Weak Interactions

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

> ELTE 09/09/2020

Matteo Giordano (ELTE)

Weak interactions

Matteo Giordano

(I am the one in the back)

How to find me:

- Elmeleti Fizika Tanszék room 1.119
- email: giordano@bodri.elte.hu

Lecture notes and other info: http://bodri.elte.hu/~giordano/

Matteo Giordano (ELTE)

Weak Interactions

Lectures on Wednesday 10–12 and Thursday 14–15

Exam:

- solve one of the exercises listed on the webpage (written part)
- discuss one subject from the syllabus (oral part)
- sacrifice a chicken to Yog-Sothoth

Introduction

Weak interactions: one of the four fundamental interactions in Nature

- Responsible for
 - β-decays of nuclei and other hadronic decays (pions, kaons, hyperons)
 - decays of elementary particles (muons and taus)
 - reactions of astrophysical relevance involving neutrinos
 - parity-violating effects, including in atomic spectra
 - ► ...
- All elementary particles (quarks and leptons) interact weakly, in an essentially universal manner
- Least symmetric of interactions, violate *P*, *C*, *CP*, *T*, and most flavour symmetries
- Only symmetries fully respected: Poincaré, *CPT*, baryon and lepton number

Lepton family number also a good symmetry if neutrinos were massless

Tiny nonperturbative effects leave only B - L as a symmetry

Modern perspective: weak interactions unified with electromagnetism in terms of a spontaneously broken gauge theory of the group $SU(2) \times U(1)$

- EM part = exchange of massless, electrically neutral photons
- weak part = exchange of massive *intermediate vector bosons*
 - ► charged W[±] bosons (m_W ≃ 80 GeV), mediate charged weak interactions
 - ▶ neutral Z⁰ boson (m_Z ≃ 90 GeV), mediates neutral weak interactions

Low energy approximation (sufficient for most phenomenology at low energy): four-fermion interaction

Brief history

1896, H. Becquerel: discovery of radioactivity

1899, E. Rutherford: classification of α , β and γ rays as radiation of increasing penetrating power

1900, H. Becquerel: measures mass and charge-to-mass ratios of the β rays, shows that they are electrons (discovered in 1897 by J. J. Thomson) α rays= helium nuclei ${}_{2}^{4}$ He; γ rays= highly energetic photons

1913, N. Bohr: suggests β -rays originate from atomic nucleus (discovered by E. Rutherford in 1911)

1914, J. Chadwick: continuous energy spectrum of β -rays

1927, C. D. Ellis and W. A. Wooster: missing energy in ${}^{210}_{83}\text{Bi} \rightarrow {}^{210}_{84}\text{Po}$ energy release of the reaction in a calorimeter \neq max. energy of β -rays, only = average energy 1930, W. Pauli: neutrino hypothesis – new spin- $\frac{1}{2}$ particle emitted in β -decay, which goes undetected and carries away the missing energy 1932, J. Chadwick: discovery of neutron

1933-34, E. Fermi: first theory of β -decay based on reaction $n \rightarrow p \, e^- \bar{\nu}_e$

Inspiration: QED + Heisenberg's nucleon (p and $n \sim$ same particle)

In QED the interaction couples two vector: EM current and photon field

Replace the proton electric current with a neutron-proton current, and gauge field with neutrino-electron current

$$\mathcal{H}_{\mathrm{Fermi}}^{\mathrm{int}} = G \int d^3x \left(\bar{p}(x) \gamma^{\mu} n(x) \right) \left(\bar{e}(x) \gamma_{\mu} \nu(x) \right) + \mathrm{h.c.}$$

Fermi concluded neutrino massless or very light, and $G \simeq 0.3 \cdot 10^{-5} \, \mathrm{GeV^{-2}}$ (Fermi constant, modern value: $G \simeq 1.1 \cdot 10^{-5} \, \mathrm{GeV^{-2}}$)

Neutrinos worked phenomenologically, but detected only in 1956 (Reines and Cowan, studying the inverse reaction $\bar{\nu}_e + p \rightarrow n + e^+$)

Fermi theory of β -decay (contd.)

