the phase in one way and another experimenter outside our lightcone in another way there should be no observable consequence ⇒ invariance under U(1) *local* (gauge) symmetry
- Should be possible to choose phase of electron field (creates/destroy e^{\mp} anywhere) in different way in different places
- We are assuming existence of a local symmetry: gauge principle

Gauge theories with scalar fields

Real or complex scalar fields, invariance under global symmetry group G

$$\mathcal{L}(\phi) = \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi_i - (\phi) \qquad \mathcal{L}(\phi) = \partial_{\mu} \phi_i^* \partial^{\mu} \phi_i - (\phi)$$

 $\mathcal{L}(g\phi) = \mathcal{L}(\phi) \; \forall \, g \in G \qquad (g\phi)_i(x) = U_{ij}(g)\phi_j(x) \qquad U_{ij}(g) = e^{i\varepsilon_a(g)T^a}$

U(g): unitary representation of G

 T^a : Hermitian (representatives of) group generators $[T^a, T^b] = i f_{abc} T^c$

For real fields: orthogonal representation $\Rightarrow T^a$ purely imaginary, antisymmetric

Real, x-independent parameters $\varepsilon_a \in \mathbb{R}$ (ϕ): potential, function of ϕ only but not of $\partial_{\mu}\phi$ Invariance under $G \leftrightarrow (g\phi) = (\phi)$ What happens if we promote global to local symmetry, $\varepsilon_a \to \varepsilon_a(x)$?

- $(g(x)\phi(x)) = (\phi(x))$ also for local transformation
- kinetic term depends on $\partial_{\mu}\phi$, not invariant under local transformation:

$$\partial_{\mu}\phi_i(x) \rightarrow \partial_{\mu}(U_{ij}(x)\phi_j(x)) = U_{ij}(x)\partial_{\mu}\phi_j(x) + \partial_{\mu}(U_{ij}(x))\phi_j(x)$$

Gauge theories with scalar fields (contd.)

To recover invariance introduce new set of fields to reabsorb the extra term: gauge fields $A^a_{\mu}(x)$, $a = 1, ..., \dim G$ (one for each generator of G)

- must be Lorentz vectors like ∂_{μ} under Lorentz transformations
- transform almost like adjoint objects under internal G transformation Replace ordinary derivative ∂_{μ} with covariant derivative D_{μ}

$$(D_{\mu}\phi)_{i} \equiv \partial_{\mu}\phi_{i} - igT^{a}_{ij}A^{a}_{\mu}\phi_{j} = \partial_{\mu}\phi_{i} - ig(A_{\mu})_{ij}\phi_{j}$$

g: dimensionless coupling constant

How should A^a_μ transform in the appropriate way to make Lagrangian invariant under $\phi(x) \to U(x)\phi(x)$, $A^a_\mu(x) \to A'^a_\mu(x)$?

$$\begin{aligned} (\partial_{\mu} - igA_{\mu})\phi &\to U\partial_{\mu}\phi + (\partial_{\mu}U)\phi - igA'_{\mu}U\phi \\ &= U[\partial_{\mu} - ig(U^{-1}A'_{\mu}U + \frac{i}{g}U^{-1}\partial_{\mu}U)]\phi \end{aligned}$$

Invariance requires:

$$\mathcal{A}_{\mu} = U^{-1}\mathcal{A}'_{\mu}U + rac{i}{g}U^{-1}\partial_{\mu}U \Longrightarrow \mathcal{A}'_{\mu} = U\mathcal{A}_{\mu}U^{-1} - rac{i}{g}(\partial_{\mu}U)U^{-1}$$

 $U^{-1} = U^{\dagger}$ or $U^{-1} = U^{T}$ for unitary or orthogonal matrices

Gauge theories with scalar fields (contd.)

