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Limitations of the four-fermion theory (contd.)

When does the effective theory break down?
Problems with unitarity at high energy already at tree level

Can be cured only using higher orders of perturbation theory
= back to problem of non-renormalisability

e v, elastic scattering:

o tree-level amplitude polynomial in four-momenta (no propagators)
= polynomial in cosfcu

Ocm: angle between incoming/outgoing trajectories in CM frame

@ partial-wave expansion of the amplitude contains only a finite number
of partial waves, with amplitude f;

e from dimensional analysis: oot ~ G2s at high energy
e from partial-wave expansion: oo, o< p~1 > (2J + 1)|£|2
e from unitarity of the S-matrix: |f;|> < Imf;

p: magnitude of the initial momenta in the CM frame

= one of partial wave amplitudes will eventually violate unitarity bound
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Limitations of the four-fermion theory (contd.)

e v, elastic scattering: considering only charged current for simplicity
Gs
24/2m

e unitarity bound: [Refo| < 3

o J =0 partial wave: fy =

o tree-level amplitude is real = fw

= unitarity violated for s > @ ~ (600 GeV)?, breakdown of the theory

How to improve the situation? Replace four-fermion interaction with
exchange of massive intermediate vector boson (Yukawa, 1930s)

Differential cross section (for |t| < my, my: mass of IVB):

e, G _miy
d|t| |FF m d|t| ‘IVB T (m2,+]t])?

1.
Boson exchange — propagator R
@ all partial waves are present
@ cuts off the contribution of large tranferred momentum
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Limitations of the four-fermion theory (contd.)

For the total cross section, integrate over 0 < [t| < s (ignore e mass)

G G2m2W s

alvr = [5 d|t| § dltl iler =

In the IVB case, total cross section o
@ rises linearly with s at low energy
2

2

s —rofive = fo d|t| dJt] |IVB T stmd,

@ approaches the constant W at high energy
@ unitarity respected, and unltarlty bound becomes a bound on myy,

Coupling g&, = Gm?, in IVB theory is dimensionless: renormalisable?

P,u PV

@ No: propagator contains Eeralieg problematic high-energy behaviour

@ No problem if IVB coupled to conserved current (would give no
contrib.), but V# [me — m,,_ # 0], A* [me + m,, # 0] not conserved

Even if me,,, = 0, so weak current conserved:
@ massive vector bosons must be electrically charged = non-renormalisable EM interaction

@ problems with unitarity in the boson-boson cross section, can be cured if a further, neutral
boson is introduced

Way out: start with massless bosons (renormalisable) and generate mass

dynamically (renormalisability remains)
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Massive vector bosons

Proca Langrangian for free massive vector particles:
2
Lproca = — s Fu F"™ + Sm*W,W*  F,, = 0,W, — 9, W,
Equations of motion:

0— 0 EProca

_9 6£Proca
ow, Y00, W,.)
= 0=m*W" —9,(—F"")
= 0= (04 m?>)WH — "9, W
Taking the divergence
(@ + m?)9,WH — 09, W» = m?9,WH =0 = 9,W" =0
Plug back
(O+m?)WH =0
DuWH =0
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Massive vector bosons (contd.)

EOM most easily solved in momentum space
W) = [ 0, s {hBle Pai(5) + < (B)e”"b}(5)}
dQ,: invariant phase-space measure, p® = /P2 + m2
Polarisation vectors 5?(5)
e satisfy p-¢j(p) = 0, three independent solutions, e.g.
o =1(0,512) p-sip= Si-§j=0j i,j=1,2

A

et = 1(|B|, p°p) p=

i“ci

3

e longitudinal polarisation e§ = % + W(—l,f))

M_glb*

@ for our choice ¢ ; in general one imposes

E,‘~€j=—5,‘j i,j:l,2,3

@ orthonormal basis of 3d space transverse to four-momentum p

— _ v . PEPY
ZJ 1 J (p) (p) - n + m2
T —




Massive vector bosons (contd.)

Class of interacting theories: massive vector boson coupled to current j*
L= ﬁProca - WMJH
EOM: replace m*> W* — m?>WH — j#
(O + m?)WH — 919, W" = j»
Taking the divergence
m29, W = 9,,j*

Plug back

(04 m)WH = (n" + 25°) j,
Green's function (propagator) D*¥(x) connects solution to the current

WH(x) = / d*y D" (x — y)ju(y)

v 1
D = (77#”_1_%) D+m2
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Massive vector bosons (contd.)

Momentum space propagator
_phv o PEPY
pr — (/[ e
- 2 _ 2
p m

We are ignoring the choice of prescription to deal with the pole at p? = m?

