Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest
October 15, 2020

Third quark family: b quark

b (bottom) quark Discovered @Fermilab in 1977 by Lederman et al.:

- proton beam against platinum target, process $p p \rightarrow \ell^{+} \ell^{-} X$
- look mostly for $\ell=\mu$: large penetrating power, survive filtering required to remove all uninteresting hadrons from final products
- n. of events vs. $\mu^{+} \mu^{-}$invariant mass shows narrow bump (resonance) at $\sqrt{s}=9.46 \mathrm{GeV}$, identified as $\Upsilon=$ bound state of a new quark
- $s_{\Upsilon}=1, m_{\Upsilon}=9.46 \mathrm{GeV}, \Gamma_{\Upsilon}=44.3 \mathrm{keV} \rightarrow \tau_{\Upsilon}=1.2 \cdot 10^{-20} s$
- Υ : ground state of bottomonium, $b \bar{b}$ bound state, can also be seen in lepton collider via $e^{+} e^{-} \rightarrow \Upsilon \rightarrow$ hadrons $\left(m_{b}=4.2 \mathrm{GeV}, q_{b}=-\frac{1}{3}\right)$
- narrow $\Gamma \uparrow$ from small Υ coupling to hadrons (OZI rule), but stronger than EM coupling \Rightarrow intermediate τ_{Υ} between hadronic and EM
- lightest mesons with nonzero "bottomness": B mesons $B^{0}=d \bar{b}, \bar{B}^{0}=b \bar{d}, B^{+}=u \bar{b}, B^{-}=b \bar{u}, m_{B} \simeq 5.3 \mathrm{GeV}$
- $B^{0}-\bar{B}^{0}$ similar to $K^{0}-\bar{K}^{0}$ system \rightarrow "bottomness" oscillations

Third quark family: t quark

t (top) quark Discovered @Fermilab in 1995 by CDF and D \varnothing exp.:

- $m_{t}=173 \mathrm{GeV}$ - heaviest known elementary particle, $q_{t}=\frac{2}{3}$
- no top-antitop bound states have been observed: top quark decays in about $10^{-25} s$, not enough time to hadronise
- third quark family suggested already in 1973 by Kobayashi and Maskawa \Rightarrow minimal number of families allowing for $C P$ violating effects in the weak Lagrangian

Existence of three and only three families of leptons with light neutrinos has been extablished experimentally at LEP

CKM matrix

Assuming n families of quarks and universality of charged weak interactions

$$
J_{h}^{\alpha}=\sum_{f, f^{\prime}=1}^{n} \bar{\alpha}_{f} \mathcal{O}_{L}^{\alpha} \kappa_{f^{\prime}} V_{f f^{\prime}}
$$

f th quark family: $\binom{\alpha_{f}}{\kappa_{f}}, V: n \times n$ unitary matrix, $V^{\dagger} V=\mathbf{1}$
Unitarity required so that appropriate linear combinations of κ_{f} interact with corresponding α_{f} like leptons and corresponding neutrinos do

$$
\kappa_{f}^{\prime}=\sum_{f^{\prime}=1}^{n} V_{f f^{\prime}} \kappa_{f^{\prime}} \quad\left(\text { recall } d^{\prime}=\cos \theta_{C} d+\sin \theta_{C} s\right)
$$

How many physically relevant parameters are contained in V ?

CKM matrix (contd.)

General complex $n \times n$ matrix has $2 n^{2}$ real parameters. Unitarity implies

$$
\sum_{k} V_{i k} V_{j k}^{*}=\delta_{i j}
$$

$\Rightarrow n$ real relations $\sum_{k}\left|V_{i k}\right|^{2}=1$ for $i=j$
$\Rightarrow \frac{n(n-1)}{2}$ complex rel. $\sum_{k} V_{i k} V_{j k}^{*}=0$ for $i \neq j \Rightarrow n(n-1)$ real rel.
$\Rightarrow n+n(n-1)=n^{2}$ real rel., reduce n . of real parameters in V to $2 n^{2}-n^{2}=n^{2}$

Not all n^{2} parameters are physically meaningful: can redefine $\alpha_{f} \rightarrow e^{i \phi_{f}} \alpha_{f}$ and $\kappa_{f} \rightarrow e^{i \psi_{f}} \kappa_{f}$ independently without any observable physical effect

Does not affect QCD Lagrangian which has $U(1)^{2 n}$ flavour symmetry
Since $V_{j k} \rightarrow e^{-i\left(\phi_{j}-\psi_{k}\right)} V_{j k}$ one can set to zero the phase of a certain number of matrix elements (unphysical phases)

CKM matrix (contd.)