1936, Gamow: generalisation of Fermi's Hamiltonian (most general four-fermion non derivative couplings)

$$H_{\beta}^{\text{int}} = -\int d^3x \, \mathcal{L}_{\beta}^{\text{int}}(x)$$
$$\mathcal{L}_{\beta}^{\text{int}}(x) = -\sum_{j=1}^{5} g_j (\bar{p}(x) M_j n(x)) (\bar{e}(x) M^j \nu(x))$$

 $+ g'_j (\bar{p}(x) M_j n(x)) (\bar{e}(x) M_j \gamma^5 \nu(x)) + \text{h.c.}$

 $M^j = \mathbf{1}, \gamma^5, \gamma^{\mu}, \gamma^{\mu}\gamma^5, \sigma^{\mu\nu}$ and g_j, g_j' (generally complex) couplings Terms differing by a permutation of the fields can be reduced to these by Fierz transformations T invariance $\Rightarrow g_j, g_j' \in \mathbb{R}, P$ invariance $\Rightarrow g_j' = 0$ These seemed perfectly reasonable requirements at the time 1936, Anderson and Neddermayer: discovery of muon in cosmic rays (mistaken for Yukawa's meson)

1947, Powell, Occhialini and Lattes: discovery of pion in cosmic rays, was actually Yukawa's meson, and decays into muon

muon does not interact strongly, decayed weakly $\mu^- \to e^- \, \bar{\nu}_e \, \nu_\mu$

1962, Lederman et al.: two types of neutrino

1947, Pontecorvo: suggests that weak interactions couple muons and electrons to hadrons in the same way (μ -e universality)

1948, Puppi: approximate equality of couplings in muon decay and in β -decays

 \Rightarrow universality of weak interactions, i.e., they affect equally leptons and nuclei

 θ - τ puzzle:

$$\theta^+ \to \pi^+ \, \pi^+ \, \pi^- \qquad \tau^+ \to \pi^+ \, \pi^0$$

- scalar particles
- decays suggest different parity $P_{ heta} = -1$ and $P_{ au} = +1 \dots$
- ... but same mass and lifetime!

1956, T. D. Lee and C. N. Yang: they are the same particle, $\theta = \tau = K$, but weak interactions **do not conserve parity** 1957, Wu *et al.*; Garwin *et al.*: experimental confirmation of parity violations in weak processes

Parity violations seen but not recognised in Cox (1928) and Chase (1930)

V - A structure of the interaction

1956-57: accepting P breaking led to understand V - A structure

- *P* breaking \Rightarrow $g'_i \neq 0$ allowed (10 couplings)
- two-component neutrino hypothesis (Salam; Landau; Lee & Yang): neutrinos have definite helicity ⇒ 5 couplings, specific definite-handedness part of the ν field in L
- extended to all fields (Feynman & Gell-Mann; Sudarshan & Marshak):

$$\begin{aligned} \mathcal{L}_{\beta}^{\text{int}} &= -\frac{G_{\beta}}{\sqrt{2}} \big(\bar{p}(x) \gamma^{\alpha} \big(1 - \frac{g_{V}}{g_{A}} \gamma^{5} \big) n(x) \big) \big(\bar{e}(x) \gamma_{\alpha} \big(1 - \gamma^{5} \big) \nu_{e}(x) \big) + \text{h.c.} \\ \mathcal{L}_{\mu}^{\text{int}} &= -\frac{G_{\mu}}{\sqrt{2}} \big(\bar{\mu}(x) \underbrace{\gamma^{\alpha} \big(1 - \gamma^{5} \big)}_{V-A} \nu_{\mu}(x) \big) \big(\bar{e}(x) \gamma_{\alpha} \big(1 - \gamma^{5} \big) \nu_{e}(x) \big) + \text{h.c.} \end{aligned}$$

