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1 Introduction

The appropriate tool to study quantum phenomena at relativistic energy is Quantum Field
Theory (QFT). QFT is a synthesis of quantum mechanics and special relativity, which allows
to study the quantum properties of Nature in full compliance with Lorentz invariance. Our
ultimate purpose in these notes is to develop a quantum relativistic theory of electrodynamics,
usually called simply Quantum ElectroDynamics (QED).

While the Q in QFT stands clearly for quantum aspects, it is the F of fields that stands
for the relativistic ones. Even in a non-quantum setting, fields are required to give a proper
relativistic description of Nature. In a classical non relativistic setting, two particles of electric
charge q1 and q2 at distance r interact via the Coulomb potential,

VCoulomb(r) =
q1q2
4πr

. (1.1)

The choice of numerical factors corresponds to the rationalised Gaussian system of units, which
we are going to use in these notes. Interaction through a potential is however problematic in a
relativistic setting because, being an istantaneous interaction at a distance, it violates locality
and therefore causality (the order in time of spacelike-separated events depends on the reference
frame). For this reason the electromagnetic field is introduced, with which particles interact
locally: the particle-particle interaction is effectively mediated by the field, it propagates from
one particle to the other in some finite time due to the finiteness of the speed of light, and
causality is saved.

In certain situations, the electromagnetic radiation shows the behaviour typical of particles,
instead of that of waves: prime examples are the photoelectric effect and Compton scatter-
ing. The particles corresponding to the electromagnetic fields are called photons. As we will
see, a similar particle/field duality applies to matter particles as well. The particle/wave, or
particle/field duality was one of the most relevant and most striking new aspects of quantum
mechanics. The field in question there, though, is the particle wave function, or rather its ab-
solute value square, which represents a probability field. The fields in QFT are of a completely
different type: they do not represent the probability amplitude of a particle being somewhere in
spacetime, and in fact they are not even real-valued quantities: they are instead linear operators
acting on the Hilbert space of the system. What they do in practice is to create and destroy
particles at some point in spacetime. An operator with these properties is certainly needed
in a relativistic setting, where particles can be created and destroyed as a consequence of the
mass-energy equivalence.
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The fact that the number of particles is not conserved in a relativistic setting has two
important consequences. First of all, it shows how any attempt at formulating relativistic
quantum mechanics in terms of single-particle wave functions is bound to fail: creation and
destruction of particles are not admitted in this kind of formalism. Relativistic wave equations
will prove nonetheless very useful for our tasks. Moreover, from the historical point of view
QFT appeared after quantising the wave functions appearing in relativistic quantum mechanics,
a procedure called “second quantisation”. Since we will follow a logical rather than a historical
thread in these lectures, we will not adopt this interpretation; we will nevertheless make use of
the same formalism when developing the canonical approach to quantisation.

The other important consequence is the impossibility to define consistently a position opera-
tor. Recall that when moving from classical to quantum mechanics we had to change the nature
of the position of particles from ordinary numbers to Hermitian operators. When moving from
quantum mechanics to QFT, space coordinates become just labels for the degrees of freedom
of our system, namely the quantum field (more on this later). The difficulties in defining a
position operator in QFT show up when we try to measure the position of a relativistic particle
with a precision better than the particle’s Compton length. The uncertainty principle tells us
that the uncertainty on the momentum will be ∆p ∼ ~/∆x, which for a relativistic particle for
which E ≃ |~p |c means that ∆E ∼ ~c/∆x. For ∆x ∼ ~/(mc) we then have ∆E ∼ mc2, i.e, the
uncertainty is large enough for a new particle to be created: at this point, whose position would
we be talking about?

Using fields that create and destroy particles, we can describe interactions in terms of emis-
sion and absorption of intermediate particles. To make a concrete example: electromagnetic
scattering of two electrons can be seen, to lowest order, as one of the electrons emitting a pho-
ton (which is created by the electromagnetic field operator), which subsequently travels to meet
the other electron and gets absorbed (i.e., the photon gets destroyed by the corresponding field).
One can then imagine multiple exchanges, and build up the electromagnetic interaction in terms
of them. This picture is what emerges in the framework of perturbative quantisation, on which
we will mostly focus.

The main advantages in using fields instead of particles in building up interacting theories
is that the fields are local objects, and that they can be contructed so that they transform
in a simple manner under Lorentz transformations. In this way we can rest assured that the
physics we are building will look the same in any inertial reference frame, as it should. Despite
all the emphasis on fields, our starting point will be the particles, more precisely how one
characterises particles, and how their states can be constructed. The key point here will be
developing the representation theory of the Poincaré group, i.e., the group of translations and
Lorentz transformations.

An extremely convenient way to formulate our field theories is in terms of the Lagrangian
formalism and of the action principle. This approach has the advantage that Lorentz invariance,
and in general invariance under any symmetry, can be imposed at the outset. Activating the
machinery of canonical quantisation we will then obtain a theory with the desired symmetry
and locality properties: whether this has anything to do with Nature is of course a completely
different question, one that can be answered only by means of experiments.

The canonical formalism for fields requires an extension of Lagrangian mechanics. In fact,
the main difference between the mechanics of particles and that of fields is that the number of
degrees of freedom of the system is finite in the first case, and infinite in the second case. This
is true already at the classical level: the degrees of freedom of the electromagnetic field, for
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example, are the values of the electric and magnetic fields at each point in space, which come in
an uncountably infinite amount. Similarly, as noted above, in QFT the spatial coordinates will
label the degrees of freedom of our quantum field operators.

1.1 A brief history of Quantum Field Theory

The history of QFT,1 or rather its pre-history, begins with the relativistic wave equation derived
by Schrödinger in 1926 (even before that, de Broglie’s particle/wave duality had been formulated
in terms of a relativistic wave). Discouraged by the fact that it gave the wrong fine structure for
the hydrogen atom, he dismissed it and kept only its non-relativistic version, which worked well
in the non-relativistic limit. By the time he finally came to publish it, it had been rediscovered
independently by Klein and Gordon, and so it became known as the Klein-Gordon equation:

(✷+m2)φ = 0 . (1.2)

As an equation for wave functions, this has the problem that the only conserved current that one
can build from φ, in terms of which one would like to express the conservation of probability, has
a non-positive-definite probability density, that makes no physical sense. In 1928 Dirac “fixed”
this problem by deriving the equation that bears his name for a relativistic electron,

(i/∂ −m)ψ = 0 . (1.3)

In this case it is possible to build a positive-definite probability density. Nevertheless, this
equation admits negative-energy solutions (as the Klein-Gordon equation does), and one has
to explain why the electrons do not fall into states of more and more negative energy, making
everything unstable. This was done by Dirac in 1930, postulating the existence of a “sea”
(the “Dirac sea”) of occupied negative-energy states, and invoking the exclusion principle, that
forbids two electrons to occupy the same state. When one of the negative-energy states of
the negatively-charged electron becomes unoccupied due to some interaction, the corresponding
“hole” behaves in practice as a positive-energy state for a positively-charged particle. This led2

to the prediction of a positively-charged electron, or positron, which was experimentally detected
by Anderson in 1932.

Dirac’s theory correctly accounted for the spin of the electron; coupling the electron to the
electromagnetic field led to correctly describe the fine structure of hydrogen; correctly predicted
the electron magnetic moment; and, as mentioned above, predicted the existence of the positron.
Nevertheless, this did not solve all the problems: obtaining positive probabilities for a spin-12
particle will not make them positive in the spin-0 case of the Klein-Gordon equation. Moreover,
taking care of negative energy states via a Dirac sea cannot possibly work for bosons, which
do not obey any exclusion principle. Finally, the correct prediction of the electron magnetic
moment is due to neglecting a term, the Pauli term, in the wave equation: such a term is
perfectly legitimate from the point of view of relativistic quantum mechanics, and comes with
an arbitrary coefficient that makes the magnetic moment of the electron whatever one pleases.
To solve these problems, relativistic quantum mechanics had to give way to QFT.

The history proper of QFT begins with Born, Heisenberg and Jordan who quantised the
electromagnetic field in 1926, imposing canonical commutation relations on the coeffcients of

1This brief history of QFT is based on the introduction to Weinberg’s The Quantum Theory of Fields, vol. 1,
to which we refer the reader for a more exhaustive description.

2More or less: initially Dirac proposed that the positively-charged states corresponded to the proton.
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the field’s normal modes. In this way the field is seen to behave as a collection of independent
harmonic oscillators. In 1927 this was used by Dirac, coupled to the usual non-relativistic
description of atomic spectra, to explain spontaneous emission satisfactorily. Work in refining
the quantisation of the electromagnetic field was done by Weisskopf and Wigner, by Fermi,
and by Jordan and Pauli. The quantisation of fields was applied to other systems as well,
regarding it as a way to quantise the wave functions of relativistic quantum mechanics: for this
reasons, the procedure acquired the name of “second quantisation”. For the Dirac field this was
accomplished by Jordan and Wigner, who had to use anticommutation relations instead of the
usual commutation ones to obtain a satisfactory result. The general theory was first laid out by
Heisenberg and Pauli in 1929, using the canonical formalism on the fields themselves instead of
on their normal modes. This is the canonical formalism that we will develop in due course. The
problem of negative-energy electron states was solved by Fock and by Furry and Oppenheimer
(1933-1934) essentially by calling them the positive-energy states of a positron, treated as a
legitimate different particle. A similar point of view led Pauli and Weisskopf to solve the same
problem for spin-0 particles by introducing corresponding antiparticles. This led to clarify that
quantum fields are not probability amplitudes but rather operators which create and destroy
particles and antiparticles.

QFT was then applied3 in the period 1929-1936 to the calculations of cross sections for
various processes (elastic e−γ scattering, Klein-Nishina; e−e+ → 2γ, Dirac; elastic e−e− scat-
tering, Møller; elastic e+e− scattering, Bhabha) to lowest order of approximation, obtaining
good agreement with experiment. In 1934 it was used by Fermi to correctly describe the energy
distribution of electrons in β-decays; in 1935 Yukawa used it to predict the existence of the pion.
Despite these successes, the 1930s were also the period in which the problem of infinities showed
up: calculations beyond lowest order were plagued by all kinds of nonsensical divergent results.
This was noted by, among others, Heisenberg, Pauli, Oppenheimer, and Waller. The problem
of infinities was present already classically (e.g., the electron self-energy). The fundamental
problem seems to be the inability of field theories to describe properly what happens at very
short scales, or equivalently at very high energies. Although the problem of infinities can be
cured, this inability of field theory remains somehow an issue. The cure for infinities is renor-
malisation, which “sweeps” the infinities “under the carpet” of a redefinition of the parameters
of the theory. This idea was developed systematically by Tomonaga, Schwinger, and Feynman
(who shared the 1965 Nobel prize for physics), and by Dyson (who did not). Notably, renor-
malisation cannot be done for all theories; in particular it prevents including the Pauli term in
the interaction between electrons and electromagnetic fields. The idea of renormalisation was
disliked by many (most notably Dirac), but it allowed in practice to make precise calculations in
spectacular agreement with experiments: the Lamb shift (the energy difference between the 2s 1

2

and 2p 1
2
levels of hydrogen) and the anomalous magnetic moment of the electron (the deviation

from the value 2 predicted by Dirac’s theory) are accurate to 9 significant figures.
The quantum theory of electrodynamics (QED) was finally complete: an extremely successful

theory describing subatomic phenomena with astonishing precision, elegant in its symmetrical
nature. Although it was not the final chapter in the history of theoretical physics, it nevertheless
provided the model on which were built the other quantum field theories currently believed to
describe Nature. The purpose of this course is to build the tools of QFT up to the point where
the full formulation of QED is possible, and lowest-order calculations can be performed. The

3Not exclusively: the sea/hole point of view still lingered for a few years.
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issue of renormalisation is not treated here.

2 Preliminaries

In this section we review a few basic concepts and tools that will be needed during the course.

2.1 Natural units

For most of the time we will be using the system of natural units, where the fundamental con-
stants c (speed of light) and ~ (Planck’s constant) are set to 1, c = ~ = 1. In this system of units,
length and time have the same dimensions since velocities are now dimensionless. Moreover,
energies, momenta and masses have all the same dimensions, as it follows from the mass-energy
relation mc2 = E2 + (pc)2. Finally, since the action is now dimensionless, so is angular mo-
mentum, which implies that length has the dimension of inverse momentum. Summarising,
everything can be expressed in terms of mass dimensions as follows:

[E] = [p] = [m] =M , [l ] = [t] =M−1 . (2.1)

From the Coulomb potential Eq. (1.1) it then follows that in this system of units the electric
charge is dimensionless. This also follows from the fact that the fine structure constant α =
e2

4π~c ≃ 1/137 is a dimensionless number, which reads simply α = e2

4π in natural units. Similarly,
in this system of units the Compton length associated to a particle, λC = ~

mc
, reads simply

λC = 1
m
.

The typical energy unit used in high energy physics is the electronvolt, (eV), 1 eV =
1.6 · 10−19 J , i.e., the energy acquired by an electron after travelling through an electric po-
tential difference of one volt, or rather its multiples, the megaelectronvol (MeV = 106 eV), the
gigaelectronvolt (GeV = 109 eV), and the teraelectronvolt (TeV = 1012 eV). The typical length
scale in ordinary units is the fermi, 1 fm = 10−15 m, which is the approximate size of a proton.
The conversion between a length expressed in MeV−1 in natural units and its value in fermi
in ordinary units is easily obtained via the relation ~c ≃ 197 MeV · fm. In natural units the
left-hand side is one, so 1 fm ≈ (1/5)GeV−1.

2.2 Special relativity in a nutshell

Special relativity states the equivalence of all inertial frames for the description of physical
phenomena. Inertial frames are moving at constant speed with respect to each other. The
descriptions of physical phenomena in different frames are obtained from each other by means
of Lorentz transformations. These are most easily characterised in terms of the geometry of
Minkowski space.

Minkowski space is the vector space R
4 endowed with the Minkowski (pseudo)metric: given

vectorsXµ, Y µ with µ = 0, 1, 2, 3, their distance, or rather their interval, is defined as (here comes
some notation) (X − Y )2 = (X − Y ) · (X − Y ) = X2 + Y 2 − 2X · Y , where the scalar product
is defined as X · Y = XµY νηµν = XµYµ (summation over repeated indices is understood). Here

ηµν = diag(1,−1,−1,−1) is the Minkowski tensor. We will often use the notation X = (X0, ~X)
for the spatial part of four-vectors, which we will refer to as three-vectors, and ~v · ~w = ~v i ~w i

for the usual Euclidean scalar product of three-vectors, where it is understood that latin indices
run over i = 1, 2, 3 only. Lowering or raising of indices is realised through multiplication by
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the Minkowski tensor, i.e., Xµ = ηµνX
ν , and its inverse ηµν = diag(1,−1,−1,−1) = ηµν ,

Xµ = ηµνXν . Notice that η
µαηαν = δµν . Vectors are characterised as timelike, spacelike, or null,

according to the sign of their square: X2 > 0 for timelike vectors, X2 < 0 for spacelike vectors,
and X2 = 0 for null vectors.

Lorentz transformations are linear transformations of Minkowski space that leave intervals
invariant. This is equivalent to ask that all scalar products are left invariant, since 4X · Y =
(X + Y )2 − (X − Y )2. Given a transformation X ′µ = ΛµνXν we then require

X ′αY ′βηαβ = XµY νηµν ,

ΛαµX
µΛβνY

νηαβ = XµY νηµν ,
(2.2)

and since this has to hold for any Xµ, Y µ,

ΛαµΛ
β
νηαβ = ηµν . (2.3)

This identifies the Lorentz transformations as the elements of the group O(3,1). In fact, adopting
the matrix notation (Λ)µν = Λµν and (η)µν = ηµν , Eq. (2.3) becomes (no brackets when writing
matrix operations)

ΛT ηΛ = η . (2.4)

From this relation one immediately obtains detΛ = ±1, so that Lorentz transformations are
invertible, and Λ−1 = η−1ΛT η, which reads also

ηαµΛνµηνρΛ
ρ
β = δαβ ,

Λ α
ρ Λρβ = δαβ ,

(Λ−1)αβ = Λ−1α
β = Λ α

β .

(2.5)

Lorentz transformations clearly do not change the nature of a vector, since they do not change
its (pseudo)length. If we take the 00 component of Eq. (2.3) we obtain

1 = Λ0
0Λ

0
0 − Λi0Λ

i
0 ,

(Λ0
0)

2 = 1 + Λi0Λ
i
0 .

(2.6)

Similarly, the same equation for the inverse transformation Λ−1 implies

1 = (Λ−1)00(Λ
−1)00 − (Λ−1)i0(Λ

−1)i0 = Λ 0
0 Λ 0

0 − Λ i
0 Λ

i
0 = Λ0

0Λ
0
0 − Λ0

iΛ
0
i ,

(Λ0
0)

2 = 1 + Λ0
iΛ

0
i ,

(2.7)

where we used Λ 0
0 = Λ0

0 and Λ i
0 = −Λ0

i. Eq. (2.6) implies that either Λ0
0 ≥ 1 or Λ0

0 ≤ −1. We
can then classify Lorentz transformations in four types according to the sign of their determinant
and of their 00 component. Transformations with detΛ = 1 are called proper, while those
with detΛ = −1 are improper; transformations with positive Λ0

0 are called orthocronous. The
reason for this nomenclature is that proper Lorentz transformations keep the orientation of
space unchanged, i.e., if we take a set of three right-handed orthogonal spatial vectors they
will be transformed in another such set, while orthocronous transformations keep unchanged
the direction of time for timelike events, the only ones for which this has an intrinsic meaning
independent of the reference frame. To see this, consider a timelike vector Xµ, X2 > 0, and act
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detΛ = +1 detΛ = −1
Λ0

0 ≥ +1 proper orthocronous improper orthocronous

Λ0
0 ≤ −1 proper non orthocronous improper non orthocronous

Table 1: Components of the Lorentz group.

with an orthocronous transformation on it. Denoting with ~Λ the three-vector ~Λ i = Λ0i, from
Eq. (2.7) and making use of Schwartz’s inequality |~v · ~w| ≤ |~v||~w| we find for X0 > 0

X ′0 = Λ0
νX

ν = Λ0
0X

0 + Λ0
iX

i = Λ0
0X

0 − ~Λ · ~X
≥ Λ0

0X
0 − |~Λ|| ~X| ≥

(

Λ0
0 − |~Λ|

)

| ~X| ≥ | ~X| ≥ 0 .
(2.8)

One then has X ′0 > 0 unless ~X, but in this case X ′0 = Λ0
0X

0 > 0. Similarly, for X0 < 0

X ′0 = Λ0
νX

ν = Λ0
0X

0+ ≤ Λ0
0X

0 + |~Λ|| ~X| ≤ −
(

Λ0
0 − |~Λ|

)

| ~X| ≤ −| ~X| ≤ 0 , (2.9)

so X ′0 < 0 unless ~X, in which case X ′0 = Λ0
0X

0 < 0. Given a proper orthocronous trans-
formation, det Λ = 1, Λ0

0 > 0, we can get an improper orthocronous one by multiplying with
a parity transformation, i.e., P = diag(1,−1 − 1 − 1), and an improper non-orthocronous one
by multiplication with the time reversal transformation T = diag(−1, 1, 1, 1). The last com-
ponent of the group is obtained from the proper orthocronous one via multiplication with
PT = diag(−1,−1,−1,−1). The subset of proper transformations is denoted with SO(3,1),
while the subset of proper orthocronous transformations is denoted as SO↑(3, 1).

2.3 Quantum mechanics on the tip of a pin

We will not review here quantum mechanics but for a very few points, mostly to fix the notation.
To the states of physical systems are associated vectors (or more precisely rays) in a Hilbert space
H. The transition amplitude from a state vector ψ to a state vector φ is given by their scalar
product, which is denoted with (φ, ψ) = (ψ, φ)∗, or in Dirac notation 〈φ|ψ〉. The corresponding
transition probability is given by |(φ, ψ)|2. Observables are associated to self-adjoint operators
A = A† in H. The possible outcomes of measurements of A are its (real) eigenvalues an, Aψn =
anψn; if the value an is obtained, the state vector of the system is projected on the corresponding
eigenvector ψn, and the probability for this to happen is |(ψn, ψ)|2. The expectation value of
an observable A on a state ψ is given by (ψ,Aψ), or 〈ψ|A|ψ〉 in Dirac notation. In particular,
transition probabilities are the expectation values of projectors, |(φ, ψ)|2 = (ψ, φ ⊗ φ†ψ) =

〈ψ|φ〉〈φ|ψ〉. Transformations U that leave invariant the norm ‖ψ‖ = (ψ, ψ)
1
2 of vectors are

called isometric. Such transformations actually leave all the scalar products invariant,4 and
are therefore characterised by the relation U †U = 1. Isometric transformation that have the
whole Hilbert space as image are called unitary, and they satisfy also UU † = 1. Conversely,
U †U = UU † = 1 implies that U is unitary. Unitary transformations play a very important role
in quantum mechanics in connection with symmetries.

4This is because ‖φ+ ψ‖2 − ‖φ− ψ‖2 + i‖φ− iψ‖2 − i‖φ+ iψ‖2 = 4(φ, ψ).
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2.4 Classical Lagrangian mechanics for particles and fields

In Lagrangian mechanics the equations of motion for particles are obtained by means of a varia-
tional principle starting from the so-called action functional. Given (generalised) coordinates qi
for the particles and their time derivatives q̇i, the action functional, S[q], is given by the integral
of the Lagrangian function or simply Lagrangian, L(q, q̇, t), with respect to time:5

S[q] =

∫ t1

t0

dtL(q, q̇, t) . (2.10)

In the argument of L we have dropped the discrete index i, and q and q̇ denote collectively all
such variables. We also dropped the time dependence of q and q̇. The trajectories of particles are
those that extremise the action functional, i.e., those for which the action does not change under
any small variation qi → qi + δqi. This is the action principle in brief, but some qualifications
must be added. Given the choice of a time interval [t0, t1], the variations we consider are those
that leave the initial and the final points fixed, i.e., δqi(t0) = δqi(t1) = 0. The variation of the
action is simply δS = S[q+ δq]−S[q], and our purpose is to find qi such that δS = 0. For small
variations, retaining only first order corrections, we have (notice that δq̇ = ˙(δq))

δS =

∫ t1

t0

dt (L(q + δq, q̇ + δq̇i, t)− L(q, q̇, t))

=

∫ t1

t0

dt
∑

i

(

δqi
∂

∂qi
L(q, q̇, t) + ˙(δq)

∂

∂q̇i
L(q, q̇, t)

)

=

∫ t1

t0

dt

{

∑

i

δqi

(

∂

∂qi
L(q, q̇, t)− d

dt

∂

∂q̇i
L(q, q̇, t)

)

+
d

dt

(

∑

i

δqi
∂

∂q̇i
L(q, q̇, t)

)}

=

(

∑

i

δqi
∂

∂q̇i
L(q, q̇, t)

)

∣

∣

∣

∣

t1

t0

+

∫ t1

t0

dt
∑

i

δqi

(

∂

∂qi
L(q, q̇, t)− d

dt

∂

∂q̇i
L(q, q̇, t)

)

,

(2.11)

where we have used integration by parts. Since δqi vanishes at t0,1, the first term is zero.
On the other hand, if we want δS to vanish for arbitrary small variations, then the quantities
multiplying δqi in the integrand of the second term have to vanish separately. We thus obtain
the Euler-Lagrange equations:

∂

∂qi
L(q, q̇, t)− d

dt

∂

∂q̇i
L(q, q̇, t) = 0 . (2.12)

From Lagrangian mechanics we can go over to Hamiltonian mechanics by means of a Legendre
transform. Define the momentum pi conjugated to the coordinate qi as

pi =
∂

∂q̇i
L(q, q̇, t) , (2.13)

an the Hamiltonian as
H(q, p, t) =

∑

i

piq̇i − L(q, q̇, t) , (2.14)

5While a function maps numbers into numbers, a functional maps a function into a number: in the case at
hand, the action functional maps any trajectory q(t) : [t0, t1] → R, and so it depends on the whole trajectory.
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where the qi and pi are treated as independent variables, and it is understood that q̇i have to
be expressed as functions of the qj and pj . We find that

∂

∂pi
H(q, p, t) = q̇i +

∑

j

pj
∂

∂pi
q̇j −

∂q̇j
∂pi

∂

∂q̇j
L(q, q̇, t) = q̇i +

∑

j

pj
∂

∂pi
q̇j −

∂q̇j
∂pi

pj = q̇i , (2.15)

and moreover,

∂

∂qi
H(q, p, t) = − ∂

∂qi
L(q, q̇, t) +

∑

j

pj
∂q̇j
∂qi
− ∂q̇j
∂qi

∂

∂q̇j
L(q, q̇, t)

= − ∂

∂qi
L(q, q̇, t) = − d

dt

∂

∂q̇i
L(q, q̇, t) = −ṗi ,

(2.16)

which holds for solutions of the Lagrangian equations of motion, which we used in the last
passage. Finally, again using the Lagrangian equations of motion ṗi =

∂
∂qi
L(q, q̇, t) we find

d

dt
H(q, p, t) = − ∂

∂t
L(q, q̇, t) +

∑

i

ṗiq̇i + piq̈i − q̇i
∂

∂qi
L(q, q̇, t)− q̈i

∂

∂q̇i
L(q, q̇, t)

= − ∂

∂t
L(q, q̇, t) +

∑

i

ṗiq̇i + piq̈i − q̇iṗi − q̈ipi = −
∂

∂t
L(q, q̇, t)

=
∂

∂t
H(q, q̇, t) .

(2.17)

Summarising, we have the Hamilton equations,

ṗi = −
∂H

∂qi
,

q̇i =
∂H

∂pi
,

dH

dt
=
∂H

∂t
.

(2.18)

These can be recast in yet another way by making use of the Poisson brackets,

{f, g}PB ≡
∑

i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (2.19)

Notice first of all that

{qi, pj}PB = δij , {qi, qj}PB = {pi, pj}PB = 0 . (2.20)

Consider next a generic observable O = O(q, p, t). Its time evolution is governed by the equation

dO
dt

=
∂O
∂t

+
∑

i

q̇i
∂O
∂qi

+ ṗi
∂O
∂pi

=
∂O
∂t

+
∑

i

∂H

∂pi

∂O
∂qi
− ∂H

∂qi

∂O
∂pi

=
∂O
∂t

+ {O, H}PB . (2.21)

This applies in particular to qi and pi, for which

ṗi = {pi, H}PB ,
q̇i = {qi, H}PB .

(2.22)

9



The formalism discussed so far applies to particles, or more generally to systems with a finite
number of degrees of freedom, both in a nonrelativistic and a relativistic setting. Fields, on
the other hand, have infinitely many degrees of freedom, since they are definited at every point
of spacetime. The extension of the formalism is however quite straightforward. The starting
point is again an action functional which depends on the configuration of the fields φi(x). Such
functional is defined starting from a Lagrangian density L (φi(x), ∂µφi(x), x) which depends on
the fields and their derivatives and possibly on the spacetime point x,

S[φ] =

∫

D

d4xL (φ(x), ∂µφ(x), x) . (2.23)

Here D denotes some domain in spacetime, and

∂µ =
∂

∂xµ
=

(

∂

∂x0
, ~∇
)

. (2.24)

The equations of motions are obtained again via an action principle: we require that the variation
of S vanishes for all small variations δφi of the fields, subject to the condition δφi = 0 on the
boundary ∂D of D. Since δ(∂µφ) = ∂µ(δφ), we have

0 = δS =

∫

D

d4x [L (φ+ δφ, ∂µφ+ ∂µδφ, x)−L (φ, ∂µφ, x)]

=

∫

D

d4x

[

∑

i

δφi
∂L

∂φi
+ (∂µδφi)

∂L

∂(∂µφi)

]

=

∫

D

d4x

{

∑

i

δφi

[

∂L

∂φi
− ∂µ

∂L

∂(∂µφi)

]

+ ∂µ

[

δφi
∂L

∂(∂µφi)

]

}

=

∫

∂D

dΣµ δφi
∂L

∂(∂µφi)
+

∫

D

d4x
∑

i

δφi

[

∂L

∂φi
− ∂µ

∂L

∂(∂µφi)

]

.

(2.25)

Since δφi = 0 on ∂D the first terms vanishes, and since δφi is arbitrary inside D, each of
the terms in the integrand of the second term has to vanish separately. We then obtain the
Euler-Lagrange equations for fields:

∂L

∂φi
− ∂µ

∂L

∂(∂µφi)
= 0 . (2.26)

One can develop a Hamiltonian formalism exactly as in the case of finitely many degrees of
freedom. Defining the conjugate momenta

πi(x) =
∂L

∂(∂0φi(x))
, (2.27)

the Hamiltonian reads

H(t) =

∫

d3x

[

∑

i

πi(t, ~x)∂0φi(t, ~x)−L (φ(t, ~x), ∂µφ(t, ~x), t, ~x)

]

=

∫

d3xH (πi(t, ~x), φi(t, ~x), t, ~x) ,

(2.28)
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where we have made explicit the dependence on time t = x0 and spatial coordinates ~x, and in the
last passage we have defined the Hamiltonian density H . Notice, however, that upon imposing
the equations of motion we find that H is time-independent if it is not depending explicitly on
time. More precisely, if we compute explicitly the derivative we find

d

dt
H(t)− ∂

∂t
H(t) =

∫

d3x

[

∑

i

π̇iφ̇i + πiφ̈i − φ̇i
∂L

∂φi
− ˙(∂µφ)i

∂L

∂(∂µφi(t, ~x))

]

=

∫

d3x

[

∑

i

∂0

(

φ̇
∂L

∂(∂0φ)

)

− ∂µ
(

φ̇
∂L

∂(∂µφ)

)]

= −
∫

d3x ∂j

(

φ̇
∂L

∂(∂jφ)

)

= −
∫

∂V→∞
dnj

(

φ̇
∂L

∂(∂jφ)

)

= 0 ,

(2.29)

i.e., it equals the flux through the surface at infinity of a certain function of fields and momenta,
which vanishes if fields are sufficiently well behaved at infinity. In full analogy with the finite-
dimensional case we can derive from here the Hamilton equations6

δH

δπi(t, ~x)
≡ ∂H

∂πi(t, ~x)
= φ̇i(t, ~x) ,

δH

δφi(t, ~x)
≡ ∂H

∂φi(t, ~x)
= −π̇i(t, ~x) ,

(2.30)

together with
dH

dt
=
∂H

∂t
= −

∫

d3x
∂L

∂t
. (2.31)

Finally, we can define Poisson brackets for functionals of fields and their conjugate momenta as

{F,G}PB =

∫

d3z
∑

k

[

δF

δφk(t, ~z)

δG

δπk(t, ~z)
− δG

δφk(t, ~z)

δF

δπk(t, ~z)

]

. (2.32)

The fundamental Poisson brackets are

{φi(t, ~x), πj(t, ~y)}PB =

∫

d3z
∑

k

δikδ
(3)(~x− ~z)δjkδ(3)(~y − ~z) = δijδ

(3)(~x− ~y) ,

{φi(t, ~x), φj(t, ~y)}PB = {πi(t, ~x), πj(t, ~y)}PB = 0 .

(2.33)

6Functional derivatives are defined by the relation

lim
η→0

F [φ+ ηδφ]− F [φ]

η
=

∫

d3x δφ(t, ~x)
δF

δφ(t, ~x)
,

and correspond essentially to the variation of the functional under an infinitesimal change of a field at one point.
The functional derivative can be extracted from the relation above by taking δφ to be a delta function, or, more
formally, using a representation of the delta function like ∆ǫ(z) =

1
π

ǫ
z2+ǫ2

, as

δF

δφ(t0, ~x0)
= lim

ǫ→0
lim
η→0

F [φ+ ηδt0,~x0
ǫ φ]− F [φ]

η
,

where δt0,~x0
ǫ φ(t, ~x) = ∆ǫ(t− t0)

∏3
j=1 ∆ǫ(~xj − ~x0j).
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Finally, the time evolution of any such functional is given by

dF

dt
=
∂F

∂t
+

∫

d3z
∑

k

[

φ̇k(t, ~z)
δF

δφk(t, ~z)
+ π̇k(t, ~z)

δF

δπk(t, ~z)

]

=
∂F

∂t
+

∫

d3z
∑

k

[

δF

δφk(t, ~z)

δH

δπi(t, ~x)
− δH

δφi(t, ~x)

δF

δπk(t, ~z)

]

=
∂F

∂t
+ {F,H}PB .

(2.34)

This provides a simpler proof that Ḣ = 0 if there is no explicit time dependence, since obviously
{H,H}PB = 0.

2.5 Classical symmetries and Noether’s theorem

One of the main advantages of the Lagrangian formalism (and of the Hamiltonian formalism as
well) over Newtonian mechanics is that it makes more transparent the role and the consequences
of symmetry. This subsection is about symmetry and their consequences in the classical setting.
The quantum mechanical case is discussed below.

Quoting almost verbatim fromWeinberg’s book, a symmetry is a change in the experimenter’s
point of view that does not change the results of possible experiments. Let us explain this in
more detail. Consider two experimenters O and O′ making measurements on the same physical
system. They subscribe to the same operative rules concerning the measurement of the various
observables, but they use in general different reference frames, so that in general they find
different values for the various physical quantities, thus producing two different descriptions of
the same system. In mathematical terms, this means that they will assign two different points
Z and Z ′, respectively, to the system in its configuration space C. Here Z denotes collectively
all the coordinate and velocities characterising the system.7 Although the two descriptions are
in general not the same, for certain pairs of observers they will be equivalent, i.e., the physical
laws implied by the measurements will be the same for both observers. In other words, it will
be impossible for an observer to determine her or his reference frame using only her or his
measurements. If two observers give equivalent descriptions, then the set of possible outcomes
for measurements on the physical system must be the same, and the same C will describe the
states of the system. Moreover, if the same laws of physics have to apply for the two observers,
then the temporal evolution must be governed by the same equations.

Let us formalise the two statements above. Establishing a relation between the two de-
scriptions corresponds to defining a mappingM from C to itself. Since the same outcomes are
possible for both observers, such a mapping must be surjective (or onto), i.e., its image is the
whole of C. On top of that, different outcomes for O will show up as different outcomes for O′,
soM must also be injective (or one-to-one), and soM is a bijective, i.e., invertible, mapping.
This can be seen more directly by observing that if the two observers must be equivalent, then
if there is a mapping from O to O′ there must be one also from O′ to O.

Next, if the time evolution of the system is governed by the same equations for both observers,
then the way that the initial conditions Z0 at time t0 for O, and the corresponding initial
conditions Z ′

0 at the corresponding time t′0 for O′, are mapped into the state Z of the system at
t for O and Z ′ at t′ for O′ must be the same. Formally, denoting the evolution “operator” with
ut0→t, we must have both

Z(t) = ut0→t(Z(t0)) , Z ′(t′) = ut′0→t′(Z
′(t′0)) , (2.35)

7Analogously, one can use coordinates and momenta in phase space Φ.
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where Z ′(t′) =Mt(Z(t)), allowing for a time-dependence in the mapping, and t′ = T (t) is the
mapping between times for the two observers. But then

Z ′(t′) =Mt(Z(t)) =Mt(ut0→t(Z(t0))) = ut′0→t′(Mt0(Z(t0))) = uT (t0)→T (t)(Mt0(Z(t0))) ,
(2.36)

which expresses in an almost unintelligible way the request that the evolved of the transformed
equals the transformed of the evolved, which is a quite catchy formulation of our second require-
ment.

Summarising, a symmetry transformation is a transformation on the space of states of the
system that relates the description of two equivalent observers, which by definition see the same
and all the same possible states of the system, and see its temporal evolution being governed
by the same law. The compositionM2 ◦M1 of two symmetry transformationsM1 andM2 is
clearly still a symmetry transformation, and such a composition is associative,M3◦(M2◦M1) =
(M3◦M2)◦M1. Moreover, the identity transformation is obviously a symmetry, and symmetry
transformations are invertible by definition. This sums up to symmetry transformation of a
physical system forming a group, the (you don’t say. . . ) group of symmetry transformations of
the system.

2.5.1 Particle mechanics

The Lagrangian formalism allows us to identify from the outset mappings which are symmetry
transformations of our system. Let S and S′ be the following action functionals,

S =

∫ t1

t0

dtL(q(t), q̇(t), t) ,

S′ =

∫ t′1

t′0

dt′ L(q′(t′), q̇′(t′), t′) ,

(2.37)

where primed quantites are obtained via the (generally time-dependent) mapping M from O
to O′, q′i(t

′) = Mi t(qi(t)). Notice that the same Lagrangian appears in both expressions: in
general it is possible to find some L′ for which the new action functional for O′ will equal that
of O, but this will imply different equations of motions (EOM) for the two observers. If, on the
other hand, S = S′ up to boundary terms (see below), then the same equations of motions will
govern the evolution of the system for the two observers. This is seen as follows. Equality up
to boundary terms means that

S′ = S + F (q(t1), t1)− F (q(t0), t0) , (2.38)

for some function F (q, t). This means that the variation of the two functionals, which is done
at fixed qi(t0), qi(t0), and correspondingly at fixed q′i(t

′
0), q

′
i(t

′
1), will be the same, i.e., δS = δS′.

Indeed,

δq′i(t
′
0,1) =Mi t0,1(q(t0,1) + δq(t0,1))−Mi t0,1(q(t0,1)) =Mi t0,1(q(t0,1))−Mi t0,1(q(t0,1)) = 0 ,

(2.39)
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so the statement follows. Consider now qi(t) solving the EOM for O. We have [see Eq. (2.12)]

0 = δS = δS′ =

(

∑

i

δq′i
∂

∂q̇′i
L(q′, q̇′, t′)

)

∣

∣

∣

∣

t′1

t′0

+

∫ t′1

t′0

dt′
∑

i

δq′i

(

∂

∂q′i
L(q′, q̇′, t′)− d

dt′
∂

∂q̇′i
L(q′, q̇′, t′)

)

,

(2.40)

but the first term in Eq. (2.40) vanishes due to Eq. (2.39), and since δS = 0 for arbitrary δqi,
which in turn imply arbitrary δq′i, the second term can vanish only if

∂

∂q′i
L(q′, q̇′, t′)− d

dt′
∂

∂q̇′i
L(q′, q̇′, t′) = 0 , (2.41)

i.e., if q′(t′) (which is the trajectory of the system as seen by O′) satisfies the same EOM as q(t).
The equality up to boundary terms means in practice that the change in the action corre-

sponds to adding a total derivative to the Lagrangian:8

S′ = S + F (q(t1), t1)− F (q(t0), t0) = S +

∫ t1

t0

dt
d

dt
F (q(t), t) . (2.42)

A well known example of this situation is that of a free particle under change of frame through
a Galilei transformation q → q′ = q − vt, t→ t′ = t:

L(q, q̇) =
1

2
mq̇2 ,

L(q′, q̇′) =
1

2
mq̇′ 2 = L(q, q̇) +mvq̇ +

1

2
mv2 = L(q, q̇) +

d

dt

(

mvq +
1

2
mv2t

)

.
(2.43)

There is more to invariance of the action up to boundary terms than the fact that the EOM
are the same for the two observers. In fact, if we have invariance under a continuous group of
transformations, Noether’s theorem guarantees the existence of a conserved charge. Consider
an infinitesimal such transformation,

q′i(t
′) = qi(t) + δqi(t) = qi(t) + ǫMi(q, q̇, t) ,

t′ = t+ δt = t+ ǫT (q, q̇, t) ,
(2.44)

and assume invariance up to boundary terms of the action, as above:

∫ t1

t0

dt [L(q(t), q̇(t), t) + ǫF (q(t), t)] =

∫ t′1

t′0

dt′ L(q′(t′), q̇′(t′), t′) . (2.45)

Since the transformation is infinitesimal, also the boundary term must be (it has to vanish as
ǫ→ 0). Changing variables back to t in the right-hand side, and expanding up to first order in
the variations, we find

∫ t′1

t′0

dt′ L(q′(t′), q̇′(t′), t′) =

∫ t1

t0

dt

(

1 +
dδt

dt

)

L(q′(t+ δt), q̇′(t+ δt), t+ δt) =

∫ t1

t0

dt

(

1 +
dδt

dt

)[

L(q′(t), q̇′(t), t) + δt
d

dt
L(q(t), q̇(t), t)

]

.

(2.46)

8We assume that dt′/dt > 0.
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From Eq. (2.44) we find (notice that although they differ in general, q̇′(t′) = q̇(t) to zeroth order)

q′i(t) = q′i(t
′ − δt) = q′i(t

′)− δtq̇i(t) = qi(t) + δqi(t)− δtq̇i(t)
≡ qi(t) + δqi(t) = qi(t) + ǫ[Mi(q, q̇, t)− q̇i(t)T (q, q̇, t)] ,

(2.47)

and plugging this back into Eq. (2.46) and expanding we get

∫ t′1

t′0

dt′ L(q′(t′), q̇′(t′), t′)

=

∫ t1

t0

dt

(

1 +
dδt

dt

)[

L(q(t), q̇(t), t) +
∑

i

δqi(t)
∂

∂qi
L(q(t), q̇(t), t)

+ δ̇qi(t)
∂

∂q̇i
L(q(t), q̇(t), t) + δt

d

dt
L(q(t), q̇(t), t)

]

=

∫ t1

t0

dt

{

L(q(t), q̇(t), t) +
∑

i

δqi(t)

[

∂

∂qi
L(q(t), q̇(t), t)− d

dt

∂

∂q̇i
L(q(t), q̇(t), t)

]

+
d

dt

[

∑

i

δqi(t)
∂

∂q̇i
L(q(t), q̇(t), t) + δtL(q(t), q̇(t), t)

]}

.

(2.48)

Comparing this with Eq. (2.45), and imposing EOM to make the term proportional to δqi vanish,
we find

0 =

∫ t1

t0

dt
d

dt

[

∑

i

δqi(t)
∂

∂q̇i
L(q(t), q̇(t), t) + δtL(q(t), q̇(t), t)− ǫF (q(t), t)

]

,

= ǫ

∫ t1

t0

dt
d

dt

[

∑

i

[Mi(q, q̇, t)− q̇i(t)T (q, q̇, t)]
∂

∂q̇i
L(q(t), q̇(t), t)

+ T (q, q̇, t)L(q(t), q̇(t), t)− F (t, q(t))
]

,

(2.49)

which entails that the following quantity, named Noether charge, is a constant of motion (we
drop the t-dependence of q and q̇ from the notation for simplicity):

Q(q, q̇, t) =
∑

i

{

[Mi(q, q̇, t)− q̇iT (q, q̇, t)]
∂

∂q̇i
L(q, q̇, t)

}

+ T (q, q̇, t)L(q, q̇, t)− F (q, t)

=
∑

i

{[Mi(q, q̇, t)− q̇iT (q, q̇, t)]pi(q, q̇, t)}+ T (q, q̇, t)L(q, q̇, t)− F (q, t) .
(2.50)

In the case when Mi = Mi(q), we have that Q generates the transformation of the coordinates
through the Poisson brackets:

{qi, Q}PB =Mi(q) . (2.51)

Notice that in this case

{pi, Q}PB = −
∑

j

∂

∂qi
Mj(q)pj , (2.52)

and the combined transformation of qi and pi is an infinitesimal canonical transformation, pre-
serving the Poisson brackets.

Let us now consider a few examples.
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Time translations In this case Mi = 0, T = 1. If the Lagrangian itself is invariant, i.e.,
independent of time, then there is no F , and we find

Q = L−
∑

i

q̇ipi = −H . (2.53)

The Hamiltonian, i.e., the energy of the system is constant if there is invariance under time
translations.

Coordinate translations In this case Mi = δij if we are changing only qj , and T = 0.
Assuming again that the Lagrangian itself is invariant then F = 0, and we find

Qj = pj . (2.54)

This is obvious from the EOM: if the Lagrangian is independent of qj , then one finds immediately
ṗj = 0. If qj are Cartesian coordinates, invariance under space translations is associated with
conservation of spatial momentum.

Rotations Let qi, i = 1, 2, 3 be Cartesian coordinates. For an infinitesimal rotation around

axis j we have M
(j)
i =

∑

k εijkqk, T = 0. When F = 0

Q(j) =
∑

ij

εijkqkpi = (~q ∧ ~p)j = ~Lj , (2.55)

and we see that rotational invariance is associated with conservation of angular momentum.

Galilei boost This is a different example, as it is impossible to write a Lagrangian, function
of q and q̇, exactly invariant under Galilei boosts.9 Consider a Lagrangian of the form

L(qi, q̇i) =
∑

i

1

2
mi~̇q

2
i − V (~qi − ~qj) , (2.56)

where ~qi are the spatial coordinates of particle i, and V some potential that depends only on
the relative positions of particles. Under ~qi → ~q′i = ~qi − ~vt, t→ t′ = t we find

L(q′i, q̇
′
i) =

∑

i

1

2
mi~̇q

′ 2
i − V (~q ′i − ~q ′j) = L(qi, q̇i) + ~v · d

dt

∑

i

(

mi~qi +
1

2
mi~vt

)

. (2.57)

For infinitesimal ~vj we have Mij = −tδij , T = 0, Fj =
∑

imi(~qi)j (the O(v) term is of higher
order), and so

~Q =
∑

i

(mi~qi − ~pit) . (2.58)

This conservation law expresses the fact that the center of mass moves at constant speed on a
straight line:

∑

imi~qi
∑

imi
= t

∑

i ~pi
∑

imi
+ ~Q =

~Ptot

Mtot
t+ ~Q . (2.59)

9Imposing L(q−vt, q̇−v) = L(q, q̇) for all v, t implies 0 = ∂
∂t
L(q, q̇) = −v ∂

∂q
L(q−vt, q̇−v), and taking one further

derivative with respect to v and setting v = 0 we find ∂
∂q
L(q, q̇) = 0, i.e., L is independent of its first argument.

Taking instead the derivative with respect to v and setting v = 0 we find 0 = t ∂
∂q
L(q, q̇) + ∂

∂q̇
L(q, q̇) = ∂

∂q̇
L(q, q̇).
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2.5.2 Field theory

The same game can be played when working with fields. We assume again invariance of the
action under a symmetry transformation up to boundary terms, which are now given by the
integral of a total divergence. Let

S =

∫

D

d4xL (φ(x), ∂µφ(x), x) ,

S′ =

∫

D′

d4x′ L (φ′(x′), ∂′µφ
′(x′), x′) ,

(2.60)

where φ′i(x
′) = Mi(φ(x), ∂µφ(x), x) and x′ = X(x) for some transformation (M, X) mapping

from observer O to observer O′. If

S′ = S +

∫

D

d4x ∂µF
µ(φ(x), x) , (2.61)

then the same EOM apply for both observers. The argument is identical to the one given above
for finitely many degrees of freedom, once that the appropriate generalisations are made, and
will not be given here again. Consider then an infinitesimal such transformation,

φ′i(x
′) = φi(x) + δφi(x) = φi(x) + ǫMi(φ, ∂µφ, x) ,

x′µ = xµ + δxµ = xµ + ǫAµ(x) . (2.62)

For future utility, let us note that

φ′i(x) = φ′i(x
′ − δx) = φ′i(x

′)− δxµ∂µφi(x) = φi(x) + δφi(x)− δxµ∂µφi(x)
≡ φi(x) + δφi(x) = φi(x) + ǫ[Mi(φ, ∂µφ, x)−Aµ(x)∂µφi(x)] .

(2.63)

We then proceed as above, changing variables in S′ back to x,

S′ =

∫

D

d4x

∣

∣

∣

∣

det
µν

∂x′µ

∂xν

∣

∣

∣

∣

L (φ′(x+ δx), ∂µφ
′(x+ δx), x+ δx) , (2.64)

and then expanding in ǫ. Notice that to lowest order
∣

∣

∣

∣

det
µν

∂x′µ

∂xν

∣

∣

∣

∣

=

∣

∣

∣

∣

det
µν

(

δµν +
∂δxµ

∂xν

)∣

∣

∣

∣

=

∣

∣

∣

∣

1 + tr

(

∂δxµ

∂xν

)∣

∣

∣

∣

=

∣

∣

∣

∣

1 + ∂µδx
µ

∣

∣

∣

∣

= 1 + ∂µδx
µ . (2.65)

We then find

S′ =

∫

D

d4x

{

L (φ(x), ∂µφ(x), x) + ∂µ [δx
µ
L (φ(x), ∂µφ(x), x)]

+
∑

i

[

δφi(x)
∂

∂φi
L (φ(x), ∂µφ(x), x) + ∂µ(δφi(x))

∂

∂(∂µφi)
L (φ(x), ∂µφ(x), x)

]}

.

