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Limitations of the four-fermion theory (contd.)

When does the effective theory break down?
Problems with unitarity at high energy already at tree level

Can be cured only using higher orders of perturbation theory
⇒ back to problem of non-renormalisability

e νe elastic scattering:

tree-level amplitude polynomial in four-momenta (no propagators)
⇒ polynomial in cos θCM

θCM: angle between incoming/outgoing trajectories in CM frame

partial-wave expansion of the amplitude contains only a finite number
of partial waves, with amplitude fJ

from dimensional analysis: σtot ∼ G 2s at high energy

from partial-wave expansion: σtot ∝ p−1
∑

(2J + 1)|fJ |2

from unitarity of the S-matrix: |fJ |2 ≤ ImfJ
p: magnitude of the initial momenta in the CM frame

⇒ one of partial wave amplitudes will eventually violate unitarity bound
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Limitations of the four-fermion theory (contd.)

e νe elastic scattering: considering only charged current for simplicity

J = 0 partial wave: f0 = Gs
2
√

2π

unitarity bound: |Ref0| ≤ 1
2

tree-level amplitude is real ⇒ Gs√
2π
≤ 1

⇒ unitarity violated for s >
√

2π
G ' (600GeV)2, breakdown of the theory

How to improve the situation? Replace four-fermion interaction with
exchange of massive intermediate vector boson (Yukawa, 1930s)

Differential cross section (for |t| � mW , mW : mass of IVB):

dσ
d |t|
∣∣
FF

= G2

π −→
dσ
d |t|
∣∣
IVB

= G2

π
m4

W

(m2
W +|t|)2

Boson exchange → propagator 1
m2

W +|t|2 :

all partial waves are present

cuts off the contribution of large tranferred momentum
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Limitations of the four-fermion theory (contd.)

For the total cross section, integrate over 0 ≤ |t| ≤ s (ignore e mass)

σ|FF =
∫ s

0 d |t| dσd |t|
∣∣
FF

= G2

π s −→ σ|IVB =
∫ s

0 d |t| dσd |t|
∣∣
IVB

=
G2m2

W
π

s
s+m2

W

In the IVB case, total cross section σ

rises linearly with s at low energy

approaches the constant
G2m2

W
π at high energy

unitarity respected, and unitarity bound becomes a bound on mW

Coupling g2
W = Gm2

W in IVB theory is dimensionless: renormalisable?

No: propagator contains
pµpν
p2m2

W
⇒ problematic high-energy behaviour

No problem if IVB coupled to conserved current (would give no
contrib.), but V µ [me −mνe 6= 0], Aµ [me + mνe 6= 0] not conserved

Even if me,νe = 0, so weak current conserved:
massive vector bosons must be electrically charged ⇒ non-renormalisable EM interaction
problems with unitarity in the boson-boson cross section, can be cured if a further, neutral
boson is introduced

Way out: start with massless bosons (renormalisable) and generate mass
dynamically (renormalisability remains)

Matteo Giordano (ELTE) Weak Interactions October 21, 2020 3 / 12



Massive vector bosons

Proca Langrangian for free massive vector particles:

LProca = −1
4FµνF

µν + 1
2m

2WµW
µ Fµν = ∂µWν − ∂νWµ

Equations of motion:

0 =
∂LProca
∂Wµ

− ∂ν
∂LProca
∂(∂νWµ)

⇒ 0 = m2W µ − ∂ν(−F νµ)

⇒ 0 = (2 + m2)W µ − ∂µ∂νW ν

Taking the divergence

(2 + m2)∂µW
µ −2∂νW

ν = m2∂µW
µ = 0⇒ ∂µW

µ = 0

Plug back
(2 + m2)W µ = 0

∂µW
µ = 0
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Massive vector bosons (contd.)

EOM most easily solved in momentum space

W µ(x) =

∫
dΩp

∑3
j=1

{
εµj (~p )e−ip·xaj(~p ) + εµj

∗(~p )e ip·xb†j (~p )
}

dΩp : invariant phase-space measure, p0 =
√
~p 2 + m2

Polarisation vectors εµj (~p)

satisfy p · εj(~p ) = 0, three independent solutions, e.g.

εµ1,2 = (0,~s1,2 ) ~p ·~s1,2 = 0 ~si ·~sj = δij i , j = 1, 2

εµ3 = 1
m (|~p |, p0p̂) p̂ = ~p

|~p|

longitudinal polarisation εµ3 = pµ

m + m
p0+|~p |(−1, p̂)

for our choice εµi = εµi
∗; in general one imposes

εi · ε∗j = −δij i , j = 1, 2, 3

orthonormal basis of 3d space transverse to four-momentum p∑3
j=1 ε

µ
j (~p )ενj

∗(~p ) = −ηµν + pµpν

m2
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Massive vector bosons (contd.)

Class of interacting theories: massive vector boson coupled to current jµ

L = LProca −Wµj
µ

EOM: replace m2W µ → m2W µ − jµ

(2 + m2)W µ − ∂µ∂νW ν = jµ

Taking the divergence
m2∂µW

µ = ∂µj
µ

Plug back
(2 + m2)W µ =

(
ηµν + ∂µ∂ν

m2

)
jν

Green’s function (propagator) Dµν(x) connects solution to the current

W µ(x) =

∫
d4y Dµν(x − y)jν(y)

Dµν =
(
ηµν + ∂µ∂ν

m2

) 1

2 + m2
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Massive vector bosons (contd.)