 G_eta , G_μ : dimensions M^{-2} , $G_eta/G_\mu\simeq 0.98$; g_V/g_A real dimensionless

• same coupling for μ (pointlike) and n (extended) \sim electric charge (same for e^+ and p) \Rightarrow conserved vector current (CVC) hypothesis (conservation of hadronic current: 1956, Gershtein; 1958, Feynman)

1950s-1960s: hadron "zoo" – many new hadrons, often decaying weakly, w/ leptons in the final state (*semileptonic*) or w/out (*nonleptonic decay*) Should a new hadronic current be added to \mathcal{L} for each new hadron?

1958, Feynman: only a few hadronic currents with the appropriate quantum numbers suffice; have to be assumed since no fundamental description available for hadrons

1964, M. Gell-Mann; G. Zweig: quark hypothesis – hadrons are bound states of quarks, and quark currents appear in the weak Lagrangian

Nuclear β -decay and charged-pion decay \sim same decay process of the d quark, $d \rightarrow u e^- \bar{\nu}_e$, with quark current

$$ar{u}\gamma^{lpha}(1-\gamma^5)\,d$$

Hadronic currents and the quark model (contd.)

Incomplete since strangeness-changing processes not allowed

 $K^+ \rightarrow \mu^+ \nu_\mu$ (semileptonic) $K^+ \rightarrow \pi^+ \pi^+ \pi^-, K^+ \rightarrow \pi^+ \pi^0$ (nonleptonic)

1963, Cabibbo: "rotate" the *d* quark

$$\bar{u}\gamma^{lpha}(1-\gamma^5) d \longrightarrow \bar{u}\gamma^{lpha}(1-\gamma^5) d' \qquad d' = \cos\theta_C d + \sin\theta_C s$$

 θ_C : Cabibbo angle $\cos \theta_C = G_\beta/G_\mu \simeq 0.98$ from β and muon decays $\sin \theta_C \simeq 0.21$ from K^+ semileptonic decays

 $\cos^2 heta_{\mathcal{C}} + \sin^2 heta_{\mathcal{C}} \simeq 1$, consistent

- explains strangeness-changing processes
- explains the difference between G_{μ} and G_{β} retaining universality of the charged current (with $d \rightarrow d'$)

Neutral currents and the charm quark

1973, Hasert *et al.* (Gargamelle experiment): observation of weak neutral currents in antineutrino-electron scattering $\bar{\nu}_e e^- \rightarrow \bar{\nu}_e e^-$ and elastic (anti)neutrino scattering on nuclei

Neutral currents expected in unified electroweak theory (see below)

1974, B. Richter/S. Ting: J/ψ resonance and *charm* quark *c* (*November* revolution)

Proposed by Glashow, Iliopoulos and Maiani (1970, *GIM mechanism*) to explain the suppression of certain weak processes

- support for unified electroweak theory
- support for Quantum Chromodynamics (QCD), microscopic theory of strong interactions emerged from quark model

\implies Standard Model of Particle Physics

Electroweak theory

1935, Yukawa: weak interactions mediated by exchange of intermediate boson instead of four-fermion coupling

Yukawa's idea: same boson for weak and strong interactions

- EM interaction: massless photon, long range interaction
- weak interaction: very massive boson, very short range interaction

$$V_{\rm Coulomb}(\vec{r}\,) = rac{e^2}{4\pi r} \qquad V_{\rm Yukawa}(\vec{r}\,) = rac{g^2}{4\pi r} e^{-m_W r}$$

g coupling, m_W mass of intermediate boson

If $m_W
ightarrow 0$, $V_{
m Yukawa}
ightarrow V_{
m Coulomb}$; if $m_W
ightarrow \infty$

$$V_{\rm Yukawa}(r) \stackrel{\rightarrow}{\underset{m_W \to \infty}{\to}} \frac{g^2}{m_W^2} \, \delta^{(3)}(\vec{r})$$

Point-like interaction with coupling $G = \frac{g^2}{m_{ev}^2}$

Electroweak theory (contd.)