(2.66)
Using Eq. (2.61) and integrating by parts we find

0 =

∫

D

d4x

{

∂µ

[

δxµL (φ(x), ∂µφ(x), x) +
∑

i

δφi(x)
∂

∂(∂µφi)
L (φ(x), ∂µφ(x), x)− Fµ(φ, x)

]

+
∑

i

δφi(x)

[

∂

∂φi
L (φ(x), ∂µφ(x), x)− ∂µ

∂

∂(∂µφi)
L (φ(x), ∂µφ(x), x)

]}

.

(2.67)
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Imposing now the EOM, and given the arbitrariness of D and ǫ, we conclude that the Noether
current Jµ,

Jµ(φ,∂µφ, x) =

AµL (φ, ∂µφ, x) +
∑

i

[Mi(φ, ∂µφ, x)−Aν∂νφi]
∂

∂(∂µφi)
L (φ, ∂µφ, x)− Fµ(φ, x) , (2.68)

is a conserved current,
∂µJ

µ = 0 . (2.69)

From the Noether current one can easily construct a conserved Noether charge,

Q =

∫

d3xJ0(x) . (2.70)

A simple calculation shows that

d

dt
Q =

∫

d3x ∂0J
0(x) = −

∫

d3x ∂jJ
j(x) = − lim

V→∞

∫

V

d3x ∂jJ
j(x)

= − lim
V→∞

∫

∂V

dnj J
j(x) = 0 ,

(2.71)

assuming that the fields are sufficiently well behaved at infinity, so that the flux of J j at infinity
vanishes. Explicitly,

Q =

∫

d3x

[

A0
L +

∑

i

[Mi −Aν∂νφi]
∂

∂(∂0φi)
L − F 0

]

=

∫

d3x

[

A0

(

L −
∑

i

∂0φiπi

)

+
∑

i

[Mi −Aj∂jφi]πi − F 0

]

=

∫

d3x

[

∑

i

[Mi −Aj∂jφi]πi −A0
H − F 0

]

.

(2.72)

Also in this case, for Mi = Mi(φ) we find (recall that Q(t) = Q(0) can be taken at any time
since it is conserved)

{φi(t, ~x), Q}PB =

∫

d3x

∫

d3z
∑

k

δφi(t, ~x)

δφk(t, ~z)

δJ0(φ, ∂φ, x)

δπk(t, ~z)
=

∫

d3x
δJ0(φ, ∂φ, x)

δπi(t, ~x)

= [Mi(φ(t, ~x))−Aj(t, ~x)∂jφi(t, ~x)]−A0(t, ~x)
∂H

∂π(t, ~x)

= [Mi(φ(t, ~x))−Aj(t, ~x)∂jφi(t, ~x)]−A0(t, ~x)∂0φ(t, ~x)

= [Mi(φ(t, ~x))−Aν(t, ~x)∂νφi(t, ~x)] ,

(2.73)

which is precisely the transformation of the fields (up to the parameter ǫ).
Also in this case let us consider a few examples.
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Translations The simplest case is that of invariance under translations. We assume again
that no boundary term appears, which is the case if there is no explicit dependence of the
Lagrangian density on the coordinates (the only case that we will be considering in practice). In
this case the action is obviously invariant. There are four kinds of translations, corresponding
to four Aµ(ν) = δµν , with Mi = 0. The components of the corresponding conserved currents form
the canonical energy-momentum tensor:

Θµ
ν = −Jµ(ν) =

∑

i

∂νφi
∂L

∂(∂µφi)
− δµνL , Θµν =

∑

i

∂νφi
∂L

∂(∂µφi)
− ηµνL . (2.74)

The reason for this nomenclature is easy: the µ = 0 components of this tensor represent the
energy and momentum density of the system, from which energy and momentum are obtained
via integration:

∫

d3xΘ00 =

∫

d3x
∑

i

∂0φiπi −L =

∫

d3xH = H = P 0 ,

∫

d3xΘ0j =

∫

d3x
∑

i

∂jφiπi = −
∫

d3x
∑

i

∂jφiπi = P j .

(2.75)

Lorentz transformations The next, and most interesting case would be that of Lorentz
transformations, but we are not ready yet, since we do not know yet enough about them to
discuss this point. This will have to wait a bit.

Internal symmetries Certain theories are symmetric under transformations that involve only
the fields and not the spacetime coordinates. Such transformations, mixing the various fields,
are called internal transformations, and the corresponding symmetry is an internal symmetry.
The simplest such transformations are linear in the fields, i.e.,

δφi(x) = ǫ
∑

j

Kijφj(x) . (2.76)

The corresponding conserved current and charge are easily determined,

Jµ =
∑

ij

∂L

∂(∂µφi)
Kijφj ,

Q =

∫

d3x
∑

ij

∂L

∂(∂0φi)
Kijφj =

∫

d3x
∑

ij

πiKijφj ,

(2.77)

and one immediately observes that

{φi, Q}PB =
∑

j

Kijφj . (2.78)
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2.6 Classical electrodynamics

Let us apply the formalism developed above to a concrete case, that of classical electrodynamics.
The classical theory of electromagnetism is contained in the four Maxwell equations:

~∇ · ~E = ρ , ~∇∧ ~E +
∂ ~B

∂t
= 0 ,

~∇ · ~B = 0 , ~∇∧ ~B − ∂ ~E

∂t
= ~ .

(2.79)

Here ~E and ~B are the electric and magnetic fields, ρ the charge density and ~ the electric current.
These equations can be written in compact, and manifestly Lorentz-covariant, form, using the
four-potential Aµ = (ϕ, ~A), in terms of which the fields read

~E = −~∇ϕ− ∂ ~A

∂t
, ~B = ~∇∧ ~A . (2.80)

Defining the field strength tensor, Fµν , and the four-current, Jµ, as

Fµν = ∂µAν − ∂νAµ , Jµ = (ρ,~) (2.81)

the inhomogeneous Maxwell equations are written as

∂µF
µν = Jµ , (2.82)

while the homogeneous equations, which are automatically solved thanks to the representation
Eq. (2.80), are encoded in the Bianchi identities,

∂µFνρ + ∂ρFµν + ∂νFρµ = 0 , (2.83)

identically satisfied by the field strength tensor. Electric and magnetic field components are
related to the field strength tensor components as follows:

~Ei = F0i = ∂0Ai − ∂iA0 = −
∂

∂t
~Ai − ~∇iϕ ,

~Bi = −
1

2
εijkFjk = −εijk∂jAk = εijk ~∇j ~Ak = (~∇∧ ~A)i .

(2.84)

Notice also the inverse relations
Fij = −ǫijk ~Bk . (2.85)

Let us now check the inhomogeneous equations:

∂µF
µ0 = J0 = ∂jF0j = ~∇ · ~E = ρ ,

∂µF
µj = J j = −∂0F0j + ∂iFij = −

∂

∂t
~Ej + ǫjik ~∇i ~Bk = −

∂

∂t
~Ej + (~∇∧ ~B)j = ~j .

(2.86)

The equations of motion Eq. (2.82) can be obtained from the following action by means of the
usual variational principle:

S = −1

4

∫

d4xFµνF
µν −

∫

d4xJµA
µ . (2.87)
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Indeed,
∂L

∂(∂µAν)
= −1

2
Fαβ

∂Fαβ
∂(∂µAν)

= −Fαβ ∂αAβ
∂(∂µAν)

= −Fµν , (2.88)

and
∂L

∂Aµ
= −Jµ , (2.89)

and so we get
−Jν + ∂µF

µν = 0 . (2.90)

This equation shows that not any current can be coupled to the electromagnetic field, but only
a conserved one: indeed, taking the divergence ∂ν of Eq. (2.90) we obtain ∂νJ

ν = 0, since
∂µ∂νF

µν = 0 identically due to the antisymmetry of Fµν .
Let us now express the EOM in terms of the four-potential,

✷Aν − ∂ν∂µAµ = Jν , (2.91)

where ✷ = ∂µ∂
µ = ∂20 − ~∇ 2 is the D’Alembert operator. Writing separately the ν = 0 and the

ν = 1, 2, 3 equations we find

ρ = −(~∇ 2ϕ+ ∂0~∇ · ~A) = −~∇ · (~∇ϕ+ ∂0 ~A) ,

~ = ✷ ~A+ ~∇(∂0ϕ+ ~∇ · ~A) = ∂0(∂0 ~A+ ~∇ϕ)− ~∇ 2 ~A+ ~∇~∇ · ~A
(2.92)

which in terms of physical fields are just Gauss’ law and the Maxwell-Faraday equation, respec-
tively,

~∇ · ~E = ρ ,

−∂0 ~E + ~∇∧ ~B = ~ .
(2.93)

The first equation in Eq. (2.92) is not a dynamical equation for ϕ, since its time derivative
does not appear. The other three equations involve four functions, and so their solutions are
undetermined by one arbitrary function. Let us choose to parameterise this indeterminacy with
ϕ, and write ~A = ~A(ϕ) for the vector potential solving the equations, where ϕ is so far arbitrary.
We might hope to fix ϕ by imposing the constraint provided by the first equation, but here we
run into a problem. Let us take the time derivative of the constraint equation, and impose
that the equations of motion are solved. Using the continuity equation ∂0ρ + ~∇ · ~ = 0 (i.e.,
conservation of the current), we find

∂0(~∇ 2ϕ+ ∂0~∇ · ~A+ ρ) = ~∇ · (~∇∂0ϕ+ ∂20 ~A− ~)
= ~∇ · [✷ ~A+ ~∇2 ~A+ ~∇∂0ϕ− ~) = ~∇ · [✷ ~A+ ~∇(~∇ · ~A+ ∂0ϕ)− ~ ] = 0 .

(2.94)

This means that if we impose the constraint at a certain time, then by virtue of the equations of
motion it will be satisfied automatically at all times. Stated differently, the functional relation
between ~A and ϕ implied by the equations of motion entails that the constraint will be satisfied
no matter what choice we make for ϕ, as soon as we enforce the constraint at one given time.
The system of differential equations Eq. (2.92) is thus underdetermined.

The difficulty found above can be rephrased in a number of ways. The fact that the temporal
derivative of the constraint vanishes by virtue of the equations of motions implies that the system
of equations Eq. (2.92) does not specify the dynamics of ϕ: if we try to recast one of the equations
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of the second set as an equation for ∂0ϕ, we end up with an empty identity. Another way to see
that problem is to solve explicitly the constraint for ϕ and plug it into the dynamical equations.
Solving for ϕ requires inverting the Laplacian ∆ = ~∇ 2 (something we will learn to do in due
time), and gives

ϕ = − 1

∆
(∂0~∇ · ~A+ ρ) . (2.95)

Substituting it in the other equations, we find after a little manipulation [using the fact that
~∇( 1

∆f) =
1
∆
~∇f ]

✷

(

~A− ~∇ 1

∆
~∇ · ~A

)

= ~j − ~∇ 1

∆
~∇ ·~j ⇒ ✷ ~A⊥ = ~⊥ . (2.96)

The quantities ~A⊥ ≡ ~A − ~∇ 1
∆
~∇ · ~A and ~⊥ ≡ ~ − ~∇ 1

∆
~∇ · ~ are automatically transverse, i.e.,

divergenceless, so Eq. (2.96) is an equation for two dynamical degrees of freedom. The remaining
degrees of freedom, ~∇ · ~A and ϕ, are related by Eq. (2.95), but are otherwise arbitrary.

In fact, the constraint equation is solved by infinitely many choices: given any solution
(ϕ, ~A) of the constraint, one can construct a new one by sending ϕ → ϕ + ∂0Λ, ~A → ~A − ~∇Λ
for an arbitrary function Λ. Since the transverse part of the vector potential is unchanged
by this transformation, ~A⊥ → ~A − ~∇Λ − ~∇ 1

∆
~∇ · ( ~A − ~∇Λ) = ~A⊥, what we obtain is a new

solution of the system of equations. In summary, the equations of motion are invariant under
the transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x) , (2.97)

for arbitrary Λ(x). This is a gauge transformation, and the invariance under them is called gauge
invariance. This is actually an invariance of the Lagrangian. To see that this is an invariance,
notice that Fµν is manifestly invariant, while for the current term the change is given by

∫

d4xJµ∂µΛ =

∫

d4x [∂µ (J
µΛ)− Λ∂µJµ] =

∫

d4x ∂µ (J
µΛ) , (2.98)

due to current conservation. The action changes by a boundary term only, so the equations
of motion do not change. Gauge invariance shows once again that the system of equations
Eq. (2.92) is underdetermined, and solutions to the Cauchy problem, i.e., solutions of the EOM
with prescribed values for fields and their spatial derivatives at t = 0, are not unique: we can
always add an arbitrary Λ that vanishes at t = 0 and with vanishing spatial derivative there,
and still obtain a solution. Our description of the system in terms of the four-potential is then
redundant, and to specify the solution uniquely we have to impose extra conditions on Aµ, i.e.,
we have to fix the gauge.

Gauge invariance and the presence of constraints among the EOM are related facts, and, as
we will see, they require a careful treatment when quantising the theory. As a matter of fact,
the special nature of the equation Eq. (2.91) for ν = 0 can be seen directly from the Lagrangian.
If we compute the conjugate momenta we find

πµ =
∂L

∂(∂0Aµ)
= −F 0µ . (2.99)

In particular, π0 = 0, i.e., there is no conjugate momentum for A0. This is a consequence of
gauge invariance, and the reason why the time derivative of A0 does not appear in the EOM for
A0, which is therefore a constraint for A0 and not a dynamical equation. Moreover, since ∂0A0
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does not appear in the Lagrangian, the second time derivative of A0 never appears in the EOM.
The other momenta, on the other hand, are well defined and are simply

πj = −F 0j = F0j = −(∂0Aj + ∂jA
0) = ~Ej . (2.100)

In terms of them, the EOM for A0 reads

~∇ · ~π = J0 . (2.101)

As a Hamiltonian system, the one corresponding to the Maxwell Lagrangian is a constrained
system, with constraints

π0 = 0 , ~∇ · ~π − J0 = 0 . (2.102)

As we will see, this makes things not quite straightforward when the time comes for quantisation.
Let us now compute the energy-momentum tensor, setting the current Jµ = 0. From

Eq. (2.74) we obtain

Θµν = −∂νAσFµσ +
1

4
ηµνFρσF

ρσ . (2.103)

It is possible to define a new energy-momentum tensor which is symmetric and conserved,
differing from the canonical one by a divergenceless term:

Θµν = −∂σAνFµσ − F νσFµσ +
1

4
ηµνFρσF

ρσ = −∂σAνFµσ +Θµν
S . (2.104)

The symmetric energy-momentum tensor is also conserved:

0 = ∂µΘ
µν = −∂µ(∂σAνFµσ)+∂µΘµν

S = −∂µ∂σAνFµσ−∂σAν∂µFµσ+∂µΘµν
S = ∂µΘ

µν
S , (2.105)

since ∂µF
µσ upon imposing the EOM, and ∂µ∂σA

νFµσ = 0 since it is the contraction of a
symmetric and an antisymmetric tensor. The symmetric energy-momentum tensor is known
as the Belinfante-Rosenfeld tensor. We will see later how the possibility to define a symmetric
energy-momentum tensor is related to the Lorentz invariance of the theory. Let us work out
explicitly the components of the symmetric energy-momentum tensor:

Θ00
S =

1

2
( ~E 2 + ~B 2) ,

Θ0i
S = ( ~E ∧ ~B)i ,

Θij
S =

1

2
δij( ~E

2 + ~B 2)− ~Ei ~Ej − ~Bi ~Bj .

(2.106)

The first two lines correspond to the energy density and the momentum density of the electro-
magnetic field, respectively. The vector ~S = ~E ∧ ~B is known as the Poynting vector. As a final
remark, notice that a nonzero current would only contribute a term ηµνAαJ

α to the tensor, a
term which is diagonal (so symmetric). This gives a contribution to the energy density, but
not to the momentum density of the system: this can be understood from the fact that in our
setting the current is not dynamical.
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2.7 Canonical quantisation in quantum mechanics

The Hamiltonian formalism, especially when expressed in terms of Poisson brackets, is the
starting point for canonical quantisation. In the finite-dimensional case this is just quantum
mechanics as you have learnt it: Poisson brackets of classical (c-number) observables get replaced
by −i/~ times the commutator of their quantum mechanical (operator) counterparts. Let us
look at this quickly, introducing in passing the concept of picture, and reviewing Heisenberg’s,
Schrödinger’s, and Dirac’s.

Quantisation of a classical system with coordinates qi and momenta pi, and a time-indepen-
dent Hamiltonian H(q, p) is achieved by replacing the classical observables with self-adjoint
operators on a Hilbert space, and the fundamental Poisson brackets with commutators:

[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0 ,

dO
dt

= i[H,O] ,
(2.107)

where for simplicity we take observables O that do not depend explicitly on time. The equations
of motion, i.e., Heisenberg’s equation, can be solved:

O(t) = eiHtO(0)e−iHt = U(t)†O(0)U(t) , (2.108)

where U(t) is unitary. The states of the system are associated to vectors ψ (or rather rays eiαψ)
in a Hilbert space H, and the expectation value of observables reads

〈O〉ψ(t) = H〈ψ|OH(t)|ψ〉H . (2.109)

Here we have added a subscriptH to signal that we are working in Heisenberg’s picture: the state
of the system is given and fixed in time, while observables evolve according to the Hamiltonian
of the system. One can equivalently write Eq. (2.109) as

〈O〉ψ(t) = H〈ψ|eiHtOH(0)e−iHT |ψ〉H = S〈ψ(t)|OS |ψ(t)〉S , (2.110)

where OS = OH(0) and |ψ(0)〉S = |ψ〉H . This provides the Schrödinger’s picture of quantum
mechanics, in which observables are fixed operators, while states evolve in time according to the
Schrödinger equation,

i
∂

∂t
|ψ(t)〉S = H|ψ(t)〉S . (2.111)

The two pictures are physically equivalent by construction. In Schrödinger’s it is easier to express
the rules of measurements: the probability of obtaining the value an for a measurement of O at
time t is given by the absolute value squared of the transition amplitude to the corresponding
eigenvector

P = |〈an|ψ(t)〉|2 , (2.112)

where O|an〉 = an|an〉 . On the other hand, Heisenberg picture turns out to be more convenient
when dealing with field operators.

A third picture is the interaction or Dirac’s picture, in which obervables and states take dif-
ferent “parts” of the temporal evolution, with observables evolving freely and states (essentially)
with the interactions. This picture presumes that the Hamiltonian can be split into a free and
an interaction part, H = H0 + V , and then sets

〈O〉ψ(t) = H〈ψ|eiHte−iH0teiH0tOH(0)e−iH0teiH0te−iHT |ψ〉H = I〈ψ(t)|OI(t)|ψ(t)〉I , (2.113)
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with
OI(t) = eiH0tOH(0)e−iH0t = eiH0tOI(0)e−iH0t ,

|ψ(t)〉I = eiH0te−iHt|ψ〉H = eiH0te−iHt|ψ(0)〉I .
(2.114)

States and observables coincide in all pictures at t = 0. The key object here is the temporal
evolution

U(t2, t1) = eiH0t2e−iHt2eiHt1e−iH0t1 , (2.115)

in terms of which |ψ(t)〉I = U(t, 0)|ψ(0)〉I . To obtain an explicit expression for it, we solve the
differential equation

∂

∂t2
U(t2, t1) = eiH0t2i(H0 −H)e−iH0t2U(t2, t1) = −ieiH0t2V e−iH0t2U(t2, t1) = −iVI(t2)U(t2, t1) ,

(2.116)
subject to the boundary condition U(t1, t1) = 1. For t2 > t1 the solution is provided by Dyson’s
formula

U(t2, t1) = Texp

{

−i
∫ t2

t1

dt VI(t)

}

=
∞
∑

n=0

(−i)n
n!

∫ t2

t1

dτ1 . . .

∫ t2

t1

dτnT {VI(τ1) . . . VI(τn)} ,
(2.117)

where the time-ordering symbol T places the operators in descending order with respect to time
starting from the left:

T{A1(t1)A2(t2)} = θ(t1 − t2)A1(t1)A2(t2) + θ(t2 − t1)A2(t2)A1(t1) ,

T{A1(t1) . . . An(tn)} =
∑

P

θ(tP (1) − tP (2)) . . . θ(tP (n−1) − tP (n))AP (1)(tP (1)) . . . AP (n)(tP (n)) ,

(2.118)
where the sum is over all the distinct permutations P of {1, . . . , n}. For t1 > t2 we can use the
relation U(t2, t1) = U(t1, t2)† and obtain the solution from Eq. (2.118).

All the above is known stuff for systems with finitely many degrees of freedom. The practical
realisation is obtained by representing the canonical commutation relations on some Hilbert
space, and teh Stone-Von Neumann theorem tells us that this can be done in an essentially
unique way: for a single variable, H = L (R) and

(qψ)(x) = xψ(x)

(pψ)(x) = −i d
dx
ψ(x) ,

(2.119)

provides the desired representation of [q, p] = i; all other representations are unitarily equivalent
to this one.

We would like to follow a similar procedure with infinitely many degrees of freedom, replacing
the canonical Poisson brackets with commutators, i.e., performing canonical quantisation of
fields. Does this work? Yes, we know it does. Do we understand why? At this stage no, not at
all. Also: for infinitely many degrees of freedom the representation of the canonical algebra is
not unique, and we have to motivate physically which one we are going to use. For free fields
we will see easily that it is the Fock representation to be used. For interacting fields we would
first have to understand the dynamics, a task which is almost always impossible to tackle, and
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so we will need to develop approximation techniques. Finally, for particles with half-integer spin
commutation relations will not work, and we will have to use anticommutation relations instead.

Instead of quantising things that we do not understand properly, it is better from the logical
point of view to start from what we do understand properly, namely the particles, and then
proceed to develop quantum fields as a very convenient (Weinberg claims necessary) tool to
develop what we need, which is a relativistic, local, unitary quantum theory.10 A key point in
this approach is invariance under symmetry transformations. We now extend the discussion on
this point from the classical to the quantum case.

2.8 Symmetries in quantum mechanics

Consider again two observers O and O′ dealing with the same physical system. In quantum
mechanics, the results of their measurements, defining the state of the system, are used to
assign a representative vector to the system in the corresponding Hilbert space. We work here
in the same spirit of Schrödinger’s picture for time evolution: the operators corresponding
to the observables are defined once and for all for all observers, reflecting the fact that their
operative rules for measurements are the same.11 Since measurements in general differ for the
two observers, they will assign different representative vectors to the system, in such a way as
to obtain the correct expectation values of observables. For an observable A, for which O gets
the expectation value a, she/he will choose a vector ψ such that (ψ,Aψ) = a, while O′ who gets
the expectation value a′ will choose a vector ψ′ such that (ψ′, Aψ′) = a′.12 More precisely, they
will assign rays13 R and R′ to the state of the system, as to reproduce correctly the expectation
values. Establishing a relation between the descriptions of the two observers corresponds to
providing a mapping M from the space of rays H to itself, i.e., if O assigns the ray R to the
state of the system then O′ assigns the ray R′ =MR. As we discussed in the classical case, for
equivalent observers such a mapping has to be invertible.

Suppose now that an experiment is performed on the system, and a transition from a state
to another is observed. The two observers O and O′ will see respectively the transitions

O : Ri −→ Rf , O′ : R′
i −→ R′

f , (2.120)

occurring with probabilities P and P ′,

P = (Ri · Rf ) , P ′ = (R′
i · R′

f ) , (2.121)

where
R1 · R2 = |(ψ1, ψ2)|2 , (2.122)

with ψ1,2 any normalised vector belonging to R1,2. Since O and O′ are looking at the same
physical process, the transition probabilities they observe must be the same, P = P ′, and so

Ri · Rf = R′
i · R′

f . (2.123)

10In Weinberg’s argument, a key role is played by the cluster decomposition principle, which basically says that
the outcomes of far away experiments should be uncorrelated. Weinberg shows how using interactions built out
of local fields one automatically satisfies the cluster decomposition principle.

11Time evolution can be seen as a change in the origin of time, and in Schrödinger’s picture the observables do
not change under it. What we do here is applying the same approach to all sorts of changes of reference frame.

12It is understood that vectors are normalised to 1.
13A ray is an equivalence class of vectors ψ ∈ H with respect to the equivalence relation {ψ ∼ φ if ψ = eiζφ}.
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Since R′
i,f =MRi,f , we have that

Ri · Rf = (MRi) · (MRf ) . (2.124)

A theorem due to Wigner guarantees that an invertible transformationM on the space of rays
H that conserves probabilities as in Eq. (2.124) can be implemented as a transformation M on
the space of vectors H that is either linear and unitary or antilinear and antiunitary. Linear and
antilinear operators are defined as follows:

linear : U(αψ + βφ) = αUψ + βUφ ,

antilinear : T (αψ + βφ) = α∗Tψ + β∗Tφ .
(2.125)

The adjoint of an operator is defined as follows in the two cases:

linear : (ψ,Uφ) = (U †ψ, φ) ,

antilinear : (ψ, Tφ) = (T †ψ, φ)∗ .
(2.126)

Finally, a linear unitary and an antilinear antiunitary operator are operators that are onto H
(i.e., their image is the whole space), and that satisfy

linear and unitary : (Uψ,Uφ) = (ψ, φ) ,

antilinear and antiunitary : (Tψ, Tφ) = (ψ, φ)∗ .
(2.127)

In both cases, these requirements are equivalent to U †U = UU † = 1, T †T = TT † = 1. In
practice, then, a symmetry transformation, relating two equivalent observers, is a unitary or
an antiunitary mapping M of the Hilbert space onto itself. As we discussed previously, the
symmetry transformations of a system form a group.

So far we have discussed only the kinematical aspect of symmetries. There is also the dy-
namical aspect to be taken into account, i.e., the evolved of the transformed must equal the
transformed of the evolved for a transformation to be a symmetry. In quantum mechanics the
temporal evolution is determined by the Hamiltonian H of the system. If H is not depending
explicitly on time, then the temporal evolution of a system is obtained via the unitary transfor-
mation U(t) = e−iHt. For equivalent observers this unitary operator must be the same, and for
a transformation M(t) (which we momentarily take to depend explicitly on time for generality)
to be a symmetry the following relation must hold,

M(t)ψ(t) =M(t)U(t)ψ(0) = U(t)M(0)ψ(0) , (2.128)

for all initial vectors ψ(0), and therefore

M(t)U(t) = U(t)M(0) . (2.129)

This equation can be recast as U(t) =M(t)U(t)M(0)†, expressing the invariance of the evolution
operator. Eq. (2.129) can be recast also as M(t) = U(t)M(0)U(t)†, which means that the tem-
poral dependence of the transformation M(t) has to be entirely determined by the Hamiltonian
of the system, with no room for some extra explicit dependence.

Let us now make our life simpler, and let us focus on time-independent symmetry transfor-
mations. From Eq. (2.129) we find [U(t),M ] = 0 at all times, and so taking the derivative and
setting t = 0 we find

[H,M ] = 0 . (2.130)
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A time-independent transformation is then a symmetry if it commutes with the Hamiltonian.
Symmetries are classified in two big groups, namely continuous and discrete: in the first case
there is a continuous family of symmetry transformations depending on some real parameter, in
the second case the transformation is “isolated”. If M = M(α) is an element of a continuous
family of symmetry transformations dependent on some parameter α and connected to the
identity, M(0) = 1, then it has to be unitary. Indeed, since (M(α)ψ,M(α)φ) has to be equal
to (ψ, φ) or (ψ, φ)∗, it must be a constant and so equal to (M(0)ψ,M(0)φ) = (ψ, φ). We can
then write M(α) = eiαQ for some self-adjoint operator Q = Q†, which is therefore a good
observable. If M(α) is a symmetry for all α, we can take the derivative with respect to α
to find [H,Q] = 0. This means that Q is a conserved physical quantity, i.e., its expectation
value on a state does not change with time. In Heisenberg’s picture this reads dQ(t)/dt =
−i[H,Q(t)] = 0. Moreover, since Q commutes with the Hamiltonian it can be diagonalised
simultaneously with it. The construction above obviously does not apply to discrete symmetries,
for which an analogous conserved quantity cannot be constructed. Examples of continuous
transformations are translations and rotations, to which correspond respectively the conserved
four-momentum and angular momentum. Discrete symmetries include most notably parity (P ),
charge conjugation (C), and time reversal (T ).

In the classical case we have seen how we can find conserved charges using the Lagrangian for-
malism and exploiting Noether’s theorem. The same kind of approach can be used here, although
care is needed because of possible operator-ordering issues. Notice that since ǫ{q,Q}PB = δq,
which upon canonical quantisation becomes iǫ[Q, q] = δq (modulo ordering problems), these
charges would indeed generate the transformation. A similar argument goes for quantum fields,
as we will see in due time.

3 Particles as irreducible representations of the Poincaré group

Experimental evidence shows the existence of particles, small localised objects characterised by
a few constant quantities, mainly mass and total spin, plus others like electric charge, labelling
different types; and by their energy, momenta and spin components, or equivalently energy,
total angular momentum and angular momentum components. In the absence of interactions,
particles travel freely on straight lines determined by their momenta. What we will discuss here is
the theoretical characterisation of particles as irreducible representations of the Poincaré group,
from which the same features of the experimental characterisation (i.e., the same observable
quantities) will emerge.

The basic principle of special relativity is that all observers related by a Lorentz transfor-
mation are equivalent. Moreover, one of our fundamental assumptions (supported by countless
experimental results) is that physics is invariant with respect to temporal and spatial transla-
tions. These two facts are summarised geometrically by taking Minkowski space as the arena
for our physical theories: in fact, the isometries14 of Minkowski space are precisely translations
and Lorentz transformations, and what we assume is that physics is invariant under this family
of transformations.

The group of isometries of Minkowski space is the Poincaré group, and we postulate that

14The isometries of a metric space are those mapping of the space into itself that preserve distances. For spaces,
like Minkowski, were we have instead a pseudo-Euclidean metric, it is the interval (x − y)µ(x − y)νηµν that has
to be preserved.
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physics is invariant under its action. Due to Wigner’s theorem, this implies that the Hilbert
space of the states of a physical system provides the basis for a representation of the Poincaré
group in terms of unitary or antiunitary operators. In particular, the component of the group
connected to the identity must be represented unitarily. We then define a particle as a system
providing an irreducible representation of the Poincaré group, i.e., the space of states has no
subspace left invariant by all the transformations. This means that we cannot subdivide the
space of states into subspaces which are not transformed into each other by some Poincaré
transformation, and so we cannot obtain a simpler description by dealing with these two subsets
of states separately.

A remark is in order here. While for systems with finitely many degrees of freedom it
is always possible to realise a symmetry unitarily (or antiunitarily), for systems with infinitely
many degrees of freedom (such as, e.g., statistical systems in the infinite volume limit, or systems
of fields), there is also a distinct possibility. It may happen that a symmetry of the (algebra
of) observables is in fact not a symmetry realised in the system, a fact usually (and sloppily)
expressed by saying that the ground state is not invariant under the symmetry transformation.
In this case one speaks of spontaneous symmetry breaking. In the cases we will be dealing with,
it is assumed that symmetries are (anti)unitarily realised, or realised à la Wigner-Weyl.

The plan of this section is the following. We discuss first representation theory in some
generality, and give some details for the familiar case of rotations in three dimensions. We then
discuss the Poincaré group and its representation. Finally, we will construct the space describing
any number of noninteracting particles (Fock space), introduce the creation and annihilation
operators, and easily derive their transformation properties under the Poincaré group. This
will be the starting point for the developments of the following section, where we discuss how to
manage creation and annihilation of particles by means of local operators, i.e., fields, with simple
transformation properties under symmetry transformations. We will then (finally!) show how
all of this can be obtained via canonical quantisation starting from a Lagrangian. As discussed
in the Introduction, this is quite the opposite of the historical approach.

3.1 Representation theory: a brief introduction

Given a group G and a vector space V over the real or complex numbers, a representation of
G is a mapping from G to the space of invertible matrices GL(V ) that preserves the group
multiplication. If V has dimension n, the representation is said to be n-dimensional; V is said
to provide a basis for the representation. The mapping D : G→ GL(V ) must then satisfy

D(g1)D(g2) = D(g1g2) , (3.1)

for all elements g1, g2 ∈ G. Using Eq. (3.1) for g1 = e, the identity element of G, we find

D(e)D(g) = D(g) =⇒ D(e) = 1n , (3.2)

since D(g) is invertible. Moreover,

D(g)D(g−1) = D(e) = 1n =⇒ D(g−1) = D(g)−1 . (3.3)

An irreducible representation is one such that there is no proper subspace W ⊂ V , W 6= ∅ with
D(g)W =W for all g, i.e., no subspace is left invariant by all matrices D(g).
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The group we are interested in is a Lie group, i.e., a group which is also a smooth mani-
fold, with multiplication and inversion being smooth maps on the manifold. Elements of a Lie
group can then be parameterised locally in terms of parameters αa, denoted collectively by α,
whose number is the dimension of the manifold. In this case, representations are required to
be smooth in the group elements. For Lie groups, representations can be (essentially) obtained
from representations of the corresponding Lie algebra. Parameterising as g(α) the elements of
the group in a neighbourhood of the identity, the tangent space of the Lie group at the identity
element is generated as a vector space by the elements

τ̃a =
∂g(α)

∂αa

∣

∣

∣

∣

α=0

, (3.4)

which are called the generators of the group. The generic element A of the tangent space can
be written as a linear combination with real coefficients of the generators, A =

∑

a caτ̃a. The
Lie groups we will be dealing with are matrix groups, i.e., g are matrices, and so will be the τ̃a
and the generic A. It can be shown that the tangent space at the identity is closed under the
commutator [A,B] = AB−BA. The Lie algebra of the Lie group is precisely this tangent space
with the commutator operation. Being closed under commutators implies that

[τ̃a, τ̃b] = −f c
ab τ̃c , (3.5)

for some real constants f c
ab , called the structure constants of the group. Here sum over repeated

indices is understood. A representation d of the algebra is again a mapping of the algebra to
some matrix space GL(V ), which this time preserves commutators,

[d(A), d(B)] = d([A,B]) , (3.6)

and it is irreducible if there is no subspace W for which d(A)W = W for all A in the al-
gebra. The correspondence between irreducible representations of the algebra and irreducible
representations of the group is the following:15

D(eA) = ed(A) . (3.7)

Physicists prefer to redefine the generators as τ̃a = iτa, so that Eq. (3.5) is recast as

[τa, τb] = if c
ab τc , (3.8)

and Eq. (3.7) becomes
D(eiA) = eid(A) . (3.9)

For connected compact groups, all finite-dimensional irreducible representations are equivalent
to unitary representations, i.e., representations in which the matrices D(g) are unitary, and so
the τa are Hermitian. This is not true for non-compact groups: for the Lorentz group there are
no finite-dimensional unitary representations, except for the trivial representation D(g) = 1 ∀g.
Finite-dimensional representations do exist, but they are necessarily non-unitary.

15This is strictly true only for simply connected Lie groups. For connected but not simply connected groups, this
formula provides an irreducible representation of the universal cover of the group, which descends to a projective
representation of the group, i.e. a representation in which Eq. (3.1) is relaxed to D(g1)D(g2) = eiφ(g1,g2)D(g1g2).
Since adding an extra phase to all the state vectors of a physical system has no observable consequence, projective
representations are perfectly good for us, and we will not care in making the distinction.
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Let us discuss these concepts in the familiar case of the three-dimensional rotation group
SO(3). The group O(3) is the group of transformations of R3 that keeps the Euclidean length
of a vector unchanged, and is characterised by the relation

OTO = 1 , (3.10)

where T denotes the transpose. This implies detO = ±1. The subgroup with detO = 1 forms
the group of (proper) rotations SO(3), preserving the orientation of space. Since O is a real
matrix, Eq. (3.10) implies that O (seen as a complex matrix) is unitary, and thus can be written
as O = eA with antihermitian A. The condition detO = 1 implies trA = 0. Reality of O then
implies that A is antisymmetric real.16 The most general such matrix can be written as

Aij = θaǫaij = iθaτa , (τa)ij = −iǫaij , (3.11)

since there are precisely 3·2
2 = 3 independent real entries in an antisymmetric real matrix. The

τa are the generators of the rotation group, and the generic element of the group can be written
as O = eiθ

aτa . For an infinitesimal rotation ~x→ ~Ox,

~Oxi = Oijxj = xi + iθa(τa)ijxj = xi + θaǫaijxj = (~x− ~θ ∧ ~x)i . (3.12)

In the physicist’s convention, the Lie algebra so(3) of the rotation group is the space of purely
imaginary antisymmetric matrices, which is closed under (−i times, in the physicist’s convention)
commutators. Indeed,

[τa, τb]
T = −[τTa , τTb ] = −[τa, τb] , [τa, τb]

∗ = [τ∗a , τ
∗
b ] = [τa, τb] , (3.13)

and therefore
[τa, τb] = if c

ab τc . (3.14)

An explicit computation shows that

([τa, τb])ij = −(ǫaikǫbkj − ǫbikǫakj) = δabδij − δajδbi − δabδij + δbjδai

= δaiδbj − δajδbi = ǫabcǫcij = iǫabc(τc)ij ,
(3.15)

i.e., the commutation relations read

[τa, τb] = iǫabcτc . (3.16)

These are the same commutation relations of the algebra of su(2).17 The irreducible representa-
tions of this algebra are well known: they are obtained by representing the algebra on the linear
spaces generated by vectors |j, j3〉, with 2j being an integer and j3 = −j,−j +1, . . . , j − 1, j, so
that the dimension of the representation is (2j + 1). Here d(τ3)|j, j3〉 = j3|j, j3〉, and j(j + 1)
is the eigenvalue of the quadratic Casimir operator C2 =

∑

a d(τa)
2: in other words, they are

the eigenvectors of the third component J3 of the angular momentum and of the total angular
momentum ~J 2. Casimir operators commute with the representatives of all the generators, thus
with all the elements of an irreducible representation of a group, and by Schur’s lemma they

16In general O∗ = O, i.e., eA
∗

= eA, implies A∗ = A + i2πk, or equivalently (A + iπk)∗ = A + iπk, but the
tracelessness condition fixes k to zero.

17The group SU(2) is the universal covering group of SO(3).
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must be multiples of the identity in each irreducible representation. This means that Casimir
operators can be used to label the various irreducible representations. The quadratic Casimir
clearly commutes with all the generators:18

[C2, d(τb)] =
∑

a

[d(τa)
2, d(τb)] =

∑

a

{d(τa), [d(τa), d(τb)]} =
∑

ac

iǫabc{d(τa), d(τc)} = 0 , (3.17)

since ǫabc is antisymmetric in bc while the anticommutator is symmetric.
For future utility, we discuss also how representations appear in the transformation laws of

fields. Our fields are operators in Hilbert spaces, and their transformed is defined formally as

φ′(x) = U(R)−1φ(x)U(R) , (3.18)

where U(R) is the representation acting on the states of the system. The representations we are
interested in are unitary, U−1 = U †, and fields will be the basic building blocks of observables.
The law Eq. (3.18) is then motivated by the request that the new field describes on the old
states the same physics that the old field describes on the new states:

〈ψ′
2|φ(x)|ψ′

1〉 = 〈ψ2|U †φ(x)U |ψ1〉 = 〈ψ2|φ′(x)|ψ1〉 . (3.19)

In other words, we can go from a Schrödinger to a Heisenberg picture of symmetry transforma-
tions in which we keep the states fixed and transform the fields. Different possibilities arise for
the actual right-hand side member of Eq. (3.18):

scalar: φ′(x) = φ(R−1x) ,

vector: φ′i(x) = Rijφj(R
−1x) ,

spinor: φ′a(x) = D( 1
2
)(R)abφb(R

−1x) ,

general: φ′a(x) = D(j)(R)abφb(R
−1x) ,

(3.20)

where D( 1
2
)(eiθ

aτa) = eiθ
a σa

2 with σa the Pauli matrices, and D(j)(R) stands for a general, spin-j
representation.

To see why scalar and vectors transform the way they do, one can proceed this way. A scalar
field is a field that is not modified by rotations, besides the fact that the coordinate system has
been rotated. This means that the fields φ and φ′ at the physical point in space identified by x
in the old coordinates and by x′ = Rx in the new ones have to coincide:

φ′(x′) = φ(x)⇒ φ′(Rx) = φ(x)⇒ φ′(x) = φ(R−1x) . (3.21)

Similarly, a vector field has an orientation in space, whose description in a given coordinate
system has to change under rotations of the coordinates in order to keep the physical orientation
unchanged. Therefore, the scalar product of a vector field φ(x) with some coordinate vector y
has to remain invariant under changes of coordinates, so that the physical, intrinsic orientation
of the field at some physical point does not change. In formulas,

y′iφ
′
i(x

′) = yiφi(x)⇒ Rjiyiφ
′
j(Rx) = yiφi(x)⇒

yiR
−1
ij φ

′
j(Rx) = yiφi(x)⇒ φ′i(x) = Rijφj(R

−1x) .
(3.22)

18This proof immediately extends to compact semisimple algebras, i.e., compact algebras for which there is no
invariant Abelian subalgebra (i.e., no subalgebra of commuting elements which also commutes with any other ele-
ment of the algebra), since for these algebras the structure constants are totally antisymmetric under permutations
of the indices: f c

ab = −f c
ba = −f b

ac .
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The fact that D(j) has to be a representation of the group in the general case can be seen
composing two transformations, as follows. Since U is a representation,

U−1(R2)U
−1(R1)φa(x)U(R1)U(R2) = U−1(R1R2)φa(x)U(R1R2) . (3.23)

But then

U−1(R1R2)φa(x)U(R1R2) = D(j)(R1R2)abφb((R1R2)
−1x)

= U−1(R2)U
−1(R1)φa(x)U(R1)U(R2) = U−1(R2)D

(j)(R1)abφb(R
−1
1 x)U(R2)

= D(j)(R1)abD
(j)(R2)bcφc(R

−1
2 R−1

1 x) ,

(3.24)

i.e., D(j)(R1R2) = D(j)(R1)D
(j)(R2).

The same formalism for the transformations of fields will apply also in the case of the Poincaré
group. Notice however that in that case, since the matrices D provide a finite-dimensional
representation of the group, they cannot be unitary matrices.

3.2 The Lorentz group

We now discuss in some detail the structure of the Lorentz group. Recall from Section 2.2 that
Lorentz transformations are defined as the linear transformations x′µ = Λµνxν that satisfy

ΛαµΛ
β
νηαβ = ηµν , (3.25)

or in matrix notation, with (Λ)µν = Λµν and (η)µν = ηµν ,

ΛT ηΛ = η . (3.26)

We have seen how these relations entail that detΛ = ±1 and Λ0
0 is either greater than or equal

to 1, or less than or equal to −1, so that the group can be divided in four components. The
component containing the identity (detΛ = 1, Λ0

0 ≥ 1) forms the proper orthocronous Lorentz
group SO↑(3, 1).

Let us now parameterise a general transformation Λ as follows,

Λ =

(

α bT

c D

)

, (3.27)

where α ∈ Ris a real number, b, c ∈ R
3 are three-dimensional vectors and D ∈ 3

R
3 is a 3 × 3

real matrix. Eq. (3.26) reads then

(

α cT

b DT

)(

α bT

−c −D

)

=

(

1 0

0 −13

)

. (3.28)

This is equivalent to the following three equations:

α2 − cT c = 1 ,

αb−DT c = 0 ,

bbT −DTD = −13 .
(3.29)
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Let us start from the last equation. Setting bT b = B2 with positive B, and b̂ = b/B, it can be
recast as

DTD = 13 + bbT = 13 +B2b̂b̂T = (1 +B2)b̂b̂T + (13 − b̂b̂T ) . (3.30)

The quantities Π
b̂
= b̂b̂T and Π

b̂⊥
= 13− b̂b̂T are orthogonal projectors on b̂ and on its orthogonal

complement, respectively, i.e., Π
b̂
= ΠT

b̂
= Π2

b̂
, Π

b̂⊥
= ΠT

b̂⊥
= Π2

b̂⊥
, and Π

b̂
Π
b̂⊥

= Π
b̂⊥
Π
b̂
= 0. It

then follows that
DTD = (

√

1 +B2Π
b̂
+Π

b̂⊥
)2 = S2 , (3.31)

with S =
√
1 +B2Π

b̂
+ Π

b̂⊥
a symmetric and positive-definite matrix. Since detS =

√
1 +B2,

we have detD 6= 0, and so that both S and D are invertible matrices. Setting O = DS−1, we see
that OTO = S−1TDTDS−1 = S−1S2S−1 = 13, i.e., O ∈ O(3), and so we can write D = OS.19

This concludes the treatment of the third equation. We now plug this into the second one to
obtain

αb = DT c = SOT c =⇒ c = αOS−1b =
αB√
1 +B2

Ob̂ . (3.32)

Finally, we plug this into the first equation to obtain

1 = α2 − cT c = α2

(

1− B2

1 +B2

)

= α2 1

1 +B2
=⇒ α = ±

√

1 +B2 , (3.33)

and using this in Eq. (3.32) we get
c = ±BOb̂ . (3.34)

We have now completely characterised the Lorentz transformations Λ. Let us clean up the
calculation a bit to make the result more transparent. Set B = sinhΘ, from which it follows
α = (−1)kT coshΘ, with kT = 0, 1 taking into account the two possible signs of α, and let
b̂ = (−1)kT n. Finally, setO = (−1)kPO0 with kP = 0, 1 andO0 ∈ SO(3), so that detO = (−1)kP .
These are all redefinitions which do not change the nature of the quantities involved. We can
now write

Λ =

(

(−1)kT coshΘ (−1)kT sinhΘnT

(−1)kPO0 sinhΘn (−1)kPO0[(13 − nnT ) + coshΘnnT ]

)

=

(

(−1)kT 0

0 (−1)kP 13

)(

1 0

0 O0

)(

coshΘ sinhΘnT

sinhΘn (13 − nnT ) + coshΘnnT

)

.

(3.35)

Setting T = diag(−1, 1, 1, 1) and P = diag(1,−1,−1,−1), we have that the most general Lorentz
transformation can be written as the product of discrete transformation, times a rotation, times
a boost in direction n:

Λ = T kTP kPR(θ, r)L(Θ, n) (3.36)

where

R(θ, r) =

(

1 0

0 O0(θ, r)

)

, (3.37)

with O0(θ, r) a three-dimensional rotation around axis r of angle θ, and

L(Θ, n) =

(

coshΘ sinhΘnT

sinhΘn (13 − nnT ) + coshΘnnT

)

, (3.38)

19This is an example of the polar decomposition of an invertible matrix into the product of an orthogonal and
a symmetric positive-definite matrix.
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is a boost of rapidity Θ in the spatial direction direction n. The last expression looks probably
more familiar if we set sinhΘ = γβ, coshΘ = γ with γ = 1/

√

1− β2, and choose coordinates
so that n = (1, 0, 0). In this case

L =









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









(3.39)

is the transformation from the frame in which we are at rest to a second frame moving at speed β
in the negative x direction, or equivalently, the transformation from the frame moving at speed
β in the positive x direction to the frame in which we are at rest.