Transformation rule of covariant derivative:

 $D_{\mu}\phi(x) \rightarrow U(x)D_{\mu}\phi(x)$

Replacing $\partial_{\mu} \rightarrow D_{\mu}$, \mathcal{L} becomes invariant under local transformations

$$\mathcal{L}(\phi) = \frac{1}{2} D_\mu \phi_i D^\mu \phi_i - (\phi) \qquad \mathcal{L}(\phi) = (D_\mu \phi)^*_i (D^\mu \phi)_i - (\phi)$$

- Gauge fields/covariant derivative analogous to connections/covariant derivative of general relativity, but important difference: gauge connections act in internal space, while spacetime connections act on tangent space of spacetime itself
- Non-homogenous transformation rule of gauge fields analogous to transformation rule of connections in general relativity
 - first term corresponds to transformation rule of adjoint multiplet
 - second term spoils it, A^a_µ not exactly adjoint object (cf. connections are not tensors)

Gauge field tranformations

Representation U/T^a of group/algebra generators irrelevant for transformation properties of A^a_{μ} Infinitesimal $U(x) = \mathbf{1} + i\varepsilon_a(x)T^a$

$$\begin{aligned} A'^{a}_{\mu}T^{a} &= (\mathbf{1} + i\varepsilon_{b}T^{b})A_{\mu}(\mathbf{1} - i\varepsilon_{c}T^{c}) - \frac{i}{g}(\partial_{\mu}i\varepsilon_{a}T^{a})(\mathbf{1} - i\varepsilon_{b}T^{b}) \\ &= A^{a}_{\mu}T^{a} + i\varepsilon_{b}A^{c}_{\mu}[T^{b}, T^{c}] + \frac{1}{g}\partial_{\mu}\varepsilon_{a}T^{a} \\ &= A^{a}_{\mu}T^{a} - \varepsilon_{b}A^{c}_{\mu}f_{bca}T^{a} + \frac{1}{g}\partial_{\mu}\varepsilon_{a}T^{a} \end{aligned}$$

For semi-simple compact groups cyclic, totally antisymmetric f_{abc}

$$\delta A^{a}_{\mu} \equiv A^{\prime a}_{\mu} - A^{a}_{\mu} = -f_{abc}\varepsilon_{b}A^{c}_{\mu} + \frac{1}{g}\partial_{\mu}\varepsilon_{a}$$

- intrinsic transformation properties, no reference to the representation under which scalar fields transform
- both a *g*-independent homogenous term, and a *g*-dependent inhomogenous term

Gauge group

Local symmetry group = gauge group Groups of interest: direct products $G = \times_i G_i$ of simple or Abelian G_i Definitions:

- Abelian group: all elements commute, corresponding algebra generated by commuting elements ⇒ direct sum of 1-dim. commuting algebras
- *non-Abelian* group: if elements do not commute; corresponding algebra also non-commutative
- *simple/semi-simple* Lie group G: group with simple/semi-simple algebra g
- simple Lie algebra: non-Abelian Lie algebra with no nontrivial *ideal* Ideal \mathfrak{a} : subalgebra $\mathfrak{a} \subseteq \mathfrak{g}$, $[\mathfrak{a}, \mathfrak{a}] \subseteq \mathfrak{a}$, left invariant by the whole algebra, $[\mathfrak{g}, \mathfrak{a}] \subseteq \mathfrak{a}$ For a simple Lie algebra the only ideals are $\{0\}$ and the whole algebra
- *semi-simple* Lie algebra: no nontrivial Abelian ideal; equivalently, direct sum of simple algebras

Examples:

- SU(N) simple; SO(N) simple;
- $SU(N) \times SU(N)$ semisimple; $U(N) = U(1) \times SU(N)$ semisimple;
- $\mathrm{U}(1) \sim \mathrm{SO}(2)$ Abelian

Important property of non-Abelian gauge theories: single, universal coupling constant for each simple factor in the gauge group

- coupling constant to matter fields enters transformation properties of gauge field to ensure gauge invariance, uniquely defined by these
- if several matter-field multiplets present, they are all coupled with the same coupling to non-Abelian gauge fields
- Abelian case: redefine transformation laws $\phi \rightarrow e^{ig\alpha}\phi$, $A_{\mu} \rightarrow A_{\mu} - i\partial_{\mu}\alpha$, can choose different g for different fields
- non-Abelian case: trick does not work, coupling constant reappears in homogenous term in gauge-field transformation law, still constrained to be unique
- each simple/Abelian subalgebra commute with others, independent transformation properties \sim independent couplings