Equivalently: exchange of a massive boson in relativistic QFT \Rightarrow factor $\frac{g^2}{m_W^2 - p^2}$ in scattering amplitude $\rightarrow \frac{g^2}{m_W^2}$ if $\frac{p^2}{m_W^2} \ll 1$

Assuming equal strength $g^2\simeq e^2$

$$m_W^2 = rac{g^2}{G} \simeq rac{e^2}{G} = rac{4\pilpha}{G} \simeq (90\,{
m GeV})^2$$

modern measurements: $m_W \simeq 80 \, {
m GeV}$

- Four-fermion theory badly behaved at high energy (cf. the mass dimension of *G*), partly cured by massive intermediate boson
- Further trick needed: boson masses generated via spontaneous symmetry breaking – Higgs mechanism (1964, Higgs; Brout & Englert; Guralnik, Hagen & Kibble)
- Intermediate vector boson + Higgs mechanism \Rightarrow unified electroweak theory (1961, Glashow; 1967, Weinberg; 1968, Salam)
- \Longrightarrow well-behaved theory, phenomenologically very successful

Overview of weak interactions at low energy

Low-energy limit of electroweak theory \rightarrow W, Z-boson exchanges replaced by four-fermion local interaction

- excellent approximation in many cases of interests
- avoids technicalities of the full theory

In the low-energy limit $\mathcal{L}_{W}^{\mathrm{int}} = \mathcal{L}_{W,\,\mathrm{charged}}^{\mathrm{int}} + \mathcal{L}_{W,\,\mathrm{neutral}}^{\mathrm{int}}$

$$\mathcal{L}_{W,\,\mathrm{charged}}^{\mathrm{int}} = -\frac{G}{\sqrt{2}} J^{\alpha \dagger} J_{\alpha} \qquad \mathcal{L}_{W,\,\mathrm{neutral}}^{\mathrm{int}} = -\frac{G}{\sqrt{2}} J_{0}^{\alpha} J_{0 \, \alpha}$$

Charged current $J^{\alpha} = J_{I}^{\alpha} + J_{h}^{\alpha}$ (leptonic + hadronic)

$$J^{lpha}_I = \sum_{\ell = oldsymbol{e}, \mu, au} ar{\ell} \, \mathcal{O}^{lpha}_L \,
u_\ell$$

$$J_{h}^{\alpha} = \bar{d}' \, \mathcal{O}_{L}^{\alpha} \, u + \bar{s}' \, \mathcal{O}_{L}^{\alpha} \, c + \bar{b}' \, \mathcal{O}_{L}^{\alpha} \, t$$

 $(\bar{\nu}_{\mu}\mathcal{O}_{I}^{\alpha}\mu)(\bar{e}\mathcal{O}_{L\alpha}\nu_{e})$

Overview of weak interactions at low energy

Low-energy limit of electroweak theory \rightarrow W, Z-boson exchanges replaced by four-fermion local interaction

- excellent approximation in many cases of interests
- avoids technicalities of the full theory

In the low-energy limit $\mathcal{L}_W^{\mathrm{int}} = \mathcal{L}_{W,\,\mathrm{charged}}^{\mathrm{int}} + \mathcal{L}_{W,\,\mathrm{neutral}}^{\mathrm{int}}$

$$\mathcal{L}_{W,\,\mathrm{charged}}^{\mathrm{int}} = -\frac{G}{\sqrt{2}} J^{\alpha \dagger} J_{\alpha} \qquad \mathcal{L}_{W,\,\mathrm{neutral}}^{\mathrm{int}} = -\frac{G}{\sqrt{2}} J_{0}^{\alpha} J_{0 \, \alpha}$$