From Eq. (3.36) we see that kT and kP determine whether the transforamtion is proper
or not and orthocronous or not: kT = 0 implies orthocronous, kT + kP mod 2 = 0 implies
proper. The remaining two factors give transformations in the proper orthocronous group, and
it is clear that they form a continuous group. Its parameters are the two angles determining
the direction of n in three-dimensional space and the magnitude of Θ, or alternatively the three
components of the vector Θn, and the three parameters of the proper rotation group. The
proper orthocronous Lorentz group SO↑(3, 1) is thus a six-dimensional Lie group. This group is
furthermore connected, as any of its elements can be reached from the identity moving along a
continuous path in parameter space. However, Θ is any real positive number, which means that
the group is not compact.20

3.3 The algebra of the Lorentz group

Now that we have worked out the global structure of the Lorentz group, let us look at its local
structure, or in other words at the Lie algebra corresponding to its component connected to the
identity, i.e., the proper orthocronous subgroup. To this end, let us consider an infinitesimal
Lorentz transformation,

Λ = 1+Ω , (3.40)

where the matrix Ω is small, and again (Ω)µν = Ωµν . Plugging this into the defining relation
for Lorentz transformations we find to first order in Ω

η = ΛT ηΛ = η +ΩT η + ηΩ =⇒ ΩT η + ηΩ = 0 , (3.41)

or putting back indices
(Ω)ρµ(η)ρν + (η)µρ(Ω)ρν = 0 ,

Ωρµηρν + ηµρΩ
ρ
ν = 0 ,

Ωνµ +Ωµν = 0 ,

(3.42)

i.e., the tensor Ωµν is antisymmetric. Such a tensor has six independent entries (i.e., 4·3
2 = 6),

which precisely correspond to the six parameters of the group. The most general infinitesimal
transformation can then be written as

Ωµν =
1

2
ωρσ

(

δρµδ
σ
ν − δρνδσµ

)

=
1

2
ωρσM

(ρσ)
µν , (3.43)

20Moreover, although connected, this group is not simply connected. From a topological point of view, it is
the direct product R3 × SO(3) = R

3 × (S2/Z2), from which both non-compactness and non-simple-connectedness
follow.
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whereM
(ρσ)
µν are antisymmetric both in µ, ν and ρ, σ. To make contact with the matrix notation

used above, we need

(M (ρσ))µν =M
(ρσ)µ

ν
= ηρµδσν − ησµδρν . (3.44)

The matrices M (ρσ) are the generators of the Lorentz group for mathematicians. Physicists
prefer to use a different convention by introducing a factor i,

(J (ρσ))µν = J
(ρσ)µ

ν
= −i(M (ρσ))µν . (3.45)

These matrices are not all Hermitian, as we will see below. To complete the study of the group
algebra we need the commutation relations of the generators, which can be worked explicity
quite easily by direct computation, and read

[J (µν), J (ρσ)] = i
(

ηµρJ (νσ) + ηνσJ (µρ) − ηµσJ (νρ) − ηνρJ (µσ)
)

. (3.46)

To make them more transparent, set

Ki = J (0i) ,

J i = −1

2
ǫ0ijkJ (jk) ,

(3.47)

where Latin indices run on i, j, k = 1, 2, 3, and ǫ0123 = 1. Notice the inverse relation

J (ij) = −ǫijkJk = −ǫ0ijkJk , (3.48)

where ǫijk is the three-dimensional Levi-Civita tensor. One can easily be convinced that Ki and
J i correspond respectively to boosts and three-dimensional rotations. Indeed,

(Ki)µν = −i
(

0 δνi
δµi 0

)

= −i(1µi1ν0 + 1µ01νi) , (3.49)

and since (iKi)2 = 1, a simple calculation shows that (no sum over repeated i)

(eiαK
i

)µν = 1µν + (coshα− 1)

(

1 0

0 δµiδνi

)

+ sinhα

(

0 δνi
δµi 0

)

. (3.50)

These generators are anti-Hermitian. On the other hand,

(J i)jk = −iǫ0ijk = −iǫijk , (3.51)

all other entries being zeros, which are the Hermitian generators of rotations discussed in Section
3.1. In terms of Ki and J i, the commutation relations read

[J i, J j ] = iǫijkJ
k ,

[J i,Kj ] = iǫijkK
k ,

[Ki,Kj ] = −iǫijkJk ,
(3.52)

as one can obtain by direct calculation. These tell us that ~J generate rotations, that the boosts
~K transform like vectors under rotations, and that the commutator of two infinitesimal boosts is
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a rotation. These commutation relations can be further simplified if we consider the complexified
Lie algebra of the group. As we discussed above in Section 3.1, the algebra of a Lie group is a
real vector space, meaning that only linear combinations of the generators with real coefficients
are allowed. If we allow also complex coefficients we deal instead with the complexification of the
algebra. This is actually not new: think of representations of SU(2) and the use of raising and
lowering operators. Complexified algebras are of practical utility since from a representation of
the complexified algebra we can get a representation of the algebra itself However, one should
keep in mind the conceptual distinction between the two. With this caveat in mind, define

~J± =
1

2
( ~J ± i ~K) . (3.53)

A straighforward calculation shows that

[J i±, J
j
±] = iǫijkJ

k
± , [J i±, J

j
∓] = 0 . (3.54)

The complexified algebra soC(3, 1) of SO↑(3, 1) is then isomorphic to the complexified alge-
bra suC(2) ⊕ suC(2) of SU(2)⊗SU(2). This allows to classify the finite-dimensional irreducible
representations of so(3, 1) and thus those of SO↑(3, 1) using our knowledge of SU(2): finite-
dimensional representations are labelled by two half-integers (j1, j2), and are (2j1 + 1)(2j2 + 1)
dimensional. The representations of lowest dimension are the following:

(j1, j2) dimensionality

(0, 0) 1 scalar

(12 , 0) 2 left-handed Weyl spinor

(0, 12) 2 right-handed Weyl spinor

(12 , 0)⊕ (0, 12) 4 Dirac spinor

(12 ,
1
2) 4 vector

(3.55)

Notice that Dirac spinors do not provide an irreducible representation of the proper orthocronous
Lorentz group. However, since (12 , 0) and (0, 12) are transformed into each other by parity,
it provides an irreducible representation of the full group. Even though we have used the
representation theory of SU(2) to derive this, we should not confuse the Lorentz group with
SU(2)⊗ SU(2). The algebras so(3, 1) and su(2)⊗su(2) are not isomorphic [while, parenthetically
su(2)⊗ su(2) ≈ so(4)], and in fact while su(2)⊗ su(2) is compact, so(3, 1) is not.

3.4 The Poincaré group and its algebra

As we have said above, the Poincaré group consists of the isometries of Minkowski space, and
includes Lorentz transformations and translations. As such, it is a Lie group with ten parameters.
The most general transformation reads

M(Λ, a)x = Λx+ a , (3.56)

where Λ is a Lorentz transformation and a a four-vector. This can be represented in matrix
form using five-dimensional vectors, i.e.,

M(Λ, a)

(

x
1

)

=

(

Λx+ a
1

)

=

(

Λ a

0 1

)(

x
1

)

, (3.57)
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whereM =MAB has indices running on A,B = 0, 1, 2, 3, 4. It is easy to work out the compo-
sition law of the group:

M(Λ2, a2)M(Λ1, a1) =M(Λ2Λ1, a2 + Λ2a1) . (3.58)

The identity element is clearly M(1, 0), while the inverse of an element is given by

M(Λ, a)−1 =M(Λ−1,−Λ−1a) . (3.59)

Infinitesimal Lorentz transformations are generated by the matrices J (ρσ) discussed in the pre-
vious subsection,

Λµν = δµν + i
1

2
ωρσJ

(ρσ)µ
ν = δµν + ωµν . (3.60)

In the matrix representation of Eq. (3.57) these matrices have to be embedded in the top-left
corner ofM, so the generators read

J (ρσ)
µν = J (ρσ)µ

ν , J (ρσ)
A4 = J (ρσ)

4B = 0 . (3.61)

In the same representation, infinitesimal translations are generated instead by the four matrices
Pµ,

(Pµ)AB = δAµδB4 . (3.62)

Alternatively, we can think of translations as being generated by the derivative operator Pµ =
i∂µ,

e−iaµP
µ

xν = xν + aν . (3.63)

This is however more appropriate when representing translations on a space of functions.
The representation discussed above is the defining representation of the group. We are

going now to work out the commutation relations of the generators. This of course works in
any representation – by the very definition of representation. With some abuse of notation,
we will denote with J (ρσ) and Pµ the generators of the Poincaré group in any representation.
We begin by working out the effect of a finite transformation on the generators. For a generic
representation U(Λ, a) of the group element M(Λ, a) we write

U(Λ, a) = e−iaµP
µ

e
i
2
ωρσJ

(ρσ)
(3.64)

for a Lorentz transformation Λ = e
i
2
ωρσJ

(ρσ)
= eiω, see Eq. (3.60), followed by a translation.

Using only the group composition law, we find21

U(Λ, a)−1U(Λ0, a0)U(Λ, a) = U(Λ−1Λ0Λ,Λ
−1(Λ0 − 1)a+ Λ−1a0) . (3.65)

Let us now Λ0 = 1 + ω be an infinitesimal transformation, and let a0 = ε be infinitesimal as
well. Expanding Eq. (3.65) we find

U(Λ, a)−1(1+
i

2
ωρσJ

(ρσ) − iεµPµ)U(Λ, a) = U(1+ Λ−1ωΛ,Λ−1ωa+ Λ−1ε)

1+ U(Λ, a)−1(
i

2
ωρσJ

(ρσ) − iεµPµ)U(Λ, a) = 1+
i

2
[Λ−1ωΛ]ρσJ

(ρσ) − i[Λ−1ωa+ Λ−1ε]µP
µ .

(3.66)

21Notice the use of the inverse in this equation: this means that we are not (yet) asking for U to be unitary.
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Here square brackets [. . .]µν are used to indicate that the object in question is a fully covari-
ant tensor, so the relation with the matrix notation used previously (A)µν = Aµν is [A]µν =
(η)µα(A)αν = Aµν . A similar notation is used for covariant vectors. Matching terms of the same
order in ω and ǫ we then find

U(Λ, a)−1ωρσJ
(ρσ)U(Λ, a) = [Λ−1ωΛ]ρσJ

(ρσ) − 2[Λ−1ωa]µP
µ

= (η)ργ(Λ
−1)γα(ω)αβ(Λ)βσJ

(ρσ) − 2(η)µγ(Λ
−1)γα(ω)αβa

βPµ

= Λαρω
α
βΛ

β
σJ

(ρσ) − 2Λαµω
α
βa

βPµ

= ωρσ(Λ
ρ
αΛ

σ
βJ

(αβ) − Λρµa
σPµ + Λσµa

ρPµ)

U(Λ, a)−1εµP
µU(Λ, a) = [Λ−1ε]µP

µ = (η)µγ(Λ
−1)γαε

αPµ = ǫαΛαµP
µ = ǫµΛ

µ
αP

α .

(3.67)

From this we readily obtain the transformation laws of the generators:

U(Λ, a)−1J (ρσ)U(Λ, a) = ΛραΛ
σ
βJ

(αβ) − Λρµa
σPµ + Λσµa

ρPµ ,

U(Λ, a)−1PµU(Λ, a) = ΛµαP
α .

(3.68)

This shows that under Lorentz transformation J (ρσ) transforms as a doubly contravariant tensor,
while Pµ as a contravariant vector. Under translations Pµ is unchanged, which means that the
Pµ commute, while J (ρσ) acquires a term linear in a, analogous to the change in the three-
dimensional angular momentum under change of the reference point.

If we now make also Λ and a infinitesimal we can read off the commutation relations of the
generators. Let again Λ = 1 + ω and a = ε. We find

U(1 + ω, ε)−1J (ρσ)U(1 + ω, ε) = J (ρσ) − i

2
ωµν [J

(µν), J (ρσ)] + iεµ[P
µ, J (ρσ)]

= J (ρσ) + (ωραJ
(ασ) + ωσβJ

(ρβ))− εσP ρ + ερP σ

= J (ρσ) +
1

2
ωµν(η

µρJ (νσ) + η(νσ)Jµρ − ηνρJ (µσ) − η(µσ)Jνρ)− εµ(ηµσP ρ − ηµρP σ) ,

(3.69)

from which we conclude that the commutation relations are

[J (µν), J (ρσ)] = i(ηµρJ (νσ) + ηνσJµρ − ηνρJ (µσ) − ηµσJ (νρ)) ,

[J (ρσ), Pµ] = i(ηρµP σ − ησµP ρ) ,
[Pµ, P ν ] = 0 .

(3.70)

Incidentally, these commutation relations show us how a rank-2 tensor and a vector should
transform under infinitesimal Lorentz transformation: it suffices to replace J (ρσ) in the first line
with T ρσ, and Pµ in the second line with V µ.

3.5 Unitary representations of the Poincaré group

We now build unitary representations of the Poincaré group, or more precisely of its component
connected to the identity. Since this is a non-compact group, it has no finite-dimensional unitary
representation that are faithful, i.e., that map different elements of the group into different
representatives. This is true in particular for the proper orthocronous Lorentz subgroup, which
we want to represent faithfully and unitarily. We have therefore to look for infinite-dimensional
representations.
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Irreducible representation of a group are labelled by the values of its Casimir invariants,
i.e., operators that commute with all the generators and therefore are multiple of the identity
in an irreducible representation due to Schur’s lemma. One such operator is easily built for
the Poincaré group, and it is the mass operator P 2 = PµP

µ: it obviously commutes with
translations, and it commmutes with the Lorentz generators since it is a scalar. Its eigenvalue
will be denoted with m2. In general this can be any real number, but we will be interested
only in representations where m2 ≥ 0.22 Since the translation generators all commute with each
other, they can be diagonalised together. We can then take the basis of a representation to be
of the form

|~p, σ〉 , P 2|~p, σ〉 = m2|~p, σ〉 , Pµ|~p, σ〉 = pµ|~p, σ〉 , (3.71)

where p0 = ±
√

~p 2 +m2, and σ labels whatever other degrees of freedom we might need, which
we assume to correspond to some finite-dimensional space. The sign of p0 is left invariant by
proper orthocronous Lorentz transformations, so it is another invariant of the representation.
We choose the plus sign for physical reason; a completely analogous analysis can be carried out
for the choice of negative sign. Imposing that the ~p are real we have that Pµ is Hermitian, and
we obtain a unitary representation of translations:23

e−iaµP
µ |~p, σ〉 = e−iaµp

µ |~p, σ〉 . (3.72)

The states |~p, σ〉 are identified with the momentum eigenstates of a particle of mass m. Basis
vectors corresponding to different ~p must be orthogonal. We choose their normalisation such
that

〈~p ′, σ′|~p, σ〉 = (2π)32p0δ(3)(~p ′ − ~p )δσ′σ . (3.73)

This normalisation is Lorentz-invariant, in the sense that24

(2π)32(Λp)0δ(3)(Λ~p ′ − Λ~p )δσ′σ = (2π)32p0δ(3)(~p ′ − ~p )δσ′σ . (3.74)

We now have to represent Lorentz transformations in our vector space. If we now apply a
Lorentz transformation on a basis vector, we find that

PµU(Λ)|~p, σ〉 = U(Λ)U(Λ)−1PµU(Λ)|~p, σ〉 = U(Λ)ΛµνP
ν |~p, σ〉

= Λµνp
νU(Λ)|~p, σ〉 ,

(3.75)

and so
U(Λ)|~p, σ〉 =

∑

σ̄

Cσ̄σ(Λ, ~p)|Λ~p, σ̄〉 , (3.76)

22Representations with m2 < 0 correspond to tachions, which are not welcome since they travel faster than
light.

23More precisely, each basis vector provides a different representation. These are actually all the possible
unitary representations of translations: being an Abelian group its irreducible representations must be one-
dimensional, and the request of unitarity combined with the request of smoothness of the representation imposes
that ∂U(a)/∂aµ = U(a)∂U(a)/∂aµ|0, so U(a) = exp{−iaµ(i∂U(a)/∂aµ|0)} = exp{−iaµp

µ} with real pµ.
24A quick way to see this is that

1 =

∫

d3p

p0
p0δ(3)(~p ′ − ~p ) =

∫

d3(Λp)

(Λp)0
(Λp)0δ(3)(Λ~p ′ − Λ~p ) =

∫

d3p

p0
(Λp)0δ(3)(Λ~p ′ − Λ~p )

since the integration measure is invariant. This in turn follows from the fact that d4p θ(p0)δ(p2 − m2) = d3p

2p0
.

Notice also that we denote with Λ~p the spatial components of the transformed four-vector.
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for some matrix Cσ̄σ(Λ, ~p). If we require now that the representation be unitary, then

(2π)32p0δ(3)(~p ′ − ~p )δσ′σ = 〈~p ′, σ′|U(Λ)†U(Λ)|~p, σ〉 =
∑

σ̄′,σ̄

Cσ̄′σ′(Λ, ~p ′)∗Cσ̄σ(Λ, ~p)〈Λ~p ′, σ̄′|Λ~p, σ̄〉

= (2π)32p0δ(3)(~p ′ − ~p )
∑

σ̄′,σ̄

Cσ̄′σ′(Λ, ~p)∗Cσ̄σ(Λ, ~p)δσ̄′σ̄

= (2π)32p0δ(3)(~p ′ − ~p )
∑

σ̄

Cσ′σ̄(Λ, ~p)
†Cσ̄σ(Λ, ~p) ,

(3.77)
and it follows that the matrices C(Λ, ~p) must be unitary. Up to a unitary transformation in
the “internal” space, the representative of a Lorentz transformation sends a state of momentum
~p into a state of momentum ~Λp. For a given ~p and a given Λ, the internal unitary trans-
formation can always be undone by a judicious choice of basis, i.e., we can always rename
∑

σ̄ Cσ̄σ(Λ, ~p)|Λ~p, σ̄〉 → |Λ~p, σ〉. In general, any vector of a given type (timelike, spacelike, or
null) can be reached via a Lorentz transformation from any other vector of the same type. This
is because we can always transform any vector into a vector of the form (p0, 0, 0, p3) by means
of a rotation, and by means of a boost we can transform this into (m, 0, 0, 0) if the vector is
timelike, or into (0, 0, 0,m) if the vector is spacelike. If it is null, after rotation it is of the form
(k̄, 0, 0, k̄), which cannot be further simplified by means of boosts. We can then always write a
general four-vector p as

pµ = Λ µ
p νk

ν , (3.78)

for a given reference vector k, and a transformation Λp (which implicitly depends on k as well).

We are then tempted to choose the basis so that Cσ̄σ(Λp,~k) are all the identity matrix. This
however is not possible: the transformation Λp is not unique, as the same final p is obtained if
we multiply Λp on the right by a transformation Λ0

k that leaves k invariant, and on the left by
a transformation Λ0

p that leaves p invariant. A transformation Λ0
p that leaves p invariant is said

to belong to the little group of p. In general, C(Λp, ~k) and C(Λ
0
pΛpΛ

0
k,
~k) are not the same, and

cannot be both replaced by the identity. We can however do this for a single, definite choice for
Λp:

• for timelike vectors we will choose Λp to be a pure boost that transforms k = (m, 0, 0, 0)
into p;

• for null vectors we will choose Λp to be a a pure boost that transforms the reference
vector k = (k̄, 0, 0, k̄) into (|~p|, 0, 0, |~p|), followed by a rotation that transforms this into
p = (|~p|, ~p).

Now we can finally choose our basis such that

U(Λp)|~k, σ〉 = |~p, σ〉 . (3.79)

Once this is done, every other matrix C(Λ, ~p) has to be worked out and cannot be simply put
to the identity. To this end, consider a general transforamtion on a general state, and write

U(Λ)|~p, σ〉 = U(Λ)U(Λp)|~k, σ〉 = U(ΛΛp)U(ΛΛp)
†U(Λ)U(Λp)|~k, σ〉

= U(ΛΛp)U(Λ−1
ΛpΛΛp)|~k, σ〉 .

(3.80)
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The transformation W (Λ, ~p) ≡ Λ−1
ΛpΛΛp sends first k → p, then p → Λp, and finally Λp → k,

which means that it belongs to the little group of k. We have then

U(Λ)|~p, σ〉 = U(ΛΛp)
∑

σ̄

Cσ̄σ(Λ
−1
ΛpΛΛp,

~k)|~k, σ̄〉 ≡ U(ΛΛp)
∑

σ̄

Dσ̄σ(W (Λ, ~p))|~k, σ̄〉

=
∑

σ̄

Dσ̄σ(W (Λ, ~p))|Λ~p, σ̄〉 .
(3.81)

The matrix Dσ̄σ(W (Λ, ~p)) is well defined once that we have made our choice for the reference
vector, for Λp and for the basis vectors, since W (Λ, ~p) = Λ−1

ΛpΛΛp is a well-defined element of
the little group of k. Furthermore, such matrices must provide a representation of the little
group. To make further progress we need to find out what the little group is in the physically
relevant cases, and what are its irreducible, finite-dimensional representations. At that point
our construction will be complete. We first discuss the little group in some generality.

3.5.1 The little group

The little group of k is defined as the subgroup that leaves k invariant. In our case the group in
question is the (proper orthocronous) Lorentz group, and we look for Lorentz transformations
W such that

Wµ
νk

ν = kµ . (3.82)

For infinitesimal transformations Wµ
ν = δµν +Ωµν , Eq. (3.82) becomes

Ωµνk
ν = 0 . (3.83)

Out of the six independent antisymmetric tensors Ωµν , this condition singles out three,25 and
we can write the most general Ωµν obeying our equation as

Ωµν(θ) = θτ ǫτµνρk
ρ =

i

2
θτ ǫταβρJ

(αβ)
µν kρ , (3.84)

with θτkτ = 0, or in matrix notation

Ω(θ) =
i

2
θτ ǫταβρJ

(αβ)kρ . (3.85)

Here and above J (αβ) are the 4× 4 matrices of the defining representation of the Lorentz group.
Finite transformations of the little group are obtained by exponentiating Ω, i.e., as eΩ. If we
now define for a generic representation the quantity

Wτ =
1

2
ǫταβρJ

(αβ)P ρ , (3.86)

we see that
eiθ

τWτ |~k, σ〉 = e
i
2
θτ ǫταβρJ

(αβ)kρ |~k, σ〉 =
∑

σ̄

Dσ̄σ(θ)|~k, σ̄〉 , (3.87)

25For a generic tensor tµν , the condition Eq. (3.83) leaves three out of four columns still independent; antisym-
metry implies that only three out of four rows are independent. The independent entries are then those of a 3× 3
antisymmetric matrix, which are precisely 3.
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since k is left invariant. Here D(θ) = eiθ
τΓτ is a unitary matrix which forms part of a rep-

resentation of the little group, and Γτ are Hermitian matrices representing the corresponding
algebra. The quantity in Eq. (3.86) is the Pauli-Lubański (pseudo)vector, and it generates the
transformation of the little group. Notice that

Wτ =
1

2
ǫταβρJ

(αβ)P ρ =
1

2
ǫταβρ

{

P ρJ (αβ) + [J (αβ), P ρ]
}

=
1

2
ǫταβρ

{

P ρJ (αβ) + i
(

ηαρP β − ηβρPα
)}

=
1

2
ǫταβρP

ρJ (αβ) ,

P τWτ =
1

2
ǫταβρP

τP ρJ (αβ) = 0 .

(3.88)

The transformation properties of Wτ under (proper) Lorentz transformations are clearly those
of a vector. Moreover,

[Wτ , Pµ] =
1

2
ǫταβρP

ρ[J (αβ), Pµ] =
i

2
ǫταβρP

ρ
(

δαµP
β − δβµPα

)

= 0 . (3.89)

It is then clear that the quantity W 2 = WµW
µ is a Casimir operator. Its explicit expression

can be obtain by direct calculation, making use of the identity

ǫµαβρǫ
µγδσ = −

∣

∣

∣

∣

∣

∣

δγα δγβ δγρ
δδα δδβ δδρ
δσα δσβ δσρ

∣

∣

∣

∣

∣

∣

, (3.90)

and it reads

WµW
µ = −1

2
PµP

µJ (αβ)J(αβ) + J (αβ)PβJ(αγ)P
γ . (3.91)

Finally, note that on a general vector

Wµ|~p, σ〉 =WµU(Λp)|~k, σ〉 = U(Λp)U(Λp)
†WµU(Λp)|~k, σ〉 = U(Λp)Λ

µ
p νW

ν |~k, σ〉
= U(Λp)

∑

σ̄

Λ µ
p νΓ

ν
σ̄σ|~k, σ̄〉 =

∑

σ̄

Λ µ
p νΓ

ν
σ̄σ|~p, σ̄〉 . (3.92)

3.5.2 Massive representations

Consider now the case m > 0. In this case k = (m, 0, 0, 0), corresponding to the rest frame of
the particle, and the generic state is given by |~p, σ〉 = U(Λp)|~0, σ〉 with Λp a pure boost in the
direction of ~p of velocity tanhΘ = |~p |/p0. This can be written as

Λ µ
p ν = δµν + (coshΘ− 1)

(

δµ0δ
0
ν − nµnν

)

+ sinh θ(nµδ0ν − δµ0nν) , (3.93)

where nµ = (0, ~n) and ~n = ~p/|~p |. The little group is clearly the group of proper rotations, SO(3),
of which we know all the irreducible representations. This can be seen from the Pauli-Lubański
vector as well: denoting wτ = 1

2ǫταβρJ
(αβ)kρ we have

wτ =
1

2
ǫταβ0J

(αβ)m = −m
2
ǫ0τjkJ

(jk) , (3.94)
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so w0 = 0 and wi = −m
2 ǫ

0ijkJ (jk) = mJ i, i.e.,

wτ = (0,m ~J) . (3.95)

The angular momentum in the rest frame of the particle is by definition its spin. The Casimir
invariant is just W 2 = −m2 ~J2 evaluated in the rest frame. Equivalently, we can take the value
of ~J2 = s(s + 1) to label the irreducible representations of the little group. These are just the
spin-s representations of the rotation group. The representatives of ~J are denoted by ~s, and the
index σ can then be taken as the eigenvalue of, say, the third component of ~s, s3; the vectors
|~0, s3〉 provide an irreducible representation of the rotation group of dimension (2s+1), and the
Pauli-Lubański vector is represented by wτ = (0,m~s). From an irreducible representation of the
little group we obtain an irreducible representation of the full group and viceversa: in fact, since
every vector |~p, σ〉 in the representation is obtained from some vector of the form

∑

σ cσ|~p, σ〉,
the representation of the full group could reduce only if the representation of the little group
on that subspace did, and viceversa if the representation of the full group has to be irreducible,
then that of the little group cannot be reducible. Finally, notice that in a general frame, from
Eqs. (3.92) and (3.95) we have that the representative of wτ is replaced by Λ τ

p ρwρ,

Λ τ
p ρw

ρ =

(

~p · ~s,m~s+ ~p · ~s
p0 +m

~p

)

. (3.96)

This completes the construction of the irreducible unitary representations of the Poincaré group
for massive particles: as announced, particles are characterised by their mass and spin. The char-
acterisation of particles as irreducible representations of the symmetry group actually explains
the origin itself of spin: massive particles do not have to transform trivially under rotations in
their rest frame, and the relevant representations are labelled precisely by the value of spin.

3.5.3 Massless representations

If m = 0 it is not possible to make a Lorentz transformation to make the spatial momentum
vanish. We then choose our reference four-momentum to be of the form kµ = (k̄, 0, 0, k̄). The
corresponding little group is generated by

wτ =
k̄

2

(

ǫταβ0J
(αβ) + ǫταβ3J

(αβ)
)

. (3.97)

Explicitly,
w0 = −k̄J (12) = k̄J3 ,

w1 = k̄
(

J (23) + J (02)
)

= k̄
(

−J1 +K2
)

,

w2 = −k̄
(

J (13) + J (01)
)

= −k̄
(

J2 +K1
)

,

w3 = k̄J (12) = −k̄J3 ,

(3.98)

and so
wµ = (J3, J1 −K2, J2 +K1, J3) . (3.99)
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The Casimir operator is therefore wµw
µ = −(w1)2 − (w2)2. The commutation relations of the

generators of the little group are comuted easily:

[w3, w1] = [J3, J1 −K2] = i(J2 +K1) = iw2 ,

[w3, w2] = [J3, J2 +K1] = i(−J1 +K2) = −iw1 ,

[w1, w2] = [J1 −K2, J2 +K1] = i(J3 − J3) = 0 .

(3.100)

This is the algebra of the group ISO(2) of ismoetries of the two-dimensional Euclidean plane.
Indeed, denoting with P 1,2 the generators of translations and with J that of rotations [i.e., the
generator of SO(2)], a simple calculation shows that they obey the commutation relations

[J, P i] = iǫijP
j , [P 1, P 2] = 0 , (3.101)

where ǫ12 = −ǫ21 = 1, ǫ1ii = 0 is the two-dimensional Levi-Civita tensor.
In order to build representations we can proceed in two ways. We can diagonalise both w1

and w2, taking basis wectors of the form |~w⊥〉 with wi|~w⊥〉 = ~w i
⊥|~w⊥〉, i = 1, 2; the value of

the Casimir operator is then just −~w 2
⊥. The space of all the |~w⊥〉 with the same ~w 2

⊥ is clearly
left invariant by rotations, and it has no proper subspace which is: we have then identified
an irreducible representation. Alternatively, we can notice that [w3, w±] = ±w± where w± =
w1± iw2, and take a basis of eigenvectors of w3, w3|σ〉 = σ|σ〉. From the commutation relations
we find that w3w±|σ〉 = (σ ± 1)w±|σ〉, and moreover 〈σ|w∓w±|σ〉 = 〈σ|(w1)2 + (w2)2|σ〉 =
~w 2
⊥〈σ|σ〉, so that all the vectors generated with raising and lowering operators belong to the

same irreducible representation. No matter how we proceed, we find that in general there is
an infinity of basis vectors, except when ~w 2

⊥ = 0: in this case there is a single basis vector,
which we take to be an eigenvector of w3. We redefine it to be |λ〉 with w3|λ〉 = k̄λ|λ〉, and
moreover w±|λ〉 = 0. This means that wµ is diagonal with wµ = λ(k̄, 0, 0k̄) = λkµ. Since wµ

is a pseudovector and kµ is a vector, λ must be a pseudoscalar. Since J3 is the component of
angular momentum along the direction of motion for our reference vector, we can write it as
~J ·~k

|~k|
in a frame-independent way (this can be seen also from the very definition of wµ). This

quantity is called helicity, it is a relativistic invariant for massless particles, and it plays a role
analogous to spin in labelling different irreducible representations. While +λ and −λ correspond
to distinct representations of the proper orthocronous group, if we include parity we have to put
them together, as helicity changes sign under a spatial reflection.

Up to this point there is no reason not to consider arbitrary values of λ, but there is topo-
logical argument to restrict it to integer or half-integer values only. The Lorentz group is a
doubly connected group, as it contains the doubly connected subgroup of rotations. Lie groups
are also manifolds, and the one corresponding to SO(3) is the three-dimensional ball with an-
tipodal points identified (also called the three-dimensional projective space). Consider a path
that winds one around the manifold, starting from, say, the identity, reaching the surface of
the ball, a reaching out again to the origin continuing from the antipodal point. Such a path
cannot be shrunk to a point. This means that in a generic representation the composition of
two transformations U(Λ1)U(Λ2) will be equal to U(Λ1Λ2) only up to a phase, as we are not
guaranteed that U(Λ1Λ2)

−1U(Λ1)U(Λ2) must be equal to the identity since we cannot deform
the corresponding path into the trivial path. On the other hand, if we wind around the manifold
twice, then we can deform the path into the trivial one, and so [U(Λ1Λ2)

−1U(Λ1)U(Λ2)]
2 = 1,

or so U(Λ1Λ2)
−1U(Λ1)U(Λ2) = ±1. Consider now a transformation eiαw3 = e−iαk̄J

3
= e−iαk̄λ
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and choose αk̄ = 2π, so that we wind once around the group manifold. We must have that
1 = (ei2πλ)2 = ei4πλ, from which it follows that 2λ ∈ Z.

To complete the construction for massless particles, we have to connect the reference vector
to a generic one. This is done by acting first with a boost in direction 3, and then by a rotation
that sends the direction 3 in the direction of ~p = |~p|(cosφ sin θ, sinφ sin θ, cos θ). This can be
done in many different ways; following Weinberg, we choose it to be a rotation around axis 2 of
angle θ ∈ [0, π], followed by a rotation around the axis 3 of angle φ ∈ [0, 2π). Everything is now
well defined.

3.6 Discrete transformations

So far we have built representations of that component of the Poincaré group connected to the
identity (translations and proper orthocronous Lorentz transformations). It was believed for a
long time, and it still is approximately true in certain physical situations, that parity and time
reversal were symmetries of Nature as well. In this case, it would be possible to represent them
as unitary or antiunitary operators in the Hilbert space of physical systems.

Let us first discuss what is the effect of parity and time reversal in the defining representation
of the group. This is perhaps most clearly seen using the five-dimensional matrix representation
of the group. Here parity and time reversal read

P =

(

P 0

0 1

)

, T =

(

T 0

0 1

)

, (3.102)

where P and T are the four-dimensional matrices

P =

(

1 0

0 −13

)

, T =

( −1 0

0 13

)

. (3.103)

The generators of the connected component are then easily seen to transform as follows:

P−1KiP = −Ki , P−1J iP = J i ,
T −1KiT = −Ki , T −1J iT = J i ,

(3.104)

for the Lorentz generators, and

P−1P0P = P0 , P−1P iP = −P i ,
T −1P0T = −P0 , T −1P iT = P i ,

(3.105)

for the translation generators. We have seen how when representing the Poincaré group on a
Hilbert space we have to use unitary operators for the component connected to the identity; for
the discrete transformations that we are discussing here there is however no a priori reason to
discard the antiunitary possibility. This means that when trying to represent the transforma-
tion properties Eqs. (3.104) and (3.105) of the generators in one of the unitary representations
discussed in the previous subsection, we have to take into account that finite transformations

are of the form U(Λ) = e
i
2
ωρσJ

(ρσ)
and U(a) = e−ia

µPµ , i.e., the generators are effectively iJ (ρσ)

and iPµ. We have then that the operators U(P ) and U(T ) realising parity and time-reversal on
our Hilbert space must satisfy

U(P )†iKiU(P ) = −iKi , U(P )†iJ iU(P ) = iJ i ,

U(T )†iKiU(T ) = −iKi , U(T )†iJ iU(T ) = iJ i ,
(3.106)
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for the Lorentz generators, and

U(P )†iP 0U(P ) = iP 0 , U(P )†iP iU(P ) = −iP i ,
U(T )†iP 0U(T ) = −iP 0 , U(T )†iP iU(T ) = iP i ,

(3.107)

for translations. The choice whether U(P ) is linear or antilinear is done based on physical
reasons. If U(P ) were antilinear, then we would have U(P )†P 0U(P ) = −P 0, or equivalently
{P 0, U(P )} = 0. This would mean that for any positive-energy state |~p, σ〉 we would have a
negative-energy state U(P )|~p, σ〉, which contradicts experience. We are then forced to choose
the linear unitary possibility, and that [P 0, U(P )] = 0. For the same reason, we are forced to
choose U(T ) to be antilinear antiunitary, and that [P 0, U(T )] = 0. In fact, if U(T ) were linear
we would find again U(T )†P 0U(T ) = −P 0, or equivalently {P 0, U(T )} = 0, which would imply
the existence of negative-energy states. With these choices we have the following transformation
properties:

U(P )†KiU(P ) = −Ki , U(P )†J iU(P ) = J i ,

U(T )†KiU(T ) = Ki , U(T )†J iU(T ) = −J i ,
(3.108)

for the Lorentz generators, and

U(P )†P 0U(P ) = P 0 , U(P )†P iU(P ) = −P i ,
U(T )†P 0U(T ) = P 0 , U(T )†P iU(T ) = −P i ,

(3.109)

for translations. These are in agreement wuith our physical intuition: angular momentum is
unchanged under parity but changes sign under time reversal (objects spin the same way in the
mirror, and in the opposite way if we move backwards in time), and spatial momenta change
sign under both parity and time reversal.

We can now work out the effect of parity on the one-particle states, confining our discussion
to the massive case. The discussion of time reversal and the extension to the massless case
present some minor complications; a detailed discussion is found in Weinberg, op. cit. Consider
the state U(P )|~0, σ〉 and act on it with Pµ. We find

PµU(P )|~0, σ〉 = U(P )U(P )†PµU(P )|~0, σ〉 = U(P )ηµµPµ|~0, σ〉 = (m,~0)U(P )|~0, σ〉 . (3.110)

Furthermore,
J3U(P )|~0, σ〉 = U(P )J3|~0, σ〉 = σU(P )|~0, σ〉 . (3.111)

This means that U(P )|~0, σ〉 = ησ|~0, σ〉 for some phase ησ. Since U(P ) commutes with the raising
and lowering operators J±, one sees that ησ is actually independent of σ, ησ = η. The phase η
is the intrinsic parity of the particle. Finally,

U(P )|~p, σ〉 = U(P )U(Λp)|~0, σ〉 = U(P )U(Λp)U(P )†U(P )|~0, σ〉
= U(PΛpP

−1)η|~0, σ〉 = ηU(ΛPp)|~0, σ〉 = η| − ~p, σ〉 ,
(3.112)

since PΛpP
−1 = ΛPp is precisely the boost bringing k = (m,~0) to Pp, where p = (p0, ~p) and

Pp = (p0,−~p).
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3.7 Noether’s theorem and the Lorentz group

We can now fill in a gap that remains since our discussion of Noether’s theorem, i.e., its appli-
cation to the invariance under Lorentz transformations. The transformation law of coordinates
under an infinitesimal transformation is

x′µ = xµ +
1

2
ωρσM

(ρσ)µ
νx

ν , (3.113)

where the matrices M (ρσ) are given in Eq. (3.44) and read

M
(ρσ)µ

ν
= ηρµδσν − ησµδρν . (3.114)

A general multicomponent field φa(x) will transform as

φ′a(x
′) = φa(x) +

1

2
ωρσS

(ρσ)
ab φb(x) , (3.115)

where S
(ρσ)
ab = −S(σρ)

ab are the generators of the Lorentz group in some finite-dimensional repre-
sentation. The reason for this form of the transformation law is the same discussed in the case
of rotations in Section 3.1: the new and the old field at the same physical point should be the
same, up to a mixing of the various components which has to provide a representation of the
symmetry group. Plugging Eqs. (3.113) and (3.115) in the general expression for the Noether’s
current, Eq. (2.68), we find the conserved current J (ρσ)µ associated to the transformation with
only ωρσ 6= 0,

Mµ,ρσ ≡ J (ρσ)µ =M
(ρσ)µ

ν
xνL +

(

S
(ρσ)
ab φb −M (ρσ) ν

α
xα∂νφa

) ∂L

∂(∂µφa)

= xρ
(

∂σφa
∂L

∂(∂µφa)
− ηµσL

)

− xσ
(

∂ρφa
∂L

∂(∂µφa)
− ηµρL

)

+ S
(ρσ)
ab φb

∂L

∂(∂µφa)

= xρΘµσ − xσΘµρ + Sµ,ρσ ,
(3.116)

where Θµν is the energy-momentum tensor and we have defined

Sµ,ρσ ≡ ∂L

∂(∂µφa)
S
(ρσ)
ab φb . (3.117)

The conserved charges are the generators of Lorentz transformations,

∫

d3xM0,ρσ =

∫

d3x
{

xρΘ0σ − xσΘ0ρ + S0,ρσ
}

(3.118)

where the first two terms are seen to correspond to the integral of the orbital angular momentum
density (∼ xρpσ − xσpρ), while the last term is the contribution of spin.

Taking the divergence of Eq. (3.116) and recalling that also the energy-momentum tensor is
conserved one finds the relation

0 = ∂µMµ,ρσ = Θρσ −Θσρ + ∂µSµ,ρσ , (3.119)
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i.e., Θρσ is not symmetric in the general case. However, thanks to the antisymmetry of Sµ,ρσ in
ρ, σ, Eq. (3.119) can be recast as

Θρσ +
1

2
∂µSµ,ρσ = Θσρ +

1

2
∂µSµ,σρ , (3.120)

which means that the combination Θρσ + 1
2∂µSµ,ρσ is symmetric in ρ, σ. It is possible to exploit

this to define a new conserved tensor which is also symmetric. Define the Belinfante-Rosenfeld
tensor as

Θµν
S ≡ Θµν +

1

2
∂σ (S

µ,νσ + Sν,µσ − Sσ,νµ) = Θµν +
1

2
∂σ (S

µ,νσ + Sν,µσ + Sσ,µν) , (3.121)

which is symmetric precisely because of Eq. (3.120). To show that it is conserved, notice that

∂µΘ
µν
S =

1

2
∂µ∂σ [(S

µ,νσ − Sσ,νµ) + Sν,µσ] = 0 , (3.122)

since both the term in brackets and Sν,µσ are antisymmetric in µ, σ, and they are being con-
tracted with the symmetric tensor ∂µ∂σ. Plugging the definition of Θµν

S in Eq. (3.118) we find
after an integration by part (in which we assume that wer can neglect boundary terms at infinity)

∫

d3xM0,ρσ =

∫

d3x

{

xρΘ0σ
S − xσΘ0ρ

S −
1

2
xρ∂α

(

S0,σα + Sσ,0α − Sα,σ0
)

+
1

2
xσ∂α

(

S0,ρα + Sρ,0α − Sα,ρ0
)

+ S0,ρσ
}

=

∫

d3x

{

xρΘ0σ
S − xσΘ0ρ

S +
1

2

(

S0,σρ + Sσ,0ρ − Sρ,σ0
)

− 1

2

(

S0,ρσ + Sρ,0σ − Sσ,ρ0
)

+ S0,ρσ
}

=

∫

d3x

{

xρΘ0σ
S − xσΘ0ρ

S

}

.

(3.123)

It is now easy to understand the conservation law associated to the ρ = 0, σ = j generators,
i.e., the boost generators. Indeed,

d

dx0

∫

d3xM0,0j =
d

dx0

∫

d3x

{

x0Θ0j
S − xjΘ00

S

}

=

∫

d3xΘ0j
S −

d

dx0

∫

d3xxjΘ00
S . (3.124)

Since Θµν
S is divergenceless,

∫

d3xΘ0j
S is a conserved quantity, and the relation Eq. (3.124) ex-

presses the fact that the center of mass
∫

d3xxjΘ00
S /
∫

d3xΘ00
S moves on a straight-line trajectory

with constant momentum
∫

d3xΘ0j
S . This is nothing but the center of mass theorem.

3.8 Active and passive points of view

We discuss here a few details about symmetry transformations.
Symmetry transformations can be looked at in two ways: the active point of view, in which

the system is actively transformed and the reference frame is not, and the passive point of
view, in which the system is not transformed but the reference frame is. For example, rotating
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clockwise a system can be equivalently seen as rotating counterclockwise the reference frame.
Suppose we have a local observable O(x) defined in a certain reference frame, and state vectors ψ
and ϕ. If we transform the system by some transformation M , which transforms its coordinates
as x → Mx, the new state vectors will be ψM = U(M)ψ and ϕM = U(M)ϕ for some operator
U(M). The local observable O(Mx) at the point Mx for the new, transformed system must be
related to the local observable O(x) at point x of the original system. If the local observable
is a multicomponent observable, its components will also mix under the transformation. For
example, if there is an orientation associated to the observable and we rotate the system, looking
in the rotated of a direction at the rotated point for the rotated system should yield the same
as looking in the given direction at the original point in the original system. More generally,
suppose that we have a set of observables {Oi(x)} where the label i indicates a certain direction
in some local internal space of the system S. Suppose furthermore that when making the
transformation of coordinatesM this internal space is also transformed, and the local coordinates
transform as σi → σ′i = D̄ij(M)σj for some invertible D̄(M). For example, in the case of
rotations discussed above, D̄ij(R) = Rij . What we should have is that for any choice of σi,
σ′iOi(Mx) = σjOj(x) (sum understood), meaning that observing in matching directions we
should find the same result. Then for classical systems D̄ij(M)σjOi(Mx) = σjOj(x), from
which we conclude Oi(Mx) = D̄−1

ji (M)Oj(x) = D̄T −1
ij (M)Oj(x). Notice that for a rotation R

we have D̄T −1
ij (R) = R. Setting D̄T −1(M) = D(M), this can be summarised formally as follows

in the quantum mechanical case:

〈ϕM |O(Mx)|ψM 〉 = 〈ϕ|D(M)O(x)|ψ〉 , (3.125)

where D(M) is some matrix which appropriately mixes the components of the observables. This
can be written also as

〈ϕ|U(M)†O(Mx)U(M)|ψ〉 = 〈ϕ|D(M)O(x)|ψ〉 , (3.126)

which should hold for all states, and so

U(M)†O(Mx)U(M) = D(M)O(x) , (3.127)

or also
U(M)†O(x)U(M) = D(M)O(M−1x) . (3.128)

If M is a symmetry of the system, it can be implemented as a unitary (or antiunitary) operator
on the Hilbert space of the system, and so U(M)† = U(M)−1, and Eq. (3.128) provides the
transformation law for the observable.

Consider translations first. The operator e−ia·P actively translates the system to the left
(i.e., in the negative a direction), or equivalently it translates the reference frame to the right.
To see this consider ordinary quantum mechanics and the momentum operator Pµ = i∂µ, or

Pµ = (i∂0,−i~∇) represented on Lebesgue-integrable functions. We have that the action of the
translation operator on a wave function is

ψa(t, ~x) ≡ e−ia·Pψ(t, ~x) = ea
0∂0+~a·~∇ψ(t, ~x) = ψ(t+ a0, ~x+ ~a) , (3.129)

i.e., the transformed wave function ψa at (t, ~x) is the original wave function at (t+ a0, ~x+~a), so
that the system has been effectively translated to the left. Then, for x′ = Tx = x−a (translation
of the system to the left/reference frame to the right)

eia·PO(x)e−ia·P = O(x+ a) . (3.130)

50



Next consider rotations in three dimensions. A counterclockwise rotation of the system around
the x3 direction places the system at the new coordinates

x′1 = cos θx1 − sin θx2 , x′2 = sin θx1 + cos θx2 , x′3 = x3 . (3.131)

In matrix notation




x′1
x′2
x′3



 =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









x1
x2
x3



 (3.132)

or more compactly x′ = RA3 (θ)x, where A stands for “active”. Now, one can show with a simple
calculation that

RA3 (θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 = e−iθL
3
, L3 = −i





0 1 0
−1 0 0
0 0 0



 . (3.133)

A passive counterclockwise rotation is simply obtained by sending θ → −θ. Rotations around
other axes are studied in the same way. We then find that a counterclockwise rotation of the
reference frame of angle θ around the axis θ̂ is given by

R(~θ) = ei
~θ·~L , (3.134)

where ~θ = θθ̂ and
(La)ij = −iǫaij . (3.135)

This can be easily extended to Minkowski spacetime: a spatial rotation will read R(θ) = ei
~θ· ~J

with

Ja =

(

0 ~0T

~0 La

)

. (3.136)

An active boost in direction 1 reads








x′0
x′1
x′2
x′3









=









coshΘ sinhΘ 0 0
sinhΘ coshΘ 0 0

0 0 1 0
0 0 0 1

















x0
x1
x2
x3









(3.137)

or x′ = LA1 (Θ)x, with

LA1 (Θ) =









coshΘ sinhΘ 0 0
sinhΘ coshΘ 0 0

0 0 1 0
0 0 0 1









= eiΘK
1
, K1 = −i









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









. (3.138)

Similarly to what has been done with rotations, a change to a reference frame moving with
velocity ~v = Θ̂ tanhΘ is obtained via

L(~Θ) = e−i
~Θ· ~K , (3.139)
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where ~Θ = ΘΘ̂ and

Ka =

(

0 ~nT
a

~na 0

)

, (3.140)

with (~na)i = δai. In covariant notation, choosing the matrices (Ka)µν and (Ja)µν to match the
tensors Kaµ

ν and Jaµν , we have Ka = J (0a) and Ja = −1
2ǫ

0aijJ (ij), with ǫ0123 = 1 and

J (ρσ)µ
ν = −i(ηρµδσν − ησµδρν) . (3.141)

A general Lorentz transformation therefore reads ei(
~θ· ~J−~Θ· ~K), which for ~Θ = 0 is a counter-

clockwise rotation of the reference frame of angle |~θ| around θ̂, and for θ = 0 is a change of
frame to one moving with relative rapidity |~Θ| in direction Θ̂. This can also be written as

e
i
2
ωρσJ

(ρσ)
, with ω0a = −Θa and ωab = −ǫabcθc = −ǫ0abcθc. A general Poincaré transformation

reads e
i
2
ωρσJ

(ρσ)−iaµPµ .

4 Scalar particles and scalar fields

We now have all the basic tools to discussion quantum fields. The first step is showing how free
fields appear as a convenient way to describe free particles. Our aim is to develop tools which
will allow us to describe relativistic, quantum-mechanical processes. Such tools have to comply
with two important requests:

• they should allow creation and destruction of particles, since these are processes allowed
by special relativity which actually happen in Nature;

• they should allow a local description of interactions, in order to avoid problem with causal-
ity.

We begin our discussion with the simplest case of a scalar massive particle.