N. of independent phase factors $e^{-i\left(\phi_{j}-\psi_{k}\right)}$: write

$$
\phi_{j}-\psi_{k}=\left(\phi_{1}-\psi_{1}\right)+\left(\phi_{j}-\phi_{1}\right)-\left(\psi_{k}-\psi_{1}\right)
$$

- can choose the first term on the right-hand side arbitrarily
- $n-1$ independent differences $\phi_{j}-\phi_{1}, n-1$ independent differences $\psi_{k}-\psi_{1} \Rightarrow 1+2(n-1)=2 n-1$ independent phase factors
- alternatively: can change all phases ϕ_{j}, ψ_{k} by same amount w/out changing differences, n . of independent phase diff. reduced to $2 n-1$ Number of physically meaningful real parameters in V :

$$
n^{2}-2 n+1=(n-1)^{2}
$$

- $n \times n$ unitary matrices $\supset n \times n$ real orthogonal matrices as subspace
- general $n \times n$ orthogonal matrix depends on $\frac{n(n-1)}{2}$ angles $\Rightarrow \frac{n(n-1)}{2}$ angles among n^{2} real parameters of unitary matrix
- remaining $n^{2}-\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$ parameters are phases, but not all physical: only $\frac{n(n+1)}{2}-2 n+1=\frac{(n-1)(n-2)}{2}$ are physical

CKM matrix (contd.)

Summarising: $\frac{n(n-1)}{2}$ quark mixing angles, $\frac{(n-1)(n-2)}{2}$ physical phases
$n=1$ family: $\quad 0$ angles, 0 phases (nothing to mix)
$n=2$ families: $\quad 1$ angles, 0 phases (V is real, $C P$ conserved)
$n=3$ families: $\quad 3$ angles, 1 phase (V complex, $C P$ violation possible)
Matrix V: Kobayashi-Maskawa, or Cabibbo-Kobayashi-Maskawa matrix
Possible parameterisation: treat (d, s, b) as coordinates (z, y, x)
Most general 3d rotation (Euler angles):

1. θ_{3} around $z \quad$ 2. θ_{1} around (new) $x \quad$ 3. θ_{2} around (new) z

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{2} & s_{2} \\
0 & -s_{2} & c_{2}
\end{array}\right)\left(\begin{array}{ccc}
c_{1} & s_{1} & 0 \\
-s_{1} & c_{1} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{3} & s_{3} \\
0 & -s_{3} & c_{3}
\end{array}\right)
$$

$$
c_{i}=\cos \theta_{i}, s_{i}=\sin \theta_{i}
$$

CKM matrix (contd.)

Summarising: $\frac{n(n-1)}{2}$ quark mixing angles, $\frac{(n-1)(n-2)}{2}$ physical phases
$n=1$ family: $\quad 0$ angles, 0 phases (nothing to mix)
$n=2$ families: $\quad 1$ angles, 0 phases (V is real, $C P$ conserved)
$n=3$ families: $\quad 3$ angles, 1 phase (V complex, $C P$ violation possible)
Matrix V: Kobayashi-Maskawa, or Cabibbo-Kobayashi-Maskawa matrix
Possible parameterisation: treat (d, s, b) as coordinates (z, y, x)
Most general 3d rotation (Euler angles):

1. θ_{3} around $z \quad$ 2. θ_{1} around (new) $x \quad$ 3. θ_{2} around (new) z

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{2} & s_{2} \\
0 & -s_{2} & c_{2}
\end{array}\right)\left(\begin{array}{ccc}
c_{1} & s_{1} & 0 \\
-s_{1} & c_{1} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{3} & s_{3} \\
0 & -s_{3} & c_{3}
\end{array}\right)
$$

$$
c_{i}=\cos \theta_{i}, s_{i}=\sin \theta_{i}
$$

CKM matrix (contd.)