Charged current $J^{\alpha} = J_{l}^{\alpha} + J_{h}^{\alpha}$ (leptonic + hadronic)

$$J^{\alpha}_{I} = \sum_{\ell = e, \mu, \tau} \bar{\ell} \, \mathcal{O}^{\alpha}_{L} \, \nu_{\ell}$$

 $J_h^{\alpha} = \bar{d}' \, \mathcal{O}_L^{\alpha} \, u + \bar{s}' \, \mathcal{O}_L^{\alpha} \, c + \bar{b}' \, \mathcal{O}_L^{\alpha} \, t$

 $(\bar{\nu}_{\mu}\mathcal{O}^{\alpha}_{L}\mu)(\bar{e}\mathcal{O}_{L\alpha}\nu_{e})$

Charged current

Charged current = sum of left-handed currents $ar{\psi}_2 {\cal O}^lpha_L \psi_1$

V - A current, left *chirality* only

$$\mathcal{O}^{lpha}_{L} = \gamma^{lpha} (1 - \gamma^5)$$

 $\gamma^{\mu,5} {:}$ Dirac matrices, $\bar{\psi}=\psi^{\dagger}\gamma^{0} {:}$ Dirac adjoint

Lorentz/colour (for quarks) indices are suppressed; \mathcal{O}^{α}_{L} is trivial in colour space

"Rotated" negative-charge quark fields

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = V_{\rm CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \xrightarrow{2-\text{gen. approx.}} \begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_{\mathcal{C}} & \sin \theta_{\mathcal{C}} \\ -\sin \theta_{\mathcal{C}} & \cos \theta_{\mathcal{C}} \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

V_{CKM}: unitary Cabibbo-Kobayashi-Maskawa matrix

d', s', b' (= eigenstates of weak-interaction flavour) are linear superpositions of mass eigenstates of quarks d, s, b (= eigenstates of strong-interaction flavour) \rightarrow not definite-mass fields

Neutral current

Neutral current: both left- and right-handed currents

$$J_{0}^{\alpha} = \sum_{f} g_{f}^{L} \bar{f} \, \mathcal{O}_{L}^{\alpha} \, f + g_{f}^{R} \bar{f} \, \mathcal{O}_{R}^{\alpha} \, f \qquad \mathcal{O}_{L,R}^{\alpha} = \gamma^{\alpha} (1 \mp \gamma^{5})$$

$$g_{f}^{L} = \begin{cases} \frac{1}{2}, & f = \nu_{e,\mu,\tau} \\ -\frac{1}{2} + \xi, & f = e, \mu, \tau \\ \frac{1}{2} - \frac{2}{3}\xi, & f = u, c, t \\ -\frac{1}{2} + \frac{1}{3}\xi, & f = d, s, b \end{cases} \qquad g_{f}^{R} = \begin{cases} 0, & f = \nu_{e,\mu,\tau} \\ \xi, & f = e, \mu, \tau \\ -\frac{2}{3}\xi, & f = u, c, t \\ \frac{1}{3}\xi, & f = d, s, b \end{cases}$$

You don't have to remember them by heart - for now...

 $\xi = \sin^2 \theta_W$, θ_W weak or Weinberg angle

... introduced by Glashow: cf. Arnol'd principle

No flavour-changing neutral currents

Flavour-changing currents also change electric charge

Free fermion field

Free field operator for spin- $\frac{1}{2}$ fermion of mass m $(p^0 = \sqrt{\vec{p}^2 + m^2})$ $\psi(x) = \int d\Omega_p \sum_{s=\pm\frac{1}{2}} \left\{ b_s(\vec{p}\,) u_s(\vec{p}\,) e^{-ip \cdot x} + d_s(\vec{p}\,)^{\dagger} v_s(\vec{p}\,) e^{ip \cdot x} \right\}$