Momentum space propagator

D̃µν =
−ηµν + pµpν

m2

p2 −m2

We are ignoring the choice of prescription to deal with the pole at p2 = m2

Second term can lead to bad high energy behaviour: in momentum space
D̃µν couples to Fourier transform ̃µ of jµ ⇒ pµ̃

µ from the second term

conserved current ∂µj
µ = 0 ⇒ pµ̃

µ = 0, potentially dangerous term
has no effect

only second term of longitudinal polarisation vector ε3 contributes to
Feynman diagrams, no troublesome high-energy behaviour

Can give the photon a mass without spoiling
renormalisability despite loss of gauge invariance

if pµ̃
µ 6= 0 ⇒ cannot drop pµpν term, theory non renormalisable due

to its bad high-energy behaviour

⇒ cannot give mass to IVB “by hand” for use in weak interactions
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Spontaneous symmetry breaking: Goldstone’s theorem

Trick used to give mass to IVB combines gauge invariance and massless
scalar particles appearing in a theory with spontaneously broken symmetry

What is spontaneous breaking of a symmetry?

Why do massless scalars (Goldstone bosons) appear in the spectrum?

Massless modes from breaking of a global continuous symmetry due to the
non-invariance of the vacuum (ground state)

EOM of a system being symmetric does not mean that every solution
should be symmetric

if minimal-energy solution not symmetric then not unique: selecting
one solution the system breaks symmetry (spontaneous breaking)

if symmetry is continuous, moving from one minimal-energy solution
to another costs no energy ⇒ massless modes

Goldstone theorem: one massless mode for every generator of the
symmetry broken by the vacuum
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Spontaneous breaking of a gauge symmetry

If “broken” symmetry is a gauge (local) symmetry, “would-be” Goldstone
modes “absorbed” by gauge bosons corresponding to the broken generators
as their longitudinal (zero helicity) modes, making them massive

A gauge symmetry cannot be broken (Elitzur’s theorem):
what can be broken is the corresponding global symmetry

Q. Why is Goldstone theorem ineffective when the symmetry is local?

A. Quantisation of a gauge theory requires gauge fixing (which breaks the
local symmetry explicitly)

using “physical” gauges (e.g., Coulomb gauge ~∇ · ~A = 0, axial gauge
A3 = 0): if we ask for only physical states in Hilbert space, then
gauge choice cannot respect Lorentz covariance (required by theorem)

using covariant gauges (e.g., Lorenz gauge ∂µA
µ = 0): theorem

applies, but Hilbert space contains unphysical, negative-norm states
corresponding to remaining gauge modes (gauge fixing only partial);
Goldstone mode is such a gauge mode, decoupled from physical states
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Goldstone bosons

N real scalar fields φi (x), treat classically
Path-integral quantisation in mind

L = 1
2∂µφi∂

µφi − (φ)

Potential (φ): polynomial, includes mass (quadratic) terms, at most
4th-order for renormalisability

Assume {φi} basis of rep. space of N-dim unitary rep. of Lie group G

φi (x)→ (gφ)i (x) = Dij(g)φj(x) D(g) = eεa(g)T a
εa(g) ∈ R

D(g): N × N unitary matrices, D(g1)D(g2) = D(g1g2) ∀ g1,2 ∈ G

T a: N × N real antisymmetric matrices, a = 1, . . . n = dimG ,
provide representation of group algebra [T a,T b] = −f abcT c

Real fields ⇒ real representation ⇒ orthogonal representation

N complex scalar fields ϕi = ϕR
i + iϕI

i ⇒ 2N real fields
unitary N × N representation δϕ = iεataϕ ⇒ 2N × 2N orthogonal representation δφ = εaT aφ

T a =

(
−Imta −Reta

Reta −Imta

)
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Goldstone bosons (contd.)

Assume L invariant under G , (gφ) = (φ) (G is an internal symmetry)
Energy functional: bounded from below if is, set minimum to 0

E [φ] =

∫
d3x

[
1
2∂0φi∂0φi + 1

2
~∇φi · ~∇φi + (φ)

]
≥ 0

Ground state (vacuum state in relativistic QFT): state of minimal (zero)
energy = constant field configuration φi (x) = φ0 i with (φ0) = 0

Minimal E since no contribution from derivative
terms, and minimal potential since min = 0

If ∃g , gφ0 6= φ0 ⇒ more than one ground state ((gφ0) = (φ0) = 0)

M: manifold of ground states M = {φ0 | (φ0) = 0}
G-orbit of φ0 ∈M: Gφ0 = {gφ0 | g ∈ G}
By construction GM =M; we further assume M = Gφ0 for any φ0 i.e.,
any φ′0 can be reached from any φ0 by some g

If M contains more than one state, then we say that the symmetry G is
broken: any φ0 ∈M will not be left invariant by all g
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Goldstone bosons (contd.)

Stability group H: subgroup of G that leaves ground state invariant

H = {h ∈ G | hφ0 = φ0}
If h1,2 ∈ H, h1h2φ0 = φ0 ⇒ h1h2 ∈ H; e ∈ H;
if h ∈ H, h−1φ0 = h−1hφ0 = φ0 ⇒ h−1 ∈ H

Stability groups defined using different φ0

are isomorphic since M = Gφ0

Unbroken part of the symmetry group

(Right) cosets: gH = {gh | h ∈ H}
correspond uniquely to equivalence class wrt relation g1 ∼ g2 if
g1 = g2h for some h ∈ H (elements of G modulo elements of H);

invariant under right multiplication by h ∈ H

(Right) coset space G/H: set of cosets/equivalence classes gH

Choosing some φ0

for any φ′0 ∈M can write φ′0 = gφ0 non-uniquely (ghφ0 =gφ0, h∈H)

gφ0 corresponds uniquely to a coset gH ⇒ M = G/H
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