Gauge-field dynamics: field-strength tensor

Gauge symmetry allows dynamics for A^a_μ

$$D_{\mu}D_{\nu}\phi = \underbrace{\partial_{\mu}\partial_{\nu}\phi - igA_{\mu}\partial_{\nu}\phi - igA_{\nu}\partial_{\mu}\phi}_{\mu \leftrightarrow \nu \text{ symmetric}} - ig(\partial_{\mu}A_{\nu})\phi + (-ig)^{2}A_{\mu}A_{\nu}\phi$$

 $[D_{\mu}, D_{\nu}]\phi = -ig(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}])\phi \equiv -igF_{\mu\nu}\phi$

Field strength tensor $F_{\mu\nu} = F^a_{\mu\nu} T^a$

Measures curvature of internal space with gauge connection $A^a_{\mu\mu}$ Similar to Riemann tensor for spacetime connections

$$F^{a}_{\mu
u} = \partial_{\mu}A^{a}_{
u} - \partial_{
u}A^{a}_{\mu} + gf_{abc}A^{b}_{\mu}A^{c}_{
u}$$

- first term like in QED
- second term typical only for non-Abelian groups: self-interacting gauge fields, even in the absence of matter
- again same coupling constant

Gauge-field dynamics: Yang-Mills Lagrangian

Transformation properties of $F_{\mu\nu}$

$$F_{\mu
u} o F_{\mu
u}' = UF_{\mu
u} U^{-1}$$

 $F^{a}_{\mu\nu}$ transform properly as an adjoint multiplet, no inhomogenous term Infinitesimal transformations

$$\delta F^{a}_{\mu\nu} = -f_{abc}\varepsilon_{b}F^{c}_{\mu\nu}$$

Gauge-invariant kinetic term for gauge fields:

$$\mathcal{L}_{\mathrm{YM}} = -\frac{1}{4} F^{a}_{\mu
u} F^{a\mu
u} = -\frac{1}{2} \mathrm{tr}_{F} F_{\mu
u} F^{\mu
u}$$

tr _F: trace in fundamental (defining) representation tr $t_a^a t_b^b = \frac{1}{2} \delta^{ab}$

 $\mathcal{L}_{\rm YM}:$ Yang-Mills(-Shaw) Lagrangian

• mass term $m^2 A_\mu A^\mu$ forbidden by gauge invariance

• $(\theta$ -term) $\epsilon_{\mu\nu\rho\sigma}F^{a\mu\nu}F^{a\sigma\rho}$ allowed by gauge invariance but forbidden by parity; total derivative, does not affect equations of motion

Not totally irrelevant: plays important role in axial anomaly and mass of η' meson

Fermions

Realistic gauge theory requires fermions, promote Dirac Lagrangian from globally to locally invariant by replacing $\partial_\mu \to D_\mu$

$$ar{\psi}(i\partial\!\!\!/ -m)\psi o ar{\psi}(iD\!\!\!/ -m)\psi \qquad D_{\mu}=\partial_{\mu}-igA_{\mu}^{a}t^{a}$$

 $\partial \!\!\!/ = \partial_\mu \gamma^\mu$, $D \!\!\!/ = D_\mu \gamma^\mu$

Same g but not necessarily same representation t^a of group generators

Lagrangian of general gauge theory

$$\mathcal{L} = \underbrace{-\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu}}_{A-A \text{ int.}} \underbrace{+\frac{1}{2}(D_{\mu}\phi)_{i}(D^{\mu}\phi)_{i}}_{\phi-A \text{ int.}} - (\phi) \underbrace{+\overline{\psi}(i\not{D}-m)\psi}_{\psi-A \text{ int.}} = \mathcal{L}_{\text{YM}} + \mathcal{L}_{\text{matter}}$$