 $b_s(\vec{p}), d_s(\vec{p})$: fermion/antifermion annihilation operators $b_s(\vec{p})^{\dagger}, d_s(\vec{p})^{\dagger}$: fermion/antifermion creation operators

$$\{b_{s}(\vec{p}), b_{s'}(\vec{p}')^{\dagger}\} = \delta_{ss'}(2\pi)^{3} 2p^{0} \delta^{(3)}(\vec{p} - \vec{p}') \qquad \{b_{s}(\vec{p}), b_{s'}(\vec{p}')\} = 0$$

 $u_s(\vec{p}), v_s(\vec{p})$ (bispinors): positive/negative-energy sol.s of Dirac equation

$$(\not p - m)u_s(\vec{p}) = 0 \qquad (\not p + m)v_s(\vec{p}) = 0 \bar{u}_{s'}(\vec{p})u_s(\vec{p}) = 2m\delta_{s's} \qquad \bar{v}_{s'}(\vec{p})v_s(\vec{p}) = -2m\delta_{s's} \bar{u} = u^{\dagger}\gamma^0, \ A = A_{\mu}\gamma^{\mu}$$

Phase-space measure $d\Omega_p = \frac{d^3p}{(2\pi)^3 2p^0}$

Dirac matrices

Clifford algebra: $\{\gamma^{\mu},\gamma^{\nu}\}=2\eta^{\mu\nu}$

 $\{A,B\}=AB+BA$, Minkowski metric tensor $\eta^{\mu
u}={
m diag}(1,-1,-1,-1)$

$$\gamma^{0} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}$$
 $\gamma^{i} = \begin{pmatrix} \mathbf{0} & \sigma^{i} \\ -\sigma^{i} & \mathbf{0} \end{pmatrix}$ $i = 1, 2, 3$ σ^{i} : Pauli matrices

$$\gamma^{5} = -\frac{i}{4!} \varepsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} = -i \varepsilon_{0123} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} = i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$

 $\varepsilon_{\mu\nu\rho\sigma}$ is the totally-antisymmetric tensor with $\varepsilon_{0123}=-1$

Anticommutation property: $\{\gamma^5, \gamma^\mu\} = 0$

Generators of $s = \frac{1}{2}$ irrep of Lorentz transformations: $\sigma^{\mu\nu} = \frac{1}{2i}[\gamma^{\mu}, \gamma^{\nu}]$

$$U(\Lambda)^{\dagger}\psi(x)U(\Lambda) = S(\Lambda)\psi(\Lambda^{-1}x) \qquad S(e^{\frac{i}{2}\omega_{\mu\nu}J^{(\mu\nu)}}) = e^{\frac{i}{4}\omega_{\mu\nu}\sigma^{\mu\nu}}$$

 $\{1, \gamma^{\mu}, \sigma^{\mu\nu}, i\gamma^5\gamma^{\mu}, \gamma^5\}$: basis of the vector space of complex 4 × 4 matrices

Chirality

Weak interactions are *chiral*: different chirality are treated differently For any bispinor $\psi = \psi_+ + \psi_-$, ψ_\pm : chiral components ψ_\pm eigenvectors of γ^5 , $\gamma^5\psi_\xi = \xi\psi_\xi$, with *chirality* ξ

Use chiral projectors P_{\pm} , $\gamma^5 P_{\pm} = \pm P_{\pm}$, so $\psi_{\pm} = P_{\pm}\psi$:

$$P_{\pm} = rac{1 \pm \gamma^5}{2}, \quad P_{\pm} = P_{\pm}^{\dagger} = P_{\pm}^2, \quad P_+ P_- = 0, \quad P_+ + P_- = \mathbf{1}$$

Notice $\gamma^{\alpha} P_{\pm} = P_{\mp} \gamma^{\alpha}$

- \mathcal{O}_L^{α} contains only P_- , charged current only involves fields with negative chirality, $f_- = P_- f$ (notice $\overline{f_-} = \overline{f}P_+$)
- neutral current has different couplings for the terms involving f_- and $f_+ = P_+ f$

