Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

October 21, 2020

Matteo Giordano (ELTE)

October 21, 2020 0 / 12

Limitations of the four-fermion theory (contd.)

When does the effective theory break down?

Problems with unitarity at high energy already at tree level

Can be cured only using higher orders of perturbation theory \Rightarrow back to problem of non-renormalisability

- $e \nu_e$ elastic scattering:
 - tree-level amplitude polynomial in four-momenta (no propagators) \Rightarrow polynomial in $\cos\theta_{\rm CM}$

 $\theta_{\rm CM}:$ angle between incoming/outgoing trajectories in CM frame

- partial-wave expansion of the amplitude contains only a finite number of partial waves, with amplitude f_J
- from dimensional analysis: $\sigma_{
 m tot} \sim G^2 s$ at high energy
- from partial-wave expansion: $\sigma_{
 m tot} \propto {\it p}^{-1}\sum (2J+1)|f_J|^2$
- from unitarity of the S-matrix: $|f_J|^2 \leq \mathrm{Im} f_J$

p: magnitude of the initial momenta in the CM frame

 \Rightarrow one of partial wave amplitudes will eventually violate unitarity bound

Limitations of the four-fermion theory (contd.)

 $e\,\nu_e$ elastic scattering: considering only charged current for simplicity

- J = 0 partial wave: $f_0 = \frac{Gs}{2\sqrt{2}\pi}$
- unitarity bound: $|\operatorname{Re} f_0| \leq \frac{1}{2}$
- ullet tree-level amplitude is real $\Rightarrow \frac{\textit{Gs}}{\sqrt{2}\pi} \leq 1$

 \Rightarrow unitarity violated for $s>rac{\sqrt{2}\pi}{G}\simeq(600\,{
m GeV})^2$, breakdown of the theory

How to improve the situation? Replace four-fermion interaction with exchange of massive intermediate vector boson (Yukawa, 1930s) Differential cross section (for $|t| \ll m_W$, m_W : mass of IVB):

$$\frac{d\sigma}{d|t|}\Big|_{\rm FF} = \frac{G^2}{\pi} \longrightarrow \frac{d\sigma}{d|t|}\Big|_{\rm IVB} = \frac{G^2}{\pi} \frac{m_W^4}{(m_W^2 + |t|)^2}$$

Boson exchange \rightarrow propagator $\frac{1}{m_{u}^2 + |t|^2}$:

- all partial waves are present
- cuts off the contribution of large tranferred momentum

Limitations of the four-fermion theory (contd.)

For the total cross section, integrate over $0 \le |t| \le s$ (ignore *e* mass)

$$\sigma|_{\rm FF} = \int_0^s d|t| \left. \frac{d\sigma}{d|t|} \right|_{\rm FF} = \frac{G^2}{\pi} s \longrightarrow \sigma|_{\rm IVB} = \int_0^s d|t| \left. \frac{d\sigma}{d|t|} \right|_{\rm IVB} = \frac{G^2 m_W^2}{\pi} \frac{s}{s + m_W^2}$$

In the IVB case, total cross section σ

- rises linearly with s at low energy
- approaches the constant $\frac{G^2 m_W^2}{\pi}$ at high energy
- unitarity respected, and unitarity bound becomes a bound on m_W

Coupling $g_W^2 = Gm_W^2$ in IVB theory is dimensionless: renormalisable?

- No: propagator contains $\frac{p_{\mu}p_{\nu}}{p^2m_{\mu\nu}^2}$ \Rightarrow problematic high-energy behaviour
- No problem if IVB coupled to conserved current (would give no contrib.), but $V^{\mu} [m_e m_{\nu_e} \neq 0]$, $A^{\mu} [m_e + m_{\nu_e} \neq 0]$ not conserved Even if $m_{e,\nu_e} = 0$, so weak current conserved:
 - massive vector bosons must be electrically charged \Rightarrow non-renormalisable EM interaction
 - problems with unitarity in the boson-boson cross section, can be cured if a further, neutral boson is introduced