To make remaining phase physical include it in $(3,3)$ element of $2 n d$ factor

$$
V=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{2} & s_{2} \\
0 & -s_{2} & c_{2}
\end{array}\right)\left(\begin{array}{ccc}
c_{1} & s_{1} & 0 \\
-s_{1} & c_{1} & 0 \\
0 & 0 & e^{i \delta}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{3} & s_{3} \\
0 & -s_{3} & c_{3}
\end{array}\right)
$$

Cannot be removed by a phase redefinition
$\delta: C P$-violating phase
$V=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)=\left(\begin{array}{ccc}c_{1} & s_{1} c_{3} & s_{1} s_{3} \\ -s_{1} c_{2} & c_{1} c_{2} c_{3}-e^{i \delta} s_{2} s_{3} & c_{1} c_{2} s_{3}+e^{i \delta} s_{2} c_{3} \\ s_{1} s_{2} c_{2} & -c_{1} s_{2} c_{3}-e^{i \delta} c_{2} s_{3} & -c_{1} s_{2} s_{3}+e^{i \delta} c_{2} c_{3}\end{array}\right)$
Experimental fact: d, s have small mixing with $b \Rightarrow$ expect $\theta_{2,3}$ small

$$
V \simeq\left(\begin{array}{ccc}
c_{1} & s_{1} & 0 \\
-s_{1} & c_{1} & 0 \\
0 & 0 & e^{i \delta}
\end{array}\right)
$$

\Rightarrow identify $\theta_{1} \simeq \theta_{C}$

CKM matrix (contd.)

Retaining leading contributions

$$
V \simeq\left(\begin{array}{ccc}
1 & s_{1} & s_{1} s_{3} \\
-s_{1} & 1 & s_{3}+e^{i \delta} s_{2} \\
s_{1} s_{2} & -s_{2}-e^{i \delta} s_{3} & e^{i \delta}
\end{array}\right)
$$

Main processes involve transitions $d \leftrightarrow u, s \leftrightarrow c$ and $b \leftrightarrow t$ \Rightarrow concept of families physically meaningful, dominant decays involve transitions within families

Experimental results for first row of CKM matrix:

$$
\left|V_{u d}\right|=0.97420(21) \quad\left|V_{u s}\right|=0.2243(5) \quad\left|V_{u b}\right|=3.94(36) \cdot 10^{-3}
$$

- $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9994(5)$, good agreement with unitarity
- $\left|V_{u b}\right| /\left|V_{u d}\right|=\left|s_{3}\right| \simeq 2 \cdot 10^{-2} \Rightarrow \theta_{3}$ small
- $\left|V_{t d}\right|$ also small \Rightarrow small $\left|s_{2}\right| \Rightarrow$ small θ_{2}

Limitations of the four-fermion theory

Main theoretical problem of four-fermion theory is lack of renormalisability

- $[G]=[m]^{d_{G}}=[m]^{-2} \Rightarrow$ new divergences as perturbative order increases: with F fields @vertex $\Rightarrow 4=d_{G}+\frac{3}{2} F \Rightarrow F=\frac{8}{3}-\frac{2}{3} d_{G}$

$$
D_{\text {div }}=\underbrace{4(I-V+1)}_{\text {momentum integrals }}-\underbrace{I}_{\text {propagators }}=3 I-4 V+4
$$

Using topological relation $2 I+E=F V$

$$
\begin{aligned}
& D_{\text {div }}=\frac{3}{2}(F V-E)-4 V+4=\left(\frac{3}{2} F-4\right) V-\frac{3}{2} E+4 \\
\Longrightarrow & D_{\text {div }}>0 \text { if } E<\left(F-\frac{8}{3}\right) V+\frac{8}{3}=-d_{G} V+\frac{8}{3}=\frac{4}{F=4}(V+2)
\end{aligned}
$$

- requires infinitely many counterterms resulting in lack of predictivity

Can treat 4-fermion theory as an effective theory: renormalised up to n counterterms is predictive up to energy where effects of $(n+1)$ th type of divergence show up; theoretically unsatisfactory, however