Chirality conflated with *helicity*= spin projection in direction of motion

- coincide only for massless fermions
- nonetheless customary to denote *L*, *R* the negative/positive chirality components (left/right refers to "handedness", i.e., helicity)

Matteo Giordano (ELTE)

Neutrinos

For massless fermions chirality and helicity coincide, Neutrinos will be massless almost until the end of the course \Rightarrow drop one of the two helicity components (appears nowhere in $\mathcal{L}_W^{\mathrm{int}}$) $\{\partial, \gamma^5\} = 0 \Rightarrow$ can choose definite-chirality solutions of massless Dirac eq.

$$i\partial \psi_{\pm} = 0 \qquad \gamma^5 \psi_{\pm} = \pm \psi_{\pm}$$

Positive-energy solutions $\psi = u e^{-ip \cdot x} \Rightarrow p u = 0$

$$u(\vec{p}\,) = \sqrt{|\vec{p}\,|} egin{pmatrix} \xi \ \hat{p} \cdot ec{\sigma} \xi \end{pmatrix} \qquad \xi^{\dagger} \xi = 1 \qquad ar{u} \gamma^0 u = 2 p^0 = 2 |ec{p}\,|$$

Definite helicity solutions $\hat{p} \cdot \vec{\sigma} \xi_{R,L} = \pm \xi_{R,L}$

$$u_{R,L}(\vec{p}\,) = \sqrt{|\vec{p}\,|} \begin{pmatrix} \xi_{R,L} \\ \pm \xi_{R,L} \end{pmatrix} \qquad \gamma^5 u_{R,L}(\vec{p}\,) = \pm u_{R,L}(\vec{p}\,)$$

Particle w/ positive helicity = *right-handed*, and *positive chirality* Particle w/ negative helicity = *left-handed*, and *negative chirality*

Matteo Giordano (ELTE)

Neutrinos (contd.)

Negative-energy solutions $\psi = v e^{i p \cdot x} \Rightarrow \not p v = 0$

$$v(ec{
ho}\,) = \sqrt{|ec{
ho}\,|} egin{pmatrix} ilde{\xi} \ \hat{
ho}\,\cdot\,ec{\sigma} ilde{\xi} \end{pmatrix} \qquad ilde{\xi}^\dagger ilde{\xi} = 1 \qquad ar{v}\gamma^0 v = 2
ho^0 = 2|ec{
ho}\,|$$

Lorentz transformation properties of fermion field impose that if $u(\xi)$ =particle, spin *s* along \vec{n} , $v(\xi)$ =antiparticle, same spin *s* along same \vec{n} then we must choose $\xi = -i\sigma_2\xi^* \Rightarrow$ for definite helicity $\xi_{R,L} = -i\sigma_2\xi_{R,L}^*$

$$\hat{p} \cdot \vec{\sigma} \tilde{\xi}_{R,L} = \hat{p} \cdot \vec{\sigma} (-i\sigma_2) \xi^*_{R,L} = i\sigma_2 (\hat{p} \cdot \vec{\sigma} \xi_{R,L})^* = \mp (-i\sigma_2) \xi^*_{R,L} = \mp \tilde{\xi}_{R,L}$$
$$v_{R,L}(\vec{p}) = \sqrt{|\vec{p}|} \begin{pmatrix} \tilde{\xi}_{R,L} \\ \mp \tilde{\xi}_{R,L} \end{pmatrix} \qquad \gamma^5 v_{R,L}(\vec{p}) = \mp v_{R,L}(\vec{p})$$

Antiparticle w/ positive helicity = right-handed, and negative chirality Antiparticle w/ negative helicity = left-handed, and positive chirality

Helicity Lorentz-invariant only for m = 0 (for $m \neq 0$ can always find ref. frame where particle flips \vec{p} and so h), better quantum number as energy increases (particle closer to behaving as massless)

Matteo Giordano (ELTE)

Weak Interactions

References