Way out: start with massless bosons (renormalisable) and generate mass dynamically (renormalisability remains)

Matteo Giordano (ELTE)

Weak Interactions

Massive vector bosons

Proca Langrangian for free massive vector particles:

$$\mathcal{L}_{\rm Proca} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 W_{\mu} W^{\mu} \qquad F_{\mu\nu} = \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu}$$

Equations of motion:

$$0 = \frac{\partial \mathcal{L}_{\text{Proca}}}{\partial W_{\mu}} - \partial_{\nu} \frac{\partial \mathcal{L}_{\text{Proca}}}{\partial (\partial_{\nu} W_{\mu})}$$

$$\Rightarrow 0 = m^2 W^{\mu} - \partial_{\nu} (-F^{\nu \mu})$$

$$\Rightarrow 0 = (\Box + m^2) W^{\mu} - \partial^{\mu} \partial_{\nu} W^{\nu}$$

Taking the divergence

$$(\Box + m^2)\partial_\mu W^\mu - \Box \partial_
u W^
u = m^2 \partial_\mu W^\mu = 0 \Rightarrow \partial_\mu W^\mu = 0$$

Plug back

$$(\Box+m^2)W^\mu=0$$

 $\partial_\mu W^\mu=0$

Massive vector bosons (contd.)

EOM most easily solved in momentum space

$$W^{\mu}(x) = \int d\Omega_p \sum_{j=1}^{3} \left\{ \varepsilon_j^{\mu}(\vec{p}) e^{-ip \cdot x} a_j(\vec{p}) + \varepsilon_j^{\mu *}(\vec{p}) e^{ip \cdot x} b_j^{\dagger}(\vec{p}) \right\}$$

 $d\Omega_p$: invariant phase-space measure, $p^0 = \sqrt{\vec{p}^2 + m^2}$

Polarisation vectors $\varepsilon_i^{\mu}(\vec{p})$

• satisfy $p \cdot \varepsilon_j(\vec{p}) = 0$, three independent solutions, e.g.

$$\begin{split} \varepsilon_{1,2}^{\mu} &= \left(0, \vec{s}_{1,2}\right) \qquad \vec{p} \cdot \vec{s}_{1,2} = 0 \qquad \vec{s}_i \cdot \vec{s}_j = \delta_{ij} \quad i, j = 1, 2 \\ \varepsilon_3^{\mu} &= \frac{1}{m} (|\vec{p}|, p^0 \hat{p}) \qquad \hat{p} = \frac{\vec{p}}{|\vec{p}|} \end{split}$$

• longitudinal polarisation $\varepsilon_3^{\mu} = \frac{p^{\mu}}{m} + \frac{m}{p^0 + |\vec{p}|}(-1, \hat{p})$

• for our choice $\varepsilon_i^{\mu} = \varepsilon_i^{\mu*}$; in general one imposes

$$arepsilon_i \cdot arepsilon_j^* = -\delta_{ij} \qquad i,j=1,2,3$$

orthonormal basis of 3d space transverse to four-momentum p

$$\sum_{j=1}^{3} \varepsilon_{j}^{\mu}(\vec{p}\,) \varepsilon_{j}^{
u*}(\vec{p}\,) = -\eta^{\mu
u} + rac{p^{\mu}p^{
u}}{m^{2}}$$

Matteo Giordano (ELTE)

Massive vector bosons (contd.)

Class of interacting theories: massive vector boson coupled to current j^{μ}

$$\mathcal{L} = \mathcal{L}_{\mathrm{Proca}} - W_{\mu} j^{\mu}$$

EOM: replace $m^2 W^\mu
ightarrow m^2 W^\mu - j^\mu$

$$(\Box + m^2)W^{\mu} - \partial^{\mu}\partial_{\nu}W^{\nu} = j^{\mu}$$

Taking the divergence

$$m^2 \partial_\mu W^\mu = \partial_\mu j^\mu$$

Plug back

$$(\Box + m^2)W^{\mu} = \left(\eta^{\mu\nu} + \frac{\partial^{\mu}\partial^{\nu}}{m^2}\right)j_{\nu}$$

Green's function (propagator) $D^{\mu\nu}(x)$ connects solution to the current

$$egin{aligned} W^{\mu}(x) &= \int d^4 y \ D^{\mu
u}(x-y) j_
u(y) \ D^{\mu
u} &= \left(\eta^{\mu
u} + rac{\partial^{\mu}\partial^{
u}}{m^2}
ight) rac{1}{\Box + m^2} \end{aligned}$$

Massive vector bosons (contd.)