4.1 Fock space

We have seen in the previous section how the states of a single particle provide the basis for an
irreducible representation of the Poincaré group. The simplest such representation is the scalar
representation for massive particles, whose states are labelled by the three spatial components
of the momentum, ~p, and whose energy satisfies the relation p0 =

√

~p 2 +m2. Denoting such
states with |~p〉 we then have

Pµ|~p〉 = pµ|~p〉 . (4.1)

States containing N non-interacting particles are easily constructed as tensor products of single
particle states. To take into account the experimental fact that identical particles are indistin-
guishable, such tensor products have to be symmetrised under exchange of any two momenta,
in order to satisfy the Bose-Einstein statistics appropriate for scalar particles. We denote a
generic multiparticle state with N particles as |~p1, . . . , ~pN 〉, satisfying the symmetry condition
|~p1, . . . , ~pN 〉 = |~pP(1), . . . , ~pP(N)〉 for any permutation P of {1, . . . , N}. From the mathematical
point of view, we construct such states by taking the N -fold tensor product of single-particle
states and symmetrising with respect to the momenta,

|~p1, . . . , ~pN 〉 =
∑

P

|~pP(1)〉 ⊗ . . .⊗ |~pP(N)〉 . (4.2)
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Their transformation properties under symmetry transformations are inherited from the single
particle states. Such states provide therefore a reducible representation of the Poincaré group.
Single-particle states for a scalar particle transform as follows,

U(a)|~p〉 = e−ia·P |~p〉 = e−ia·p|~p〉 ,
U(Λ)|~p〉 = e

i
2
ωµνJ

(µν) |~p〉 = |Λ~p〉 ,
(4.3)

and so multiparticle states transform as follows,

U(a)|~p1, . . . , ~pN 〉 = e−ia·P |~p1, . . . , ~pN 〉 = e−ia·
∑

j pj |~p1, . . . , ~pN 〉 ,
U(Λ)|~p1, . . . , ~pN 〉 = e

i
2
ωµνJ

(µν) |~p1, . . . , ~pN 〉 = |Λ~p1, . . . ,Λ~pN 〉 .
(4.4)

The normalisation of multiparticle states is easily obtained from the single-particle normalisa-
tion,

〈~p ′|~p〉 = (2π)32p0δ(3)(~p ′ − ~p) , (4.5)

and from the definition Eq. (4.2):

〈~p ′
1, . . . , ~p

′
M |~p1, . . . , ~pN 〉 = δMN

∑

P

N
∏

j=1

(2π)32p0jδ
(3)(~p ′

P(j) − ~pj) , (4.6)

having naturally set to zero the scalar product of states with different number of particles.
Since particles can be created and destroyed, any number of particles is allowed; in particular,
no particles is a possibility. We call the state without particles the vacuum state, and denote
by |0〉 the corresponding vector, which we take to be normalised to 〈0|0〉 = 1 and orthogonal
to all other states, 〈0|~p1, . . . , ~pN 〉 = 0. Furthermore, we assume the vacuum to be invariant
under translations and Lorentz transformations, U(a)|0〉 = U(Λ)|0〉 = |0〉. The appropriate
state space for scalar particles is then the complex vector space (Hilbert space) spanned by the
basis {|~p1, . . . , ~pN 〉}N=0,1,...,∞.26 This is the so-called Fock space for scalar particles.

In order to describe creation and annihilation of particles, we introduce the creation operator
a(~p)†, defined by its action on the basis vectors:

a(~p)†|~p1, . . . , ~pN 〉 = |~p, ~p1, . . . , ~pN 〉 . (4.7)

This operator creates a particle with momentum ~p, which is then added to the state vector.
We can then obtain all the basis vectors by repeated application of creation operators on the
vacuum:

|~p1, . . . , ~pN 〉 = a(~p1)
† . . . a(~pN )

†|0〉 . (4.8)

The adjoint of the creation operator, a(~p), is the annihilation operator, for reasons that will

26Technically, the appropriate Hilbert space is the completion of the space generated by arbitrary linear combi-
nations of these basis vectors, which includes the limits of any sequence of such linear combinations in the norm
derived from the scalar product.
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appear clearly as soon as we determine its effect on the basis vectors. By definition of adjoint,27

(a(~p)Ψ~p′1,...,~p
′
M
,Ψ~p1,...,~pN ) = (Ψ~p′1,...,~p

′
M
, a(~p)†Ψ~p1,...,~pN ) = (Ψ~p′1,...,~p

′
M
,Ψ~p,~p1,...,~pN )

= δM,N+1

∑

P

(2π)32p0δ(3)(~p ′
P(1) − ~p)

M
∏

k=2

(2π)32p0kδ
(3)(~p ′

P(k) − ~pk−1)

=
M
∑

j=1

(2π)32p0δ(3)(~p ′
j − ~p)(Ψ~p′1,...,~p

′
M\~p′j

,Ψ~p1,...,~pN ) ,

(4.9)

where Ψ~p′1,...,~p
′
M\~p′j

is obtained from the state Ψ~p′1,...,~p
′
M

by removing a particle with momentum

~p′j . We then conclude

a(~p)|~p1, . . . , ~pN 〉 =
N
∑

j=1

(2π)32p0δ(3)(~pj − ~p)|~p1, . . . , ~pj−1, ~pj+1, . . . , ~pN 〉 . (4.10)

The annihilation operator a(~p) destroys a particle with momentum ~p, which is then removed
from the state vector in case it is present; if it is not, the annihilation operator simply yields
zero. In particular, any annihilation operator applied on the vacuum state gives zero:

a(~p)|0〉 = 0 , ∀~p . (4.11)

The proof of this result is straightforward: schematically, (ΨN , a(~p)Ψ0) = (a(~p)†ΨN ,Ψ0) =
(ΨN+1,Ψ0) = 0. The vacuum state is the only state for twhich this happens.

One can determine quite easily the commutation relations of creation and annihilation op-
erators. Indeed,

a(~q2)
†a(~q1)

†|~p1, . . . , ~pN 〉 = a(~q2)
†|~q1, ~p1, . . . , ~pN 〉 = |~q2, ~q1, ~p1, . . . , ~pN 〉 = |~q1, ~q2, ~p1, . . . , ~pN 〉

= a(~q1)
†|~q2, ~p1, . . . , ~pN 〉 = a(~q1)

†a(~q2)
†|~p1, . . . , ~pN 〉 ,

(4.12)
for any basis vector, and so

[a(~p)†, a(~q)†] = 0 . (4.13)

Taking the hermitian conjugate we find

[a(~p), a(~q)] = 0 . (4.14)

On the other hand,

a(~q2)a(~q1)
†|~p1, . . . , ~pN 〉 = a(~q2)|~q1, ~p1, . . . , ~pN 〉

= (2π)32p0δ(3)(~q1 − ~q2)|~p1, . . . , ~pN 〉+
N
∑

j=1

(2π)32p0δ(3)(~pj − ~q2)|~q1, ~p1, . . . , ~pj−1, ~pj+1, ~pN 〉

= (2π)32p0δ(3)(~q1 − ~q2)|~p1, . . . , ~pN 〉+
N
∑

j=1

(2π)32p0δ(3)(~pj − ~q2)a(~q1)†|~p1, . . . , ~pj−1, ~pj+1, ~pN 〉

= (2π)32p0δ(3)(~q1 − ~q2)|~p1, . . . , ~pN 〉+ a(~q1)
†a(~q2)|~p1, . . . , ~pN 〉 ,

(4.15)

27Here, for clarity reasons, we use the notation Ψ~p,~p1,...,~pN for the vector |~p1, . . . , ~pN 〉, and (Ψ′,Ψ) for scalar
products.
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again for any basis vector, and therefore

[a(~p), a(~q)†] = (2π)32p0δ(3)(~p− ~q) . (4.16)

This is consistent with our choice of normalisation. Indeed, using Eqs. (4.16) and (4.8),

〈~p ′
1, . . . , ~p

′
M |~p1, . . . , ~pN 〉 = 〈0|a(~p ′

M ) . . . a(~p ′
1)a(~p1)

† . . . a(~pN )
†|0〉

=
N
∑

j=1

(2π)32p0jδ
(3)(~p ′

1 − ~pj)〈0|a(~p ′
M ) . . . a(~p ′

2)a(~p1)
† . . . a(~pj−1)

†a(~pj+1)
† . . . a(~pN )

†|0〉

= δMN

∑

P

N
∏

j=1

(2π)32p0jδ
(3)(~p ′

j − ~pP (j))〈0|0〉 = δMN

∑

P

N
∏

j=1

(2π)32p0jδ
(3)(~p ′

P(j) − ~pj) .

(4.17)

The creation and annihilation operators can be used to build the number density operator
N(~p) = a(~p)†a(~p), which acts as follows on a basis vector:

N(~p )|~p1, . . . , ~pN 〉 =
N
∑

j=1

(2π)32p0δ(3)(~pj − ~p)a(~p)†|~p1, . . . , ~pj−1, ~pj+1, ~pN 〉

=
N
∑

j=1

(2π)32p0δ(3)(~pj − ~p )|~p1, . . . , ~pN 〉 .
(4.18)

Basis vectors are then eigenstates of the number operator N ,

N =

∫

d3p

(2π)32p0
N(~p ) =

∫

dΩpN(~p ) , (4.19)

where we have introduced the notation dΩp for the Lorentz-invariant integration measure. In-
deed,

N|~p1, . . . , ~pN 〉 =
∫

d3p

(2π)32p0

N
∑

j=1

(2π)32p0δ(3)(~pj − ~p )|~p1, . . . , ~pN 〉 = N |~p1, . . . , ~pN 〉 . (4.20)

The number operator is then diagonal in Fock space, together with the momentum components.
It is worth observing at this point that we could work backwards, assuming an abstract point

of view in which our purpose is that of representing the algebra of commutators

[a(~p ), a(~q )†] = (2π)32p0δ(3)(~p− ~q ) ,
[a(~p ), a(~q )] = 0 ,

[a(~p )†, a(~q )†] = 0 .

(4.21)

This can be done taking a state |0〉 annihilated by all a(~p ), a(~p )|0〉 = 0, assumed to be unique
and normalised to 1, 〈0|0〉 = 1. Repeated application of the creation operators a(~p )† yields
precisely the basis vectors of Fock space. This procedure yields therefore the Hilbert space
appropriate for the description of non-interacting scalar particles.

Using now the number density operator we can define the total energy and total spatial
momenta,

Pµ =

∫

dΩpp
µN(~p ) . (4.22)
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One finds straightforwardly

Pµ|~p1, . . . , ~pN 〉 =
∫

d3p

(2π)32p0
pµ

N
∑

j=1

(2π)32p0δ(3)(~pj − ~p)|~p1, . . . , ~pN 〉

=





N
∑

j=1

pµj



 |~p1, . . . , ~pN 〉 .
(4.23)

Moreover, since

[N(~p), N(~q)] = [a(~p)†a(~p), a(~q)†a(~q)] = a(~p)†[a(~p), a(~q)†]a(~q) + a(~q)†[a(~p)†, a(~q)]a(~p)

= (2π)32p0δ(3)(~p− ~q)(a(~p)†a(~q)− a(~q)†a(~p)) = 0 ,
(4.24)

we have that the momentum operators commute with each other (as it is obvious from the fact
that they are simultaneously diagonal):

[Pµ, P ν ] =

∫

dΩp

∫

dΩq p
µqν [N(~p ), N(~q )] = 0 . (4.25)

This formalism can be extended easily to several types of bosons, generalising the commutation
relations Eq. (4.21) to

[ai(~p ), aj(~q )
†] = δij(2π)

32p0δ(3)(~p− ~q ) ,
[ai(~p ), aj(~q )] = 0 ,

[ai(~p )
†, aj(~q )

†] = 0 .

(4.26)

It is clear the analogy between this formalism and a system of independent harmonic oscillators.
It is a matter of simple algebra to show that defining the operators φ̃(~p ) and π̃(~p ) via

a(~p ) = (2π)
3
2 [p0φ̃(~p ) + iπ̃(~p )] , a(~p )† = (2π)

3
2 [p0φ̃(~p )− iπ̃(~p )] , (4.27)

one has the following:
[φ̃(~p), π̃(~p)] = iδ(3)(~p− ~q ) , (4.28)

i.e., φ̃(~p) and π̃(~p) have the same commutation relations of coordinate and momenta in quantum
mechanics, and moreover

H =

∫

d3p

(2π)32p0
p0a(~p )†a(~p ) =

∫

d3p
1

2

{

π̃(~p )2 + (p0)2φ̃(~p )2 + p0δ(3)(0)
}

, (4.29)

which coincides with the Hamiltonian of a system of infinitely many independent harmonic
oscillators, up to an irrelevant (although infinite) constant.

Finally, let us discuss the transformation properties of creation and annihilation operators
under translations and Lorentz transformations. These are inherited from the transformation
properties of the states. For translations we have

U(a)|~p, ~p1, . . . , ~pN 〉 = e−ia·pe−ia·
∑

j pj |~p, ~p1, . . . , ~pN 〉 = e−ia·pe−ia·
∑

j pja(~p)†|~p1, . . . , ~pN 〉
= U(a)a(~p)†U(a)†U(a)|~p1, . . . , ~pN 〉
= U(a)a(~p)†U(a)†e−ia·

∑
j pj |~p1, . . . , ~pN 〉 ,

(4.30)
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which then implies, since it holds for all states,28 that

U(a)a(~p)†U(a)† = e−ia·pa(~p)† , U(a)a(~p)U(a)† = eia·pa(~p) , (4.31)

or equivalently

U(a)†a(~p)†U(a) = eia·pa(~p)† , U(a)†a(~p)U(a) = e−ia·pa(~p) . (4.32)

For Lorentz transformations,

U(Λ)|~p, ~p1, . . . , ~pN 〉 = |Λ~p,Λ~p1, . . . ,Λ~pN 〉 = a(Λ~p)†|Λ~p1, . . . ,Λ~pN 〉
= U(Λ)a(~p)†U(Λ)†U(Λ)|~p1, . . . , ~pN 〉
= U(Λ)a(~p)†U(Λ)†|Λ~p1, . . . ,Λ~pN 〉 ,

(4.33)

which then implies

U(Λ)a(~p)†U(Λ)† = a(Λ~p)† , U(Λ)a(~p)U(Λ)† = a(Λ~p) , (4.34)

or equivalently

U(Λ)†a(~p)†U(Λ) = a(Λ−1~p)† , U(Λ)†a(~p)U(Λ) = a(Λ−1~p) . (4.35)

4.2 Causal scalar fields

The discussion of the previous subsection completes the first part of the program outlined at
the beginning of this section. To describe interactions, we could add to the Hamiltonian linear
combinations of products of creation and annihilation operators. In this way one can build in
principle any kind of Hamiltonian, which can then be adjusted to fit the experiments. More
generally, one can build any observable out of the creation and annihilation operators. On the
other hand, the most general Hamiltonian built in this way will violate locality and Poincaré
symmetry, and it is not easy to monitor these properties (especially locality) in momentum
space. Lorentz invariance of the theory and locality of interactions are most easily kept under
control working in coordinate space, so our aim is now to develop a coordinate-space formalism
equivalent to the formalism of creation and annihilation operators.

Coordinate space is also the appropriate setting to discuss the issue of causality. Consider
two experimenters making measurements at spacetime points x and y, and suppose that they are
measuring two local observables O(x) and O′(y), i.e., observables that are measured at a given
point in time and space. For example, they could be using detectors to reveal the presence of a
particle at a given point in space. One of the tenets of special relativity is that no information
can travel faster than light. We then expect that measurements made at spacelike separated
points (which are outside of each other’s lightcone) do not affect each other. In other words,
such measurements have to be compatible, in the sense that the corresponding Hilbert space
operators commute. We can summarise this discussion in the microcausality postulate: for any
local observables and any pair of spacelike separated points, we must have

[O(x),O′(y)] = 0 , (x− y)2 < 0 . (4.36)

28In deriving these results we make use of the fact that the vacuum is invariant under translations and Lorentz
transformations.
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The development of our coordinate-space formalism must take this requirement into account.
The construction of operators that are local in coordinate space and that have simple trans-

formation properties under symmetry transformations is actually quite straightforward, and
simply amounts to taking a Fourier transform. More precisely, we define the following opera-
tors,

ϕ+(x) =

∫

dΩp e
−ip·xa(~p) , ϕ−(x) =

∫

dΩp e
ip·xa(~p)† . (4.37)

Clearly ϕ±(x)
† = ϕ∓(x). These relations can be inverted to give

a(~p ) =

∫

d3x eip·xi
↔

∂0ϕ+(x) , a(~p )† =

∫

d3x e−ip·x(−i
↔

∂0)ϕ−(x) , (4.38)

independently of the choice of x0. Indeed,

∫

d3x eip·xi
↔

∂0ϕ+(x) =

∫

d3x

∫

dΩq e
ip·xi

{

−iq0a(~q )e−iq·x − ip0a(~q )e−iq·x
}

=

∫

d3x

∫

dΩq(p
0 + q0)a(~q )ei(p−q)·x =

∫

dΩq (2π)
3δ(3)(~p− ~q )(p0 + q0)a(~q )ei(p

0−q0)x0

=

∫

dΩq (2π)
32q0a(~q )δ(3)(~p− ~q ) = a(~p ) .

(4.39)

The other formula is proved similarly.29 One can also show that

∫

d3x eip·xi
↔

∂0ϕ−(x) =

∫

d3x e−ip·x(−i
↔

∂0)ϕ+(x) = 0 . (4.40)

The independence of time of these formulas is a consequence of a general result, which we now
discuss in detail. First of all, notice that ϕ±(x) are solutions of the Klein-Gordon (KG) equation,

(✷+m2)ϕ±(x) = 0 . (4.41)

This is because the KG equation is linear, and ϕ±(x) are linear combinations (with operator-
valued coefficients) of e±ip·x, which are solutions of the equation. For any two functions f, g one

has that ∂0(f
↔

∂0g) = f(∂20g)− (∂20f)g. If f, g are solutions of the KG equation, then

∂0

∫

d3x f(x)
↔

∂0g(x) =

∫

d3x [f(x)(∂20g(x))− (∂20f(x))g(x)]

=

∫

d3x {f(x)[(~∇2 −m2)g(x)]− [(~∇2 −m2)f(x)]g(x)]}

=

∫

d3x [f(x)(~∇2g(x))− (~∇2f(x))g(x)] =

∫

d3x ~∇[f(x)(~∇g(x))− (~∇f(x))g(x)]

= lim
V→∞

∫

∂V

d~n [f(x)(~∇g(x))− (~∇f(x))g(x)] = 0 .

(4.42)

In the last step we have assumed that f is normalisable and g is bounded. Take now for g the ma-
trix elements of ϕ±(x), and for f some solution of the KG equation fp,ε(x) =

∫

dΩq f̃p,ε(~q )e
∓iq·x

29Here it would suffice to take the Hermitian conjugate of this formula.
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with f̃p,ε(~q ) strongly peaked around ~p and becoming a delta as ε goes to zero. Since the rela-
tion Eq. (4.42) holds for all ε, taking ε → 0 we show that all the matrix elements of the time
derivative of the operators on the right-hand side of the relations in Eq. (4.38) are zero, which
finally proves that they are time-independent.

To understand what the operators ϕ±(x) do, consider a wave packet,

|ψ〉 =
∫

dΩp f̃(~p )|~p 〉 , 1 = 〈ψ|ψ〉 =
∫

dΩp |f̃(~p )|2 . (4.43)

A little manipulation shows that

|ψ〉 =
∫

dΩp f̃(~p )|~p 〉 =
∫

dΩp f̃(~p )a(~p )
†|0〉 =

∫

dΩp f̃(~p )

∫

d3x e−ip·x(−i
↔

∂0)ϕ−(x)|0〉

=

∫

d3x

(∫

dΩp f̃(~p )e
−ip·x

)

(−i
↔

∂0)ϕ−(x)|0〉

=

∫

d3x f(x)(−i
↔

∂0)ϕ−(x)|0〉 ,

(4.44)

where f(x) =
∫

dΩp f̃(~p )e
−ip·x is a solution of the Klein-Gordon equation, (✷ +m2)f(x) = 0.

The main contribution to f(x) comes from momenta that make the phase of the integrand sta-
tionary (thus reducing the effect of cancellations due to the oscillatory nature of the integrand).
Setting f̃(~p ) = |f̃(~p )|e−iφ(~p ), the phase is stationary when

0 = ~∇p[φ(~p ) + p · x] = ~∇pφ(~p ) +
~p

p0
x0 − ~x . (4.45)

On the other hand, if we take a wave packet strongly peaked around some momentum ~p∗, the
integral will receive contributions only from momenta near ~p∗. This means that the function
f(x) will be peaked at values of x where ~p∗ solves the stationary phase equation, i.e., on the
straight-line trajectory

~x =
~p∗
p0∗
x0 + ~∇pφ(~p∗ ) = ~β∗x

0 + ~x∗ . (4.46)

The function f(x) therefore describes the evolution of the wave packet in coordinate space. We
then conclude that the operator

ϕf−(x) =

∫

d3x f(x)(−i
↔

∂0)ϕ−(x) (4.47)

creates a wave packet with coordinate-space wave function f(x), and thus ϕ−(x) essentially
creates a particle at x. Acting on |ψ〉 with the operator

ϕf+(x) =

∫

d3x f(x)∗i
↔

∂0ϕ+(x) =

∫

d3x

∫

dΩp f̃(~p )
∗eip·xi

↔

∂0ϕ+(x) =

∫

dΩp f̃(~p )
∗a(~p ) , (4.48)

we find that

ϕf+(x)|ψ〉 =
∫

dΩp f̃(~p )
∗a(~p )

∫

dΩq f̃(~q )a(~q )
†|0〉 =

∫

dΩp |f̃(~p )|2|0〉 = |0〉 , (4.49)

so it destroys the wave packet with coordinate-space wave function f(x), and thus ϕ+(x) essen-
tially destroys a particle at x.
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The transformation properties of ϕ±(x) are easily obtained from Eq. (4.35), and read

U(Λ)†ϕ±(x)U(Λ) =

∫

dΩp U(Λ)†a(~p)(†)U(Λ)e∓ip·x =

∫

dΩp a(Λ
−1~p)(†)e∓ip·x

=

∫

dΩp a(~p)
(†)e∓iΛp·x =

∫

dΩp a(~p)
(†)e∓ip·Λ

−1x = ϕ±(Λ
−1x) ,

U(a)†ϕ±(x)U(a) =

∫

dΩp U(a)†a(~p)(†)U(a)e∓ip·x =

∫

dΩp a(~p)
(†)e∓ip·ae∓ip·x

= ϕ±(x+ a) .

(4.50)

4.2.1 Microcausality

Since all the observables can be built from the creation and annihilation operators, multiplying
them by some function of the momenta and integrating over momenta, they can equivalently be
built out of ϕ±(x) and its derivatives. The most general local observable will thus be a sum of
products of ϕ±(x) and their derivatives. Using independently both ϕ+(x) and ϕ−(x) however
leads to troubles in satisfying the microcausality condition, since their commutator does not
vanish for spacelike separations. To see this, compute first

[ϕ+(x), ϕ−(y)] =

∫

dΩp

∫

dΩq e
−ip·xeiq·y[a(~p ), a(~q )†]

=

∫

dΩp

∫

dΩq e
−ip·xeiq·y(2π)32p0δ(3)(~p− ~q )

=

∫

dΩp e
−ip·(x−y) ≡ ∆(x− y) .

(4.51)

Since dΩp is a Lorentz-invariant integration measure, ∆(x) is a Lorentz-invariant function of
its argument, and can be evaluated in any reference frame. For spacelike separations, (x −
y)2 < 0, there is always a reference frame in which x′0 = y′0, and in this frame one sees
immediately that interchanging ~x ′ and ~y ′ can be compensated by a change of variables ~p →
−~p. Since ∆(x) is Lorentz-invariant, one concludes that for spacelike separations it is an even
function of its argument, ∆(x − y) = ∆(y − x) if (x − y)2 < 0. However, this function does
not vanish in general. For future utility, we introduce the following notation for the equal-time
commutator, [A(x), B(y)]ET = [A(x0, ~x), B(y0 = x0, ~y)]. On the other hand, the commutators
[ϕ±(x), ϕ±(y)] = 0 identically.

We cannot use ϕ±(x) independently, but of course we do not want to use only one of them,
since that would certainly make it impossible to built all the observables. We then seek for a lin-
ear combination of ϕ±(x) with nonvanishing coefficients, such that the microcausality conditions
are satisfied. Let us set

ϕ(x) = α+ϕ+(x) + α−ϕ−(x) , (4.52)

and find what relations α± have to satisfy in order to not violate microcausality. Let us consider
first the commutator of ϕ(x) with itself and its Hermitian conjugate. in general

[ϕ(x), ϕ(y)] = α+α− ([ϕ+(x), ϕ−(y)] + [ϕ−(x), ϕ+(y)])

= α+α− ([ϕ+(x), ϕ−(y)]− [ϕ+(y), ϕ−(x)]) .
(4.53)

We then find for spacelike separations

[ϕ(x), ϕ(y)] = α+α− [∆(x− y)−∆(y − x)] = 0 , (4.54)
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for any α±. Similarly, [ϕ(x)†, ϕ(y)†] = 0. Instead,

[ϕ(x), ϕ(y)†] = |α+|2[ϕ+(x), ϕ−(y)]− |α−|2[ϕ−(x), ϕ+(y)] , (4.55)

and for spacelike separations

[ϕ(x), ϕ(y)†] = |α+|2∆(x− y)− |α−|2∆(y − x) = (|α+|2 − |α−|2)∆(x− y) . (4.56)

To make this vanish for all spacelike x, y we need to set |α+| = |α−|. Parameterising α± =
|α|eiζe±iκ, we see that up to an irrelevant overall factor we have to take ϕ of the form

ϕκ(x) = eiκϕ+(x) + e−iκϕ−(x) . (4.57)

However, in building our observables we cannot use at the same time ϕκ(x) and some other
ϕκ′(x), because that would be equivalent to use both ϕ±(x), which is troublesome for causality.
Finally, since we can always redefine our particle states by a phase without changing the physics,
we can reabsorb eiκa(~p )→ a(~p ). In conclusion, the appropriate local object to use here, in order
to satisfy automatically the microcausality condition, is the Hermitian scalar field ϕ(x) = ϕ(x)†,

ϕ(x) = ϕ+(x) + ϕ−(x) =

∫

dΩp

(

a(~p)e−ip·x + a(~p)†eip·x
)

. (4.58)

The fields ϕ+(x) and ϕ−(x) are called the positive-frequency component and the negative-
frequency component of the field.

So far we have checked the microcausality condition only for the field itself, but in general
we want to use also its spatial and temporal derivatives. Spatial derivatives are treated most
easily. In fact, since by definition

∂iϕ(y) = lim
ε→0

1

ε
[ϕ(y + εı̂)− ϕ(y)] , (4.59)

we have for equal-time commutators

[ϕ(x), ∂iϕ(y)]ET = lim
ε→0

1

ε
[ϕ(x), ϕ(y + εı̂)− ϕ(y)]ET = 0 , (4.60)

which then extends to general spacelike x, y by covariance. This is easily generalised to any
order, and we can write

[∂ni ϕ(x), ∂
m
j ϕ(y)] = 0 , (x− y)2 < 0 . (4.61)

This trick does not work for temporal derivatives, since in that case the commutator of the
field at different times is involved.30 We can nevertheless compute the commutator explicitly,
obtaining

[ϕ(x), ∂0ϕ(y)] = [ϕ+(x), ∂0ϕ−(y)]− [∂0ϕ+(y), ϕ−(x)] . (4.62)

The basic object is [ϕ+(x), ∂0ϕ−(y)] which reads

[ϕ+(x), ∂0ϕ−(y)] =

∫

dΩp

∫

dΩq e
−ip·xeiq·yiq0[a(~p ), a(~q )†] = i

∫

dΩp p
0e−ip·(x−y) . (4.63)

30Actually, if x and y are spacelike-separated, then one can always find ǫ0 small enough such that x and y+ εµ̂
are still spacelike-separated for all ǫ < ǫ0, even for µ = 0. This cannot be done when x and y are the same point,
in which case for any ǫ the points x and x+ ǫ0̂ are timelike-separated.
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More generally,

[ϕ+(x), ∂µϕ−(y)] = i

∫

dΩp pµe
−ip·(x−y) = ∂yµ

∫

dΩp e
−ip·(x−y) = ∂yµ∆(x− y) , (4.64)

and so

[ϕ(x), ∂µϕ(y)] = [ϕ+(x), ∂µϕ−(y)]− [∂µϕ+(y), ϕ−(x)] = ∂yµ(∆(x− y)−∆(y − x)) , (4.65)

since the second term is just the Hermitian conjugate of the first one and so of Eq. (4.64). This
object is a Lorentz vector, and so if it vanishes in one reference frame it will vanish in any other.
For spacelike separations we can then choose the frame where x0 = y0, and find

[ϕ+(x), ∂0ϕ−(y)]ET = i

∫

dΩp p
0ei~p·(~x−~y) =

i

2
δ(3)(~x− ~y) . (4.66)

The commutator [∂0ϕ−(y), ϕ+(x)]ET is just the Hermitian conjugate of Eq. (4.66), and so we
find

[ϕ(x), ∂0ϕ(y)]ET = iδ(3)(~x− ~y) . (4.67)

At equal times, spacelike separation means ~x 6= ~y, and in this case the commutator vanishes.
We consider next

[∂0ϕ(x), ∂0ϕ(y)] = [∂0ϕ+(x), ∂0ϕ−(y)]− [∂0ϕ+(y), ∂0ϕ−(x)] . (4.68)

The basic object is [∂0ϕ+(x), ∂0ϕ−(y)] which reads

[∂0ϕ+(x), ∂0ϕ−(y)] =

∫

dΩp

∫

dΩq e
−ip·xeiq·y(−ip0)iq0[a(~p ), a(~q )†]

=

∫

dΩp (p
0)2e−ip·(x−y) = ∆̃(x− y) .

(4.69)

More generally, we have

[∂µϕ+(x), ∂νϕ−(y)] =

∫

dΩp

∫

dΩq e
−ip·xeiq·y(−ipµ)iqν [a(~p ), a(~q )†]

=

∫

dΩp pµpνe
−ip·(x−y) = ∂xµ∂yν∆(x− y) ,

(4.70)

and so

[∂µϕ(x), ∂νϕ(y)] = [∂µϕ+(x), ∂νϕ−(y)]− [∂νϕ+(y), ∂µϕ−(x)] = ∂xµ∂yν [∆(x− y)−∆(y − x)] .
(4.71)

We can then rest assured that if Eq. (4.71) vanishes in a frame, it will do so in any other. For
spacelike separations we then choose the frame with x0 = y0 and find that ∆̃(x − y)|x0=y0 =
∂x0∂y0∆(x− y)|x0=y0 is symmetric under exchange of ~x and ~y. From this we conclude that

[∂0ϕ(x), ∂0ϕ(y)]ET = ∆̃(x− y)|x0=y0 − ∆̃(y − x)|x0=y0 = 0 . (4.72)

Finally, since ϕ(x) satisfies the KG equation, commutators involving time derivatives of fields of
order 2 or higher can be reduced to combinations of commutators involving no more than single
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time derivatives of fields. This is because we can always replace ∂20ϕ = (~∇2 −m2)ϕ. We can
then conclude that also these commutators will satisfy microcausality, as they are in general a
combination of spatial delta functions and their derivatives. We can summarise our findings in
the following equations:

[ϕ(x), ϕ(y)]ET = 0 , [∂0ϕ(x), ∂0ϕ(y)]ET = 0 ,

[ϕ(x), ∂0ϕ(y)]ET = iδ(3)(~x− ~y) ,
(4.73)

and
(✷+m2)ϕ(x) = 0 . (4.74)

Together, they guarantee that any commutator invoving fields and its derivatives will vanish
for spacelike separations. As a final remark, notice that the commutation relations found above
remains unchanged for any of the fields ϕκ, since the phase factors always cancel out. Therefore,
any of the ϕκ is a good causal field, but we cannot use more than one at a time.

We conclude this subsection presenting the transformation properties of the field, which are
easily obtained from those of its positive and negative frequency components, and read

U(Λ)†ϕ(x)U(Λ) = ϕ(Λ−1x) ,

U(a)†ϕ(x)U(a) = ϕ(x+ a) .
(4.75)

4.2.2 Energy and momentum operators in terms of fields: normal ordering

Let us now express the basic observables, namely energy and momentum, in terms of the field
and its derivatives. We start by reformulating Eq. (4.38) in terms of the full field,

a(~p ) =

∫

d3x eip·xi
↔

∂0ϕ(x) , a(~p )† =

∫

d3x e−ip·x(−i
↔

∂0)ϕ(x) , (4.76)

where we made use of Eq. (4.40). Next, we use this to write

a(~p )†a(~p ) =

∫

d3x

∫

d3y
[

e−ip·x(−i
↔

∂0)ϕ(x)
] [

eip·yi
↔

∂0ϕ(y)
]

=

∫

d3x

∫

d3y ei~p·(~x−~y)
[

(p0)2ϕ(x)ϕ(y) + ϕ̇(x)ϕ̇(y) + ip0 (ϕ(x)ϕ̇(y)− ϕ̇(x)ϕ(y))
]

,

a(~p )a(~p )†

=

∫

d3x

∫

d3y ei~p·(~x−~y)
[

(p0)2ϕ(y)ϕ(x) + ϕ̇(y)ϕ̇(x)− ip0 (ϕ(y)ϕ̇(x)− ϕ̇(y)ϕ(x))
]

,

(4.77)

where ϕ̇(x) = ∂0ϕ(x) and it is understood that x0 = y0. The first expression above could be
integrated over momenta after multiplying with p0 to yield the Hamiltonian H. The last term
in square brackets is however not very appealing, and it would be nice to find a way to remove
it. Since ϕ and ϕ̇ commute with themselves for spacelike separations, the first two terms in
square brackets are the same for both expressions. The last term differs only by a sign and by
the order in which x and y appear, which can be reversed since they are being integrated over,
with the consequence that the sign of ~p will change in the phase factor, i.e.

a(~p )a(~p )†

=

∫

d3x

∫

d3y
{

ei~p·(~x−~y)
[

(p0)2ϕ(x)ϕ(y) + ϕ̇(x)ϕ̇(y)
]

− ip0e−i~p·(~x−~y) (ϕ(x)ϕ̇(y)− ϕ̇(x)ϕ(y))
}

.

(4.78)
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If we now take the sum of the two expressions, multiply by p0 and integrate over momenta with
the invariant measure we get
∫

dΩp
1
2{a(~p ), a(~p )†} =

∫

dΩp

∫

d3x

∫

d3y ei~p·(~x−~y)p0
[

(p0)2ϕ(x)ϕ(y) + ϕ̇(x)ϕ̇(y)
]

, (4.79)

having dropped the term proportional to p0 since it is odd under ~p→ −~p. A simple manipulation
gives us
∫

dΩp p
0 1
2{a(~p ), a(~p )†} =

∫

dΩp

∫

d3x

∫

d3y ei~p·(~x−~y)p0
[

(~p 2 +m2)ϕ(x)ϕ(y) + ϕ̇(x)ϕ̇(y)
]

=

∫

dΩp

∫

d3x

∫

d3y p0
[

ϕ(x)ϕ(y)(~∇x · ~∇y +m2)ei~p·(~x−~y) + ei~p·(~x−~y)ϕ̇(x)ϕ̇(y)
]

=

∫

dΩp

∫

d3x

∫

d3y ei~p·(~x−~y)p0
[

ϕ̇(x)ϕ̇(y) + ~∇ϕ(x) · ~∇ϕ(y) +m2ϕ(x)ϕ(y)
]

=

∫

d3x

∫

d3y δ(3)(~x− ~y)1
2

[

ϕ̇(x)ϕ̇(y) + ~∇ϕ(x) · ~∇ϕ(y) +m2ϕ(x)ϕ(y)
]

=

∫

d3x
1

2

[

ϕ̇(x)2 + ~∇ϕ(x)2 +m2ϕ(x)2
]

.

(4.80)
The left-hand side is almost H, where unfortunately the “almost” involves an infinite constant:

∫

dΩp p
0 1
2{a(~p ), a(~p )†} =

∫

dΩp p
0
{

a(~p )†a(~p ) + 1
2(2π)

32p0δ(3)(0)
}

. (4.81)

This is not a big deal from the physical point of view: in any case, what we can measure are
energy differences, so we might as well remove the (infinite) constant contribution. Mathemati-
cally, however, our expressions must make good sense. To this end, we define the normal ordered
product of fields as follows. Expand the fields in creation and annihilation operators, and write
the product of fields as an integral over momenta of a sum of terms, each of which is a product of
creation and annihilation operators. The normal ordered product is obtained by replacing each
of these products with the product obtained using the same creation and annihilation operators,
but with all creation operators being placed to the left of the annihilation operators. This defines
the normal ordered product of creation and annihilation operators. Equivalently, the normal
ordere product of fields is obtained by placing all the negative frequency components on the left
of the positive frequency ones. A few examples will be helpful. We denote the normal ordered
product by placing colons at the sides, i.e., : . . . :. Then

: a(~p )†a(~q ) : = a(~p )†a(~q ) , : a(~p )a(~q )† : = a(~q )†a(~p ) ,

: a(~p )a(~q ) : = a(~p )a(~q ) = a(~q )a(~p ) , : a(~p )†a(~q )† : = a(~p )†a(~q )† = a(~q )†a(~p )† ,
(4.82)

and similarly for products of more operators, while for fields

: ϕ(x)ϕ(y) : =: [ϕ+(x) + ϕ−(x)][ϕ+(y) + ϕ−(y)] :

= ϕ+(x)ϕ+(y) + ϕ−(x)ϕ+(y) + ϕ−(y)ϕ+(x) + ϕ−(x)ϕ−(y) .
(4.83)

It is worth noting that

: ϕ(x)ϕ(y) : = ϕ(x)ϕ(y)− [ϕ+(x), ϕ−(y)] = ϕ(x)ϕ(y)− 〈0|[ϕ+(x), ϕ−(y)]|0〉
= ϕ(x)ϕ(y)− 〈0|ϕ+(x)ϕ−(y)|0〉 = ϕ(x)ϕ(y)− 〈0|ϕ(x)ϕ(y)|0〉 , (4.84)
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where we have used the fact that [ϕ+(x), ϕ−(y)] is a c-number to replace it with its vacuum
expectation value, and then used the fact that ϕ+ annihilates the vacuum. It is also worth
noting that the order of terms inside a normal product is irrelevant, as the normal ordering
always reorders the various positive and negative frequency components in the same way, i.e.,
: ϕ(x)ϕ(y) :=: ϕ(y)ϕ(x) :. If we now use normal ordering on the integrand on both sides of
Eq. (4.80), we find

H =

∫

dΩp p
0a(~p )†a(~p )† =

∫

dΩp p
0 1
2 : {a(~p ), a(~p )†} :

=

∫

d3x
1

2
:
[

ϕ̇(x)2 + ~∇ϕ(x)2 +m2ϕ(x)2
]

: .

(4.85)

Given Eq. (4.84), valid for products of two fields, we also have

H =

∫

d3x
1

2

{[

ϕ̇(x)2 + ~∇ϕ(x)2 +m2ϕ(x)2
]

− 〈0|ϕ̇(x)2 + ~∇ϕ(x)2 +m2ϕ(x)2|0〉
}

. (4.86)

If we consider now the spatial momentum operator, we have that

~P =

∫

dΩp ~pa(~p )
†a(~p )† =

∫

dΩp ~p
1
2 : {a(~p ), a(~p )†} :

=

∫

dΩp

∫

d3x

∫

d3y ~pei~p·(~x−~y)ip0 12 : ϕ(x)ϕ̇(y)− ϕ̇(x)ϕ(y)− ϕ(y)ϕ̇(x) + ϕ̇(y)ϕ(x) : ,

(4.87)
while the other term drops since it is even under exchange of x and y, and so after x and y
integration gives a term which is even in ~p. Using the symmetry properties of the integrand,
and the fact that the order is irrelevant inside normal ordered products, we find

~P =

∫

dΩp

∫

d3x

∫

d3y ~pei~p·(~x−~y)ip0 : ϕ(x)ϕ̇(y)− ϕ̇(x)ϕ(y) :

=

∫

dΩp

∫

d3x

∫

d3y ~pei~p·(~x−~y)ip0 : ϕ(x)ϕ̇(y)− ϕ(y)ϕ̇(x) :

=

∫

dΩp

∫

d3x

∫

d3y ~∇xei~p·(~x−~y)2p0 : ϕ(x)ϕ̇(y) :

= −
∫

d3x

∫

d3y δ(3)(~x− ~y) : ϕ̇(y)~∇xϕ(x) := −
∫

d3x : ϕ̇(x)~∇ϕ(x) : .

(4.88)

The need to use normal ordering comes from a general problem of quantum fields, namely that
their products at coinciding spacetime points are ill-defined. To see this, consider the vacuum
expectation value of the product ϕ(x)ϕ(y). One finds easily that

〈0|ϕ(x)ϕ(y)|0〉 =
∫

dΩpe
−ip·(x−y) , (4.89)

which is badly divergent as x → y. On the other hand, the vacuum expectation value of the
normal ordered product is zero.

4.2.3 Hamiltonian and Lagrangian formalism

The equal-time commutation relations Eq. (4.73) are precisely the commutation relations of a
Hamiltonian system with infinitely many degrees of freedom, with ϕ(t, ~x) for all ~x playing the
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role of canonical coordinates, and ϕ̇(t, ~x) ≡ π(t, ~x) for all ~x that of their conjugated momenta.
The Klein-Gordon equation can be recast as an equation of motion for π,

0 = (✷+m2)ϕ = (∂20 − ~∇2 +m2)ϕ⇒ π̇ = (~∇2 −m2)ϕ . (4.90)

In terms of ϕ and π the Hamiltonian reads

H =

∫

d3xH =

∫

d3x
1

2
:
[

π2 + ~∇ϕ2 +m2ϕ2
]

:=

∫

d3x
1

2
:
[

π2 − ϕ~∇2ϕ+m2ϕ2
]

: . (4.91)

The associated Hamilton equations are

ϕ̇ =
δH

δπ
= π ,

π̇ = −δH
δϕ

= (~∇2 −m2)ϕ ,
(4.92)

which are precisely the equations satisfied by ϕ and π. This Hamiltonian system can be converted
into a Lagrangian system by means of a Legendre transform, as usual, with the added detail
that fields are taken to be normal-ordered. We find for the Lagrangian

L =: πϕ̇ : −H =
1

2
:
[

ϕ̇2 − ~∇ϕ · ~∇ϕ−m2ϕ2
]

:=
1

2
: ∂µϕ∂

µϕ−m2ϕ2 : . (4.93)

Let us now reverse the direction. Take the classical Klein-Gordon Lagrangian,

L =
1

2

[

∂µϕ∂
µϕ−m2ϕ2

]

, (4.94)

where classically ϕ is a real field, and define the action functional as usual. We set up the
procedure of canonical quantisation through the following steps:

• find the EOM via an action principle (these are just the KG equation, in this case);

• define the canonical momentum as π = ∂L

∂(∂0ϕ)
(this is just ϕ̇ in this case);

• find a Hermitian operator-valued field ϕ(x) that solves the EOM;

• impose the canonical commutation relations (CCR),

[ϕ(x), π(y)]ET = iδ(3)(~x− ~y ) , [ϕ(x), ϕ(y)]ET = [π(x), π(y)]ET = 0 . (4.95)

We already now that the scalar field built in the previous subsections is a solution of this
procedure, but it is instructive to see how this comes about following the procedure step by
step. We first solve the KG equation: this is most easily done in momentum space, setting

ϕ(x) =

∫

d4p

(2π)4
e−ip·xϕ̃(p) . (4.96)

The KG equation for ϕ̃ is simply (p2−m2)ϕ̃ = 0, which is solved by ϕ̃(p) = 2πδ(p2−m2)A(p0, ~p),
for an arbitrary operator-valued A. Plugging this into Eq. (4.96) we find

ϕ(x) =

∫

d4p

(2π)3
e−ip·x

1

2p0

[

δ(p0 −
√

~p 2 +m2) + δ(p0 +
√

~p 2 +m2)
]

A(p0, ~p)

=

∫

dΩp

[

e−i(p
0x0−~p·~x)A(p0, ~p) + e−i(−p

0x0−~p·~x)A(−p0, ~p)
]

=

∫

dΩp
[

e−ip·xA(p0, ~p) + eip·xA(−p0,−~p)
]

=

∫

dΩp

[

e−ip·xa(~p ) + eip·xa(~p)†
]

,

(4.97)
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where in the last passage we have set a(~p ) ≡ A(p0, ~p) and imposed Hermiticity. It remains to
impose the CCR. Let us see what this implies for a(~p) and a(~p)†. We can still use Eq. (4.76) to
extract them from the field, since those relations depend only on the fact that ϕ solves the KG
equation. We have then

a(~p ) =

∫

d3x eip·x
[

p0ϕ(x) + iϕ̇(x)
]

=

∫

d3x eip·x
[

p0ϕ(x) + iπ(x)
]

,

a(~p )† =

∫

d3x e−ip·x
[

p0ϕ(x)− iϕ̇(x)
]

=

∫

d3x e−ip·x
[

p0ϕ(x)− iπ(x)
]

.

(4.98)

We then find, setting x0 = y0,

[a(~p ), a(~q )] =

∫

d3x

∫

d3y ei(p·x+q·y)
[

p0ϕ(x) + iπ(x), q0ϕ(y) + iπ(y)
]

ET

=

∫

d3x

∫

d3y ei(p·x+q·y)(q0 − p0)δ(3)(~x− ~y )

= (2π)3δ(3)(~p+ ~q )ei(p
0+q0)x0(q0 − p0) = 0 ,

(4.99)

and similarly [a(~p )†, a(~q )†] = 0. Moreover,

[a(~p ), a(~q )†] =

∫

d3x

∫

d3y ei(p·x−q·y)
[

p0ϕ(x) + iπ(x), q0ϕ(y)− iπ(y)
]

ET

=

∫

d3x

∫

d3y ei(p·x−q·y)(q0 + p0)δ(3)(~x− ~y )

= (2π)3δ(3)(~p− ~q )(q0 + p0) = (2π)32p0δ(3)(~p− ~q ) .

(4.100)

We obtain the commutation relation of creation and annihilation operators, from which we now
how to build up particle states once that we have taken a vacuum state |0〉 annihilated by all
annihilation operators. From here on the construction is the same of subsection 4.1. It is worth
noting that Eq. (4.99) automatically implies that our particles will obey Bose-Einstein statistics.

We now build the canonical Hamiltonian via Legendre transform,

H =

∫

d3x [πϕ̇−L ] . (4.101)

Since we are dealing with operators, in general there might be ordering ambiguities. In this case
however π = ϕ̇, and no ambiguity arises. There is however a problem with taking products of
fields at the same spacetime points, which yields divergent terms. This can be cured by imposing
normal ordering of fields, and so we set

H =

∫

d3x : [πϕ̇−L ] :=

∫

d3x
1

2
:
[

π2 + ~∇ϕ2 +m2ϕ2
]

: , (4.102)

which coincides with Eq. (4.91). The Lagrangian formalism allows to build conserved quantities
associated to the symmetries of the Lagrangian. The Klein-Gordon Lagrangian is invariant
under translations and Lorentz transformations. The Noether current associated to translation
symmetry is

Θµν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL , (4.103)

67



and the corresponding charges are obtained integrating over spacetime the 0 components,

Θ0µ =
∂L

∂(∂0ϕ)
∂µϕ− ηµ0L = ∂µϕπ − ηµ0L . (4.104)

Ordering ambiguities and singular contributions are both dealt with by normal ordering. We
then define the quantum Noether current and charges as

Θµν =:
∂L

∂(∂µϕ)
∂νϕ− ηµνL : ,

Pµ =

∫

d3x : π∂µϕ− ηµ0L : .