Second term can lead to bad high energy behaviour: in momentum space
D#¥ couples to Fourier transform 7 of j# = p,7* from the second term

@ conserved current J,j* =0 = p,j* = 0, potentially dangerous term
has no effect
@ only second term of longitudinal polarisation vector 3 contributes to

Feynman diagrams, no troublesome high-energy behaviour
Can give the photon a mass without spoiling
renormalisability despite loss of gauge invariance

e if p,j* # 0 = cannot drop p*p” term, theory non renormalisable due
to its bad high-energy behaviour

= cannot give mass to IVB "by hand” for use in weak interactions
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Spontaneous symmetry breaking: Goldstone's theorem

Trick used to give mass to IVB combines gauge invariance and massless
scalar particles appearing in a theory with spontaneously broken symmetry
@ What is spontaneous breaking of a symmetry?
e Why do massless scalars (Goldstone bosons) appear in the spectrum?

Massless modes from breaking of a global continuous symmetry due to the
non-invariance of the vacuum (ground state)

@ EOM of a system being symmetric does not mean that every solution
should be symmetric

@ if minimal-energy solution not symmetric then not unique: selecting
one solution the system breaks symmetry (spontaneous breaking)

@ if symmetry is continuous, moving from one minimal-energy solution
to another costs no energy = massless modes

@ Goldstone theorem: one massless mode for every generator of the
symmetry broken by the vacuum
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Spontaneous breaking of a gauge symmetry

If “broken” symmetry is a gauge (local) symmetry, “would-be” Goldstone
modes “absorbed” by gauge bosons corresponding to the broken generators
as their longitudinal (zero helicity) modes, making them massive

A gauge symmetry cannot be broken (Elitzur's theorem):
what can be broken is the corresponding global symmetry

Q. Why is Goldstone theorem ineffective when the symmetry is local?

A. Quantisation of a gauge theory requires gauge fixing (which breaks the
local symmetry explicitly)

@ using “physical” gauges (e.g., Coulomb gauge V-A=0, axial gauge
As = 0): if we ask for only physical states in Hilbert space, then
gauge choice cannot respect Lorentz covariance (required by theorem)

@ using covariant gauges (e.g., Lorenz gauge 0,A* = 0): theorem
applies, but Hilbert space contains unphysical, negative-norm states
corresponding to remaining gauge modes (gauge fixing only partial);
Goldstone mode is such a gauge mode, decoupled from physical states
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Goldstone bosons

N real scalar fields ¢;(x), treat classically

Path-integral quantisation in mind
L=130,0:0"¢;i — (9)
Potential (¢): polynomial, includes mass (quadratic) terms, at most
4th-order for renormalisability
Assume {¢;} basis of rep. space of N-dim unitary rep. of Lie group G
i(x) = (g9)i(x) = Dy(g)dj(x)  D(g) = =BT c;(g) R
D(g): N x N unitary matrices, D(g1)D(g2) = D(g1&2) Vg2 € G
T2 N x N real antisymmetric matrices, a=1,...n = dimG,
provide representation of group algebra [T?, T?] = —f2bcT¢
Real fields = real representation = orthogonal representation

N complex scalar fields ¢; = galR + icp,( = 2N real fields
unitary N x N representation dp = iezt?¢ = 2N X 2N orthogonal representation d¢ = ¢, T?¢

To— —Imt® —Ret?
~ \Ret?® —Imt?
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Goldstone bosons (contd.)

Assume L invariant under G, (g¢) = (¢) (G is an internal symmetry)
Energy functional: bounded from below if is, set minimum to 0

El] = / d*x [3000iodi + 31 - Vi +(9)] > 0

Ground state (vacuum state in relativistic QFT): state of minimal (zero)
energy = constant field configuration ¢;(x) = ¢o; with (¢o) =0

Minimal E since no contribution from derivative
terms, and minimal potential since min =0

If 3g, gdo # o = more than one ground state ((g¢o) = (¢o) = 0)

M: manifold of ground states M = {¢¢ | (¢0) = 0}

G-orbit of ¢pg € M: Goo={g¢o | g € G}

By construction GM = M; we further assume M = G¢g for any ¢g i.e.,
any ¢y can be reached from any ¢ by some g

If M contains more than one state, then we say that the symmetry G is
broken: any ¢¢ € M will not be left invariant by all g
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Goldstone bosons (contd.)

Stability group H: subgroup of G that leaves ground state invariant

H={he G| hgo = o}

If h1’2 cH, h1h2¢0 = (bo = h1h2 € H; ec H,;
ifhe€ H, h=1¢g=h"Thpo=¢o = h~1 € H

Stability groups defined using different ¢g
are isomorphic since M = G¢g

Unbroken part of the symmetry group

(Right) cosets: gH = {gh|h € H}
@ correspond uniquely to equivalence class wrt relation gy ~ go if
g1 = goh for some h € H (elements of G modulo elements of H);
@ invariant under right multiplication by h € H

(Right) coset space G/H: set of cosets/equivalence classes gH
Choosing some ¢q

e for any ¢y € M can write ¢ = g non-uniquely (ghdo=gepo, he H)
@ g¢o corresponds uniquely to a coset gH = M = G/H
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