Momentum space propagator

$$ilde{D}^{\mu
u} = rac{-\eta^{\mu
u} + rac{p^{\mu}p^{
u}}{m^2}}{p^2 - m^2}$$

We are ignoring the choice of prescription to deal with the pole at $p^2=m^2$

Second term can lead to bad high energy behaviour: in momentum space $\tilde{D}^{\mu\nu}$ couples to Fourier transform $\tilde{\jmath}^{\mu}$ of $j^{\mu} \Rightarrow p_{\mu}\tilde{\jmath}^{\mu}$ from the second term

- conserved current $\partial_{\mu}j^{\mu} = 0 \Rightarrow p_{\mu}\tilde{j}^{\mu} = 0$, potentially dangerous term has no effect
- only second term of longitudinal polarisation vector ε_3 contributes to Feynman diagrams, no troublesome high-energy behaviour

Can give the photon a mass without spoiling renormalisability despite loss of gauge invariance

• if $p_{\mu}\tilde{j}^{\mu} \neq 0 \Rightarrow$ cannot drop $p^{\mu}p^{\nu}$ term, theory non renormalisable due to its bad high-energy behaviour

 \Rightarrow cannot give mass to IVB "by hand" for use in weak interactions

Spontaneous symmetry breaking: Goldstone's theorem

Trick used to give mass to IVB combines gauge invariance and massless scalar particles appearing in a theory with spontaneously broken symmetry

- What is spontaneous breaking of a symmetry?
- Why do massless scalars (Goldstone bosons) appear in the spectrum?

Massless modes from breaking of a global continuous symmetry due to the non-invariance of the vacuum (ground state)

- EOM of a system being symmetric does not mean that every solution should be symmetric
- if minimal-energy solution not symmetric then not unique: selecting one solution the system breaks symmetry (*spontaneous breaking*)
- if symmetry is continuous, moving from one minimal-energy solution to another costs no energy ⇒ massless modes
- *Goldstone theorem*: one massless mode for every generator of the symmetry broken by the vacuum

Spontaneous breaking of a gauge symmetry

If "broken" symmetry is a gauge (local) symmetry, "would-be" Goldstone modes "absorbed" by gauge bosons corresponding to the broken generators as their longitudinal (zero helicity) modes, making them massive

A gauge symmetry cannot be broken (Elitzur's theorem): what can be broken is the corresponding global symmetry

 ${\bf Q}.$ Why is Goldstone theorem ineffective when the symmetry is local?

A. Quantisation of a gauge theory requires gauge fixing (which breaks the local symmetry explicitly)

- using "physical" gauges (e.g., Coulomb gauge ∇ · A = 0, axial gauge A₃ = 0): if we ask for only physical states in Hilbert space, then gauge choice cannot respect Lorentz covariance (required by theorem)
- using covariant gauges (e.g., Lorenz gauge $\partial_{\mu}A^{\mu} = 0$): theorem applies, but Hilbert space contains unphysical, negative-norm states corresponding to remaining gauge modes (gauge fixing only partial); Goldstone mode is such a gauge mode, decoupled from physical states

Goldstone bosons

N real scalar fields $\phi_i(x)$, treat classically

Path-integral quantisation in mind

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi_i - (\phi)$$

Potential (ϕ): polynomial, includes mass (quadratic) terms, at most 4th-order for renormalisability