(4.105)

These are easily seen to be Hermitian operators. We then find

P 0 =

∫

d3x : π∂0ϕ−L :=

∫

d3x
1

2
:
[

π2 + ~∇ϕ2 +m2ϕ2
]

:= H ,

P j =

∫

d3x : π∂jϕ := −
∫

d3x : π~∇jϕ : ,

(4.106)

i.e., P 0 coincides with the canonical Hamiltonian, and all the Pµ coincide with the operators
constructed in the creation/annihilation operator formalism. In order to study their commutator
with the fields, notice that

[Θ0µ(y), ϕ(x)] = [: π(y)∂µϕ(y)− ηµ0L (y) :, ϕ(x)] = [π(y)∂µϕ(y)− ηµ0L (y), ϕ(x)] , (4.107)

since the normal ordered product differs from the product by a constant [see Eq. (4.84)]. More-
over

[Θ0µ(y), ϕ(x)]ET = [π(y)∂µϕ(y)− ηµ0 1
2
π(y)2, ϕ(x)]ET = −iδ(3)(~x− ~y )∂µϕ(x) . (4.108)

Since Pµ are time-independent we can compute [Pµ, ϕ(x)] using Eq. (4.106) with fields at time
x0, and so

[Pµ, ϕ(x)] =

∫

d3y [Θ0µ(y), ϕ(x)]ET = −i
∫

d3y δ(3)(~x− ~y )∂µϕ(x) = −i∂µϕ(x) . (4.109)

Consider next Lorentz transformations. The classical charges are

J (ρσ) = −
∫

d3x
[

xρΘ0σ(x)− xσΘ0ρ(x)
]

, (4.110)

which we adapt to the quantum case by imposing normal ordering on the products of fields.
These makes them Hermitian operators. We find (here again y0 = x0)

[J (ρσ), ϕ(x)] =

∫

d3y
[

yρΘ0σ(y)− yσΘ0ρ(y), ϕ(x)
]

= i (xρ∂σ − xσ∂ρ)ϕ(x) . (4.111)

These are precisely the commutation relations that lead to the transformation properties Eq. (4.75).
Indeed, for infinitesimal transformations generated by Pµ we find

eiPµa
µ

ϕ(x)e−iPµa
µ

= ϕ(x) + iaµ[Pµ, ϕ(x)] = ϕ(x) + aµ∂µϕ(x) , (4.112)

68



and
ϕ(x+ a) = ϕ(x) + aµ∂µϕ(x) . (4.113)

For a Lorentz transformation Λ = e
i
2
ωµν J̃

(µν)
, where J̃ (µν)α

β = −i(ηµαδνβ − ηναδ
µ
β), we have

e−
i
2
ωµνJ

(µν)
ϕ(x)e−

i
2
ωµνJ

(µν)
= ϕ(x)− i

2
ωµν [J

(µν), ϕ(x)] = ϕ(x) +
1

2
ωµν (x

µ∂ν − xν∂µ)ϕ(x) ,
(4.114)

and also

ϕ(Λ−1x) = ϕ(x)− i

2
ωµν J̃

(µν)α
βx

β∂αϕ(x) = ϕ(x)− 1

2
ωµν (x

ν∂µ − xµ∂ν)ϕ(x) . (4.115)

The operators Pµ and J (µν) are therefore the Hermitian generators of translations and Lorentz
transformations, and we have explicitly built the represention of the Poincaré group in terms of
field operators.

4.2.4 Additive charges and complex scalar fields

Even within the setting of scalar particles, the formalism developed above is rather limited. In
fact, Hermitian scalar fields do not allow to describe particles which possess additive quantum
numbers. Suppose that we want to describe particles which are eigenstates of some conserved
Hermitian charge operator Q, with

Q|~p1, . . . , ~pN 〉 = Nq|~p1, . . . , ~pN 〉 , (4.116)

for some q ∈ R, and Q|0〉 = 0. Then for any basis vector we find

Qa(~p )†|~p1, . . . , ~pN 〉 = Q|~p, ~p1, . . . , ~pN 〉 = (N + 1)q|~p, ~p1, . . . , ~pN 〉
= (N + 1)qa(~p )†|~p1, . . . , ~pN 〉 =

{

[Q, a(~p )†] +Nqa(~p )†
}

|~p1, . . . , ~pN 〉 ,
(4.117)

which implies
[Q, a(~p )†] = qa(~p )† , [Q, a(~p )] = −qa(~p ) . (4.118)

This implies for the commutator of a Hermitian scalar field with Q

[Q,ϕ(x)] = [Q,ϕ+(x) + ϕ−(x)] = −q[ϕ+(x)− ϕ−(x)] = −qϕ̄(x) . (4.119)

If our observables are built out of ϕ(x), and contain also Q, we are forced to introduce also
ϕ̄(x) in our algebra of observables: for example, if the Hamiltonian were built out of ϕ and its
derivatives only, H = H[ϕ, ∂ϕ], then [Q,H] would contain ϕ̄ as well, and it could hardly vanish,
as it should for a conserved charge. On the other hand, while ϕ̄(x) is by itself a perfectly good
causal field, it cannot be used together with ϕ(x) without leading to violations of microcausality.
The only consistent way to have a Hermitian scalar field and a charge operator is then that q = 0.
On the other hand we know that particles with charges exist in Nature, so we have to find some
nontrivial way out.

This is actually not that complicated. For suppose that a second set of creation and annihi-
lation operators exist, which satisfy the same commutator algebra as the a and a† and commute
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with these. More precisely, let b(~p )† and b(~p ) be respectively creation and annihilation operators
satisfying

[b(~p ), b(~q )†] = (2π)32p0δ(3)(~p− ~q ) ,
[b(~p ), b(~q )] = [b(~p )†, b(~q )†] = 0 ,

[a(~p ), b(~q )] = [a(~p ), b(~q )†] = [a(~p )†, b(~q )] = [a(~p )†, b(~q )†] = 0 ,

(4.120)

where p0 =
√

~p 2 +m2 with the same mass m appearing in the commutation relations of a and
a†, and furthermore such that

[Q, b(~p )†] = −qb(~p )† , [Q, b(~p )] = qb(~p ) . (4.121)

We can now build a complex scalar field,

ϕ(x) =

∫

dΩp

{

a(~p )e−ip·x + b(~p )†eip·x
}

, (4.122)

which satisfies the simple commutation relation

[Q,ϕ(x)] = −qϕ(x) . (4.123)

Notice that now ϕ(x) 6= ϕ(x)†, but it still obeys the KG equation, (✷ +m2)ϕ = 0. Therefore,
if ϕ(x) is causal there is no problem with having it together with the charge operator Q.

To show that microcausality is respected we have to compute various commutation relations.
We easily find that

[ϕ(x), ϕ(y)] = [ϕ(x)†, ϕ(y)†] = 0 , (4.124)

for all x and y, since no nontrivial commutators of creation and annihilation operators are
involved. Similarly, one shows that

[∂0ϕ(x), ∂0ϕ(y)] = [∂0ϕ(x)
†, ∂0ϕ(y)

†] = [ϕ(x), ∂0ϕ(y)] = [ϕ(x)†, ∂0ϕ(y)
†] = 0 . (4.125)

Next

[ϕ(x), ϕ(y)†] =

∫

dΩp

∫

dΩq

{

e−i(p·x−q·y)[a(~p ), a(~q )†]− ei(p·x−q·y)[b(~q ), b(~p )†]
}

=

∫

dΩp

{

e−ip·(x−y) − eip·(x−y)
}

= ∆(x− y)−∆(y − x) ,
(4.126)

and thus we already know that for spacelike separations (x− y)2 < 0

[ϕ(x), ϕ(y)†] = 0 . (4.127)

The next one to check is

[∂0ϕ(x), ∂0ϕ(y)
†] =

∫

dΩp

∫

dΩq p0q0

{

e−i(p·x−q·y)[a(~p ), a(~q )†]− ei(p·x−q·y)[b(~q ), b(~p )†]
}

=

∫

dΩp p
2
0

{

e−ip·(x−y) − eip·(x−y)
}

= ∂x0∂y0[∆(x− y)−∆(y − x)] ,
(4.128)
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which is the 00 component of a rank-2 tensor. Its value is therefore determined by covariance
after we evaluate it in one reference frame. For spacelike separations we can choose to have
x0 = y0, in which case

[∂0ϕ(x), ∂0ϕ(y)
†]ET =

∫

dΩp p
2
0

{

ei~p·(~x−~y) − e−i~p·(~x−~y)
}

= 0 . (4.129)

There is only one commutator left to check, namely

[ϕ(x), ∂0ϕ(y)
†] =

∫

dΩp

∫

dΩq iq0

{

e−i(p·x−q·y)[a(~p ), a(~q )†] + ei(p·x−q·y)[b(~q ), b(~p )†]
}

= i

∫

dΩp p0

{

e−ip·(x−y) + eip·(x−y)
}

= ∂y0[∆(x− y) + ∆(y − x)] ,
(4.130)

which is the 0 component of a Lorentz four-vector. For spacelike separations we evaluate it in
the frame where x0 = y0 and find

[ϕ(x), ∂0ϕ(y)
†]ET = i

∫

dΩp p0

{

ei~p·(~x−~y) + e−i~p·(~x−~y)
}

= iδ(3)(~x− ~y ) , (4.131)

which vanishes for ~x 6= ~y, and thus by covariance it vanishes for any (x − y)2 < 0. By taking
the Hermitian conjugate of Eq. (4.131) we also find

[ϕ(x)†, ∂0ϕ(y)]ET = iδ(3)(~x− ~y ) . (4.132)

Commutators involving spatial derivatives and higher-order time derivatives can be dealt with
in the same way we did in the case of a hermitian scalar field. This completes the proof that
ϕ(x) is a causal field.

The field ϕ(x) describes not one, but two particles with the same mass and opposite charges:
these are a particle and its corresponding antiparticle. The concept of antiparticles emerges
quite naturally in the framework of QFT, as they are needed to avoid troubles with causality
whenever some (nontrivial) additive quantum number can be assigned to particles.

At this point one can develop the Hamiltonian and the Lagrangian formalism by constructing
first the particle Hamiltonian in terms of creation and annihilation operators,

H =

∫

dΩp p
0
{

a(~p )†a(~p ) + b(~p )†(~p )
}

, (4.133)

expressing this in terms of fields, and finally performing a Legendre transform to obtain the
Lagrangian. To make it quicker we proceed here backwards, guessing the Lagrangian and then
going over to the Hamiltonian, and finally showing that we obtain Eq. (4.133). The appropriate
classical Lagrangian is easily seen to be

L = ∂µϕ∂
µϕ† −m2ϕϕ† , (4.134)

which by the usual action principle applied treating ϕ and ϕ† as independent variables (corre-
sponding to independent real and imaginary parts of the complex field ϕ) yields the expected
equations of motion,

(✷+m2)ϕ = (✷+m2)ϕ† = 0 , (4.135)
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i.e., the KG equation. The conjugated momenta read

πϕ = ∂0ϕ
† ≡ π , πϕ† = ∂0ϕ = π†ϕ = π† . (4.136)

Canonical quantisation requires that we impose the equal time commutation relations

[ϕ(x), π(y)]ET = iδ(3)(~x− ~y ) , [ϕ(x)†, π(y)†]ET = iδ(3)(~x− ~y ) ,
[ϕ(x), ϕ(y)]ET = [ϕ(x), ϕ(y)†]ET = [ϕ(x)†, ϕ(y)†]ET = 0 ,

[π(x), π(y)]ET = [π(x), π(y)†]ET = [π(x)†, π(y)†]ET = 0 .

(4.137)

Solving the equations of motion by means of a Fourier transform we find

ϕ(x) =

∫

dΩp

{

a(~p )e−ip·x + b(~p )†eip·x
}

(4.138)

for yet unspecified operator-valued coefficients a(~p ) and b(~p )†. Expressing the canonical com-
mutation relations in terms of these via the relations

a(~p ) =

∫

d3x eip·xi
↔

∂0ϕ(x) , a(~p )† =

∫

d3x e−ip·x(−i
↔

∂0)ϕ(x)
† ,

b(~p ) =

∫

d3x e−ip·xi
↔

∂0ϕ(x)
† , b(~p )† =

∫

d3x e−ip·x(−i
↔

∂0)ϕ(x) ,

(4.139)

we see that they must satisfy the commutation relations Eq. (4.120), i.e., we get back the complex
scalar field we wanted. The Hamiltonian is obtained via Legendre transform as

H =

∫

d3x : π(x)π(x)† + ~∇ϕ~∇ϕ† +m2ϕϕ† : , (4.140)

where we have already imposed normal ordering to take care of a divergent contribution (and also
to settle the issue of ordering ambiguities). It is then straightforward to show that Eq. (4.140)
coincides with Eq. (4.133) when expressed in terms of creation and annihilation operators. The
Noether current associated with the translation invariance of the Lagrangian Eq. (4.134) reads

Θµν =:
∂L

∂(∂µϕ)
∂νϕ+

∂L

∂(∂µϕ†)
∂νϕ† − ηµνL :=: ∂µϕ(x)∂νϕ(x)† + ∂νϕ(x)∂µϕ(x)† − ηµνL : ,

(4.141)
where by normal ordering we have modified the classical expression by an irrelevant (although
infinite) constant. The associated Noether charges Pµ =

∫

d3xΘ0µ are then

P 0 =

∫

d3x : ∂0ϕ(x)∂0ϕ(x)
† + ~∇ϕ~∇ϕ† +m2ϕϕ† := H ,

P j =

∫

d3x : ∂0ϕ(x)∂jϕ(x)† + ∂0ϕ(x)†∂jϕ(x) :

= −
∫

d3x : π(x)∂jϕ(x)
† + π(x)†∂jϕ(x) : .

(4.142)

It is again straightforward to show that

P j =

∫

dΩp p
j
{

a(~p )†a(~p ) + b(~p )†(~p )
}

. (4.143)
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One immediately proves that Pµ are precisely the generators of translations (in doing so, the
normal ordering of fields can be ignored in commutators since it just amounts to a constant
shift). The construction of the Lorentz generators via Noether’s theorem proceeds in a similar
way, and the same result Eq. (4.110) is obtained [with Θµν given now by Eq. (4.141)].

The Lagrangian Eq. (4.134) possesses a new symmetry under the U(1) transformation

ϕ→ eiαϕ , ϕ† → e−iαϕ† , (4.144)

with real, x-independent α. The infinitesimal form of the transformation is

δx = 0 , δϕ = iϕ , δϕ† = −iϕ† , (4.145)

from which the associated Noether current is obtained:

Jµ = i : ϕ†
↔

∂µϕ : . (4.146)

Expressing the associated Noether charge in terms of creation and annihilation operators we
find

Q =

∫

d3xJ0 = i : ϕ†π† − πϕ :=

∫

dΩp

{

a(~p )†a(~p )− b(~p )†(~p )
}

, (4.147)

which is a Hermitian operator. The following commutation relations then follow:

[Q,ϕ(x)] = −ϕ(x) , [Q,ϕ(x)†] = ϕ(x)† ,

[Q, a(~p )†] = a(~p )† , [Q, b(~p )†] = −b(~p )† .
(4.148)

The charge Q is then precisely an additive conserved charge of the type that motivated the
introduction of the complex scalar field in the first place. Although the complex scalar field
can be seen as a combination of two real fields, ϕ = ϕ1 + iϕ2, the creation and annihilation
operators corresponding to ϕ1,2 do not transform simply under U(1), which means that the
associated particles are not charge eigenstates.

4.2.5 Discrete symmetries

Let us now discuss the effect of discrete symmetries on scalar fields, focussing on parity and
charge conjugation.

If parity is a symmetry of our theory, it can be implemented on the Hilbert space of states as
a unitary operator U(P ) (unitarity rather than antiunitarity is required to avoid negative-energy
states). Assuming that it commutes with Q, it can be implemented via [see Eq. (3.112)]

U(P )a(~p )†U(P )† = ηa(−~p )† ,
U(P )b(~p )†U(P )† = η′b(−~p )† ,

(4.149)

having imposed U(P )|0〉 = |0〉.31 Here η, η′ are phase factors, i.e., the intrinsic parities of the
particles. Making simple manipulations of Eq. (4.149) we can then obtain the transformation

31 The assumed unicity of the vacuum state, combined with its invariance under Poincaré transformations,
implies that U(P )|0〉 = U(P )U(Λ)|0〉 = U(P )U(Λ)U(P )†U(P )|0〉 = U(PΛP−1)U(P )|0〉, and similarly U(P )|0〉 =
U(P )U(a)|0〉 = U(P )U(a)U(P )†U(P )|0〉 = U(Pa)U(P )|0〉, i.e., U(P )|0〉 is invariant and thus must be equal to
|0〉 up to a phase. Redefining U(P ) we can set this phase to 0.
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law for the scalar field,

U(P )†ϕ(x)U(P ) =

∫

dΩp

{

ηa(−~p )e−ip·x + b(−~p )†η′∗eip·x
}

= η

∫

dΩp

{

a(~p )e−ip·(Px) + b(~p )†eip·(Px)(ηη′)∗
}

(4.150)

To avoid problems with causality we cannot have in our theory a second field with a phase
relation between its positive and negative frequency parts differing from the one we have for ϕ,
and this requires that we have

ηη′ = 1 , (4.151)

if a quantum field theory is to describe Nature. We then obtain the simple transformation law

U(P )†ϕ(x)U(P ) = ηϕ(Px) . (4.152)

For a Hermitian scalar field we have a single type of particle, and we conclude that η2 = 1, i.e.,
η = ±1.

Having now two types of particles, we can consider a transformation that exchanges their
roles, called charge conjugation. In case this is a symmetry, it can be implemented via a unitary
operator U(C) on the Hilbert space of states (the unitary choice being made again to avoid
negative-energy states). We then have

U(C)|~p 〉 = ξ|~p 〉 ,
U(C)|~p 〉 = ξ′|~p 〉 ,

(4.153)

where |~p 〉 denote the momentum eigenstates of the antiparticle. Again, we set U(C)|0〉 = |0〉
(see footnote 31). We then obtain the transformation laws for creation operators

U(C)a(~p )†U(C)† = ξb(~p )† ,

U(C)b(~p )†U(C)† = ξ′a(~p )† ,
(4.154)

and from this we can work out the transformation law for the field. Simple manipulations yield

U(C)†ϕ(x)U(C) =

∫

dΩp

{

ξ′b(~p )e−ip·x + ξ∗a(~p )†eip·x
}

= ξ∗
{∫

dΩp

{

a(~p )e−ip·x + (ξξ′)∗b(~p )†eip·x
}

}†

.

(4.155)

In order to avoid problems with causality we have to impose

ξξ′ = 1 , (4.156)

if a quantum field theory is to describe Nature. We then obtain the simple transformation law

U(C)†ϕ(x)U(C) = ξ∗ϕ(x)† . (4.157)

For a Hermitian scalar field we have a single type of particle, which is then said to be self-
conjugate. As such, a self-conjugate particle cannot have any nonzero value for a conserved
charge; moreover, it must be ξ2 = 1, i.e., ξ = ±1.

This concludes our discussion of scalar fields. We now move on to the more complicated case
of spin 1

2 .
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5 Spin-12 particles and Dirac fields

It is an experimental fact that spin-12 particles obey Fermi-Dirac statistics, i.e., their state vectors
change sign under the exchange of the quantum numbers of any two such particles. Starting from
single-particle states |~ps〉, where s = ±1

2 is the value of the spin in a given particular direction,
which we take to be direction 3, we can build the Fock space of such particles in analogy to the
scalar case, taking the N -fold tensor product of single-particle states and antisymmetrising with
respect to the momenta,

|~p1s1, . . . , ~pNsN 〉 =
∑

P

(−1)σP |~pP(1)sP(1)〉 ⊗ . . .⊗ |~pP(N)sP(N)〉 . (5.1)

Here σP is the signature of permutation P, i.e., the number of transpositions required to obtain
P modulo 2. The vacuum state |0〉 is also included. In this way

|~p1s1, . . . , ~pNsN 〉 = (−1)σP |~pP(1)sP(1), . . . , ~pP(N)sP(N)〉 . (5.2)

The normalisation of multiparticle states is again inherited form the single particle normalisation,

〈~p ′s′|~ps〉 = δs′s(2π)
32p0δ(3)(~p ′ − ~p ) , (5.3)

and reads

〈~p ′
1s

′
1, . . . , ~p

′
Ms

′
M |~p1s1, . . . , ~pNsN 〉 = δMN

∑

P

(−1)σP
N
∏

j=1

δs′P(j)sj (2π)
32p0jδ

(3)(~p ′
P(j) − ~pj) . (5.4)

Transformation properties under symmetry transformations also follow from the single-particle
properties. The vacuum state |0〉 is taken to be invariant under any symmetry transformation,
and the only such state.

In full analogy with the scalar case we set up the formalism of creation and annihilation
operators. We define the creation operator bs(~p )

†, creating a particle of momentum ~p and third
component of the spin s as

bs(~p )
†|~p1s1, . . . , ~pNsN 〉 ≡ |~ps, ~p1s1, . . . , ~pNsN 〉 . (5.5)

Notice that the position where we place the quantum numbers of the new particle do matter now,
as minus signs pop up under permutations. The adjoint operator bs(~p ), i.e., the annihilation
operator, removes a particle from a state vector. By definition of the adjoint

(bs(~p)Ψ~p ′
1s

′
1,...,~p

′
Ms′M

,Ψ~p1s1,...,~pNsN ) = (Ψ~p ′
1s

′
1,...,~p

′
Ms′M

, bs(~p )
†Ψ~p1s1,...,~pNsN )

= (Ψ~p ′
1s

′
1,...,~p

′
Ms′M

,Ψ~ps,~p1s1,...,~pNsN )

= δM,N+1

∑

P

(−1)σP δs′
P(1)

s(2π)
32p0δ(3)(~p ′

P(1) − ~p )
M
∏

k=2

δs′
P(k)

sk−1
(2π)32p0kδ

(3)(~p ′
P(k) − ~pk−1)

= δM,N+1

M
∑

j=1

(−1)j−1δs′js(2π)
32p0δ(3)(~p ′

j − ~p)
∑

Pj

(−1)σPj

M
∏

k=2

δs′
Pj(k)

sk−1
(2π)32p0kδ

(3)(~p ′
Pj(k)

− ~pk−1)

=
M
∑

j=1

(−1)j−1(2π)32p0δ(3)(~p ′
j − ~p )(Ψ~p ′

1s
′
1,...,~p

′
Ms′M\~p ′

js
′
j
,Ψ~p1s1,...,~pNsN ) ,

(5.6)
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where Pj is a permutation of 2, . . . ,M such that Pj(k) 6= j, and where Ψ~p ′
1s

′
1,...,~p

′
Ms′M\~p ′

js
′
j
is

obtained from the state Ψ~p ′
1s

′
1,...,~p

′
Ms′M

by removing the particle with momentum ~p ′
j and spin s′j .

Here we have written a generic permutation P uniquely as the product of j − 1 transpositions
that shift j = P(1) to first position, times a permutation Pj . The sum over permutations
is then the sum over the assignment j = P(1) and over the permutations Pj for a given j.
The signature of P is the signature of Pj plus that of the product of transpositions, and so
(−1)σP = (−1)j−1(−1)σPj . We then conclude

bs(~p)|~p1s1, . . . , ~pNsN 〉 =
N
∑

j=1

(−1)j−1δsjs(2π)
32p0δ(3)(~pj − ~p)|~p1s1, . . . , ~pj−1sj−1, ~pj+1sj+1, . . . , ~pNsN 〉 .

(5.7)

It is now straightforward to compute the anticommutators of creation and annihilation operators:
the calculation is the same as in the scalar case, except that now there are minus signs to be
taken into account. We find

{bs(~p), bs′(~q)†} = δss′(2π)
32p0δ(3)(~p− ~q) ,

{bs(~p), bs′(~q)} = {bs(~p)†, bs′(~q)†} = 0 .
(5.8)

The Hamiltonian and the total momentum operators are also defined straightforwardly as

Pµ =

∫

dΩpp
µbs(~p)

†bs(~p) , (5.9)

and making use of Eqs. (5.5) and (5.7) one finds

Pµ|~p1s1, . . . , ~pNsN 〉 =





N
∑

j=1

pµj



 |~p1s1, . . . , ~pNsN 〉 . (5.10)

From the point of view of the Fock space construction, everything is the same as in the scalar case,
except that the creation and annihilation operators satisfy now anticommutation rather than
commutation relations. While the transformation properties of the creation and annihilation
operators, as obtained from those of the states (using also the invariance of the vacuum), are the
same as for scalars for translations, they differ from the scalar case for Lorentz transformations,
and read

U(a)bs(~p)
†U(a)† = e−ip·abs(~p)

† ,

U(Λ)bs(~p)
†U(Λ)† =

∑

s̄

D
( 1
2
)

s̄s (W (Λ, ~p))bs̄(~p)
† .

(5.11)

Here we focus on massive particles. Here W (Λ, ~p) is the Wigner rotation associated to Λ and

~p, and D
( 1
2
) is the spin-12 representation of SO(3), which is the relevant little group for massive

representations.

5.1 The Dirac field

We now want to trade the creation and annihilation operators for a local field, subject to a few
requirements. First of all, we should be able to get back the creation and annihilation operators
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from the field, so that the two formalisms are equivalent. Next, we want the field to have simple
transformation properties under transformations of the Poincaré group, so that it will be easy to
construct interactions that satisfy Poincaré invariance. Finally, we want the fields to obey some
form of microcausality, so that we can build local observables out of them that will commute
for spacelike separations. We consider the more general case of charged particles, which we have
seen in the scalar case to require the existence of particle/antiparticle pairs. We then introduce
a second set of creation and annihilation operators satisfying the anticommutation relations

{ds(~p), ds′(~q)†} = δss′(2π)
32p0δ(3)(~p− ~q) ,

{ds(~p), ds′(~q)} = {ds(~p)†, ds′(~q)†} = 0 ,

{bs(~p), ds′(~q)} = {bs(~p), ds′(~q)†} = {bs(~p)†, ds′(~q)} = {bs(~p)†, ds′(~q)†} = 0 ,

(5.12)

and transforming as follows under Poincaré transformations,

U(a)ds(~p)
†U(a)† = e−ip·ads(~p)

† ,

U(Λ)ds(~p)
†U(Λ)† =

∑

s̄

D
( 1
2
)

s̄s (W (Λ, ~p))ds̄(~p)
† .

(5.13)

We then look for fields of the form

ψ(x) =

∫

dΩp
∑

s

{

Us(~p, x)bs(~p) + Vs(~p, x)ds(~p)
†
}

, (5.14)

where Us and Vs are (possibly multicomponent) coefficients yet to be determined. Notice that
they can be extracted by taking matrix elements of the field between the vacuum and one particle
states,

〈0|ψ(x)|~ps〉 = Us(~p, x) , 〈~ps|ψ(x)|0〉 = Vs(~p, x) , (5.15)

where |~ps〉 are particle states and |~ps〉 are antiparticle states. The request of simple transforma-
tion properties is formulated as follows, as appropriate for fields,

U(a)†ψ(x)U(a) = ψ(x+ a) ,

U(Λ)†ψ(x)U(Λ) = S(Λ)ψ(Λ−1x) ,
(5.16)

where S(Λ) is some matrix providing a representation of the proper orthocronous Lorentz
group.32 Such a representation is not necessarily irreducible, and certainly it will not be unitary
if it is to be finite-dimensional. Using (manipulations of) Eqs. (5.11) and (5.13) we find

U(a)†ψ(x)U(a) =

∫

dΩp
∑

s

{

Us(~p, x)e
−i~p·abs(~p) + Vs(~p, x)e

i~p·ads(~p)
†
}

= ψ(x+ a) =

∫

dΩp
∑

s

{

Us(~p, x+ a)bs(~p) + Vs(~p, x+ a)ds(~p)
†
}

,

(5.17)

where the last equality stands actually for the condition we have to impose. Using Eq. (5.15)
we then find

Us(~p, x) = Us(~p, 0)e
−i~p·x ≡ us(~p)e−i~p·x ,

Vs(~p, x) = Vs(~p, 0)e
i~p·x ≡ vs(~p)ei~p·x .

(5.18)

32We could ask for different transformation properties, but if we can get a formalism equivalent to the cre-
ation/annihilation operator formalism using object that can be easily combined to form Poncaré invariant inter-
actions, why bother?
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To study the effect of Lorentz transformation, we first derive a property of the matrices D . By
definition

U(ΛΛp)
†U(Λ)U(Λp)|~0, σ〉 = U(W (Λ, ~p ))|~0, σ〉 = Dσ̄σ(W (Λ, ~p))|~0, σ̄〉 ,

[U(ΛΛp)
†U(Λ)U(Λp)]

†|~0, σ〉 = U(Λp)
†U(Λ)†U(ΛΛp)|~0, σ〉 = U(W (Λ−1,Λ~p ))|~0, σ〉

= Dσ̄σ(W (Λ−1,Λ~p ))|~0, σ̄〉 ,
(5.19)

from which it follows

|~0, σ〉 = U(ΛΛp)
†U(Λ)U(Λp)[U(ΛΛp)

†U(Λ)U(Λp)]
†|~0, σ〉

= Dσ̄σ(W (Λ−1,Λ~p))U(ΛΛp)
†U(Λ)U(Λp)|~0, σ̄〉

= Dσ̄σ(W (Λ−1,Λ~p))D¯̄σσ̄(W (Λ, ~p))|~0, ¯̄σ〉 ,
(5.20)

and so

D¯̄σσ̄(W (Λ, ~p))Dσ̄σ(W (Λ−1,Λ~p)) = δ¯̄σσ =⇒ D(W (Λ, ~p))D(W (Λ−1,Λ~p)) = 1 , (5.21)

or equivalently, since D(W (Λ, ~p))−1 = D(W (Λ, ~p))† due to unitarity of the representation,

D(W (Λ−1,Λ~p)) = D(W (Λ, ~p))† =⇒ D(W (Λ,Λ−1~p)) = D(W (Λ−1, ~p))† . (5.22)

This identity allows us to recast the transformation laws under Lorentz transformation in
Eqs. (5.11) and (5.13) as follows,

U(Λ)†bs(~p)U(Λ) =
∑

s̄

D
( 1
2
)

ss̄ (W (Λ,Λ−1~p))bs̄(Λ
−1~p) ,

U(Λ)†d†s(~p)U(Λ) =
∑

s̄

D
( 1
2
) ∗

ss̄ (W (Λ,Λ−1~p))ds̄(Λ
−1~p)† ,

(5.23)

from which we can determine the transformation law of the field,

U(Λ)†ψ(x)U(Λ) =

∫

dΩp
∑

s,s̄

{

D
( 1
2
)

ss̄ (W (Λ,Λ−1~p))us(~p )e
−ip·xbs(Λ

−1~p)

+ D
( 1
2
) ∗

ss̄ (W (Λ,Λ−1~p))vs(~p )e
ip·xds(Λ

−1~p)†
}

=

∫

dΩp
∑

s,s̄

{

D
( 1
2
)

ss̄ (W (Λ, ~p))us(Λ~p )e
−ip·Λ−1xbs(~p)

+ D
( 1
2
) ∗

ss̄ (W (Λ, ~p))vs(Λ~p )e
ip·Λ−1xds(~p)

†

}

= S(Λ)ψ(Λ−1x) ,

(5.24)

which then leads us to require

S(Λ)us(~p ) =
∑

s̄

D
( 1
2
)

s̄s (W (Λ, ~p ))us̄(Λ~p ) ,

S(Λ)vs(~p ) =
∑

s̄

D
( 1
2
) ∗

s̄s (W (Λ, ~p ))vs̄(Λ~p ) .
(5.25)
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This leads us to look for representations S(Λ) that contain spin-12 representations among their

irreducible components. There are two cases in which Eq. (5.25) looks simpler. If we take ~p = ~0
and Λ = Λp a pure boost sending ~0 to ~p, we have by construction that W (Λ,~0) = 1 is just the

identity, and so D
( 1
2
)

s̄s (W (Λp,~0 )) = δs̄s. Then

S(Λp)us(~0 ) = us(~p ) ,

S(Λp)vs(~0 ) = vs(~p ) .
(5.26)

Moreover, if we take again ~p = ~0 and Λ = R a rotation, we have that W (R,~0) = R,33 and so

S(R)us(~0 ) =
∑

s̄

D
( 1
2
)

s̄s (R)us̄(~0 ) ,

S(R)vs(~0 ) =
∑

s̄

D
( 1
2
) ∗

s̄s (R)vs̄(~0 ) ,
(5.27)

i.e., us(~0 ) and vs(~0 ) have to provide a basis for the spin-12 representation of the rotation group

D
( 1
2
)

s̄s (R) and the corresponding complex conjugate representation.34 Once we have found some
S(Λ) and us(~0 ) and vs(~0 ) satisfying Eq. (5.27), defining us(~p ) and vs(~p ) via Eq. (5.26) implies
that Eq. (5.25) will be satisfied, thanks to the fact that S(Λ) provides a representation of the
Lorentz group: indeed,

S(Λ)us(~p ) = S(Λ)S(Λp)us(~0) = S(ΛΛp)S(ΛΛp)
−1S(Λ)S(Λp)us(~0)

= S(ΛΛp)S(Λ
−1
ΛpΛΛp)us(

~0) = S(ΛΛp)S(W (Λ, ~p ))us(~0) =
∑

s̄

D
( 1
2
)

s̄s (W (Λ, ~p ))us̄(Λ~p ) ,

S(Λ)vs(~p ) = S(Λ)S(Λp)vs(~0) = S(ΛΛp)S(ΛΛp)
−1S(Λ)S(Λp)vs(~0)

= S(ΛΛp)S(Λ
−1
ΛpΛΛp)vs(

~0) = S(ΛΛp)S(W (Λ, ~p ))vs(~0) =
∑

s̄

D
( 1
2
) ∗

s̄s (W (Λ, ~p ))vs̄(Λ~p ) .

(5.28)
Let us now look for an appropriate S(Λ). As we said above, this must contain the spin-12 rep-
resentation of the rotation group among its irreducible components. In general, the irreducible
representations of the proper orthocronous Lorentz group are classified by two half-integers
(j+, j−), labelling the irreducible representations of the two sets of SU(2) generators ~J±. Since
~J = ~J+ + ~J−, the irreducible representation of the Lorentz group can be decomposed into ir-
reducible representations of the rotation group (which will not be irreducible representations of
the Lorentz group!), with spin ranging in j = j+ + j−, j+ + j− − 1, . . . , |j+ − j−|. The simplest
irreducible representations containing j = 1

2 are then the two inequivalent two-dimensional rep-
resentations (12 , 0) and (0, 12). However, we are also interested in representing parity, and since

under parity ~J → ~J and ~K → − ~K, we have that ~J± → ~J∓, and so the two representations are
interchanged, (12 , 0)↔ (12 , 0). If we want to represent parity we have therefore to use both, and
we will take S(Λ) to belong to the direct sum (12 , 0) ⊕ (12 , 0), which is a four-dimensional rep-
resentation not irreducible under the proper orthocronous Lorentz group, but irreducible under

33We have in general that W (R, ~p) = Λ−1
RpRΛp = Λ−1

RpRΛpR
−1R = Λ−1

RpΛRpR = R.
34These representations are different but not inequivalent, as for any matrix U ∈ SU(2) one has U∗ =

(−iσ2)U(iσ2).
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this group and parity. The generators in the (12 , 0) and (12 , 0) representations read

(

1

2
, 0

)

: ~J+ =
~σ

2
, ~J− = 0 , ~J =

~σ

2
, ~K = −i~σ

2
(

0,
1

2

)

: ~J+ = 0 , ~J− =
~σ

2
, ~J =

~σ

2
, ~K = i

~σ

2
.

(5.29)

We then have for the representatives of rotations R and pure boosts B

S(R) =

(

ei
~θ·~σ

2 0

0 ei
~θ·~σ

2

)

, S(B) =

(

e
~Θ·~σ

2 0

0 e−
~Θ·~σ

2

)

. (5.30)

Setting

us(~0) =

(

χ1s

χ2s

)

, vs(~0) =

(

χ̃1s

χ̃2s

)

, (5.31)

where χjs and χ̃js are two-component spinors, Eq. (5.27) reads

(

ei
~θ·~σ

2 χ1s

ei
~θ·~σ

2 χ2s

)

=
(

ei
~θ·~σ

2

)

s̄s

(

χ1s̄

χ2s̄

)

,

(

ei
~θ·~σ

2 χ̃1

ei
~θ·~σ

2 χ̃2s

)

=
(

ei
~θ·~σ

2

)∗

s̄s

(

χ̃1s̄

χ̃2s̄

)

. (5.32)

Considering infinitesimal rotations we find

(

σkχ1s

σkχ2s

)

= (σk)s̄s

(

χ1s̄

χ2s̄

)

,

(

σkχ̃1s

σkχ̃2s

)

= − (σ∗k)s̄s

(

χ̃1s̄

χ̃2s̄

)

= (σ2σkσ2)s̄s

(

χ̃1s̄

χ̃2s̄

)

.

(5.33)

Writing explicitly all the indices, the two-component spinors read χjms and χ̃jms with m = 1, 2.
We can then treat χj and χ̃j as 2× 2 matrices. In this notation Eq. (5.33) reads

σkχj = χjσk ⇒ [σk, χj ] = 0 ,

σkχ̃j = χ̃jσ2σkσ2 ⇒ [σk, χ̃jiσ2] = 0 ,
(5.34)

From this it follows by Schur’s lemma (and also by direct calculation) that χj and χ̃jiσ2 must
all be multiples of 12,

(

χj 1
2

χj− 1
2

)

= αj12 ,
(

χ̃j 1
2

χ̃j− 1
2

)

= α̃j(−iσ2) . (5.35)

We conclude that

us(~0) =

(

α1ws
α2ws

)

, vs(~0) =

(

α̃1w̃s
α̃2w̃s

)

, (5.36)

where the orthonormal sets ws and w̃s are given by

w 1
2
=

(

1
0

)

, w− 1
2
=

(

0
1

)

,

w̃ 1
2
=

(

0
1

)

, w̃− 1
2
= −

(

1
0

)

.

(5.37)
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Eqs. (5.36) and (5.37) correspond to the fact that the coefficients us(~0) and vs(~0) are associated
to the annihilation (resp. creation) operator for a particle (resp. antiparticle) at rest with of
third component of the angular momentum (i.e., spin since the particle is at rest) equal to s.
The properties of ws and w̃s are summarised here:

σ3ws = (−1) 1
2
−sws , w†

s′ws = δs′s ,
∑

s

wsw
†
s′ = 12 ,

σ3w̃s = −(−1)
1
2
−sw̃s , w̃†

s′w̃s = δs′s ,
∑

s

w̃sw̃
†
s′ = 12 ,

(5.38)

and the two sets are related as follows,

w̃s = −iσ2ws . (5.39)

5.1.1 Parity

So far the coefficients αjs and α̃js are undetermined, and the two sets w̃s and ws are unrelated.
To make progress, we have now to consider representing parity. If parity is a symmetry, we can
represent it unitarily on the space of states. For the creation operators we then have

U(P )bs(~p )
†U(P )† = ηbs(−~p )† ,

U(P )ds(~p )
†U(P )† = η′ds(−~p )† ,

(5.40)

for appropriate phases η and η′. A little manipulation leads to

U(P )†ψ(x)U(P ) =

∫

dΩp
∑

s

{

us(~p )e
−ip·xηbs(−~p) + vs(~p )e

ip·xη′ds(−~p)†
}

= η

∫

dΩp
∑

s

{

us(−~p )e−ip·Pxbs(~p) + (ηη′)∗vs(−~p )eip·Pxds(~p)†
}

.

(5.41)

In order to have simple transformation properties under parity, we ask that this field be a linear
combination of the components of ψ(x). In this way we will be sure that we will avoid problems
with causality, once that we have imposed the microcausality condition on ψ(x). We then set

us(−~p ) = Pus(~p ) , (ηη′)∗vs(−~p ) = Pvs(~p ) , (5.42)

for some matrix P , so that
U(P )†ψ(x)U(P ) = ηPψ(Px) . (5.43)

Applying parity twice we obtain the identity

[U(P )†]2ψ(x)[U(P )]2 = η2P 2ψ(x) =

= η2
∫

dΩp
∑

s

{

us(~p )e
−ip·xbs(~p) + [(ηη′)∗]2vs(~p )e

ip·xds(~p)
†

}

.
(5.44)

The right-hand side differs from ψ(x) by a proportionality constant and by the possibly different
phase of the positive and negative frequency parts. This would however lead to problems with

81



causality as in the case of the scalar field. Invoking microcausality, we then need to have
(ηη′)2 = 1, so that also P 2 = 1, and moreover (ηη′) = ±1. Eq. (5.42) then becomes

us(−~p ) = Pus(~p ) , cvs(−~p ) = Pvs(~p ) , (5.45)

where c = ηη′ is a yet undetermined sign. The transformation properties of the generators of
rotations and boosts under parity imply that [P, ~J ] = {P, ~K} = 0, which together with P 2 = 1

lead to the general form

P =

(

02 κ12
κ−112 02

)

, (5.46)

and moreover to

Pus(~p ) = PS(Λp)P
−1Pus(~0 ) = S(Λ−p)Pus(~0 ) = S(Λ−p)us(~0 ) ,

Pvs(~p ) = PS(Λp)P
−1Pvs(~0 ) = S(Λ−p)Pvs(~0 ) = cS(Λ−p)vs(~0 )

(5.47)

which is equivalent to
Pus(~0 ) = us(~0 ) , Pvs(~0 ) = cvs(~0 ) . (5.48)

Since it is possible to rescale the basis vectors via M = diag(κ
1
2 , κ−

1
2 ) while leaving ~J and ~K

unchanged, we can set without loss of generality

P =

(

02 12
12 02

)

≡ γ0 , (5.49)

where we have introduced a new notation that will become useful in the following. From now
on we will drop the subscript 2. Combining Eqs. (5.47) and (5.49) with Eq. (5.36) we find that

us(~0) = nu

(

ws
ws

)

, vs(~0) = nv

(

w̃s
cw̃s

)

, (5.50)

where nu,v are normalisation factors.

5.1.2 Causality

We have now exploited all the symmetry requirements of Poincaré invariance. To fix the values
of c and of the normalisation factors nu,v we have now to impose microcausality. In doing this, we
will pretend not to know that the creation and annihilation operators satisfy anticommutation
relations, instead of commutation relations as in the scalar case: as a matter of fact we have
made no use of this property so far. We will see that the requirement of causality imposes the
use of anticommutation relations.

In preparation for this task, we study here a few properties of the matrices S(Λ). It is clear
from Eq. (5.30) and (5.49) that the following relations hold:

S(R)† = S(R)−1 , S(B)† = S(B) ,

γ0S(R)γ0 = S(R) , γ0S(B)γ0 = S(B)−1 ,
(5.51)

which can be combined in the compact form

γ0S(Λ)†γ0 = S(Λ)−1 , (5.52)
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and which also show that

S(R)γ0S(R)−1 = S(R)S(R)−1γ0 = γ0 ,

S(B)γ0S(B)−1 = S(B)S(B)†γ0 = S(B)2γ0 = S(B2)γ0 .
(5.53)

A simple calculation shows that (~Θ = |~Θ|Θ̂ = ΘΘ̂)

S(B) = cosh
Θ

2
+ sinh

Θ

2
Θ̂ ·
(

~σ 0

0 −~σ

)

, (5.54)

from which it follows

S(B)γ0S(B)−1 = coshΘ− sinhΘΘ̂ ·
(

0 −~σ
~σ 0

)

= coshΘ− sinhΘΘ̂ · ~γ , (5.55)

where we have introduced the matrices

~γ ≡
(

0 −~σ
~σ 0

)

. (5.56)

Taking B = Λp, i.e., a boost in the direction of ~p sending ~0 to ~p, we have to set Θ̂ = p̂,

m sinhΘ = |~p |, m coshΘ = p0 =
√

~p 2 +m2, and we obtain

S(Λp)mγ
0S(Λp)

−1 = S(Λp)kµγ
µS(Λp)

−1 = pµγ
µ , (5.57)

where kµ = (m,~0). The first equation in Eq. (5.53) reads in the same notation

S(R)kµγ
µS(R)−1 = kµγ

µ . (5.58)

We now combine these two results to show that for a general (proper orthocronous) Lorentz
transformation Λ we have

S(Λ)pµγ
µS(Λ)−1 = S(Λ)S(Λp)kµγ

µS(Λp)
−1S(Λ)−1

= S(ΛΛp)S(Λ
−1
ΛpΛΛp)kµγ

µS(Λ−1
ΛpΛΛp)

−1S(ΛΛp)
−1

= S(ΛΛp)S(W (Λ, ~p ))kµγ
µS(W (Λ, ~p ))−1S(ΛΛp)

−1

= S(ΛΛp)kµγ
µS(ΛΛp)

−1 = (Λp)µγ
µ ,

(5.59)

where we used the fact that W (Λ, ~p ) is a rotation. Since (Λp)µγ
µ = pνΛ

ν
µ γµ = pνΛ

−1ν
µγ

µ, and
since Eq. (5.59) holds for any timelike p, we find35

S(Λ)γµS(Λ)−1 = Λ−1µ
νγ

ν . (5.60)

This shows that the matrices γµ transform like a vector, S(Λ)−1γµS(Λ) = Λµνγν , as anticipated
by the notation. These are the Dirac gamma matrices, which are seen to satisfy the following
anticommutation relations,

{γµ, γν} = 2ηµν , (5.61)

35Use first pµ = (m,~0) to show that S(Λ)γ0S(Λ)−1 = Λ−10
νγ

ν . Then subtracting p0 times this relation from
this from Eq. (5.59) we find S(Λ)~p · ~γS(Λ)−1 = ~p jΛ−1j

νγ
ν for any spatial ~p.
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which define a Clifford algebra. Before proceeding we mention another couple of properties of
these matrices. The matrix γ0 is Hermitian, while the matrices ~γ are anti-Hermitian. Moreover,
γ0,1,3 are real and γ2 is purely imaginary. Making use of Eq. (5.61), this can be summarised as

γµ† = γ0γµγ0 , γµ∗ = γ2γµγ2 . (5.62)

These identities will be useful later.
We are now ready to investigate microcausality. We will denote with [ , ]+ = { , } the

anticommutator and with [ , ]− = [ , ] the commutator, and we will assume that the creation
and annihilation operators satisfy only one of the two sets of relations

[bs(~p ), bs′(~q)
†]± = δs′s(2π)2p

0δ(3)(~p− ~q) , [ds(~p ), ds′(~q)
†]± = δs′s(2π)2p

0δ(3)(~p− ~q) ,
[bs(~p ), bs′(~q)]± = [ds(~p ), ds′(~q)]± = [bs(~p ), ds′(~q)]± = [bs(~p ), ds′(~q)

†]± = 0 .
(5.63)

No matter which of the two sets we choose, it is clear that we will have [ψ(x), ψ(y)]± = 0 for all
x, y. Consider instead the non-trivial quantity

[ψ(x), ψ(y)†]± =

∫

dΩp

∫

dΩq
∑

s,s′

[

us(~p )e
−ip·xbs(~p) + vs(~p )e

ip·xds(~p)
†,

us′(~q )
†eiq·ybs′(~q)

† + vs′(~q )
†e−iq·yds′(~q)

]

±

=

∫

dΩp
∑

s

{

us(~p )us(~p )
†e−ip·(x−y) ± vs(~p )vs(~p )†eip·(x−y)

}

=

∫

dΩp S(Λp)
∑

s

{

us(~0)us(~0)
†e−ip·(x−y) ± vs(~0)vs(~0)†eip·(x−y)

}

S(Λp)
† .

(5.64)
From Eq. (5.50) we find

∑

s

us(~0)us(~0)
† = |nu|2

∑

s

(

wsw
†
s wsw

†
s

wsw
†
s wsw

†
s

)

= |nu|2(1+ γ0) ,

∑

s

vs(~0)vs(~0)
† = |nv|2

∑

s

(

w̃sw̃
†
s cw̃sw̃

†
s

cw̃sw̃
†
s w̃sw̃

†
s

)

= |nv|2(1+ cγ0) ,

(5.65)

where we have used the completeness of the sets ws and w̃s. We then obtain

[ψ(x), ψ(y)†]± =

∫

dΩp S(Λp)

{

|nu|2(1+ γ0)e−ip·(x−y) ± |nv|2(1+ cγ0)eip·(x−y)
}

S(Λp)
† .

(5.66)
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Using Eqs. (5.51)-(5.55) we can recast this as ( /A ≡ Aµγµ)

[ψ(x), ψ(y)†]± =

∫

dΩp

{

|nu|2
(

/p

m
+ 1

)

e−ip·(x−y) ± |nv|2
(

/p

m
+ c

)

eip·(x−y)
}

γ0

=
i

m
/∂γ0

∫

dΩp

{

|nu|2e−ip·(x−y) ∓ |nv|2eip·(x−y)
}

+ γ0
∫

dΩp

{

|nu|2e−ip·(x−y) ± c|nv|2eip·(x−y)
}

=
i

m
/∂γ0
{

|nu|2∆(x− y)∓ |nv|2∆(y − x)
}

+ γ0
{

|nu|2∆(x− y)± c|nv|2∆(y − x)
}

.