Real scalar fields, without loss of generality

FF term:

cubic interactions

$$F^{a}_{\mu\nu}F^{a\mu\nu} = (\partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu})(\partial^{\mu}A^{a\nu} - \partial^{\nu}A^{a\mu}) + 2g(\partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu})f_{abc}A^{b\mu}A^{c\nu}$$
$$+ \underbrace{g^{2}f_{abc}f_{ade}A^{b}_{\mu}A^{c}_{\nu}A^{d\mu}A^{e\nu}}_{\text{rescaled}}$$

quartic interactions

Equations of motion

EOM for gauge fields

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu}^{a})} &= -\frac{1}{2} \frac{\partial F_{\rho\sigma}^{m}}{\partial (\partial_{\mu} A_{\nu}^{a})} F^{m\rho\sigma} = -F_{\mu\nu}^{a} \\ \frac{\partial \mathcal{L}_{\rm YM}}{\partial A_{\nu}^{a}} &= -\frac{1}{2} \frac{\partial F_{\rho\sigma}^{m}}{\partial A_{\nu}^{a}} F^{m\rho\sigma} = -gf_{mab}A_{\mu}^{b}F^{m\nu\mu} = gf_{abm}A_{\mu}^{b}F^{m\mu\nu} \\ &= -ig[A_{\mu}, F^{\mu\nu}]^{a} \\ \partial \mathcal{L}_{\rm matter} \end{aligned}$$

$$\frac{\partial \mathcal{L}_{\text{matter}}}{\partial A_{\nu}^{a}} \equiv -J^{a\nu}$$

Matrix notation

$$\partial_{\mu}F^{\mu\nu} - ig[A_{\mu}, F^{\mu\nu}] = J^{\nu}$$

In components

$$(D^{(A)}_\mu)^a_b {\sf F}^{b\mu
u} = J^{a
u}$$

 $D^{(A)}_{\mu}$: covariant derivative in the adjoint representation $(D^{(A)}_{\mu})^{a}_{b} = \delta^{a}_{b}\partial_{\mu} + gf_{acb}A^{c}_{\mu} = \delta^{a}_{b}\partial_{\mu} - ig(-if_{cab})A^{c}_{\mu} = \delta^{a}_{b}\partial_{\mu} - igT^{(A)c}_{ab}A^{c}_{\mu}$

Free gauge fields

Gauge invariance \Rightarrow gauge fields are massless vectors, only 2 physical d.o.f. Free case g=0

$$\partial_{\mu}(\partial^{\mu}A^{a\nu}-\partial^{\nu}A^{a\mu})=0\Longrightarrow \Box A^{a\nu}-\partial^{\nu}\partial\cdot A^{a}=0$$

Gauge invariance (g = 0): $A^a_\mu \to A^a_\mu + \partial_\mu \Lambda^a$ further conditions must be imposed to obtain a unique solution (besides initial conditions) General solution in momentum space

$$egin{aligned} \mathcal{A}^a_\mu(x) &= \int rac{d^4 p}{(2\pi)^4} \, e^{-i p \cdot x} ilde{\mathcal{A}}^a_\mu(p) \,, \qquad ilde{\mathcal{A}}^a_\mu(p) &= \int d^4 x \, e^{i p \cdot x} \mathcal{A}^a_\mu(x) \ &(p^2 \delta^
u_\mu - p^
u p_\mu) ilde{\mathcal{A}}^{a\mu}(p) = 0 \end{aligned}$$

Decompose $\tilde{A}^{a}_{\mu}(p)$ on a (*p*-dependent) complete basis of four-vectors

$$\begin{split} \tilde{A}^{a\mu}(p) &= a^{i}(p)\varepsilon_{i}^{\mu}(p) + b(p)\tilde{p}^{\mu} + c(p)p^{\mu} \\ p^{\mu} &= (E,\vec{p}) \qquad \qquad \tilde{p}^{\mu} = (-E,\vec{p}) \\ \varepsilon_{i}^{\mu}(p) &= (0,\vec{\varepsilon}_{i}(\vec{p})) \qquad \vec{\varepsilon}_{i}(\vec{p}) \cdot \vec{p} = 0 \qquad \qquad \vec{\varepsilon}_{i}(\vec{p}) \cdot \vec{\varepsilon}_{j}(\vec{p}) = \delta_{ij} \end{split}$$

No relation assumed between *E* and \vec{p}

Free gauge fields (contd.)

$$p \cdot \varepsilon_{i} = \tilde{p} \cdot \varepsilon_{i} = 0 \ p, \ \tilde{p} \text{ linearly independent (for } E, \vec{p} \neq 0)$$

$$p^{2} \left[a^{i}(p) \varepsilon_{i}^{\nu}(p) + b(p) \tilde{p}^{\nu} + c(p) p^{\nu} \right] - p^{\nu} \left[b(p) p \cdot \tilde{p} + c(p) p^{2} \right] = 0$$

$$p^{2} \left[a^{i}(p) \varepsilon_{i}^{\nu}(p) + b(p) \tilde{p}^{\nu} \right] - p \cdot \tilde{p} p^{\nu} b(p) = 0$$