Assume $\{\phi_i\}$ basis of rep. space of *N*-dim unitary rep. of Lie group G $\phi_i(x) \to (g\phi)_i(x) = D_{ij}(g)\phi_j(x)$ $D(g) = e^{\epsilon_a(g)T^a}$ $\epsilon_a(g) \in \mathbb{R}$ $D(g): N \times N$ unitary matrices, $D(g_1)D(g_2) = D(g_1g_2) \forall g_{1,2} \in G$ $T^a: N \times N$ real antisymmetric matrices, $a = 1, \dots n = \dim G$, provide representation of group algebra $[T^a, T^b] = -f^{abc}T^c$ Real fields \Rightarrow real representation \Rightarrow orthogonal representation N complex scalar fields $\varphi_i = \varphi_i^R + i\varphi_i^I \Rightarrow 2N$ real fields unitary $N \times N$ representation $\delta \varphi = i\epsilon_a t^a \varphi \Rightarrow 2N \times 2N$ orthogonal representation $\delta \phi = \epsilon_a T^a \phi$

$$\mathcal{T}^{a} = \begin{pmatrix} -\mathrm{Im}\,t^{a} & -\mathrm{Re}\,t^{a} \\ \mathrm{Re}\,t^{a} & -\mathrm{Im}\,t^{a} \end{pmatrix}$$

Goldstone bosons (contd.)

Assume \mathcal{L} invariant under G, $(g\phi) = (\phi)$ (G is an internal symmetry) Energy functional: bounded from below if is, set minimum to 0

$$E[\phi] = \int d^3x \left[\frac{1}{2} \partial_0 \phi_i \partial_0 \phi_i + \frac{1}{2} \vec{\nabla} \phi_i \cdot \vec{\nabla} \phi_i + (\phi) \right] \ge 0$$

Ground state (vacuum state in relativistic QFT): state of minimal (zero) energy = constant field configuration $\phi_i(x) = \phi_{0i}$ with $(\phi_0) = 0$

Minimal E since no contribution from derivative terms, and minimal potential since min = 0

If $\exists g, g\phi_0 \neq \phi_0 \Rightarrow$ more than one ground state $((g\phi_0) = (\phi_0) = 0)$ \mathcal{M} : manifold of ground states $\mathcal{M} = \{\phi_0 \mid (\phi_0) = 0\}$ G-orbit of $\phi_0 \in \mathcal{M}$: $G\phi_0 = \{g\phi_0 \mid g \in G\}$ By construction $G\mathcal{M} = \mathcal{M}$; we further assume $\mathcal{M} = G\phi_0$ for any ϕ_0 i.e.,

any ϕ'_0 can be reached from any ϕ_0 by some g

If \mathcal{M} contains more than one state, then we say that the symmetry G is broken: any $\phi_0 \in \mathcal{M}$ will not be left invariant by all g

Matteo Giordano (ELTE)

Goldstone bosons (contd.)

Stability group H: subgroup of G that leaves ground state invariant

$$H = \{h \in G \mid h\phi_0 = \phi_0\}$$

If $h_{1,2} \in H$, $h_1 h_2 \phi_0 = \phi_0 \Rightarrow h_1 h_2 \in H$; $e \in H$; if $h \in H$, $h^{-1}\phi_0 = h^{-1}h\phi_0 = \phi_0 \Rightarrow h^{-1} \in H$

Stability groups defined using different ϕ_0 are isomorphic since $\mathcal{M} = G\phi_0$

Unbroken part of the symmetry group

(Right) cosets: $gH = \{gh \mid h \in H\}$

 correspond uniquely to equivalence class wrt relation g₁ ~ g₂ if g₁ = g₂h for some h ∈ H (elements of G modulo elements of H);

• invariant under right multiplication by $h \in H$

(Right) coset space G/H: set of cosets/equivalence classes gH

Choosing some ϕ_0

- for any $\phi_0' \in \mathcal{M}$ can write $\phi_0' = g\phi_0$ non-uniquely $(gh\phi_0 = g\phi_0, \ h \in H)$
- $g\phi_0$ corresponds *uniquely* to a coset $gH \Rightarrow \mathcal{M} = G/H$