(5.67)

The function ∆(x− y) is invariant under Lorentz transformations. For spacelike separations we
can then evaluate it in the frame where the two events x and y are at equal times, which shows
that for (x− y)2 < 0 we have ∆(x− y) = ∆(y−x). As a consequence, the first of the two terms
in the last two lines of Eq. (5.67) is odd under x↔ y, while the second one is even, so they have
to vanish separately. We then obtain the following constraints:

|nu|2 ∓ |nv|2 = 0 ,

|nu|2 ± c|nv|2 = 0 .
(5.68)

These can be satisfied only if we choose the upper sign, i.e., anticommutation relations, and
furthermore

|nu| = |nv| , c = −1 . (5.69)

The phases of nu and nv can both be chosen equal to 0 without loss of generality (any non-trivial
phase can be absorbed in a redefinition of one-particle state by an irrelevant phase), and the
overall scale can be set at our convenience; we choose nu = nv =

√
m. The condition c = −1

implies that the product of intrinsic parities ηη′ = −1, differently from the scalar case.
In conclusion, we find

{ψ(x), ψ(y)†} = (i/∂ +m)γ0[∆(x− y)−∆(y − x)] . (5.70)

This can be evaluated explicitly at equal times x0 = y0 to give

{ψ(x), ψ(y)†}ET = (i/∂ +m)γ0
∫

dΩp (e
−ip·(x−y) − eip·(x−y))

=

∫

dΩp [(/p+m)e−ip·(x−y) + (/p−m)eip·(x−y)]γ0

=

∫

dΩp [p
0(e−ip·(x−y) + eip·(x−y)) +mγ0(e−ip·(x−y) − eip·(x−y))]

+ ~p · ~γγ0(e−ip·(x−y) + eip·(x−y))] =

∫

dΩp 2p
0e−ip·(x−y)

= δ(3)(~x− ~y ) .

(5.71)

Obviously, equal-time anticommutators between any amount of spatial derivatives of fields will
still vanish (for ~x 6= ~y). The analysis of anticommutators involving temporal derivatives is made
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easier by the following observations. The relations Eq. (5.48), which we write now as

γ0us(~0 ) = us(~0 ) , γ0vs(~0 ) = −vs(~0 ) , (5.72)

imply that [multiply on the left by mS(Λp)]

mus(~p ) = S(Λp)mγ
0S(Λp)

−1us(~p ) = /pus(~p ) ,

−mvs(~p ) = S(Λp)mγ
0S(Λp)

−1vs(~p ) = /pvs(~p ) ,
(5.73)

i.e.,
(/p−m)us(~p ) = 0 , (/p+m)vs(~p ) = 0 . (5.74)

The functions Us(~p, x) = us(~p )e
−ip·x ad Vs(~p, x) = vs(~p )e

ip·x are then solutions of the equation

(i/∂ −m)Us(~p, x) = (i/∂ −m)Vs(~p, x) = 0 , (5.75)

with positive and negative energy, respectively. The field ψ(x) obeys therefore the Dirac equa-
tion,

(i/∂ −m)ψ(x) = 0 . (5.76)

This automatically guarantees that anticommutators invoving temporal derivatives of the field
will vanish for spacelike separations. Applying the operator (−i/∂−m) on the left, and exploiting
the identity /A = AµAνγ

µγν = 1
2AµAν{γµ, γν} = AµA

µ we find that ψ(x) satisfies also the KG
equation, (✷+m2)ψ(x) = 0, as appropriate for a field describing particles of mass m.

Let us now collect a few results concerning the Dirac bispinors us(~p ) and vs(~p ). With our
choice of normalisation we have us′(~0)

†us(~0) = vs′(~0)
†vs(~0) = 2mδs′s. Moreover, us′(~0)

†vs(~0) =
vs′(~0)

†us(~0) = 0 since they are eigenvectors of γ0 with different eigenvalues. For nonzero ~p, using

Eq. (5.54) and the relations p0

m
= coshΘ = 2 cosh2 Θ

2 − 1 and sinh Θ
2 =

√

cosh2 Θ
2 − 1 we find

us(~p ) =

√

p0 +m

2





(

1 + ~p·~σ
p0+m

)

ws
(

1− ~p·~σ
p0+m

)

ws



 , vs(~p ) =

√

p0 +m

2





(

1 + ~p·~σ
p0+m

)

w̃s

−
(

1− ~p·~σ
p0+m

)

w̃s



 . (5.77)

The equations γ0us(~0 ) = us(~0 ) and γ
0vs(~p ) = −vs(~0 ) become at finite ~p

γ0us(~p ) = γ0S(Λp)us(~0 )γ
0S(Λp)γ

0γ0us(~0 ) = S(Λp)
−1us(~0 ) = S(Λ−p)us(~0 ) = us(−~p ) ,

γ0vs(~p ) = γ0S(Λp)vs(~0 )γ
0S(Λp)γ

0γ0vs(~0 ) = −S(Λp)−1vs(~0 ) = S − (Λ−p)vs(~0 ) = −vs(−~p ) ,
(5.78)

as they should. Let us introduce the notation ūs(~p ) ≡ us(~p )
†γ0. These quantities satisfy the

equations

ūs(~p )(/p−m) = us(~p )
†γ0(/p−m)γ0γ0 = [γ0(/p

† −m)γ0us(~p )]
†γ0 = [(/p−m)us(~p )]

†γ0 = 0 ,

v̄s(~p )(/p+m) = vs(~p )
†γ0(/p+m)γ0γ0 = [γ0(/p

† +m)γ0vs(~p )]
†γ0 = [(/p+m)vs(~p )]

†γ0 = 0 .
(5.79)

We have the normalisation conditions

ūs′(~p )us(~p ) = us′(~p )
†γ0us(~p ) = us′(~0)

†S(Λp)
†γ0S(Λp)us(~0)

= us′(~0)
†γ0S(Λp)

−1S(Λp)us(~0) = us′(~0)
†γ0us(~0) = us′(~0)

†us(~0) = 2mδs′s ,

v̄s′(~p )vs(~p ) = vs′(~p )
†γ0vs(~p ) = vs′(~0)

†S(Λp)
†γ0S(Λp)vs(~0)

= vs′(~0)
†γ0S(Λp)

−1S(Λp)vs(~0) = vs′(~0)
†γ0vs(~0) = −vs′(~0)†vs(~0) = −2mδs′s .

(5.80)
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The same kind of calculation leads to

ūs′(~p )vs(~p ) = us′(~0)
†γ0vs(~0) = ±us′(~0)†vs(~0) = 0 ,

v̄s′(~p )us(~p ) = vs′(~0)
†γ0us(~0) = ±vs′(~0)†us(~0) = 0 .

(5.81)

The same result of Eq. (5.81) can be obtained by noting that

0 = ūs′(~p )(/p− /p)vs(~p ) = 2mūs′(~p )vs(~p ) . (5.82)

We have the following relations:

ūs′(~p )γ
µus(~p ) = us′(~0)

†S(Λp)
†γ0γµS(Λp)us(~0) = us′(~0)

†γ0S(Λp)
−1γµS(Λp)us(~0)

= Λp
µ
ν ūs′(~0)γ

νus(~0) = Λp
µ
ν ūs′(~0)γ

0γνγ0us(~0) = Λp
µ
νδ
ν
0us′(~0)

†us(~0)

= Λp
µ
ν2k

νδs′s = 2pµδs′s ,

v̄s′(~p )γ
µvs(~p ) = vs′(~0)

†S(Λp)
†γ0γµS(Λp)vs(~0) = vs′(~0)

†γ0S(Λp)
−1γµS(Λp)vs(~0)

= Λp
µ
ν v̄s′(~0)γ

νvs(~0) = Λp
µ
ν v̄s′(~0)γ

0γνγ0vs(~0) = Λp
µ
νδ
ν
0vs′(~0)

†vs(~0)

= Λp
µ
ν2k

νδs′s = 2pµδs′s .

(5.83)

In particular
ūs′(~p )γ

0us(~p ) = us′(~p )
†us(~p ) = 2p0δs′s ,

v̄s′(~p )γ
0vs(~p ) = vs′(~p )

†vs(~p ) = 2p0δs′s .
(5.84)

Notice that
ūs′(~p )vs(~p ) = us′(~p )

†γ0vs(~p ) = −us′(~p )†vs(−~p ) = 0 ,

v̄s′(~p )us(~p ) = vs′(~p )
†γ0us(~p ) = vs′(~p )

†us(−~p ) = 0 .
(5.85)

Finally, we have for the positive and negative energy projectors of Eq. (5.65)

∑

s

us(~p )ūs(~p ) = S(Λp)m(γ0 + 1)S(Λp)
−1 = /p+m,

∑

s

vs(~p )v̄s(~p ) = S(Λp)m(γ0 − 1)S(Λp)
−1 = /p−m.

(5.86)

5.1.3 Charge conjugation

The sets ws and w̃s are related by Eq. (5.39) due to the transformation properties of us and vs
under rotations. We will see now how the request of charge conjugation invariance leads to the
same relation. In full analogy with the scalar case we define the charge conjugation operator
U(C) via

U(C)bs(~p )
†U(C)† = ξds(~p )

† ,

U(C)ds(~p )
†U(C)† = ξ′bs(~p )

† ,
(5.87)

from which we can derive the transformation law for the field,

U(C)†ψα(x)U(C) =

∫

dΩp
∑

s

{

ξ′usα(~p )ds(~p )e
−ip·x + ξ∗vsα(~p )bs(~p )

†eip·x
}

= ξ∗
{∫

dΩp

{

vsα(~p )
∗bs(~p )e

−ip·x ++(ξξ′)∗usα(~p )
∗ds(~p )

†eip·x
}

}†

,

(5.88)
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where we written explicitly the Lorentz index α of the bispinors. If we ask for the right-hand
side to be proportional to ψ(x)†, we will obtain simple transformation properties and we will be
sure that no problems with causality can arise. This leads to require that

C∗us(~p ) = vs(~p )
∗

C∗vs(~p ) = (ξξ′)∗us(~p )
∗ ,

(5.89)

for some matrix C. Notice that C and (ξξ′) must satisfy CC∗us(~p ) = [C∗vs(~p )]
∗ = (ξξ′)us(~p ).

We then find

U(C)†ψα(x)U(C) = ξ∗Cαβ

{∫

dΩp

{

usβ(~p )bs(~p )e
−ip·x + vsβ(~p )ds(~p )

†eip·x
}

}†

. (5.90)

Applying charge conjugation twice we find

[U(C)†]2ψα(x)[U(C)]2 = (ξξ′)ψ(x)

= ξ∗Cαβ

{

∫

dΩp
∑

s

{

ξ′usβ(~p )ds(~p )e
−ip·x + ξ∗vsβ(~p )bs(~p )

†eip·x
}

}†

= Cαβ

∫

dΩp
∑

s

{

vsβ(~p )
∗bs(~p )e

−ip·x + (ξ′ξ)∗usβ(~p )
∗ds(~p )

†eip·x
}

= CαβC
∗
βγ

∫

dΩp
∑

s

{

usγ(~p )bs(~p )e
−ip·x + (ξ′ξ)∗2vsγ(~p )ds(~p )

†eip·x
}

,

(5.91)

which entails (ξ′ξ)2 = 1 and CC∗ = 1; this further implies (ξ′ξ) = 1. We then have to choose
us and vs such that a matrix C exists for which

C∗us(~p ) = vs(~p )
∗ ,

C∗vs(~p ) = us(~p )
∗ .

(5.92)

In order to do this we have to clarify the relation between the matrices S(Λ) = e
i
2
ωρσJ

(ρσ)
and

the gamma matrices. It is a matter of simple algebra to show that

J (0j) = ~Kj =
1

2

(

−iσj 0

0 −iσj

)

=
1

2

[γ0, γj ]

2i
,

J (ij) = −ǫijk ~J k = −ǫijk
1

2

(

σk 0

0 σk

)

=
1

2

[γi, γj ]

2i
,

J (µν) =
1

2
σµν , σµν ≡ 1

2i
[γµ, γν ] .

(5.93)

From Eq. (5.62) we find

(iσµν)∗ =
1

2
[γ2γiγ2, γ2γjγ2] = −iγ2σµνγ2 = i(iγ2)σµν(iγ2) , (5.94)

with (iγ2)2 = 1 and (iγ2)∗ = (iγ2). We have then

S(Λ)∗ = [e
i
2
ωρσσ

(ρσ)
]∗(iγ2)e

i
2
ωρσσ

(ρσ)
(iγ2) = (iγ2)S(Λ)(iγ2) . (5.95)
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Using this in Eq. (5.92) we find

C∗S(Λp)us(~0) = (iγ2)S(Λp)(iγ
2)vs(~0)

∗ ,

C∗S(Λp)vs(~0) = (iγ2)S(Λp)(iγ
2)us(~0)

∗ .
(5.96)

The second equation will be satisfied if we take C = C∗ = iγ2 and vs(~0) = (iγ2)us(~0)
∗, i.e.,

√
m

(

w̃s
−w̃s

)

=

(

0 −iσ2
iσ2 0

)√
m

(

w∗
s

w∗
s

)

=
√
m

(

−iσ2w∗
s

iσ2w
∗
s

)

. (5.97)

We would then set
w̃s = −iσ2w∗

s . (5.98)

The other equation becomes then us(~0) = (iγ2)vs(~0)
∗, which is automatically satisfied since

taking the complex conjugate of the equation vs(~0) = (iγ2)us(~0)
∗ and multiplying by iγ2 we

find iγ2(vs(~0))
∗ = (iγ2)(iγ2)us(~0) = us(~0). With this choice we would conclude that

U(C)†ψα(x)U(C) = ξ∗(iγ2)αβψβ(x)
† . (5.99)

Since ws are real [see Eq. (5.37)] and w̃s = −iσ2ws, we conclude that the field ψ(x) built in the
previous subsections satisfies the transformation law Eq. (5.99) under charge conjugation.

5.1.4 The spin-statistics theorem

We conclude the construction of the Dirac field for spin-12 particles with an important remark.
The need to impose anticommutation rather than commutation relations between creation and
annihilation operators originates from the request of locality in the form of the microcausality
condition. On the other hand, in the case of a scalar field one has to impose commutation
relations in order to obtain locality [try to use anticommutation relations in Eqs. (4.53)–(4.56)].
It is a general result in field theory that the requests of locality, Lorentz invariance and pos-
itivity of the Hamiltonian, impose that fields of integer spin (i.e., transforming according to
representations of the Lorentz group that contain integer spin representations of SU(2)) have to
be quantised by commutators, while fields of half-integer spin have to be quantised by anticom-
mutators. This is known as the spin-statistics theorem. Since observables have to commute for
spacelike separations, this forces us to use an even number of anticommuting fields of a certain
type in their construction.

5.2 Hamiltonian and Lagrangian formalism

At this point we can express the Hamiltonian,

H =

∫

dΩp p
0[bs(~p)

†bs(~p) + ds(~p)
†ds(~p)] , (5.100)

in terms of fields and their derivatives. This can be done directly using the following relations
between creation and annihilation operators and fields,

bs(~p ) =

∫

d3x eip·xus(~p )
†ψ(x) ,

ds(~p )
† =

∫

d3x e−ip·xvs(~p )
†ψ(x) .

(5.101)
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We will follow a faster route by finding a Lagrangian that has the Dirac field as solution,
performing canonical quantisation and producing the Hamiltonian by Legendre transform. The
Dirac equation can be obtained form the following (Hermitian) Lagrangian,

L = ψ̄

(

i
2

↔

/∂ −m
)

ψ = ψ̄
(

i/∂ −m
)

ψ + total divergence . (5.102)

Since a total divergence does not affect the equations of motion, we can use the second, non-
Hermitian form of the Lagrangian to derive the EOM performing a variation with respect to ψ̄,
which yields

∂L

∂ψ̄
=
(

i/∂ −m
)

ψ = 0 , (5.103)

i.e., the Dirac equation, which is solved by

ψ(x) =

∫

dΩp
∑

s

{

us(~p )bs(~p )e
−ip·x + vs(~p )ds(~p )

†eip·x
}

, (5.104)

with (/p −m)us(~p ) = (/p +m)vs(~p ) = 0. The operator-valued coefficients bs(~p ) and ds(~p )
† are

determined via canonical quantisation. The momentum associated to ψ is

π =
∂L

∂(∂0ψ)
= iψ† , (5.105)

and there is no momentum associated to ψ†.36 Imposing now equal-time anticommutation
relations,

{ψ(x), π(y)}ET = {ψ(x), iψ(y)†}ET = iδ(3)(~x− ~y ) ,
{ψ(x), ψ(y)}ET = 0 , {π(x), π(y)}ET = {iψ(x)†, iψ(y)†}ET = 0 ,

(5.106)

we end up with bs and ds satisfying the anticommutation relations Eq. (5.8). The Hamiltonian
reads

H =

∫

d3x
[

π(x)∂0ψ(x)− ψ̄(x)
(

i/∂ −m
)

ψ(x)
]

=

∫

d3x
[

iψ̄(x)γ0∂0ψ(x)− ψ̄(x)
(

i/∂ −m
)

ψ(x)
]

=

∫

d3x ψ̄(x)
(

−i~∇ · ~γ +m
)

ψ(x) ,

(5.107)

36The Lagrangian Eq. (5.102) is a singular Lagrangian, i.e., the Hessian matrix ∂2
L

∂q̇i∂q̇j
is non-invertible. Such

Lagrangians need a special formal treatment, and correpsond to Hamiltonian systems on which some constraint
has been imposed.
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which is Hermitian, as it should be. Substituting Eq. (5.104) in this expression, we find

H =

∫

d3x

∫

dΩp

∫

dΩq
∑

s,s′

{

ūs(~p )bs(~p )
†eip·x + v̄s(~p )ds(~p )e

−ip·x
}

×
{

(~q · ~γ +m)us(~q )bs(~q )e
−iq·x − (~q · ~γ −m) vs(~q )ds(~q )

†eiq·x
}

=

∫

d3x

∫

dΩp

∫

dΩq
∑

s,s′

{

ūs(~p )bs(~p )
†eip·x + v̄s(~p )ds(~p )e

−ip·x
}

× q0γ0
{

us(~q )bs(~q )e
−iq·x − vs(~q )ds(~q )†eiq·x

}

.

(5.108)
Integration over d3x brings about delta functions δ(~p∓ ~q), where the minus sign applies to the

b†sbs and dsd
†
s terms, and the plus sign to the b†sd

†
s and dsbs terms. The coefficients of these terms

are then
ūs(~p )γ

0us′(~p ) = 2p0δss′ ,

v̄s(~p )γ
0vs′(~p ) = 2p0δss′ ,

ūs(~p )γ
0vs′(−~p ) = −ūs(~p )vs′(~p ) = 0 ,

v̄s(~p )γ
0us′(−~p ) = v̄s(~p )us′(~p ) = 0 .

(5.109)

Eq. (5.108) becomes

H =

∫

dΩp p
0
∑

s

[bs(~p)
†bs(~p)− ds(~p)ds(~p)†] . (5.110)

This differs from Eq. (5.100) by an infinite constant, which can be removed by imposing normal
ordering on the fields. For anticommuting creation and annihilation operators, we define

: ds(~p)ds(~q)
† := −ds(~q)†ds(~q) , : ds(~p)

†ds(~q) := ds(~p)
†ds(~q) , (5.111)

i.e., normal ordering brings creation operators to the left of annihilation operators, but a minus
sign has to be included every time that a creation operator crosses an annihilation operator.
Overall, this gives the parity of the permutation needed to bring the creation operators on the
left. Normal ordering of products of fields is then defined by expanding them in creation and
annihilation operators and normal ordering all the products of these. Notice that contrary to
the case of scalar fields, now the order of fields in the normal ordered product matters, although
only for the overall sign, : ψ(x)ψ(y) := − : ψ(y)ψ(x) :. With this definition we finally obtain

H =

∫

d3x : ψ̄(x)
(

−i~∇ · ~γ +m
)

ψ(x) :=

∫

dΩp p
0
∑

s

[bs(~p)
†bs(~p) + ds(~p)ds(~p)

†] , (5.112)

as desired. Notice that if we had quantised by commutators, then Eq. (5.110) would not be
positive-definite.37

37The microcausality condition for ψ and ψ† would have been satisfied by choosing commutation relations if at
the same time we had treated ds as a creation instead of an annihilation operator. This would have led here to a
non positive-definite Hamiltonian.

91



One can compute the generators of translations and Lorentz transformations from the La-
grangian making use of Noether’s theorem.38 The (canonical) energy-momentum tensor reads

Θµν =:
∂L

∂(∂µψ)
∂νψ − ηµνL := i

2 : ψ̄γµ
↔

∂νψ : (5.113)

where we have imposed normal ordering to avoid singularities due to products of fields at the
same spacetime point. Notice that the Lagrangian vanishes on the EOM, so it does not contribute
to Eq. (5.113). The four-momenta are

Pµ = i
2

∫

d3x : ψ̄(x)γ0
↔

∂µψ(x) := i

∫

d3x : ψ(x)†∂µψ(x) : . (5.114)

From the infinitesimal transformation law

ψ′
α(x

′) = ψα(x) +
1

2
ωρσS

(ρσ)
αβ ψβ(x) = ψα(x) +

i

4
ωρσ(σ

ρσ)αβψβ(x) , (5.115)

one obtains the Lorentz generators through the formula

J (ρσ) = −
∫

d3xM0,ρσ ,

Mµ,ρσ = xρΘµσ − xσΘµρ + Sµ,ρσ

Sµ,ρσ =
∂L

∂(∂µψα)
S
(ρσ)
αβ ψβ = i(ψ̄γµ)α

i

2
(σρσ)αβψβ = −1

2
ψ̄γµσρσψ ,

(5.116)

and they read

J (ρσ) = −
∫

d3x
{

xρΘ0σ − xσΘ0ρ − 1
2ψ

†σρσψ
}

. (5.117)

One can compute explicitly the commutators to find

[Pµ, ψ(x)] = −i∂µψ(x) ,
[J (ρσ), ψ(x)] = i

(

xρ∂σ − xσ∂ρ + i
2σ

ρσ
)

ψ(x) = i (xρ∂σ − xσ∂ρ)ψ(x)− 1
2σ

ρσψ(x) .
(5.118)

The Lagrangian Eq. (5.102) is also invariant under the U(1) transformation

ψ′ = eiαψ, ψ̄′ = e−iαψ̄ . (5.119)

The corresponding Noether current is

Jµ =: ψ̄γµψ : , (5.120)

and the corresponding charge is

Q =

∫

d3x : ψ̄γ0ψ :=

∫

d3x : ψ†ψ :=

∫

dΩp
∑

s

{

bs(~p )
†bs(~p )− ds(~p )†ds(~p )

}

. (5.121)

38Here the Hermitian version of the Lagrangian is used to obtain manifestly Hermitian currents.
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6 Interacting theories

So far we have discussed only the case of free fields, for spin 0 and spin 1
2 . This is of quite limited

utility to describe the real world, where particles interact in various ways. The next task is then
that of building a theory that describes interacting particles while complying with the requests
of Poincaré invariance and locality. The use of local fields allows to easily keep track of these
two issues, thanks to their loclaity and their simple transformation properties. In the framework
of field theory, the method of canonical quantisation is a convenient approach to thie problem of
building interacting theories: being based on the Lagrangian formalism, it exhibits manifestly
the symmetries of the theory, and the requirement of microcausality is satisfied automatically
by imposing the canonical commutation or anticommutation relations. Let us list here the steps
of the canonical quantisation program.

• Take a classical Lagrangian L which is a real function of fields φa(x) and their deriva-
tives, L = L (φ(x), ∂φ(x)). Poincaré invariance is manifest if the Lagrangian does not
depend explicitly on x and is a scalar under Lorentz transformations, i.e., it transform
like L (φ(x), ∂φ(x)) → L (φ(Λ−1x), ∂φ(Λ−1x)). This is easy to achieve is the fields are
assumed to transform in some representation of the Lorentz group.

• Derive the EOM by the usual action principle, and solve them (if you can. . . ).

• Obtain the conjugate momenta as usual, and impose canonical commutation/anticom-
mutation relations at equal time,

[φa(x), φb(y)]ET = [πa(x), πb(y)]ET = 0 , [φa(x), πb(y)]ET = iδabδ
(3)(~x− ~y ) . (6.1)

This request makes the fields into linear operators on some Hilbert space. Finding such a
Hilbert space is part of the problem of solving the theory, together with solving the EOM.
The imposition of CCR/CAR guarantees that observables built out of the field operators
will automatically satisfy microcausality.

• Noether’s theorem entails the existence of Hermitian generators of the continuous symme-
tries of the Lagrangian.39 This leads to a unitary representation of the Poincaré group,
under which the quantum field operators transform as their classical counterpart. This
guarantees that our quantum system exhibits the desired symmetry.

Unfortunately, it is almost never possible to complete this program in practice: the EOM for
interacting theories are usually nonlinear, and it is not known how to solve them. It is therefore
necessary to find some approximation technique that allows us to extract something useful from
the canonical quantisation program.

6.1 Interaction picture

In many cases of practical interest, the Hamiltonian of the system can be split into a free part
and an interacting part, H = H0 + V . Here the free part H0 is the Hamiltonian of some system
which we know how to solve explicitly, for example one of the free-field Hamiltonians discussed

39Reality of the Lagrangian at the classical level leads to Hermiticity at the quantum level, from which Her-
miticity of the Noether charges follows, possibly after settling some operator-ordering issues.
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in the previous sections. The interaction part V contains every other term appearing in the full
Hamiltonian. The idea is that V can be looked at as a perturbation to the free Hamiltonian
H0, and its effect evaluated in successive steps. This is the perturbative quantisation approach,
which we now discuss in detail.

Let φ(x) be the field that realises the canonical quantisation program, and π(x) its conjugate
momentum. These fields solve the equations of motion and obey the CCR/CAR, and therefore

φ(x) = φ(t, ~x ) = eiHtφ(0, ~x )e−iHt , φ̇(t, ~x ) = i[H,φ(t, ~x )] ,

π(x) = π(t, ~x ) = eiHtπ(0, ~x )e−iHt , π̇(t, ~x ) = i[H,π(t, ~x )] .
(6.2)

The full Hamiltonian is obtained from the Lagrangian as usual,

H =

∫

d3x [π(t, ~x )φ̇(t, ~x )−L (φ(t, ~x ), ∂φ(t, ~x ))] , (6.3)

where it is understood that ∂0φ has to be expressed as a function of φ and π. In the cases we
will consider, the full Lagrangian can be written as a free Lagrangian plus an interaction term
that depends on the fields but not on their derivatives, L = L0 + LI , with LI = LI(φ). It
then follows that as a function of fields and their derivatives, the canonical momenta in the full
interacting theory satisfy

π(φ, ∂φ) =
∂L

∂(∂0φ)
=

∂L0

∂(∂0φ)
= π0(φ, ∂φ) , (6.4)

i.e., they have the same functional form as the conjugate momentum π0 of the free theory; by
the same token, ∂0φ in the full theory will be the same function of φ and π as in the free theory.
From Eq. (6.3) we then find in this case

H = H[φ, π] =

∫

d3x [π(t, ~x )φ̇(t, ~x )−L0(φ(t, ~x ), ∂φ(t, ~x ))−LI(φ(t, ~x ))]

= H0[φ, π]−
∫

d3xLI(φ(t, ~x )) = H0[φ, π] + V [φ] .

(6.5)

In the cases of interest, H is time independent. On the other hand, after splitting it into H0

and V , these will be separately time dependent. Let us do the splitting at t = 0,

H[φ(t, ~x ), π(t, ~x )] = H[φ(0, ~x ), π(0, ~x )] = H0[φ(0, ~x ), π(0, ~x )] + V [φ(0, ~x )] . (6.6)

From now on, H0 and V will be those obtained using the interacting fields and momenta at
t = 0. Let us now define the fields in the interaction picture as fields ewvolving in time with the
free Hamiltonian, and coinciding with the full interacting fields (in the Heisenberg picture) at
t = 0,

φin(t, ~x ) ≡ eiH0tφin(0, ~x )e
−iH0t , φin(0, ~x ) = φ(0, ~x ) ,

πin(t, ~x ) ≡ eiH0tπin(0, ~x )e
−iH0t , πin(0, ~x ) = π(0, ~x ) .

(6.7)

At t = 0 the fields in the interaction picture obey the CCR/CAR, and since their values at time
t is obtained via a unitary transformation, they will obey the CCR/CAR at all times. Since they
evolve in time with the free Hamiltonian and obey the CCR/CAR, they automatically obey the
Hamilton equations of motion of the free theory:

φ̇in = i[H0, φin] =
δH0

δπ
, π̇in = i[H0, πin] = −

δH0

δπ
. (6.8)
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The fields in the interaction picture are then nothing else but free fields, and we already know
exactly what they look like. If, for example, H0 is the free Hamiltonian for the charged scalar
field, we will have that

φ(t, ~x ) =

∫

dΩp

{

a(~p )e−ip·x + b(~p )†eip·x
}

, π(t, ~x ) = φ̇(t, ~x ) , (6.9)

where a(~p ), a(~p )†, b(~p ), b(~p )†, are the usual annihilation and creation operators. At this point,
we define also the interaction Hamiltonian in the interaction picture, VI(t), as

VI(t) ≡ eiH0tV [φin(0, ~x )]e
−iH0t = V [φin(t, ~x )] = −

∫

d3xLI(φin(t, ~x )) . (6.10)

Although it seems that we have made progress, in practice it is so only marginally: for example,
if we want to determine the spectrum of the theory, we still have to solve the same eigenvalue
problem H|ψ〉 = E|ψ〉, and although we have expressed H as a functional of free fields, this
does not make the eigenvalue problem any easier to solve. On the other hand, if we now assume
that the interaction V is small, for example because it enters the Hamiltonian with some small
numerical prefactor, then we can attack the eigenvalue problem perturbatively, and solve it by
successive approximations.

6.2 The S-matrix

The interaction picture is particularly useful in the study of scattering problems. In a scattering
experiment two bunches of particles are thrown against each other, and the outcome of the
collision is observed. It is a fact of Nature that, first of all, a system of free particles can be
prepared in a laboratory, i.e., a system of particles that do not interact appreciably with each
other and just move on straight-line trajecotries at constant speed. It is another fact of Nature
that if one waits enough after the collision, then what is observed is a gain a system of free
particles. If the state of the scattering system is determined by some state vector ψ in the
Hilbert space, so that at time t the state is e−iHtψ (in the Schrödinger picture), what experience
shows us is that the time evolution of the system looks like the free time evolution both at
early times, i.e., at the beginning of the scattering experiment when particles are still far away
from eachg other, and at late times, i.e., at the end of the scattering process after a sufficiently
long time has elapsed after the collision and particles are not interacting with each other any
more. Mathematically, we can express this by saying that as t → −∞ and t → +∞, the state
vector e−iHtψ of a scattering system, evolving with the full Hamiltonian H, can be approximated
better and better by vectors e−iH0tϕi and e

−iH0tϕf , respectively, evolving in time with the free
Hamiltonian H0. Here ϕi and ϕf are vectors in the same Fock space describing free particles.
More precisely, we expect that for a state vector ψ descrbing a sacttering state we have

‖e−iHtψ − e−iH0tϕi‖ → 0 for t→ −∞ ,

‖e−iHtψ − e−iH0tϕf‖ → 0 for t→ +∞ ,
(6.11)

for some ϕi,f . Here ‖ . . . ‖ denotes the norm derived from the Hilbert space scalar product.
Conversely, if we have a state that looks like e−iH0tϕ in the far past we expect it to describe the
early time evolution of some state e−iHtψ+; similarly, if we have a state that looks like e−iH0tϕ
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in the far future, we expect it to describe the late time evolution of some state e−iHtψ−. We
then expect that for every free-particle state vector ϕ there are vectors ψ± such that

‖e−iHtψ+ − e−iH0tϕ‖ → 0 for t→ −∞ ,

‖e−iHtψ− − e−iH0tϕ‖ → 0 for t→ +∞ ,
(6.12)

These last two equations can be recast as

lim
t→∓∞

‖ψ± − eiHte−iH0tϕ‖ = 0 . (6.13)

This defines the in states ψ+ and the out states ψ− as the limits

ψ± = lim
t→∓∞

eiHte−iH0tϕ ≡ Ω±ϕ , (6.14)

The linear operators Ω± are the scattering (or Møller) operators. Being the limits (in the strong
sense) of unitary operators, they preserve the norm of vectors, and are therefore isometries, i.e.,

‖ψ±‖ = ‖Ω±ϕ‖ = ‖ϕ‖, for all ϕ, which implies the property Ω†
±Ω± = 1. The proof of these

properties goes as follows. One has

‖ψ±‖ = lim
t→∓∞

‖ψ± − eiHte−iH0tϕ+ eiHte−iH0tϕ‖

≤ lim
t→∓∞

‖ψ± − eiHte−iH0tϕ‖+ ‖eiHte−iH0tϕ‖ = ‖ϕ‖ ,
(6.15)

where we made use of Schwartz inequality and of ‖eiHte−iH0tϕ‖ = ‖ϕ‖. On the other hand,

‖ϕ‖ = lim
t→∓∞

‖eiHte−iH0t‖ = lim
t→∓∞

‖eiHte−iH0tϕ− ψ± + ψ±‖

≤ lim
t→∓∞

‖eiHte−iH0tϕ− ψ±‖+ ‖ψ±‖ = ‖ψ±‖ ,
(6.16)

and so the equality sign must hold. By definition of adjoint then, ‖ϕ‖2 = ‖ψ±‖2 = (ψ±, ψ±) =

(Ω±ϕ,Ω±ϕ) = (ϕ,Ω†
±Ω±ϕ). Since any scalar product can be written as a linear combination

of squared norms,40 this implies (ϕ1,Ω
†
±Ω±ϕ2) = (ϕ1, ϕ2), and so Ω†

±Ω± = 1. This does not
mean that Ω± are unitary: in fact, this requires that their image is the whole Hilbert space,
or equivalently that Ω±Ω

†
± = 1. In principle, it is possible that the theory contains states

(bound states)that are not accessible via scattering experiments. It is also possible in principle
that the spaces of in and out states differ. From the physical standpoint, since the states ψ−

corresponding to the outcomes of scattering experiments can be used as initial states of other
scattering experiments, we expect the two spaces to be the same; proving this mathematically
is a hard task. For what concerns us, we will assume that the theory has no bound state
unreachable by a scattering experiment, and that in and out states span the same space, which
is then the whole Hilbert space of the system. With these extra assumptions, the scattering
operators Ω± are guaranteed to be unitary. In summary, these operators connect the freely
evolving state vectors at early and late times with the exact state vector, evolving with the full
Hamiltonian.

Suppose now that we have prepared the system in a state ϕi, which allows to identify the state
of the system at early times as e−iH0tϕi, for t → −∞. Long after the collision has taken place

40This is 4(χ, ϕ) = 4Re (χ, ϕ) + 4Im (χ, ϕ) = ‖χ+ ϕ‖2 − ‖χ− ϕ‖2 + ‖χ− iϕ‖2 − ‖χ+ iϕ‖2.
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we measure the properties of the emerging particles. What is the probability that the final state
that we observe is identified by the state vector ϕf , meaning that at late times the system evolves
as e−iH0tϕf , for t→ +∞? If we knew the exact state vectors ψ+ = Ω+ϕi and ψ− = Ω−ϕf then
this probability would simply be the absolute value square of the transition amplitude 〈ψ−|ψ+〉,
i.e., the scalar product of the two vectors; equivalently, this can be seen as the expectation value
of the projection operator |ψ−〉〈ψ−|, corresponding to our detectors identifying that specific
state. No matter how we interpret it, the result is Pfi = |〈ψ−|ψ+〉|2 = 〈ψ+|ψ−〉〈ψ−|ψ+〉. This
quantity is time-independent, so we can use the state vectors at any time to compute it. We
can then comute the scalar product as follows,

〈ψ−|ψ+〉 = 〈ψ−|eiHTf e−iHTf |ψ+〉 = 〈ψ−|eiHTf e−iH(Tf−Ti)e−iHTi |ψ+〉 . (6.17)

By the first equality we can use the state vectors at t = Tf when the measurement is made
to compute the transition amplitude; the evolved of the initial state is obtained by translating
forward in the future by Tf − Ti the initial state, prepared at t = Ti. This is all academic, since
we do not have direct access to |ψ±〉. However, in the limit of Tf → infty and Ti → −∞ we
can replace the exactly evolving states with the freely evolving states, which are defined by our
experimental setup, and are therefore under control. We then have

〈ψ−|ψ+〉 = lim
Tf→+∞

lim
Ti→−∞

〈ψ−|eiHTf e−iH(Tf−Ti)e−iHTi |ψ+〉

= lim
Tf→+∞

lim
Ti→−∞

〈ϕf |eiH0Tf e−iHTf eiHTie−iH0Ti |ϕi〉

= 〈ϕf |Ω†
−Ω+|ϕi〉 = 〈ϕf |S|ϕi〉 ≡ Sfi ,

(6.18)

where we have defined the S-operator,

S ≡ Ω†
−Ω+ . (6.19)

Its matrix elements Sfi = 〈ϕf |S|ϕi〉 constitute the S-matrix. The S operator can be expressed
in a very useful way by recalling the definition of the scattering operators, or by looking at the
second line in Eq. (6.18). We have, recalling Eqs. (2.115) and (2.117),

S = lim
Tf→+∞

lim
Ti→−∞

eiH0Tf e−iHTf eiHTie−iH0Ti = lim
Tf→+∞

lim
Ti→−∞

U(Tf , 0)U(0, Ti)

= lim
Tf→+∞

lim
Ti→−∞

U(Tf , Ti) = U(+∞,−∞) = Texp

{

−i
∫ +∞

−∞
dt VI(t)

}

,
(6.20)

where VI(t) = eiH0tV e−iH0t is the interaction Hamiltonian in the interaction picture.
The discussion above is rather general, and makes no reference to quantum field theory. If

now we consider a relativistic quantum theory obtained by means of the canonical quantisation
program, VI(t) is precisely the operator defined in Eq. (6.10), which is built in terms of fields in
the interaction picture, so in practice it is built out of free fields, which we know how to manage.
As for the initial and final states of freely evolving particles, they are built out of the creation
and annihilation operators associated to the fields in the interaction picture, so again we know
howe to deal with them. The relevant matrix elements are then

Sfi = 〈~p ′
1s

′
1α

′
1, ~p

′
2s

′
2α

′
2, . . . , ~p

′
n′s′n′α′

n′ |S|~p1s1α1, ~p2s2α2, . . . , ~pnsnαn〉 , (6.21)
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where ~pi, si are the momenta and third component of the spin of the particles in the initial
state, whose other quantum numbers are denoted collectively by αi; primed quantities have the
same meaning but for the particles in the final state.

As in the problem of finding the spectrum of the theory, finding the exact solution of the
theory means computing exactly the S-operator, which is no easy task. On the other hand, if
V , and so VI , is a small perturbation, then we can power-expand S,

S = Texp

{

−i
∫ +∞

−∞
dt VI(t)

}

=
∞
∑

n=0

(−i)n
n!

∫ +∞

−∞
dτ1 . . .

∫ +∞

−∞
dτnT {VI(τ1) . . . VI(τn)} ,

(6.22)

and compute the S-matrix elements order by order in the perturbation. We already know that
products of fields at the same spacetime point lead to problems with infinities. To get rid of
(part of) these, we take VI to be normal-ordered: this does not change the symmetries of the S
operator. Recalling again Eq. (6.10), and imposing normal ordering, we have that

S = Texp

{

i

∫

d4x : LI(φin(x)) :

}

=
∞
∑

n=0

in

n!

∫

d4x1 . . .

∫

d4xn T {: LI(φin(x1)) : . . . : LI(φin(xn)) :} .
(6.23)

6.3 Symmetries of the S-matrix

We discuss now the general properties of the S operator. The most important property is
that it is a unitary operator, even when Ω± are not unitary but simply isometric. Assume
that a bound-state subspace exists in the Hilbert space of the system. Such states cannot be
reached in a scattering experiment, and are orthogonal to the scattering states, which on the
other hand can be obtained as ψ± = Ω±ϕ for some ϕ.41. For a bound state χ we then have
0 = (χ, ψ±) = (χ,Ω±ϕ) = (Ω†

±χ, ϕ), and so Ω†
±χ = 0. For a scattering state we have instead

that ψ± = Ω±ϕ can be inverted to give42 Ω−1
± ψ± = ϕ, and so (ψ±,Ω±ϕ

′) = (Ω±ϕ,Ω±ϕ
′) =

(ϕ,ϕ′) = (Ω−1
± ψ±, ϕ

′) = (Ω†
±ψ±, ϕ

′), so Ω−1
± = Ω†

±. We then conclude that Ω±Ω
†
± = 1 − ΠB

where ΠB is the projector on the bound state subspace. We then have for the S operator

S†S = Ω†
+Ω−Ω

†
−Ω+ = Ω†

+(1−ΠB)Ω+ = Ω†
+Ω+ = 1 ,

SS† = Ω†
−Ω+Ω

†
+Ω− = Ω†

−(1−ΠB)Ω− = Ω†
−Ω− = 1 ,

(6.24)

where we use the fact that ΠBΩ± = 0. The S operator is thus unitary. From now one we will
assume fro simplicity that there are no bound states, so that Ω±Ω

†
± = 1.

From the definition of the scattering operators we can prove easily that

eiHsΩ± = lim
t→∓∞

eiH(t+s)e−iH0t = lim
t→∓∞

eiH(t+s)e−iH0(t+s)eiH0s

= lim
t→∓∞

eiHte−iH0teiH0s = Ω±e
iH0s ,

(6.25)

41We still assume that the in and out states ψ± span the same subspace of the Hilbert space.
42The scattering operators are by definition onto the subspace of scattering states, and the are one-to-one since

they are isometric, Ω±ϕ1 = Ω±ϕ2 ⇒ ϕ1 = Ω†
±Ω±ϕ2 = ϕ2, so there is an inverse map from the scattering state

subspace to the space of free particle states.
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for any s, and so
HΩ± = Ω±H0 . (6.26)

Using this intertwining relation and its adjoint H0Ω
†
± = Ω†

±H we can show that

H0S = H0Ω
†
−Ω+ = Ω†

−HΩ+ = Ω†
−Ω+H0 = SH0 =⇒ [H0, S] = 0 . (6.27)

Since the interaction Lagrangian is taken to be invariant under translations, both in time and
space, this result can be obtained more directly from eia·P0Se−ia·P0 = S, from which we obtain

[P0µ, S] = 0 , (6.28)

of which Eq. (6.27) is the µ = 0 case. Here the subscript 0 indicates that the generators of
translations P0µ are those of the free theory, builit out of th efileds in the interaction picture.
If the interaction Lagrangian is invariant under any internal symmetry of the free Lagrangian,
then S will be invariant under the corresponding unitary transformations, U †

intSUint = S, and
will therefore commute with the corresponding generators Qa0,

[Qa0, S] = 0 . (6.29)

Lorentz transformations, on the other hand, require a special treatment. Under a unitary
tranformation U0(Λ

−1) = U(Λ)†, where again the subscript 0 indicates that we are using the
representation of the symmetry in the free theory, we find for the S operator

U0(Λ)SU0(Λ)
† =

∞
∑

n=0

in

n!

∫

dx1 . . .

∫

d4xn U0(Λ)Tx {: LI(φin(x1)) : . . . : LI(φin(xn)) :}U0(Λ)
†

=
∞
∑

n=0

in

n!

∫

d4x1 . . .

∫

d4xn Tx {: LI(φin(Λx1)) : . . . : LI(φin(Λxn)) :} .

(6.30)
Here the subscript x in Tx stands for the fact that time-ordering is done according to the
values of x0j in the original reference frame. We made use of the fact that the interaction

Lagrangian is a Lorentz scalar, U0(Λ)
†LI(φin(x))U0(Λ) = LI(φin(Λ

−1x)). An orthocronous
Lorentz transformation will not change the relative ordering in time of timelike or lightlike-
separated points x, y, so that θ(x0−y0) = θ((Λx)0− (Λy)0), but nothing can be said in generale
for spacelike-separated points. Here is where the requirement of microcausality plays a crucial
role: for causal fields we are guaranteed that43 [LI(x),LI(y)] = 0 if (x−y)2 < 0, so the relative
time-ordering of spacelike-separated points has no consequence. After changing frame via Λ, a
point xj can “cross” in time only those points that are spacelike-separated from it, but then
the operator L (Λxj) can be brought to the position it should have in the new time ordering
[the one with respect to the new time coordinates (Λxi)

0] without paying any price. Its relative
position in time with respect to timelike-separated points will not change. We have then that

Tx {: LI(φin(Λx1)) : . . . : LI(φin(Λxn)) :}
= TΛx {: LI(φin(Λx1)) : . . . : LI(φin(Λxn)) :} ,

(6.31)

43This holds for the normal-ordered interaction Lagrangian as well.
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either because the relative ordering has not change, or because it did not matter in the first
place. We conclude that

U0(Λ)SU0(Λ)
† =

∞
∑

n=0

in

n!

∫

d4x1 . . .

∫

d4xn TΛx {: LI(φin(Λx1)) : . . . : LI(φin(Λxn)) :}

=

∞
∑

n=0

in

n!

∫

d4(Λ−1x)1 . . .

∫

d4(Λ−1x)n TΛx {: LI(φin(x1)) : . . . : LI(φin(xn)) :}

=

∞
∑

n=0

in

n!

∫

d4x1 . . .