Term proportional to c(p) drops out: completely arbitrary, unphysical Contracting with \tilde{p}

$$[p^{2}\tilde{p}^{2} - (p \cdot \tilde{p})^{2}]b(p) = 0 \qquad [(E^{2} - \vec{p}^{2})^{2} - (E^{2} + \vec{p}^{2})^{2}]b(p) = 0$$

$$4E^{2}\vec{p}^{2}b(p) = 0 \qquad \Longrightarrow b(p) = 0$$

Contracting with ε_i

$$p^2 a'(p) = 0 \Longrightarrow p^2 = 0$$

 $\widetilde{A}^{a\mu}(p) = a^i(p)\varepsilon^{\mu}_i(p) + c(p)p^{\mu} \qquad p^2 = 0$

for arbitrary $a^i(p)$, c(p) with $p^2 = 0$, but c unphysical \Rightarrow two degrees of freedom corresponding to transverse polarisations $\varepsilon^{\mu}_i(\vec{p})$

Higgs mechanism: $G = SO(2) \sim U(1)$

If the spontaneously broken symmetry is gauged there are no Goldstones

Use U(1) version, two real scalars combined into a single complex field Abelian gauge theory of a complex field with charge -e

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D_{\mu}\varphi)^{*}(D_{\mu}\varphi) - \frac{\lambda}{2}(2\varphi^{*}\varphi - a^{2})^{2} \qquad \lambda > 0$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu} \qquad \qquad D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

Minimal energy:

• $F_{\mu\nu} = 0 \Rightarrow A_{\mu} = 0$ (up to gauge transformations) • $\varphi(x) = \varphi_0$ with $\varphi_0^* \varphi_0 = \frac{a^2}{2}$ Choose the ground state $\varphi_0 = \frac{a}{\sqrt{2}}$, $A_{\mu} = 0$, parameterise

$$\varphi(x) = \frac{1}{\sqrt{2}}(a + \eta(x))e^{i\frac{\theta(x)}{a}}$$

Need to fix the gauge, whether to solve the classical Cauchy problem or to quantise the theory in $\ensuremath{\mathsf{QFT}}$

Higgs mechanism: $G = SO(2) \sim U(1)$ (contd.)

By a U(1) gauge transformation we can set φ real (*unitarity gauge*) $\varphi(x) \rightarrow e^{-i\frac{\theta(x)}{a}}\varphi(x) = \frac{1}{\sqrt{2}}(a + \eta(x))$

How does A_{μ} transform?

$$\begin{aligned} A_{\mu}(x) &\to A_{\mu}(x) - \frac{i}{-e} (\partial_{\mu} e^{-i\frac{\theta(x)}{a}}) e^{i\frac{\theta(x)}{a}} = A_{\mu}(x) + \frac{1}{ea} \partial_{\mu} \theta(x) \equiv B_{\mu} \\ \text{Set } G_{\mu\nu} \equiv \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}, \ \bar{D}_{\mu} = \partial_{\mu} + ieB_{\mu} \\ \mathcal{L}_{\text{UG}} &= -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \left| \bar{D}_{\mu} \frac{a+\eta}{\sqrt{2}} \right|^2 - \frac{\lambda}{2} ((a+\eta)^2 - a^2)^2 \\ &= -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \frac{1}{2} |\partial_{\mu} \eta + ieB_{\mu}(a+\eta)|^2 - \frac{\lambda}{2} (\eta^2 + 2a\eta)^2 \\ &= -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} e^2 B_{\mu} B^{\mu}(a+\eta)^2 - \frac{\lambda}{2} (\eta^2 + 2a\eta)^2 \end{aligned}$$

- a mass term has appeared for the gauge boson B_μ, with m_B = ea
 the "would-be" Goldstone mode θ(x) has disappeared, becoming the longitudinal component of the massive vector boson B_μ
- the other scalar field η , the *Higgs field*, is massive with $m_\eta = 2a\sqrt{\lambda}$