∫

d4xn Tx {: LI(φin(x1)) : . . . : LI(φin(xn)) :} ,

(6.32)
since | detΛ−1| = 1. We then conclude that under the unitary tranformation U0(Λ) the S
operator remains invariant,

U0(Λ)
†SU0(Λ) = S =⇒ [U0(Λ), S] = 0 . (6.33)

This proves the desired Lorentz invariance of the S-matrix, which includes of course invariance
under rotations, soi in particualr we have

[ ~J0, S] = 0 . (6.34)

Eqs. (6.28), (6.29) and (6.34) imply conservation of momentum, internal charges and angular
momentum, respectively. Denoting with O any of these observables, the fact that [O, S] = 0
implies that if ϕi,f are eigenstates of O with eigenvalues oi,f , then

0 = 〈ϕf |[O, S]|ϕi〉 = 〈ϕf |OS − SO|ϕi〉 = (of − oi)〈ϕf |S|ϕi〉 , (6.35)

and so 〈ϕf |S|ϕi〉 must vanish unless of = oi.
Invariance under Lorentz transformations and translations of the S operator, expressed by

Eq. (6.33), allows us to construct a unitary representation of the Poincaré group on the in and
out states. Recall that in general

U0(Λ)|~p σ〉 =
∑

σ̄

Dσ̄σ(W (Λ, ~p))|Λ~p σ̄〉 ,

U0(a)|~p σ〉 = e−ia·p|~p σ〉 .
(6.36)

Here we discuss single-particle states; the generalisation to multiparticle states is straightforward.
In and out momentum eigenstates are defined as

|~p σ±〉 = Ω±|~p σ〉 . (6.37)

Up to this point, calling them “momentum eigenstates” refers only to the fact that they are
connected to the free momentum eigenstates by the scattering operators. From Eq. (6.36) we
obtain

Ω±U0(Λ)|~p σ〉 =
∑

σ̄

Dσ̄σ(W (Λ, ~p))Ω±|Λ~p σ̄〉 =
∑

σ̄

Dσ̄σ(W (Λ, ~p))|Λ~p σ̄±〉

= Ω±U0(Λ)Ω
†
±Ω±|~p σ〉 = Ω±U0(Λ)Ω

†
±|~p σ±〉 ,

Ω±U0(a)|~p σ〉 = e−ia·pΩ±|~p σ〉 = e−ia·p|~p σ±〉 = Ω±U0(a)Ω
†
±Ω±|~p σ〉

= Ω±U0(a)Ω
†
±|~p σ±〉 ,

(6.38)
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which can be summarised as

U±(Λ)|~p σ±〉 =
∑

σ̄

Dσ̄σ(W (Λ, ~p))|Λ~p σ̄±〉 ,

U±(a)|~p σ±〉 = e−ia·p|~p σ±〉 ,
(6.39)

having defined
U±(Λ) ≡ Ω±U0(Λ)Ω

†
± , U±(a) ≡ Ω±U0(a)Ω

†
± . (6.40)

The operators U± are indeed unitary44, and provide a group representation:

U±(Λ)
†U±(Λ) = Ω±U0(Λ)

†Ω†
±Ω±U0(Λ)Ω

†
± = Ω±Ω

†
± = 1 ,

U±(Λ1)U±(Λ2) = Ω±U0(Λ1)Ω
†
±Ω±U0(Λ2)Ω

†
± = Ω±U0(Λ1)U0(Λ2)Ω

†
±Ω±U0(Λ1Λ2)Ω

†
±

= U±(Λ1Λ2) ,

(6.41)

and similarly for translations. On the other hand, Poincaré invariance requires that the physics
be the same in any inertial reference frame, and so we need for the S-matrix elements that

〈Λ~p ′
1,Λ~p

′
2, . . . ,Λ~p

′
n′ − |Λ~p1,Λ~p2, . . . ,Λ~pn+〉 = 〈~p ′

1, ~p
′
2, . . . , ~p

′
n′ − |~p1, ~p2, . . . , ~pn+〉 , (6.42)

where for notational simplicity we considered the case of a single type of scalar particle. Here we
wrote the S-matrix element as the scalar product of in and out momentum eigenstates, which
by Eq. (6.26) are eigenstates of the full Hamiltonian. In and out momentum eigenstates form
two complete sets in the space of scattering states, which we assumed to be the whole of the
Hilbert space of the system. Eq. (6.39) tells us that the left-hand side of this equation, which is
the basic request for Lorentz invariance, can be written as

〈~p ′
1, ~p

′
2, . . . , ~p

′
n′ − |U−(Λ)

†U+(Λ)|~p1, ~p2, . . . , ~pn+〉 = 〈~p ′
1, ~p

′
2, . . . , ~p

′
n′ − |~p1, ~p2, . . . , ~pn+〉 , (6.43)

so that Lorentz invariance is obtained if U+ and U− are in fact the same unitary representation
of the Lorentz group. Here is where Eq. (6.33) comes into play: we have that

U−(Λ)
†U+(Λ) = Ω−U0(Λ)

†Ω†
−Ω+U0(Λ)Ω

†
+ = Ω−U0(Λ)

†SU0(Λ)Ω
†
+

= Ω−U0(Λ)
†U0(Λ)SΩ

†
+ = Ω−SΩ

†
+ = Ω−Ω

†
−Ω+Ω

†
+ = 1 ,

(6.44)

which implies U−(Λ) = U+(Λ) ≡ U(Λ). One similarly proves that U−(a) = U+(a) ≡ U(a).
From infinitesimal transformations we then obtain the exact symmetry generators Pµ, ~J and
~K. We have then found one and the same unitary representation of the Poincaré group acting
on the in and out states of the system, i.e., on the exact energy eigenstates, which transforms
them according to the same transformation law as the corresponding free states. This implies
then that the in and out momentum eigenstates are in fact eigenstates of the exact momentum,
and also of the third component of the angular momentum:

U(a)|~p σ±〉 = e−ia·P |~p σ±〉 = e−ia·p|~p σ±〉 =⇒ Pµ|~p σ±〉 = pµ|~p σ±〉 ,
U(R3(θ))|~p σ±〉 = eiθJ3 |~p σ±〉 = eiθσ|~p σ±〉 =⇒ J3|~p σ±〉 = σ|~p σ±〉 .

(6.45)

It follows from the invariance of the free vacuum under U0(Λ) and U0(a) that the states Ω±|0〉 ≡
|0±〉 are invariant under U(Λ) and U(a): U |0±〉 = UΩ±|0〉 = Ω±U0|0〉 = Ω±|0〉 = |0±〉.

44At least on the subspace of scattering states.

101



These states are normalised to 1. If there were more than one invariant state under the exact
transformations U , say |VAC〉 ≡ |0+〉 and |VAC′〉 with 〈VAC′|VAC〉 = 0, then besides |0〉 =
Ω†
+|VAC〉 there would be another state |0′〉 = Ω†

+|VAC′〉 orthogonal to |0〉 and invariant under
all the U ’s. But |0〉 is the only such state, and so there is no |VAC′〉. This means that |0±〉
must be proportional to each other, |0−〉 = e−iφ|0+〉, with the proportionality constant being
a phase due to the normalisation of these states. This implies that

〈0 − |0+〉 = 〈0|S|0〉 = eiφ . (6.46)

This result could have been obtained more directly from the fact that US|0〉 = SU |0〉 = S|0〉
implies that S|0〉 is an invariant state, normalised to one due to unitarity of S, hence S|0〉 =
eiφ|0〉. Since only |Sfi|2 is physically meaningful, we can ignore this phase, essentially redefining
S so that 〈0|S|0〉 = 1.

6.4 The perturbative expansion: Wick’s theorem

In experiments, the case of the final state coinciding with the initial state is practically impossible
to observe, as it would interfere with the experimental setup. Even if it were possible to consider
this case, it would be impossible to distinguish between the lack of any interaction between the
colliding particle, and the presence of some interaction that however gives a final state coinciding
with the initial one. For these reasons, what is studied in practice is the case of final and initial
states being different. It is then customary to explicitly subtract the no-interaction contribution
to the S-matrix. Furthermore, given that energy and momentum are conserved in a scattering
process, it is convenient to factor out a four-momentum-conserving delta function. One then
writes

Sfi = δfi + i(2π)4δ(4)(Pf − Pi)Mfi , (6.47)

Here initial and final states are taken to be momentum eigenstates, δfi = 〈ϕf |ϕi〉, and the i
factor is conventional. The quantityMfi is the one directly relevant for experiments, as it is the
one entering the practically measurable quantity related to the transition probability, namely the
cross section of the scattering processes. The purpose of the theory to is to provide predictions
for the cross sections, a task which is essentially accomplished once that we have obtainedMfi.
In this subsection we discuss how this can be done in perturbation theory.

The basic assumption of perturbation theory is that the exact matrix element 〈ϕf |S|ϕi〉 can
be well approximated with the lowest-order terms of the expansion of S, Eqs. (6.22) and (6.23).
Subtracting the non-interaction term we have45

〈ϕf |S − 1|ϕi〉 = 〈ϕf |i
∫

d4x : LI(x) : +
i2

2

∫

d4x1

∫

d4x2T {: LI(x1) :: LI(x2) :}+ . . . |ϕi〉 .
(6.48)

The basic object of interest is therefore the matrix element

〈ϕf |
∫

d4x1

∫

d4x2 . . .

∫

d4xnT {: LI(x1) :: LI(x2) : . . . : LI(xn) :} |ϕi〉 . (6.49)

45We adopt the simplified notation LI(x) = LI(φin(x)).
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It is worth noting that thanks to translation invariance, if we denote with Pi and Pf the total
initial and final four momentum, we find

〈ϕf |
∫

d4x1 . . .

∫

d4xnT {: LI(x1) : . . . : LI(xn) :} |ϕi〉

= 〈ϕf |e−ixn·P
∫

d4x1 . . .

∫

d4xnT {: LI(x1 − xn) : . . . : LI(0) :} eixn·P |ϕi〉

=

∫

d4xne
−ixn·(Pf−Pi)

× 〈ϕf |
∫

d4y1 . . .

∫

d4yn−1T {: LI(y1) : . . . : LI(yn−1) :: LI(0) :} |ϕi〉

= (2π)4δ(4)(Pf − Pi)

× 〈ϕf |
∫

d4y1 . . .

∫

d4yn−1T {: LI(y1) : . . . : LI(yn−1) :: LI(0) :} |ϕi〉 ,

(6.50)

i.e., the momentum-conserving delta function discussed above. The matrix elements Eq. (6.49)
can be computed explicitly making use of Wick’s theorem. In the case of a single Hermitian
scalar field, this theorem states the following:

T (ϕ(x1) . . . ϕ(xn)) =

[n2 ]
∑

m=0

{

: ϕ(x1) . . . ϕ(xn−2m) : D(xn−2m+1, xn−2m+2) . . . D(xn−1, xn)

+ other pairings

}

.

(6.51)
Here the sum is over the numberm of pairings of coordinates {x1, . . . , xn}, from 0 to the maximal
possible value, i.e., the integer part

[

n
2

]

of n
2 , and over the all the possible such pairings. The

quantity D(x, y), which we will refer to as the contraction of two fields, or the propagator, is
given by

D(x, y) = 〈0|T (ϕ(x)ϕ(y)) |0〉 = 〈0|e−iy·PT (ϕ(x− y)ϕ(0)) eiy·P |0〉
= 〈0|T (ϕ(x− y)ϕ(0)) |0〉 = D(x− y) .

(6.52)

Notice also that for a real field

D(x− y) = 〈0|T (ϕ(x)ϕ(y)) |0〉 = 〈0|T (ϕ(y)ϕ(x)) |0〉 = D(y − x) . (6.53)

To prove this theorem, and also to understand how it works in practice, we begin with the
simplest case, n = 2. In this case, denoting with ϕ± the positive and negative frequency parts
ofr the field, we have

ϕ(x1)ϕ(x2) = [ϕ+(x1) + ϕ−(x1)][ϕ+(x2) + ϕ−(x2)] =: ϕ(x1)ϕ(x2) : +[ϕ+(x1), ϕ−(x2)]

=: ϕ(x1)ϕ(x2) : +〈0|[ϕ+(x1), ϕ−(x2)]|0〉 =: ϕ(x1)ϕ(x2) : +〈0|ϕ+(x1)ϕ−(x2)|0〉
=: ϕ(x1)ϕ(x2) : +〈0|ϕ(x1)ϕ(x2)|0〉 ,

(6.54)
where we have made use of the fact that [ϕ+(x1), ϕ−(x2)] is a c-number and is thus identical to its
vacuum expectation value, and further modified its expression by including terms that annihilate
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the vacuum and therefore have no effect. Imposing now time ordering, since : ϕ(x1)ϕ(x2) :=:
ϕ(x2)ϕ(x1) : we find

T (ϕ(x1)ϕ(x2)) =: ϕ(x1)ϕ(x2) : +〈0|T (ϕ(x1)ϕ(x2)) |0〉 =: ϕ(x1)ϕ(x2) : +D(x1, x2) . (6.55)

The proof for general n proceeds by induction. Assume that the theorem is true for n fields, and
consider the time-ordered product of n+1 fields. Assume that x01 > x02 > . . . > x0n > x0n+1: if we
prove that it is true in this case, it will be true for any other time ordering, since it would suffice
to relabel the coordinates xj = x′Pj to find the same situation, up to having primed coordinates.
Then

T (ϕ(x1) . . . ϕ(xn)ϕ(xn+1)) = ϕ(x1) . . . ϕ(xn)ϕ(xn+1) = T (ϕ(x1) . . . ϕ(xn))ϕ(xn+1)

=

[n2 ]
∑

m=0

{

: ϕ(x1) . . . ϕ(xn−2m) : D(xn−2m+1, xn−2m+2) . . . D(xn−1, xn)

+ other pairings

}

ϕ(xn+1) .

(6.56)

We have then to compute

: ϕ(x1) . . . ϕ(xn−2m) : ϕ(xn+1) =: ϕ(x1) . . . ϕ(xn−2m) : [ϕ+(xn+1) + ϕ−(xn+1)]

=: ϕ(x1) . . . ϕ(xn−2m)ϕ+(xn+1) : + : ϕ(x1) . . . ϕ(xn−2m) : ϕ−(xn+1)
(6.57)

and variations thereof obtained by permuting {x1, . . . , xn}.46 The general contribution to the
last term in Eq. (6.57), when we write down explicitly the normal ordering, reads

ϕ−(xP(1)) . . . ϕ−(xP(k))ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))ϕ−(xn+1) , (6.58)

with P a permutation of {x1, . . . , xn−2m}. To obtain a normal-ordered product we need to bring
ϕ−(xn+1) to the left, and this is easily seen to yield

ϕ−(xP(1)) . . . ϕ−(xP(k))ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))ϕ−(xn+1)

= ϕ−(xn+1)ϕ−(xP(1)) . . . ϕ−(xP(k))ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))

+ ϕ−(xP(1)) . . . ϕ−(xP(k))[ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m)), ϕ−(xn+1)]

= ϕ−(xn+1)ϕ−(xP(1)) . . . ϕ−(xP(k))

{

ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))

+
n−2m
∑

j=k+1

ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))/ϕ+(xP(j))[ϕ+(xP(j)), ϕ−(xn+1)]

}

= ϕ−(xn+1)ϕ−(xP(1)) . . . ϕ−(xP(k))

{

ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))

+

n−2m
∑

j=k+1

ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))/ϕ+(xP(j))D(xP(j), xn+1)

}

,

(6.59)

46Notice that permutations that affect only {x1, . . . , xn−2m} do not give new terms.
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where in the last passage we made use of the fact that x0P(j) > x0n+1. Here the notation

. . . /ϕ+(xP(j)) means that this field has to be removed from the product. Summing over k
and over permutations P we find

∑

k,P

ϕ−(xP(1)) . . . ϕ−(xP(k))ϕ+(xP(k+1)) . . . ϕ+(xP(n−2m))ϕ−(xn+1)

=: ϕ(x1) . . . ϕ(xn−2m) : ϕ−(xn+1)

=: ϕ−(xn+1)ϕ(x1) . . . ϕ(xn−2m) : +
n−2m
∑

j=1

: ϕ(x1) . . . ϕ(xn−2m)/ϕ(xj) : D(xj , xn+1) ,

(6.60)

and including the term with positive-frequency contribution ϕ+(xn+1) appearing in Eq. (6.57)
we obtain

: ϕ(x1) . . . ϕ(xn−2m) : ϕ(xn+1) =: ϕ(xn+1)ϕ(x1) . . . ϕ(xn−2m) :

+
n−2m
∑

j=1

: ϕ(x1) . . . ϕ(xn−2m)/ϕ(xj) : D(xj , xn+1) ,
(6.61)

which we plug in Eq. (6.56) to find

ϕ(x1) . . . ϕ(xn)ϕ(xn+1)

=

[n2 ]
∑

m=0

{[

: ϕ(x1) . . . ϕ(xn−2m)ϕ(xn+1) : +

n−2m
∑

j=1

: ϕ(x1) . . . ϕ(xn−2m)/ϕ(xj) : D(xj , xn+1)

]

×D(xn−2m+1, xn−2m+2) . . . D(xn−1, xn) + other pairings

}

=

[n2 ]
∑

m=0

{

: ϕ(x1) . . . ϕ(xn−2m)ϕ(xn+1) :

×D(xn−2m+1, xn−2m+2) . . . D(xn−1, xn) + other pairings, xn+1 not contracted

}

+

[n+1
2 ]
∑

m=1

{

: ϕ(x1) . . . ϕ(xn+1−2m) : D(xn−2m+1, xn−2m+2) . . . D(xn, xn+1)

+ other pairings, xn+1 contracted

}

=

[n+1
2 ]
∑

m=0

{

: ϕ(x1) . . . ϕ(xn+1−2m) :

×D(xn−2m+1, xn−2m+2) . . . D(xn, xn+1) + other pairings

}

,

(6.62)
which finally proves the theorem.

The result above is easily generalised to any number of real or complex scalar fields. Denoting
them with ϕa, the only modification to the formula above is that contractions have to be
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considered only for fields of the same type, since [ϕa, ϕb] = 0, and moreover only for ϕa and
its adjoint (which is the field itself in the real case), since for complex fields [ϕa, ϕa] = 0 and

[ϕa, ϕ
†
b] 6= 0.

In the case of interest to us, the fields in the time ordered product are already partially normal
ordered. In this case, contractions have to be considered only among fields belonging to different
normal-ordered block. This is easily understood from the proof we gave above: a contraction
appears only when we try to bring a negative-frequency field to the left of a positive-frequency
field, but this never occurs for fields ina normal-ordered block.

Wick’s theorem can also be generalised to fermions. In that case one has to be aware of the
presence of signs, due to the anticommutation relations between fermion fields. A calculation
similar to Eq. (6.54) shows that

ψ(x1)ψ̄(x2) = [ψ+(x1) + ψ−(x1)][ψ̄+(x2) + ψ̄−(x2)]

= ψ+(x1)ψ̄+(x2) + ψ+(x1)ψ̄−(x2) + ψ−(x1)ψ̄+(x2) + ψ−(x1)ψ̄−(x2)

= ψ+(x1)ψ̄+(x2)− ψ̄−(x2)ψ+(x1) + ψ−(x1)ψ̄+(x2) + ψ−(x1)ψ̄−(x2) + {ψ+(x1), ψ̄−(x2)}
=: ψ(x1)ψ̄(x2) : +〈0|ψ(x1)ψ̄(x2)|0〉 .

(6.63)
Time-ordering for fermions requires the introduction of minus signs, to be consistent with the
anticommutation relations. For two fields,

T (ψ1(x1)ψ2(x2)) = θ(x01 − x02)ψ1(x1)ψ2(x2)− θ(x02 − x01)ψ2(x2)ψ1(x1) , (6.64)

so that T (ψ1(x1)ψ2(x2)) = −T (ψ2(x2)ψ1(x1)). This generalises to

T (ψ1(x1) . . . ψn(xn)) =
∑

P

(−1)σPθ(x0P(1) − x0P(2)) . . . θ(x0P(n−1) − x0P(n))ψP(1)(xP(1)) . . . ψP(n)(xP(n)) ,
(6.65)

where σP is the parity of the permutation P, i.e., the number of transpositions required to obtain
it modulo 2. Defining the contraction for fermion fields,

S(x, y) = 〈0|T
(

ψ(x)ψ̄(y)
)

|0〉 , (6.66)

we have then
T
(

ψ(x1)ψ̄(x2)
)

=: ψ(x1)ψ̄(x2) : +S(x1, x2) . (6.67)

Notice that Eq. (6.66) is the only nontrivial contraction in this case. Notice furthermore that
thanks to translation invariance we have

S(x, y) = 〈0|T
(

ψ(x− y)ψ̄(0)
)

|0〉 = S(x− y) , (6.68)

as in the scalar case. For a general number of fields, Wick’s theorem reads

T
(

ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(yn̄)
)

=

min(n,n̄)
∑

m=0

(−1)σ : ψ(x1) . . . ψ(xn−m)ψ̄(y1) . . . ψ̄(yn̄−m) : S(xn−m+1, yn̄−m+1) . . . S(xn, yn̄)

+ other pairings .
(6.69)
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Here σ is the parity of the permutation that reorders the fields according to

x1, . . . , xn, y1, . . . , yn̄ → x1, . . . , xn−m, y1, . . . , yn̄−m, xn−m+1, yn̄−m+1, . . . , xn, yn̄ . (6.70)

One can show that σ = m(n̄ − m+1
2 ). For the other pairings, the parity of the appropriate

permutation is required, and any exchange of two fields with respect to the term displayed
explicitly in Eq. (6.69) must be paid wiht en extra minus sign. An example will make the

procedure clear. For n = n̄ = 2 one finds (here σ = 2m − m(m+1)
2 , so the corresponding

permutation is odd)

T
(

ψ(x1)ψ(x2)ψ̄(y1)ψ̄(y2)
)

= : ψ(x1)ψ(x2)ψ̄(y1)ψ̄(y2) :

− : ψ(x1)ψ̄(y1) : S(x2, y2)− : ψ(x2)ψ̄(y2) : S(x1, y1)

+ : ψ(x1)ψ̄(y2) : S(x2, y1)+ : ψ(x2)ψ̄(y1) : S(x1, y2)

− S(x1, y1)S(x2, y2) + S(x1, y2)S(x2, y1) .

(6.71)

6.5 Feynman diagrams

Making use of Wick’s theorem one can compute the S-matrix elements, since the matrix elements
of normal-ordered products of fields are easily obtained: they are given by the products of the
coefficients of the annihilation operators that destroy a particle in the initial state, and those
of the creation operators that destroy a particle in the final state, summed over all the possible
ways in which particles and creation/annihilation operators can be paired.

There is a convenient graphic method that allows to easily keep track of the various terms
coming out of the perturbative expansion due to Wick’s theorem. This is the method of Feynman
diagrams, which we now discuss for two different theories.

6.5.1 φ4 theory

Consider the theory of a self-interacting Hermitian scalar field φ, with interaction Lagrangian

LI =
λ

4!
φ4 , (6.72)

where the coupling constant λ is a real parameter that we assume to be small, so to justify the
perturbative expansion of the S-matrix,

〈ϕf |S − 1|ϕi〉 = 〈ϕf |
∞
∑

n=0

in

n!

∫

d4x1 . . .

∫

d4xn T {: LI(x1) : . . . : LI(xn) :} |ϕi〉

=
∞
∑

n=0

1

n!

(

iλ

4!

)n ∫

d4x1 . . .

∫

d4xn 〈ϕf |T
(

: φ(x1)
4 : . . . : φ(xn)

4 :
)

|ϕi〉 .
(6.73)

The matrix elements in the second line of Eq. (6.73) are computed by means of Wick’s theorem,
expanding the time-ordered product in a sum of normal-ordered products. Among the various
terms, only those will contribute that have precisely the same number of fields as particles in
the initial and final states. In fact, writing the normal-ordered product in terms of positive
and negative-frequency parts of the fields, we see that for the matrix element not to vanish.
we need as many positive-frequency components as particles in the initial state, and as many
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negative-frequency components in the final state. In this way, the annihilation operators in the
positive-frequency components, acting on the right, will remove the particles from the initial
state, turning it into the vacuum state. Similarly, the creation operators in negative-frequency
components will act on the left turning the final state into the vacuum state. What remains to
be determined is in how many ways this can be done: for a given normal-ordered product with
the right amount of fields, we can choose in a number of ways from which fields we take the
positive-frequency part and from which we take the negative-fequency part instead, or stated
differently, which fields we will take to act on the initial state and which on the final state. On
top of this, each of the positive-frequency fields can be associated with any of the initial-state
particles, and simialrly for the negative-frequency fields and the final state particles.

The evaluation of the matrix elements has been reduced essentially to a problem in com-
binatorics, which is dealt with most efficiently by means of a graphic device. For each term
i : L (x) : in the S-matrix expansion draw an interaction vertex,

�

x −→ i λ4!

where for the time being we are including the position x of the vertex. Each line correpsonds
to one of the fields appearing in the interaction Lagrangian. To any such vertex it is associated
a numerical factor i λ4! , in correspondence with the numerical factor in front of : φ4 :. We can
now represent each of the terms in Wick’s theorem graphically, by connecting two lines when
the corresponding fields are contracted. Such lines, running between vertices, are the internal
lines of the diagram, and to each such line, running from vertex y to x, there is an associated
factor D(x, y) coming from Wick’s theorem. Since the interaction Lagrangian is normal ordered,
one should not contract two lines coming from the same vertex.47 The remaining uncontracted
lines correspond to the fields appearing in the normal-ordered products in Wick’s theorem, and
for them to contribute to a specific matrix element, they have to be as many as the particles
involved in the process. These lines are the external lines of the diagram, and each of them has
to be associated to an incoming or outgoing particle. To each of them is associated a numerical
factor discussed below.

It is now easy to keep track of the combinatorics. Given a matrix element with specified
incoming and outgoing particles, and given the term in the S-operator expansion with a specified
number of interaction Lagrangians, the contribution of such term to such matrix elements is
obtained by drawing a vertex for each interaction Lagrangian, associating the lines with particles
or connecting them with one another in all the possible ways that satisfy the following two
requirements:

• each particle must be associated with a line;

• all the lines must be either associated with a particle or connected with one another.

In other words, there must be an external line for each particle and viceversa, and each line must
be either an external line or an internal line of the diagram. We may call these the admissible
diagrams.

47This takes care of the problem of tadpole diagrams, which would yield a divergent contribution to the matrix
elements, and would have to be subtracted anyway.
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What is left at this point is evaluating the effect of fields on the particle states. To each
diagram corresponds a specific way of associating the unpaired fields to the particles, which
in turn corresponds to one of the contributions to the matrix element of the normal-ordered
product between the initial and final particle states. Each of these contributions is obtained by
letting the annihilation and creation operators act on the particle states, and selecting the term
with the chosen particle/field association. One begins with

A = 〈~p ′
1, . . . , ~p

′
n′ | : φ(x1) . . . φ(xm) : |~p1, . . . , ~pn〉 , (6.74)

where some of the x1, . . . , xm can be the same vertex, and where one must have m = n + n′,
otherwise the matrix element vanishes. Choosing which fields act on the initial particles and
which on the final particles corresponds to choosing for which xj we take the positive-frequency
part of the field, and for which we take the negative-frequency one. The matrix element A in
Eq. (6.74) decomposes then in a sum of terms,

A =
∑

P

〈~p ′
1, . . . , ~p

′
n′ |φ−(xP(1)) . . . φ−(xP(n′))φ+(xP(n′+1)) . . . φ+(xP(n′+n))|~p1, . . . , ~pn〉

=
∑

P

〈~p ′
1, . . . , ~p

′
n′ |φ−(xP(1)) . . . φ−(xP(n′))|0〉〈0|φ+(xP(n′+1)) . . . φ+(xP(n′+n))|~p1, . . . , ~pn〉 ,

(6.75)
where in the second line we have included the projector on the vacuum state |0〉〈0| at no cost,
since no particle should remain after the annihilation and creation operators have done their job
of removing particles from the initial and final states, respectively. We are then left with the
task of evaluating matrix elements of the type

B = 〈0|φ+(x1) . . . φ+(xl)|~p1, . . . , ~pl〉 , (6.76)

Any factor in Eq. (6.75) is obtained either by an appropriate labelling of vertices, or by taking the
complex conjugate 〈0|φ+(x1) . . . φ+(xl)|~p1, . . . , ~pl〉∗ = 〈~p1, . . . , ~pl|φ−(x1) . . . φ−(xl)|0〉.48 Now,

B =

∫

dΩq1 . . .

∫

dΩql e
−iq1·x1 . . . e−iql·xl〈0|a(~q1 ) . . . a(~ql )a(~p1 )† . . . a(~pl )†|0〉

=

∫

dΩq1 . . .

∫

dΩql e
−iq1·x1 . . . e−iql·xl〈0|[a(~q1 ), [. . . , [a(~ql ), a(~p1 )† . . . a(~pl )†]]]|0〉 .

(6.77)

The multiple commutator can be computed to give

[a(~q1 ), [. . . , [a(~ql ), a(~p1 )
† . . . a(~pl )

†]]]

=
∑

j

[a(~q1 ), [. . . , [a(~ql−1 ), a(~p1 )
† . . . a(~pj−1 )

†a(~pj+1 )
† . . . a(~pl )

†]]](2π)32p0jδ
(3)(~ql − ~pj )

=
∑

P

∏

j

(2π)32p0jδ
(3)(~qj − ~pP(j) ) ,

(6.78)

where the sum is over permutations of {1, . . . , l}, corresponding to all the possible ways of pairing
the annhilation and creation operators. The matrix element B becomes then

B =

∫

dΩq1 . . .

∫

dΩql e
−iq1·x1 . . . e−iql·xl

∑

P

∏

j

(2π)32p0jδ
(3)(~qj − ~pP(j) )

=
∑

P

∏

j

e−ipP(j)·xj =
∑

P

∏

j

〈0|φ+(xj)|~pP(1) 〉 .
(6.79)

48We have used the commutativity of the negative-frequency fields to reorder them.
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Each permutation corresponds to a specific way of associating the external lines with the colliding
particles, so it corresponds to a specific diagram. In such a diagram we then have to include the
following factor for an incoming particle with momentum ~p associated to a field φ(x) coming
out of vertex x,

〈0|φ(x)|~p 〉 = 〈0|φ+(x)|~p 〉 =
∫

dΩq e
−iq·x〈0|a(~q )|~p 〉 =

∫

dΩq e
−iq·x〈0|a(~q )a(~p )†|0〉

=

∫

dΩq e
−iq·x〈0|[a(~q ), a(~p )†]|0〉 =

∫

dΩq e
−iq·x(2π)32p0δ(3)(~q − ~p )〈0|0〉 = e−ip·x .

(6.80)

Similarly, we have to include the following factor for an outgoing particle with momentum ~p
associated to a field φ(x) coming out of vertex x,

〈~p |φ(x)|0〉 = 〈~p |φ−(x)|0〉 =
∫

dΩq e
iq·x〈~p |a(~q )†|0〉 =

∫

dΩq e
iq·x〈0|a(~p )a(~q )†|0〉

=

∫

dΩq e
iq·x〈0|[a(~p ), a(~q )†]|0〉 =

∫

dΩq e
iq·x(2π)32p0δ(3)(~q − ~p )〈0|0〉 = eip·x .

(6.81)

Let us summarise our discussion, and give the Feynman rules in coordinate space. Given an S-
matrix element with n incoming and n′ outgoing particles of specified momenta, and a specified
term in its perturbative expansion with v interaction Lagrangians, we proceed as follows for its
evaluation.

• Draw all possible (and admissible) diagrams with v interaction vertices at x1,. . . ,xv and
n+ n′ external lines, associated with the colliding particles;

• include a factor i λ4! for each vertex;

• include a factor D(xi, xj) (propagator from xj to xi) for each internal line running from
xj to xi, associated with the contraction 〈0|T (φ(xi)φ(xj)) |0〉;

• for each incoming particle, include a factor e−ipi·xj if particle ~pi is attached to an external
line coming from the vertex xj ;

• for each outogoing particle, include a factor eipi·xj if particle ~pi is attached to an external
line coming from the vertex xj ;

• integrate over the position of the vertices;

• sum up all the contributions including the factor 1/v!.

The last two passages complete the calculation since the previous ones, discussed in detial above,
only evaluate the matrix elements of the time-ordered product of interaction Lagrangians.

When considering all the possible contributions at a given perturbative order, one typically
encounters many identical terms. A source of degeneracy is the association between fields and
external particles: for a given topology of the diagram it does not matter which of the four
fields in a vertex is actually associated to a given particle, since one always obtains the same
contribution. Similarly, when contracting fields from two vertices to form internal lines, one
obtains the same factor now matter which of the fields are used. Finally, diagrams which before
integration differ only by the labelling of the vertices will yield the same contribution to the
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matrix element, since the position of the vertices is integrated over. Unless a diagram has special
symmetries, the first two sources of degeneracy yield a factor 4! for each vertex, since the fields
in each vertex can be freely permuted yielding the same contribution. This cancels out the factor
1
4! associated to each vertex. The last source of degeneracy instead, again in the case of absence
of special symmetries, yields a factor v! corresponding to all possible relabellings, which cancels
out the factor 1

v! .
It is possible, nonetheless, that permuting fields or vertices (before integration) does not

yield a new and equivalent diagram, but just the same diagram. This is the case, for exam-
ple, if two pairs of fields from two vertices are contracted: of the four ways of ordering the
two pairs of fields, only two correspond to different contractions. For the sake of clarity label
these fields as φ1(x), φ2(x) and φ1(y), φ2(y). In general one expects a degeneracy factor 2 × 2
from independent permutations of the fields from the two vertices. When contracting the two
pairs together, however, one can only form the combinations [(φ1(x), φ1(y)), (φ2(x), φ2(y))] and
[(φ1(x), φ2(y)), (φ2(x), φ1(y))], since exchanging the fields in both vertices does not give a new
combination.49 Similarly, this happens if two vertices in a diagram are not only equivalent
but topologically identical. For example, one may have two vertices with all the four fields
contracted together. In this case there is no difference between the two vertices, and exchang-
ing their labels gives rise to exactly the same diagram. The bottom line of this discussion is
that symmetry factors should be evaluated by carefully counting the possible ways to obtain
topologically equivalent diagrams. We will see how to to this in practice in a couple of examples.

To proceed further in the evaluation of matrix elements, recall from the previous subsection
that for the contraction we have D(x, y) = D(x − y) thanks to translation invariance. We can
then write it as a Fourier transform with respect to a single momentum,

D(x− y) =
∫

d4p

(2π)4
e−ip·(x−y)D̃(p) . (6.82)

To each internal line D(x, y) we can then associate a momentum p flowing from y to x. Using
this representation we can carry out explicitly the integrations over the position of vertices.
Suppose a vertex x is attached to incoming particles ~p1,. . . ~pn and outgoing particles ~p ′

1,. . . ~p
′
n, and

furthermore to internal lines D(x, y1),. . . ,D(x, ym) and D(z1, x),. . . ,D(zm′ , x). Using Eq. (6.82),
we can write the internal line contributions as

D(x− yj) =
∫

d4qj
(2π)4

e−iqj ·(x−yj)D̃(qj) ,

D(zj − x) =
∫

d4kj
(2π)4

e−ikj ·(zj−x)D̃(kj) .

(6.83)

Exchanging the order of integrations over internal momenta and positions of the vertices, we
can isolated the factors that depend on x and perform the corresponding integration. there are
factors e−ipj ·x for the incoming particles, e−ip

′
j ·x for the outgoing particles, e−iqj ·x for incoming

internal lines and eikj ·x for outgoing internal lines.50 The integration is straightforward, and
yields
∫

d4x e−i
∑

j pj ·xei
∑

j p
′
j ·xe−i

∑
j qj ·xei

∑
j kj ·x = (2π)4δ(4)

(

∑

pj −
∑

p′j +
∑

qj −
∑

kj

)

. (6.84)

49One obtains [(φ2(x), φ2(y)), (φ1(x), φ1(y))] (φ2(x), φ1(y)), [(φ1(x), φ2(y))], but the square brackets correspond
to unordered pairs, so these do not differ from the previous ones.

50 The distinction between incoming and outgoing lines is actually irrelevant for the Hermitian scalar field, but
it becomes important for the charged scalar field and the Dirac field.
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Having assigned momenta to the internal lines, this relation simply establishes the conservation
of four-momentum at each interaction vertex. What is left to do now is to collect all the
momentum-conserving delta functions, include all the factors D̃(q) from each contraction, and
integrate over the interanl momenta. Together with the sum over topologically distinct diagrams
multiplied by the appropriate symmetry factors, this completes the evaluation of a given matrix
element at the desired perturbative order.

We can at this point give a new set of rules, the Feynman rules in momentum space, to
evaluate S-matrix elements. Before doing this, it is high time we defined more precisely the
concept of topologically equivalent diagrams. Two diagrams are topologically equivalent if they
can be deformed into one another continuously, i.e., without cutting or glueing parts of the
diagram. For example, exchanging two external lines coming from the same vertex gives a
topologically equivalent diagram; exchanging the position of two vertices while keeping the same
connections ot external particles and other vertices gives a topologically equivalent diagram;
rotating or reflecting a diagram gives an equivalent one; and so on. Let now the colliding
particles and the perturbative order be specified as before.

• Draw all possible, admissible and topologically distinct diagrams with v interaction vertices
and n+n′ external lines associated with the colliding particles. Vertices have now no labels;

• associate four-momenta to external and internal lines: for the external lines, associate a
four-momentum equal to that of the corresponding particle, flowing in the vertex if the
particle is in the initial state and flowing out of the vertex if the particle is in the final
state; for internal lines, let it flow along the direction of the internal line (which in the
case at hand is completely arbitrary; see however footnote 50);

• for each vertex, include a factor i λ4! and a a momentum-conserving delta function,

(2π)4δ(4)(pi − po + qi − qo) ,

where pi and po are the sum of the four-momenta of incoming and outgoing particles
attached to the vertex, respectively, and qi and qo are the sum of momenta of internal
lines flowing respectively in or out of the vertex;

• for each internal line of momentum q, include a factor D̃(q) (propagator in momentum
space);

• for each external line associate a factor 1;

• integrate over all internal momenta;

• sum up all the contributions including the factor 1/v!.

Since four-momentum is conserved at every vertex, it follows that the four-momentum flowing
in from the incoming particles is equal to the four-momentum flowing out with the outgo-
ing particles. We can then trade one of the delta functions at the vertices with an overall,
momentum-conserving delta function (2π)4δ(4)(Pf − Pi). If we also factor out one i, what we
obtain is the matrix elementMfi introduced in Eq. (6.47). At this point we have all the tools
we need to evalute matrix elements, except for the explciit expression of the propagator. This
will be discussed later, as it is needed only when the explicit value of the matrix element will be
needed.
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It is now time to discuss a couple of examples to make the general discussion given above
more concrete. Consider the matrix element 〈~p ′|S − 1|~p 〉.51 This vanishes to first order in the
coupling constant, as 〈~p ′| : φ(x)4 : |~p 〉 = 0, since there are too many fields and too few particles.
To second order we have to evaluate

1

2

(

iλ

4!

)2 ∫

d4x

∫

d4y 〈~p ′|T
(

: φ(x)4 :: φ(y)4 :
)

|~p 〉 . (6.85)

Of all the terms obtained via Wick’s theorem, only : φ(x)φ(y) : D(x− y)3 has a nonzero matrix
element here; such a term can be obtained in 4× 4! ways. Moreover, one sees that

〈~p ′| : φ(x)φ(y) : |~p 〉 = 〈~p ′|φ−(x)φ+(y) + φ−(y)φ+(x)|~p 〉 = ei(p
′·x−py) + ei(p

′·y−px) , (6.86)

and the two terms give the same contribution after integration, so that all in all

1

2

(

iλ

4!

)2 ∫

d4x

∫

d4y 〈~p ′|T
(

: φ(x)4 :: φ(y)4 :
)

|~p 〉

=
(iλ)2

3!

∫

d4x

∫

d4yei(p
′·x−py)D(x− y)3

=
(iλ)2

3!

∫

d4x

∫

d4y

∫

dΩq1

∫

dΩq2

∫

dΩq3 e
i(p′·x−py)e−i(q1+q2+q3)·(x−y)D̃(q1)D̃(q2)D̃(q3)

=
(iλ)2

3!

∫

dΩq1

∫

dΩq2

∫

dΩq3 (2π)
4δ(4)(p′ − q1 − q2 − q3)

× (2π)4δ(4)(p− q1 − q2 − q3)D̃(q1)D̃(q2)D̃(q3)

= i(2π)4δ(4)(p′ − p)
[

iλ2

3!

∫

dΩq1

∫

dΩq2D̃(q1)D̃(q2)D̃(p− q1 − q2)
]

,

(6.87)
where the term in square brackets is the contribution toMfi.

Let us now do the evaluation via Feynman diagrams, beginning with the coordinate-space
formulation. There is only one diagram with two vertices and two external lines, up to relabelling
the vertices, see Fig. 1 (left). To count the degeneracy of the diagram, we proceed as depicted
in Fig. 2. We first choose to attach ~p to vertex y, and then associate it with one of its four lines:
this can be done in 4 ways. We now have to attach ~p ′ to vertex x, assocating it with one of
its four lines: this can also be done in 4 ways. We then have to contract the remaining lines
os that none is left out. We pick one of the three lines left from y and contract it with one of
the three coming from x: this can be done in 3 ways. We next pick one of the two remaining
lines in y and attach it to one of the two remaining lines in x: this can be done in 2 ways. The
remaining lines from y and x must be contracted together. We can then repeat the procedure
choosing instead to attach ~p to x and ~p prime to y. This is a different diagram since the external
particles are attached to different vertices in the two cases; it is however an equivalent diagram
since vertex labels do not matter for the final result. All in all we obtain a factor of 2× 44!. We
then associate e−ip·y to the external line attached to the incoming particle, eip

′·x to the external
line attached to the outgoing particle, and D(x− y) to each of the internal lines connecting y to

51Since S|~p 〉 transforms under Lorentz transformations as a one-particle state due to [U0(Λ), S] = 0, and since
four-momentum is conserved, S|~p 〉 must equal |~p 〉 up to a multiplicative phase factor. Here we are interested in
the Feynman diagrams obtained at a given perturbative order.
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Figure 1: Diagram for the lowest-order nonzero 1→ 1 S-matrix element.
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Figure 2: Degeneracy counting for the diagram.

x. Together with the degeneracy factor and integrating over the position of vertices we obtain
the second line in Eq. (6.87).

In the momentum space formulation the relevant diagram is given in Fig. 1 (right), differing
from the coordinate-space one by the absence of vertex labels and by the association of momenta
to the internal lines. This must be done so that momentum is conserved at each vertex. The
degeneracy counting is similar to the one in coordinate space, the only difference being that since
we have no labels for the vertices, the assignement of an external line to the incoming particle
~p can be done in 8 ways, while the assignement of an external line to the outgoing particle can
now be done only in 4 ways, since it has to be attached to a different vertex. The rest of the
argument is as before. We then write down all the factors associate to the diagram, integrate
over the internal momenta which are not fixed by the delta functions, and obtain the last line
of Eq. (6.87).

A more interesting matrix element is that for the 2→ 2 elastic scattering process,

〈~p ′
1, ~p

′
2|S − 1|~p1, ~p2 〉 . (6.88)

To lowest order one easily finds by direct computation

〈~p ′
1, ~p

′
2|S − 1|~p1, ~p2 〉 =

iλ

4!

∫

d4x 〈~p ′
1, ~p

′
2| : φ(x)4 : |~p1, ~p2 〉

= i(2π)4δ(4)(p′1 + p′2 − p1 − p2)λ .
(6.89)

To lowest order,Mfi = λ. The calculation via Feynman rules is straighforward: in coordinate
space we have to draw one vertex and associate its lines with the colliding particles; no line
remains for contractions (which are not allowed anyway due to normal ordering). There are 4!
ways of attaching the lines to the external particles, and each of them give the same contribution,
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Figure 3: Diagrams for the lowest and next-to-lowest order 2→ 2 S-matrix element.

so

〈~p ′
1, ~p

′
2|S − 1|~p1, ~p2 〉 =

iλ

4!
4!

∫

d4x ei(p
′
1+p

′
2−p1−p2)·x = i(2π)4δ(4)(p′1 + p′2 − p1 − p2)λ . (6.90)

The momentum space calculation is even faster: no internal lines means no propagators and
no internal momenta to integrate over, the only delta function associated to a vertex is exactly
the one giving the overall conservation of four-momentum, and the resultMfi = λ is obtained
by just taking into account the combinatorics. The next perturbative order is less trivial, and
we compute it directly by making use of Feynman rules in momentum space. There are three
topologically distinct ways of attaching four particles ot the lines coming out of two interaction
vertices,52 depicted in Fig. The degeneracy factor is evaluted as outlined above, and it is
8 × 4 × 3 × 2 = (4!)2 for each of the diagrams, which multiplied by the numerical prefactor
1
2

1
(4!)2

gives 1
2 . Conservation of momentum at each vertex leaves only one internal momentum

to integrate, and the final expression forMfi is thus

Mfi|O(λ2) =
iλ2

2

∫

d4q
{

D̃(q)D̃(p1 + p2 − q) + D̃(q)D̃(p1 − p′1 − q) + D̃(q)D̃(p1 − p′2 − q)
}

.

(6.91)

6.5.2 Yukawa coupling

Consider next a theory containing a real scalar field and a complex Dirac field, of massesM and
m respectively, coupled via the following interaction vertex (Yukawa coupling),

LI(x) = gψ̄(x)ψ(x)φ(x) . (6.92)

The Feynman rules discussed in the previous subsection can be extended to include fermionic
fields. In this case, however, we have to distinguish between the two fermionic lines coming out
of a vertex, since one corresponds to ψ and the other to its Dirac conjugate ψ̄. Making use of the

52Here we consider only connected diagrams, i.e., diagrams that have no disjoint subdiagrams.
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perturbative expansion of the S-matrix and of Wick’s theorem, we reduce the problem to the
evaluation of matrix elements of normal-ordered products of fields between the initial and final
particle states. The only differences with the previous subsection is that now we have to keep
track of the minus signs appearing when exchanging two fermionic fields, and that the action of
a field on a one-particle state brings about the appropriate Dirac spinor corresponding to the
particle. It is convenient to discuss these issues in a practical case. Consider the lowest-order
contribution to the S-matrix element for elastic scattering of two fermions,53

F = 〈~p ′
1s

′
1, ~p

′
2s

′
2|S − 1|~p1s1, ~p2s2 〉

=
(ig)2

2

∫

d4x

∫

d4y 〈~p ′
1s

′
1, ~p

′
2s

′
2|T

(

: ψ̄(x)ψ(x)φ(x) :: ψ̄(y)ψ(y)φ(y) :
)

|~p1s1, ~p2s2 〉 .
(6.93)

All the fermion fields have to be used to destroy particles in the initial and final state, so the
only term that survives in the Wick expansion is

F =
(ig)2

2

∫

d4x

∫

d4y D(x− y)〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄(x)ψ(x)ψ̄(y)ψ(y) : |~p1s1, ~p2s2 〉 . (6.94)

No minus sign has appeared yet, since the ordering of the fields is exactly as in the time-ordered
product. Writing now the normal-ordered product in Eq. (6.94) in terms of positive and negative
frequency components, we realise that the only term that contribute is that in which we take
the positive-frequency component of ψ(x) and ψ(y), to destroy the particles in the initial state,
and the negative-frequency component of ψ̄(x) and ψ̄(y), to destroy the particles in the final
state,

〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄(x)ψ(x)ψ̄(y)ψ(y) : |~p1s1, ~p2s2 〉

= 〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄−(x)ψ+(x)ψ̄−(y)ψ+(y) : |~p1s1, ~p2s2 〉

= 〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄−α(x)ψ+α(x)ψ̄−β(y)ψ+β(y) : |~p1s1, ~p2s2 〉

= 〈~p ′
1s

′
1, ~p

′
2s

′
2|ψ̄−β(y)ψ̄−α(x)ψ+α(x)ψ+β(y)|~p1s1, ~p2s2 〉

= 〈~p ′
1s

′
1, ~p

′
2s

′
2|ψ̄−β(y)ψ̄−α(x)|0〉〈0|ψ+α(x)ψ+β(y)|~p1s1, ~p2s2 〉 ,

(6.95)

where in the third line we have made explciit the Dirac index of the fermionic fields, in the
fourth line we have reordered the fields, with no extra sign since ψ̄−(y) has been moved left past
two fields, and in the last passage we have conveniently inserted the vacuum projector at no
cost. We now have to evaluate the simple matrix elements

〈0|ψ+(x)ψ+(y)|~p1s1, ~p2s2 〉 , 〈~p ′
1s

′
1, ~p

′
2s

′
2|ψ̄−(y)ψ̄−(x)|0〉 . (6.96)

53There is no O(g) contribution since there are four external particles and only two fermionic fields.
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For the first one we find

〈0|ψ+(x)ψ+(y)|~p1s1, ~p2s2 〉 = 〈0|ψ+(x)ψ+(y)bs1(~p1 )
†bs2(~p2 )

†|0〉

=

∫

dΩq1

∫

dΩq2
∑

t1

∑

t2

ut2(~q2 )ut1(~q1 )e
−i(q2·x+q1·y)〈0|bt2(~q2 )bt1(~q1 )bs1(~p1 )†bs2(~p2 )†|0〉

=

∫

dΩq1

∫

dΩq2
∑

t1

∑

t2

ut2(~q2 )ut1(~q1 )e
−i(q2·x+q1·y)〈~q1t1, ~q2t2|~p1s1, ~p2s2 〉

=

∫

dΩq1

∫

dΩq2
∑

t1

∑

t2

ut2(~q2 )ut1(~q1 )e
−i(q2·x+q1·y)(2π)32p01(2π)

32p02

×
[

δs1t1δs2t2δ
(3)(~p1 − ~q1 )δ(3)(~p2 − ~q2 )− δs1t2δs2t1δ(3)(~p1 − ~q2 )δ(3)(~p2 − ~q1 )

]

= us2(~p2 )us1(~p1 )e
−i(p2·x+p1·y) − us1(~p1 )us2(~p2 )e−i(p1·x+p2·y) .

(6.97)
Recall that us(~p ) carries a Dirac index α, usα(~p ) so that the spinorial factors above are not the
same. Explicitly,

〈0|ψ+α(x)ψ+β(y)|~p1s1, ~p2s2 〉 = us2α(~p2 )us1β(~p1 )e
−i(p2·x+p1·y) − us1α(~p1 )us2β(~p2 )e−i(p1·x+p2·y) .

(6.98)
A similar calculation yields

〈~p ′
1s

′
1, ~p

′
2s

′
2|ψ̄−β(y)ψ̄−α(x)|0〉 = ūs′2α(~p

′
2 )ūs′1β(~p

′
1 )e

i(p′2·x+p
′
1·y) − ūs′1α(~p

′
1 )ūs′2β(~p

′
2 )e

i(p′1·x+p
′
2·y) .
(6.99)

Putting the two pieces together we find

〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄(x)ψ(x)ψ̄(y)ψ(y) : |~p1s1, ~p2s2 〉

= ūs′2(~p
′
2 )us2(~p2 )ūs′1(~p

′
1 )us1(~p1 )e

i[(p′2−p2)·x+(p′1−p1)·y]

− ūs′2(~p
′
2 )us1(~p1 )ūs′1(~p

′
1 )us2(~p2 )e

i[(p′2−p1)·x+(p′1−p2)·y] + x↔ y .

(6.100)

The contribution to the S-matrix element of the term with x and y exchanged is obviously the
same, since D(x) = D(−x). We can then write

F = (ig)2
∫

d4x

∫

d4y D(x− y)
{

ūs′1(~p
′
1 )us1(~p1 )ūs′2(~p

′
2 )us2(~p2 )e

i(p′2−p2)·xei(p
′
1−p1)·y

− ūs′2(~p
′
2 )us1(~p1 )ūs′1(~p

′
1 )us2(~p2 )e

i(p′2−p1)·xei(p
′
1−p2)·y

}

.

(6.101)

Using the momentum representation for the scalar propagator we can integrate over the position
of the vertices and get finally

F = (ig)2(2π)4δ(4)(p′1 + p′2 − p1 − p2)
{

ūs′1(~p
′
1 )us1(~p1 )ūs′2(~p

′
2 )us2(~p2 )D̃(p1 − p′1)

− ūs′2(~p
′
2 )us1(~p1 )ūs′1(~p

′
1 )us2(~p2 )D̃(p1 − p′2)

}

.

(6.102)

We are now ready to formulate the first part of the Feynman rules for theories with fermions.

• An interaction vertex consists of one dashed line, one line with an arrow pointing towards
the vertex and one line with an arrow pointing away from the vertex: the dashed line
corresponds to the scalar field,54 the ingoing directed line to the field ψ and the outgoing

54We use a dashed rather than a solid line to make more clear the difference between scalr and fermionic lines.
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Figure 4: Diagrams for the lowest order 2→ 2 fermion scattering S-matrix element.

on to the field ψ̄. It comes with the numerical factor ig.

• In coordinate space, associate a factor us(~p )e
−ip·x to an incoming particle attached to

vertex x, which corresponds to an fermion line entering the vertex, and associate a factor
ūs′(~p

′ )eip
′·x to an outgoing particle attached to the same vertex x, which corresponds to

a fermion line leaving the vertex. The Dirac index of the spinors is contracted between
ūs′(~p

′ ) and us(~p ), so it can be thought to “flow” along the fermionic lines in the direction
opposite to that of the arrows. In momentum space, associate only the spinors to the
particles, and a momentum-conserving delta function to each vertex.

• A relative minus sign has to be included for diagrams that differ by the exchange of two
external lines, which corresponds to the exchange of two fermions in a multiparticle state.

The scalar field is treated as above in the φ4 theory. The Feynman diagrams relevant to this
scattering matrix element are shown in Fig. 4.

Consider next the elastic scattering of a fermion and an antifermion. To lowest order,

F = 〈~p ′
1s

′
1, ~p

′
2s

′
2|S − 1|~p1s1, ~p2s2 〉

=
(ig)2

2

∫

d4x

∫

d4y 〈~p ′
1s

′
1, ~p

′
2s

′
2|T

(

: ψ̄(x)ψ(x)φ(x) :: ψ̄(y)ψ(y)φ(y) :
)

|~p1s1, ~p2s2 〉

=
(ig)2

2

∫

d4x

∫

d4y D(x− y)〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄(x)ψ(x)ψ̄(y)ψ(y) : |~p1s1, ~p2s2 〉 ,

(6.103)

where we have already made use of Wick’s theorem. In the normal ordered product we need a
positive-frequency field ψ+ for the initial fermion, a positive-frequency field ψ̄+ for the initial
antifermion, a negative-frequency field ψ̄− for the final fermion, and a negative-frequency field
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ψ− for the final antifermion. The terms that contribute are then

〈~p ′
1s

′
1, ~p

′
2s

′
2| : ψ̄(x)ψ(x)ψ̄(y)ψ(y) : |~p1s1, ~p2s2 〉

= 〈~p ′
1s

′
1, ~p

′
2s

′
2|
{

: ψ̄+(x)ψ(x)+ψ̄−(y)ψ−(y) : + : ψ̄+(x)ψ(x)−ψ̄−(y)ψ+(y) :

+ : ψ̄−(x)ψ(x)+ψ̄+(y)ψ−(y) : + : ψ̄−(x)ψ(x)−ψ̄+(y)ψ+(y) :
}

|~p1s1, ~p2s2 〉
= 〈~p ′

1s
′
1, ~p

′
2s

′
2|
{

ψ̄−(y)ψ−(y)ψ̄+(x)ψ(x)+ − ψ̄−(y)ψ(x)−ψ̄+(x)ψ+(y)

− ψ̄−(x)ψ−(y)ψ̄+(y)ψ(x)+ + ψ̄−(x)ψ(x)−ψ̄+(y)ψ+(y)
}

|~p1s1, ~p2s2 〉
= 〈~p ′

1s
′
1, ~p

′
2s

′
2|ψ̄−(x)ψ−(x)|0〉〈0|ψ̄+(y)ψ(y)+|~p1s1, ~p2s2 〉

− 〈~p ′
1s

′
1, ~p

′
2s

′
2|ψ̄−(y)ψ(x)−|0〉〈0|ψ̄+(x)ψ+(y)|~p1s1, ~p2s2 〉+ x↔ y .

(6.104)

Terms differing only by the exchange of x and y give the same result after integration, so we
need consider only the two terms written explicitly here. It is straightforward to show that

〈0|ψ̄+α2(x2)ψ(x1)+α1 |~p1s1, ~p2s2 〉

=

∫

dΩq1

∫

dΩq2
∑

t1

∑

t2

v̄t2α2(~q2 )ut1α1(~q1 )e
−i(q2·x2+q1·x1)〈~q1t1, ~q2t2|~p1s1, ~p2s2 〉

=

∫

dΩq1

∫

dΩq2
∑

t1

∑

t2

v̄t2α2(~q2 )ut1α1(~q1 )e
−i(q2·x2+q1·x1)

× δt1s1(2π)32p01δ(3)(~p1 − ~q1 )δt2s2(2π)32p02δ(3)(~p2 − ~q2 )
= v̄s2α2(~p2 )us1α1(~p1 )e

−i(p2·x2+p1·x1) ,

(6.105)

and similarly that

〈~p ′
1s

′
1, ~p

′
2s

′
2|ψ̄−α1(x1)ψ−α2(x2)|0〉 = ūs′1α1

(~p ′
1 )vs′2α2

(~p ′
2 )e

i(p′2·x2+p
′
1·x1) . (6.106)

Putting all the pieces together we find

F = (ig)2
∫

d4x

∫

d4y D(x− y)
{

ūs′1(~p
′
1 )vs′2(~p

′
2 )v̄s2(~p2 )us1(~p1 )e

i[(p′1+p
′
2)·x−(p1+p2)·y]

− ūs′1(~p
′
1 )us1(~p1 )v̄s2α2(~p2 )vs′2α2

(~p ′
2 )e

i[(p′2−p2)·x+(p′1−p1)·y]

}

.

(6.107)

It is now easy to go over to momentum space and write

F = i(2π)4δ(4)(p′1 + p′2 − p1 − p2)ig2
{

ūs′1(~p
′
1 )vs′2(~p

′
2 )v̄s2(~p2 )us1(~p1 )D̃(p1 + p2)

− ūs′1(~p
′
1 )us1(~p1 )v̄s2α2(~p2 )vs′2α2

(~p ′
2 )D̃(p1 − p′1)

}

.

(6.108)

We have then learnt a new Feynman rule.

• In coordinate space, associate a factor v̄s(~p )e
−ip·x to an incoming antiparticle attached

to vertex x, which corresponds to a fermion line leaving the vertex, and associate a fac-
tor vs′(~p

′ )eip
′·x to an outgoing antiparticle attached to vertex x, which corresponds to a

fermion line entering the vertex. The Dirac index is contracted between spinors attached
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Figure 5: Diagrams for the lowest order 2→ 2 fermion-antifermion scattering S-matrix element.

to the same vertex, no matter if they correspond to particles or antiparticles, and “flows”
along the fermionic lines in the direction opposite to that of the arrows. In momentum
space, associate only the spinors to the antiparticles, and a momentum-conserving delta
function to each vertex.

The diagrams corresponding to Eq. (6.108) are shown in Fig. 5, and applying the rules described
so far one finds straighforwardly all the pieces of the formula, except for the relative minus sign
between the diagrams. To understand why there is such a sign, let us go back to the case
of fermio-fermion scattering. There, the diagram with the plus sign is that in which the first
particle in the initial state and the first particle in the final state are connected to the first
vertex,55 and similarly the other two particles are connected to the second vertex. In this case
the negative-frequency component of the field p̄si in the first vertex has to go past both fields in
the second vertex, so that one gets a factor (−1)2 = 1, to be the first operator acting on the final
state to annihilate the first particle, which gives no further minus signs. The positive-frequency
component of ψ at the same vertex is the first operator acting on the initial state, so no extra
sign appears when it annihilates the first particle. The negative-frequency component of the
field p̄si in the second vertex is now in the right position to annihilate the second particle in
the final state, and the positive-frequency component of ψ in the same vertex is in the right
position to annihilate the second particle in the initial state: no extra sign appears, and overall
we have a plus sign. In the other diagram the two ψ̄− are exchanged, and a relative minus sign
appears. In fermion-antifermion scattering, the fields are in the right position when ψ+ and
p̄si+ from the first vertex act on the initial state and ψ− and p̄si− from the second vertex act
on the final state. When we bring the negative-frequency component of ψ̄ in the first vertex to
act on the particle in the final state, we have to move it past both fields in the other vertex, and
so there is no minus sign. Instead, when we bring the negative-frequency component of ψ in the
second vertex to act on the antiparticle in the final state, it has to move past the field ψ̄ in the
same vertex, and this must be paid with a minus sign. In the case of antifermion-antifermion
scattering this happens twice, so the diagrams are the same as in Fig. (4) with the orientation
of the arrows reversed, but with the same signs for the two diagrams.

We still have to discuss internal fermion lines. To this end, let us consider fermion-antifermion
annihilation into two scalars. The lowest-order contribution to the corresponding S-matrix

55The choice of which of the two vertices is the first is conventional and irrelevant, since exchanging completely
two vertices does not bring about any minus signs.

120



element is

F = 〈~q1, ~q2|S − 1|~p1s1, ~p2s2 〉

=
(ig)2

2

∫

d4x

∫

d4y 〈~q1, ~q2|T
(

: ψ̄(x)ψ(x)φ(x) :: ψ̄(y)ψ(y)φ(y) :
)

|~p1s1, ~p2s2 〉

=
(ig)2

2

∫

d4x

∫

d4y 〈~q1, ~q2| : ψ̄α(x)ψβ(y)φ(x)φ(y) : Sαβ(x− y)

+ : ψ̄β(y)ψα(x)φ(x)φ(y) : Sβα(y − x)|~p1s1, ~p2s2 〉

= (ig)2
∫

d4x

∫

d4y 〈~q1, ~q2| : φ(x)φ(y) : |0〉〈0| : ψ̄α(x)ψβ(y) : |~p1s1, ~p2s2 〉Sαβ(x− y)

= (ig)2
∫

d4x

∫

d4y
(

ei(q1·y+q2·x) + ei(q1·x+q2·y)
)

e−i(p1·y+p2·x)v̄s2(~p2 )S(x− y)us1(~p1 ) .
(6.109)

Going over to momentum space

F = i(2π)4δ(4)(q1 + q2 − p1 − p2)ig2v̄s2(~p2 )
(

S̃(p1 − q1)− S̃(p1 − q2)
)

us1(~p1 ) . (6.110)

We can now add another rule to our set.

• In coordinate space, internal fermion lines are oriented from the vertex y where the con-
tracted ψ̄(y) field is to the vertex where the contracted ψ(x) field is, consistently with the
fact that for each vertex there is one fermion line that enters and one that exits. To such a
line is associated a fermion propagator S(x− y). The two Dirac indices of the propagator
are contracted again following the flow of the lines in the opposite direction. In momentum
space, internal lines are oriented, and must appear in diagrams consistently with the fact
that one fermion line enters a vertex and one exits. A momentum q is associated to the
line, flowing in the direction of the arrow, and a propagator S̃(q) is included, with Dirac
indices contracted as explained above.

We can now understand a general rule for minus signs in the presence of antifermionic lines
crossing a diagram from side to side. Supppose we have a diagram with a fermionic line crossing
the diagram from side to side. Collecting all the factors for this line, one finds from the Feynman
rules

ūs′(~p
′)eip

′·xS(x− x1)S(x1 − x2) . . . S(xn−1 − y)e−ip·yus(~p) . (6.111)

This corresponds to the matrix element of the following term in the Wick expansion,

: ψ̄(x)ψ(y) : S(x− x1)S(x1 − x2) . . . S(xn−1 − y) (6.112)

taken between one-particle states, 〈1′| : ψ̄(x)ψ(y) : |1〉 = ū1′e
ip′·xe−ip·yu1 (in shorthand nota-

tion). If we had instead antiparticles in the initial and final state, we would find instead

v̄s(~p)e
−ip·xS(x− x1)S(x1 − x2) . . . S(xn−1 − x)eip·yvs′(~p ′) (6.113)

from the Feynman rules, possibly up to a sign. This term comes from the matrix element of the
same operator as in Eq.(6.112), but now

〈1′| : ψ̄(x)ψ(y) : |1〉 = −〈1′| : ψ(y)ψ̄(x) : |1〉 = −v̄1′eip
′·ye−ip·xv1 , (6.114)

and so a minus sign must be included. This is a general rule:
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• For each antifermionic line crossing the diagram from side to side (i.e., from the final to
the initial state), include a minus sign.

A similar minus sign has to be included for fermionic loops: when there is a closed fermionic
line, the ψ from the last vertex is contracted with the ψ̄ from the first vertex, and has to
cross an odd number of fields to get in the right position. In coordinate space one then finds
−trS(x1 − x2)S(x2 − x3) . . . S(xn − x1), where the trace takes into account the fact that the
flow of the Dirac index goes back to the first vertex after passing the last one.

We have now concluded our derivation of Feynman rules. In the next subsection we discuss
the missing bit, namely the evaluation of propagators.

6.6 Propagators

We begin the discussion of propagators starting from the theory of partial differential equations.
The Klein-Gordon equation (✷ + m2)ϕ = 0 can be derived by an action principle from the

Klein-Gordon Lagrangian LKG = 1
2∂µϕ∂

µϕ − m2

2 ϕ
2, describing a free real massive scalar field.

If we now add an interaction part L (ϕ) = −V (ϕ), the EOM would change to

(✷+m2)ϕ(x) = −V ′(ϕ(x)) ≡ −j(x) , (6.115)

i.e., they would be modified by the presence of a source term. In order to solve Eq. (6.115), it
is convenient to solve first the following equation,

(✷+m2)G(x) = −δ(4)(x) . (6.116)

After finding G(x), it is straightforward to show that

ϕ(x) = ϕ0(x) +

∫

d4y G(x− y)j(y) , (6.117)

where ϕ0 solves the free KG equation, (✷+m2)ϕ0 = 0, is a solution of Eq. (6.115):

(✷+m2)ϕ(x) = (✷+m2)ϕ0(x) +

∫

d4y (✷x +m2)G(x− y)j(y)

= −
∫

d4y δ(4)(x− y)j(y) = −j(x) .
(6.118)

The function G is called propagator, as it propagates the effect of the source through spacetime.
Mathematically, it is the inverse of the differntial operator (✷+m2). The solution of Eq. (6.116)
is most easily obtained in momentum space, i.e., taking a Fourier transform. Setting

G(x) =

∫

d4p

(2π)4
e−ip·xG̃(p) , (6.119)

we find

(p2 −m2)G̃(p) = 1 , G̃(p) =
1

p2 −m2
. (6.120)

Now we should go back to coordinate space, but here we run into a problem: the solution is
singular at p2 = m2, i.e., for p0 = ±

√

~p 2 +m2, and we cannot perform the integral Eq. (6.119)
without a prescription to avoid the singularities on the integration path. Such a prescription is
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Figure 6: Singularities of the Klein-Gordon propagator in the complex plane.

far from unique. On the other hand, this just reflects the fact that there is not a unique choice
of boundary conditions, which have to be imposed on ϕ to single out one out of the whole family
of solutions in Eq. (6.117). The ambiguity in the choice of prescription thus reflects a physical
ambiguity, and can be settled by means of physical arguments.

In the classical theory of waves, we want to impose that causality is reflected in our solution,
in the sense that the state of the source at the spacetime point x can only affect the state of the
solution at spacetime points in the forward lightcone of x. This leads to ask that the retarded
propagator Gret(x) vanishes at negative times. Eq. (6.115) must then be supplemented by the
boundary condition Gret(x) = 0 x0 < 0. This corresponds to a specific prescription in handling
the singularity. Recalling the Fourier transform of the Heaviside theta function,

θ(x0) =

∫

dω

2πi
e−iωx

0 −1
ω + iǫ

, (6.121)

we see that the right prescription is

G̃ret(p) =
1

(p0 + iǫ)2 − ~p 2 −m2
. (6.122)

In this way the poles are pushed into the lower half of the complex plane. Indeed, using the
residue theorem to compute the integral over p0,

Gret(x) =

∫

d4p

(2π)4
e−ip·x

1

(p0 + iǫ)2 − ~p 2 −m2

=

∫

d3p

(2π)3

∫

dp0

2π
e−ip·x

1

p0 + iǫ−
√

~p 2 +m2

1

p0 + iǫ+
√

~p 2 +m2
,

(6.123)

we should close the contour in the lower half of the complex plane if x0 > 0, and in the upper
half of the complex plane if x0 < 0. In the first case we pick −2πi times the residue of the two
poles, while in the second case we find no pole and so no contribution:

Gret(x) =

∫

d4p

(2π)4
e−ip·x

1

(p0 + iǫ)2 − ~p 2 −m2

= −iθ(x0)
∫

d3p

(2π)32
√

~p 2 +m2

(

e−i(
√
~p 2+m2x0−~p·~x) − e−i(−

√
~p 2+m2x0−~p·~x)

)

− iθ(x0)
∫

d3p

(2π)32p0
(

e−ip·x − eip·x
)

.

(6.124)
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Figure 7: Prescription to deal with the singluaritaies to obtain the retarded propagator (left).
This corresponds in practice to computing the integral over p0 using a modified integration path
in the complex plane (right).

In the last pasage we have written p0 =
√

~p 2 +m2, and changed integration variable ~p → −~p
in the second term in brackets.

Let us consider now a slight modification of the problem. Instead of Eq. (6.116) consider

(✷+m2)D(x) = −iδ(4)(x) . (6.125)

Setting

D(x) =

∫

d4p

(2π)4
e−ip·xD̃(p) , (6.126)

the general solution in momentum space is

D̃(p) =
i

p2 −m2
. (6.127)

Consider now the following prescrtiption for the poles: we shift the one with positive real part
down in the lower half of the complex plane, and the one with negative real part up in the upper
half of the complex plane. This means that we take

D̃(p) =
i

p2 −m2 + iǫ
, (6.128)

so that the poles are at p0 = ±
√

~p 2 +m2 ∓ iǫ. Going back to coordinate space, making use of
the residue theorem, we find now

D(x) =

∫

d4p

(2π)4
e−ip·x

i

p2 −m2 + iǫ

=

∫

d3p

(2π)3

∫

dp0

2π
ie−ip·x

1

p0 −
√

~p 2 +m2 + iǫ

1

p0 +
√

~p 2 +m2 − iǫ

=

∫

d3p

(2π)32
√

~p 2 +m2

[

(−i)θ(x0)e−i
√
~p 2+m2x0 + i(−1)θ(−x0)ei

√
~p 2+m2x0

]

iei~p·~x

=

∫

d3p

(2π)32p0
[

θ(x0)e−ip·x + θ(−x0)e−ip·x
]

.

(6.129)
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Figure 8: Prescription to deal with the singluaritaies to obtain the causal propagator (left). This
corresponds in practice to computing the integral over p0 using a modified integration path in
the complex plane (right).

This is the causal or Feynman propagator. What is it good for? Consider the vacuum expectation
value of the the product of two free real scalar quantum fields,

〈0|ϕ(x)ϕ(y)|0〉 =
∫

dΩp

∫

dΩq 〈0|a(~p )a(~q )†|0〉e−i(p·x−q·y) =
∫

dΩp e
−ip·(x−y) = ∆(x) . (6.130)

If we consider the contraction of two scalar fields, i.e., the vacuum expectation value of the
time-ordered product, we then find

〈0|T (ϕ(x)ϕ(y)) |0〉 =
∫

dΩp

(

θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)e−ip·(y−x)
)

= D(x−y) , (6.131)

which is precisely the propagator found in Eq. (6.129). This justifies the use of the term “prop-
agator” for this object. One can prove directly, by making use of the EOM and the CCR, that
the contraction D(x) is a propagator, i.e., it solve the KG equation with a delta term. Indeed,
after showing that

∂2x0T (ϕ(x)ϕ(y)) = ∂x0
{

T (∂x0ϕ(x)ϕ(y)) + δ(x0 − y0)[ϕ(x), ϕ(y)]ET
}

= ∂x0T (∂x0ϕ(x)ϕ(y)) = T
(

∂2x0ϕ(x)ϕ(y)
)

+ δ(x0 − y0)[∂x0ϕ(x), ϕ(y)]ET
= T

(

∂2x0ϕ(x)ϕ(y)
)

+ δ(x0 − y0)[π(x), ϕ(y)]ET = T
(

∂2x0ϕ(x)ϕ(y)
)

= −iδ(4)(x− y) ,
(6.132)

we find

(✷x +m2)T (ϕ(x)ϕ(y)) = T
(

(✷x +m2)ϕ(x)ϕ(y)
)

− iδ(4)(x− y) = −iδ(4)(x− y) . (6.133)

however, in this way we cannot show that the “−iǫ” prescription is the correct one to obtain
D(x).

It is easy to show that for a complex (charged) scalar field the following results hold,

〈0|T (ϕ(x)ϕ(y)) |0〉 = 〈0|T
(

ϕ(x)†ϕ(y)†
)

|0〉 = 0 , (6.134)

and
〈0|T

(

ϕ(x)ϕ(y)†
)

|0〉 = D(x− y) . (6.135)
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This expectation value can be recast as

〈0|T
(

ϕ(x)ϕ(y)†
)

|0〉 = θ(x0 − y0)〈0|ϕ(x)ϕ(y)†|0〉+ θ(y0 − x0)〈0|ϕ(y)†ϕ(x)|0〉
= θ(x0 − y0)〈ϕ(x)†|ϕ(y)†〉+ θ(y0 − x0)〈ϕ(y)|ϕ(x)〉 ,

(6.136)

where the states |ϕ(x)†〉 and |ϕ(x)〉 correspond to a particle or an antiparticle, respectively,
being created at x and destroyed at y. Let us now recast Eq. (6.131) as follows,

D(x− y) = θ(x0 − y0)
∫

d3p φ(+)p(x)φ(+)p(x)
∗ + θ(y0 − x0)

∫

d3p φ(−)p(x)φ(−)p(x)
∗ , (6.137)

where

φ(±)p(x) =
e∓ip·x

√

(2π)32p0
(6.138)

are positive-energy and negative-energy solutions of the KG equation. As the propagator carries
the field from y to x, we see that first term in Eq. (6.131) propagates a positive-energy solution
forward in time, while the second one propagates a negative-energy solution backward in time.
The latter can be interpreted as a positive-energy state travelling actually forward in time: we
then obtain the reinterpretation of negative-energy particle states as positive-energy antiparticle
state, since all the quantum numbers of the particle have to be changed for the interpretation
to be consistent.

Let us now discuss the fermion contraction. First we show that it satisfies the following
inhomogeneous Dirac equation,

(i/∂ −m)S(x) = iδ(4)(x) , (6.139)

so that we may call it as well fermion propagator. Indeed,56

(i/∂x −m)〈0|T
(

ψ(x)ψ̄(y)
)

|0〉
= 〈0|T

(

i(/∂x −m)ψ(x)ψ̄(y)
)

|0〉+ iγ0δ(x0 − y0)〈0|{ψ(x), ψ(y)†γ0}ET|0〉
= iγ0δ(4)(x− y)γ0 = iδ(4)(x− y) .

(6.140)

We can then solve the equation in Fourier transform,

(/p−m)S̃(p) = i , (6.141)

where

S(x) =

∫

d4p

(2π)4
e−ip·xS̃(p) . (6.142)

Multiplying by /p+m we find

(p2 −m2)S̃(p) = i(/p+m) , (6.143)

56If you are confused by how the Dirac indices are contracted, write them out explicitly:

(i/∂x −m)αβ〈0|T
(

ψβ(x)ψ̄γ(y)
)

|0〉 = iγ0
αβδ(x

0 − y0)〈0|{ψβ(x), ψδ(y)
†γ0

δγ}ET|0〉 = iγ0
αβδ

(4)(x− y)δβδγ
0
δγ ,

which equals iδ(4)(x− y)δαγ .
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which can be inverted to give

S̃(p) =
i(/p+m)

p2 −m2 + iǫ
. (6.144)

here the choice of prescription is inspired by the scalar case. Let us verify that it is the correct
one. Integrating over p0 and using the residue theorem we find (Ep ≡

√

~p 2 +m2)

S(x) =

∫

d4p

(2π)4
e−ip·x

i(/p+m)

p2 −m2 + iǫ

= i

{

θ(x0 − y0)(−i)
∫

d3p

(2π)3
e−i(Epx

0−~p·~x)Epγ
0 − ~p · ~γ +m

2Ep

+ θ(x0 − y0)(+i)
∫

d3p

(2π)3
e−i(−Epx

0−~p·~x)−Epγ0 − ~p · ~γ +m

−2Ep

}

=

{

θ(x0 − y0)
∫

d3p

(2π)3
e−i(Epx

0−~p·~x)Epγ
0 − ~p · ~γ +m

2Ep

+ θ(x0 − y0)
∫

d3p

(2π)3
e−i(−Epx

0+~p·~x)−Epγ0 + ~p · ~γ +m

2Ep

}

=

∫

dΩp
[

θ(x0 − y0)e−ip·x(/p+m) + θ(y0 − x0)eip·x(−/p+m)
]

.

(6.145)

On the other hand,

〈0|T
(

ψβ(x)ψ̄γ(0)
)

|0〉 =
∫

dΩp

∫

dΩq
∑

s,s′

〈0|θ(x0)e−ip·xus(~p )ūs′(~q )bs(~p )bs′(~q )†

− θ(−x0)eip·xvs(~q )v̄s′(~p )ds(~q )ds′(~p )†|0〉

=

∫

dΩp
∑

s

[

θ(x0)e−ip·xus(~p )ūs(~p )− θ(−x0)eip·xvs(~p )v̄s(~p )
]

=

∫

dΩp
∑

s

[

θ(x0)e−ip·x(/p+m)− θ(−x0)eip·x(/p−m)

]

,

(6.146)

which shows that the prescription is correct.

7 Quantisation of the electromagnetic field

There is one more thing to do before building QED, namely quantising the electromagnetic field.
As anticipated in Section 2.6, this is made complicated by the presence of gauge symmetry.
Recall that Maxwell equations can be derived from the following Lagrangian,

L = −1

4
FµνF

µν − JµAµ , (7.1)

and read
✷Aν − ∂ν∂µAµ = Jν . (7.2)
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As discussed in Section 2.6, the µ = 0 equation is not a dynamical equation for A0 but rather a
constraint,

~∇ 2A0 + ∂0~∇ · ~A = −J0 , (7.3)

which can be solved for A0 by inverting the Laplacian,

A0 = − 1

∆

(

∂0~∇ · ~A+ J0
)

. (7.4)

This can be done easily in Fourier transform. Transforming only with respect to the spatial
coordinates,

Aµ(x) =

∫

d3p

(2π)3
ei~p·~xÃµ(t, ~p) , (7.5)

we find

Ã0 =
1

~p 2

(

i~p · ∂0 ~̃A+ J̃0
)

. (7.6)

One has now to transform back to coordinate space. This yields

A0(t, ~x) =

∫

d3p

(2π)3
ei~p·~x

1

~p 2

(

i~p · ∂0 ~̃A(t, ~p) + J̃0(t, ~p)
)

=

∫

d3y
∂0~∇ · ~A(t, ~y) + J0(t, ~y)

4π|~x− ~y | . (7.7)

Plugging now A0 in the remaining equations one finds

✷ ~A⊥ = ~⊥ , (7.8)

where the transverse fields ~A⊥ are given by ~A⊥ = ~A− ~∇ 1
∆
~∇ · ~A, and simnilarly the transverse

part of the current is ~⊥ = ~j − ~∇ 1
∆
~∇ · ~j. Since ~∇ · ~A⊥ = 0, the divergence of ~A and the

temporal component A0 only enter the constraint equation Eq. (7.3), and are not determined
dynamically. The dynamical degrees of freedom are only the transverse components of the four-
potential, which reflects the physical fact that photons happen to show only two independent
polarisations. This is also in agreement with our general discussion of irreducible representations
of the Poincaré group for massless particles, where we saw that in the case of nonzero spin only
two states of opposite helicity are present. Photons are indeed expected to be massless, since
they mediate a long-range force.

The equation of motion and the constraint can be satisfied by infinitely many choices for Aµ:
if we replace Aµ → Aµ + ∂µΛ, with an arbitrary function of spacetime Λ, both the dynamical
equation and the constraint are unchanged:

δ ~A⊥ = ~∇Λ− ~∇ 1

∆
~∇ · ~∇Λ = 0 ,

δ(constraint) = ~∇ 2∂0Λ− ∂0~∇ · ~∇Λ = 0 .
(7.9)

This invariance of the EOM is called gauge invariance, and can actually be seen already at
the level of the Lagrangian: the field-strength tensor Fµν is manifestly invariant under a gauge
transformation Aµ → Aµ + ∂µΛ, while the coupling to matter changes by a total derivative
since the current is conserved, δ(JµAµ) = Jµ∂µΛ = ∂µ(J

µΛ). The reduced number of actual
degrees of freedom and invariance under gauge transformations require that we proceed carefully
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in quantising the theory. In fact, if we compute the conjugate momenta from the Lagrangian,
we find that

πµ =
∂L

∂(∂0Aµ)
= −F 0µ , (7.10)

so that π0 = 0 identically, and we cannot use the canonical quantisation approach out of the
box.

Before discussing how quantisation can be done, let us mention how it cannot be done. One
could try to use the physical electric and magnetic fields ~E and ~B: these are all dynamical degrees
of freedom, and there are no problems due to the redundancy of the description. Although this
is perfectly viable classically, there are quantum phenomena which can be explained only if
we couple matter to the four-potential: this means that the four-potential is actually physical
(to some extent). One could then try to build this field as we did with the scalar and Dirac
fields, starting from the photon states and combining the corresponding creation and annihilation
operators into a local field which transforms irreducibly under the Lorentz group. Unfortunately,
it is not possible to build such a field for massless, spin 1 particles (see Weinberg I for details).

Let us now discuss the ways to go. One is to isolate the physical degrees of freedom and
qunatise them only. The idea is that the redundancy of gauge invariance can be removed by
imposing some extra condition on the fields, i.e., fixing the gauge, so that the solution to the
constraint becomes unique. Here we briefly sketch this approach. If we impose that the vector
potential is divergenceless, ~∇ · ~A = 0 (Coulomb or radiation gauge), the constraint becomes
~∇ 2A0 = −J0, which in the absence of sources implies A0 = 0. Let us focus on this case. The
gauge field in Coulomb gauge only shows the two physical, transverse degrees of freedom. We
can then impose canonical commutation relations on these,57 and so obtain a quantised field
describing only the two physical photons. The disadvantage of this approach is that Lorentz
invariance is not manifest, which becomes cumbersome when including interactions. This is a
disadvantage of quantisation in any non-covariant gauge, like the axial gauge A3 = 0 or the
temporal gauge A0 = 0. The three gauge conditions discussed here are all legitimate: if we have
a field Aµ that does not satisfy them, we can always find a new, gauge-transformed one that

will. For example, in Coulomb gauge, if ~∇ · ~A 6= 0, then ~A ′ = ~A − ~∇Λ will if we choose Λ to
satisfy ∆Λ = ~∇ · ~A, which can always be done. After a Lorentz transformation, though, the
new field will not satisfy the Coulomb condition, and a further gauge transformation is needed
to re-establish it.

A Lorentz-invariant choice of gauge is the Loren(t)z gauge58 ∂µA
µ = 0. This is also a

legitimate gauge, since a nonzero ∂µA
µ can be gauged away by transforming Aµ → Aµ + ∂µΛ

with ✷Λ = −∂µAµ. However, the solution is not unique: if ∂µA
µ = 0, we can make a gauge

transformation with ✷Λ = 0 (that has nontrivial solutions) and still have the gauge condition
satisfied. In this gauge the EOM simplify to ✷Aµ = Jµ; for a free electromagnetic field, Jµ = 0,
we simply find four massless KG equations ✷Aµ = 0, on top of which the gauge condition has
to be imposed.

57This has to be done carefully, since the commutation relations must be consistent with the gauge-fixing
condition and the constraint equation.

58This gauge was first introduced by L. V. Lorenz, and not by H. A. Lorentz as it is generally believed, cf. the
paper J. D. Jackson and L. B. Okun, Rev. Mod. Phys. 73 (2001) 663, on the history of gauge theories.
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7.1 Gupta-Bleuler quantisation

From now on we will focus on the free case, and try to quantise the theory. The procedure
that we will follow is different from the one used in Coulomb gauge: instead of starting from
Maxwell’s Lagrangian LM = −1

4FµνF
µν , fix the gauge and solve the equations of motion, and

then quantise the solution, we start from a modified Lagrangian which has the gauge-fixed EOM
as its EOM, solve them and quantise the field, and then impose somehow the gauge condition
on the quantised field. This procedure is called Gupta-Bleuler quantisation. We start from the
following modified Lagrangian,59

L
′ ≡ −1

4
FµνF

µν − 1

2
(∂µA

µ)2 = LF + total divergence ,

LF ≡ −
1

2
∂µAν∂

µAν .

(7.11)

The extra term breaks gauge invariance, so it should be possible to quantise the theory by
canonical methods. The equations of motions are easily seen to be

✷Aµ = 0 , (7.12)

and they are of course the same irrespectively of us using L ′ or LF . These are precisely the
gauge-fixed Maxwell equations in Lorenz gauge, so if we were dealing with classical fields, using
this Lagrangian would be exactly equivalent to using Maxwell Lagrangian and using the Lorenz
gauge condition. We now proceed with the canonical program, and impose CCR on the field
solving Eq. (7.12) and its conjugate momenta. We use LF to find

πµ =
∂LF

∂(∂0Aµ)
= −∂0Aµ = −∂0Aµ . (7.13)

Now all πµ 6= 0, and the canonical approach is viable. Notice that πµ is the momentum conjugate
to Aµ, not to A

µ. The CCR read

[Aµ(x), Aν(y)]ET = [πµ(x), πν(y)]ET = 0 ,

[Aµ(x), πν(y)]ET = iηµνδ
(3)(~x− ~y ) .

(7.14)

The EOM can be solved easily: they are just four KG equations for a real field (as Aµ must be
Hermitian for the Lagrangian to be Hermitian), and so we can write down the solution right
away,

Aµ(x) =

∫

dΩp

{

aµ(~p )e
−ip·x + aµ(~p )

†eip·x
}

, (7.15)

for operator-valued coefficients aµ(~p ) and aµ(~p )
†, whose commutation relations are determined

by the CCR. We can exploit again our knowledge of the scalar case to write

aµ(~p ) =

∫

d3x eip·xi
↔

∂0Aµ(x) ,

aµ(~p )
† =

∫

d3x e−ip·x(−i
↔

∂0)Aµ(x) ,

(7.16)

59The subscript F stands for Fermi, who first proposed this Lagrangian to quantise the electromagnetic field.

130



to find that
[aµ(~p ), aν(~q )] = [aµ(~p )

†, aν(~q )
†] = 0

[aµ(~p ), aν(~q )
†] = −ηµν2p0(2π)3δ(3)(~p− ~q ) .

(7.17)

From these relations we can proceed to build Fock space in the usual way. Everything looks nice
here, with one troubling exception: for µ = 0 we find that [a0(~p ), a0(~q )

†] = −2p0(2π)3δ(3)(~p−~q )
which implies negative norm for the corresponding states. This is physically unacceptable, since
the presence of states with negative norm (“ghosts”) imply negative probabilities, and thus a
breakdown of unitarity. Before looking ofr a way out of this trouble, let us disentangle the
Lorentz index µ from the actual polarisation of the photons. Let us set

aµ(~p ) =
3
∑

λ=0

ε(λ)µ a(λ)(~p ) , (7.18)

where ε
(λ)
µ are four orthonormal vectors forming a complete set, in the following sense,

ε(λ) · ε(λ′)∗ = ηµνε(λ)µ ε(λ
′)

ν
∗ = ηλλ

′

, ηλλ′ε
(λ)
µ ε(λ

′)
ν

∗ = ηµν . (7.19)

The field operator reads

Aµ(x) =

∫

dΩp

3
∑

λ=0

{

ε(λ)µ a(λ)(~p )e
−ip·x + ε(λ)µ

∗a(λ)(~p )
†eip·x

}

. (7.20)

An explicit choice is the following: assuming that ~p is along direction 3, for λ = 0, 3 we take

ε(0)µ =









1
0
0
0









, ε(3)µ =









0
0
0
1









, (7.21)

while for λ = 1, 2 we either take

ε(1)µ =
1√
2









0
1
i
0









, ε(2)µ =
1√
2









0
1
−i
0









, (7.22)

corresponding to circular polarisations and thus helicity eigenstates, or

ε(1)µ =









0
1
0
0









, ε(2)µ =









0
0
1
0









, (7.23)

corresponding to linear polarisations. These correspond to the physical states of a massless,
spin-1 particle. In general,

ε(3)µ =

(

0
~p
|~p |

)

, (7.24)
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and ε
(1,2)
µ are taken to be in the spatial plane orthogonal to ~p. Now, since ηλλa(λ)(~p ) =

ε(λ)µ∗aµ(~p ) (no sum over λ), we find that

[a(λ)(~p ), a(λ′)(~q )] = [a(λ)(~p )
†, a(λ′)(~q )

†] = 0

[a(λ)(~p ), a(λ′)(~q )
†] = −ηλλ′2p0(2π)3δ(3)(~p− ~q ) .

(7.25)

The states of temporal photons, created by a(0)(~p )
†, have negative norms, and are therefore

clearly unphysical. Transverse photons (λ = 1, 2) and longitudinal photons λ = 3) have states
with positive norm; longitudinal photons are however unphysical as well.

We would like to get rid somehow of the negative norm states and of the unphysical polari-
sations. This is where the gauge condition, which we have not imposed yet, comes to our rescue.
How can we impose ∂µA

µ = 0? We might try to impose it as an operator identity, but this is
bound to fail: in fact, since

0 = [∂µA
µ(x), A0(y)]ET = [∂0A0(x), A0(y)]ET + [~∇ · ~A(x), A0(y)]ET

= [∂0A0(x), A0(y)]ET = [A0(y),−∂0A0(x)]ET = [A0(y), π0(x)]ET = iδ(3)(~x− ~y ) 6= 0 ,
(7.26)

this would be inconsistent. We might then try to impose it on the Hilbert space of states as a
condition selecting the physical states |Ψ〉, ∂µAµ(x)|Ψ〉 = 0, but this would leave the vacuum
state out of the physical subspace. Indeed, given that aµ(~p )|0〉 = 0, we would have

∂µA
µ(x)|0〉 =

∫

dΩp e
ip·xaµ(~p )

†|0〉 6= 0 . (7.27)

A viable possibility is to ask for the positive-frequency component of ∂µA
µ(x) to annihilate the

physical states,
∂µA

µ
+(x)|Ψ〉 = 0 . (7.28)

The gauge condition is then realised on average,

〈Ψ|∂µAµ(x)|Ψ〉 = 〈Ψ|
(

∂µA
µ
+(x)|Ψ〉

)

+
(

〈Ψ|∂µAµ−(x)
)

|Ψ〉 = 0 , (7.29)

and more generally on has that 〈Ψ′|∂µAµ(x)|Ψ〉 = 0 for physical states |Ψ〉, |Ψ′〉. The first two
steps in constructing the physical Hilbert space of the system is thus to first construct the usual
Fock space, which in the case at hand has indefinite norm, and to select then a subspace Hphys

by imposing the condition Eq. (7.28), Hphys = { |Ψ〉 ∈ H | ∂µAµ+(x)|Ψ〉 = 0}. This eliminates
negative-norm states. Indeed, consider Hphys with the scalar product (and thus the norm)
inherited from the Fock space H. The most general state in H can be written as a superposition
of basis vectors |ψ〉 = |ψT 〉|φ〉, where |ψT 〉 contains only transverse modes and |φ〉 contains
temporal and longitudinal modes. The operator ∂µA

µ(x) reads

∂µA
µ(x) = −i

∫

dΩp

{

pµaµ(~p )e
−ip·x − pµaµ(~p )†eip·x

}

= −i
∫

dΩp

3
∑

λ=0

{

pµε(λ)µ a(λ)(~p )e
−ip·x + pµε(λ)µ

∗a(λ)(~p )
†eip·x

}

= −i
∫

dΩp

{

L(~p )e−ip·x − L(~p )†eip·x
}

,

(7.30)
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where

L(~p ) ≡ pµaµ(~p ) = p · ε(λ)a(λ)(~p ) = p0a(0)(~p )− |~p |a(3)(~p ) = p0[a(0)(~p )− a(3)(~p )] ,
L(~p )† ≡ pµaµ(~p )† = p · ε(λ)∗a(λ)(~p )† = p0a(0)(~p )

† − |~p |a(3)(~p )† = p0[a(0)(~p )
† − a(3)(~p )†] .

(7.31)
Imposing Eq. (7.28) for all x is equivalent to impose

L(~p )|Ψ〉 = 0 . (7.32)

Since L(~p ) acts only on temporal and longitudinal photons, Eq. (7.32) for vectors of the form
|ψT 〉|φ〉 amounts to

L(~p )|φ〉 = 0 =⇒ [a(0)(~p )− a(3)(~p )]|φ〉 = 0 ∀~p . (7.33)

This implies that for physical states a(0)(~p )|φ〉 = a(3)(~p )]|φ〉 and so

〈φ|a(0)(~p )†a(0)(~p )|φ〉 = 〈φ|a(3)(~p )†a(3)(~p )]|φ〉 , (7.34)

i.e., the occupation number of temporal and longitudinal photons with momentum ~p are the
same. Equivalently, we have that

〈φ|a0(~p )†a0(~p )|φ〉 = 〈φ|a3(~p )†a3(~p )]|φ〉 , (7.35)

for the operators aµ and their adjoint. What does this imply for the norm of the states? The
most general vector satisfying Eq. (7.32) for a given content in transverse photons is of the form

|Ψ〉 = |ψT 〉|φ〉 , |φ〉 =
∑

n

|φn〉 ,

|φn〉 =
∫

dΩp1 . . .

∫

dΩpn C
(n)(~p1, . . . , ~pn )L(~p1)

† . . . L(~pn)
†|0〉 .

(7.36)

Such states are certainly physical states: since

[L(~p ), L(~q )†] = pµqν [aµ(~p ), aν(~q )] = −p · q 2p0(2π)3δ(3)(~p− ~q ) = 0 , (7.37)

where we used p2 = 0, we have that L(~p ) can be commuted with all the L(~pj )
† to reach the

vacuum state vector and annihilate it. But the states L(~p1)
† . . . L(~pn)

†|0〉 are precisely the basis
vectors containing only temporal and longitudinal photons that satisfy the condition Eq. (7.33).
The states |φn〉 are all orthogonal to each other, and have zero norm for n 6= 0:

〈φ′n′ |φn〉 =
∫

dΩp1 . . .

∫

dΩpn

∫

dΩq1 . . .

∫

dΩqn′ C
(n)(~p1, . . . , ~pn )C

′(n′)(~q1, . . . , ~qn′ )

× 〈0|L(~qn′) . . . L(~q1)L(~p1)
† . . . L(~pn)

†|0〉 = δn′0δn0 ,

(7.38)

where we have used Eq. (7.37). Up to an irrelevant rescaling, there are only two interesting
choices for C(0), namely C(0) = 1 or C(0) = 0. Consider first the case C(0) = 1. We find that

〈Ψ|Ψ〉 = 〈ψT |ψT 〉 , (7.39)
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and more generally for two vectors of the type in Eq. (7.36),

〈Ψ′|Ψ〉 = 〈ψ′
T |ψT 〉 , (7.40)

independently of the functions C(n) for n ≥ 1, i.e., independently of the content in unphysical
photons. On the other hand, if we take C(0) = 0 then 〈Ψ|Ψ〉 = 0: zero-norm states are still
present in Hphys. However, any of the vectors in Eq. (7.36) represents the same physical state
if |ψT 〉 is the same, the difference between them being a zero-norm state. Even more generally,
any vector of the form

|ΨZ〉 = |ψT 〉|0〉+
∞
∑

n=1

|χT n〉|φn〉 = |Ψ〉+ |Z〉 , (7.41)

for arbitrary choice of the transverse photon state vectors |χT n〉, represents the same physical
state. In fact, they all have the same norm, since |Z〉 is orthogonal to Ψ〉 and has zero norm,
and moreover the scalar product between two such vectors is independent of the zero-norm part,

〈Ψ′
Z′ |ΨZ〉 = (〈Ψ′|+ 〈Z ′|)(|Ψ〉+ |Z〉) = 〈Ψ′|Ψ〉 . (7.42)

We can then define an equivalence relation ∼ by

|Ψ′〉 ∼ |Ψ〉 if |Ψ′〉 = |Ψ〉+ |Z〉 (7.43)

for some zero-norm vector |Z〉 in Hphys. The true physical space is then the quotient space
Hphys/ ∼, i.e., the space formed by the equivalence classes with respect to ∼, and with the scalar
product inherited from H, which can be consistently computed using any pair of representatives
of the equivalence classes, since the result is always the same.

There is more to physics than state vectors though: observable quantities are represented as
linear Hermitian operators O = O† on the Hilbert space of states, and they have to be built out
of fields. They are therefore defined first of all on the whole Fock space, and then restricted to
Hphys. For the final construction of the true physical Hilbert space to be acceptable, we need
that the matrix elements of physical observables be independent of the representative vector
that one uses for their evaluation: this identifies which observables are good observables. This
can only happens if their matrix elements between zero-norm states, and between positive-norm
and zero-norm states all vanish. This is equivalent to ask that the matrix elements of the
commutators [L(~p ),O] and [L(~p )†,O] vanish between physical states. A sufficient condition for
this to happen is

[L(~p ),O] =ML(~p ) , [L(~p )†,O] = −L(~p )†M † , (7.44)

for some operator M . This is the case for observables of the form

O =

∫

dΩpO(~p )N(~p ) , (7.45)

where

N(~p ) ≡ −ηµνaµ(~p )aν(~p )† = −a0(~p )a0(~p )† +
3
∑

j=1

aj(~p )aj(~p )
† , (7.46)
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which equals

N(~p ) = −ηµν
∑

λ,λ′

ε(λ)µ (~p )a(λ)(~p )ε
(λ′)
ν (~p )∗a(λ′)(~p )

† = −ηλ,λ′a(λ)(~p )a(λ′)(~p )†

= −a(0)(~p )a(0)(~p )† +
3
∑

j=1

a(j)(~p )a(j)(~p )
† .

(7.47)

Indeed, since

[L(~p ), N(~q )] = −pµηνρ[aµ(~p ), aν(~q )aρ(~q )†] = −pµηνρaν(~q )[aµ(~p ), aρ(~q )†]
= −pµηνρaν(~q )(−ηµρ)2q0δ(3)(~p − ~q ) = pνaν(~p )2q

0δ(3)(~p − ~q )
= L(~p )2q0δ(3)(~p − ~q ) ,

(7.48)

we have

[L(~p ),O] =
∫

dΩq O(~q )[L(~p ), N(~q )] = L(~p )

∫

dΩq O(~q )2q0δ(3)(~p − ~q ) = L(~p )O(~p ) . (7.49)

For these operators the contribution of the unphysical polarisations drops from the expecation
values: recalling Eq. (7.34), one finds that

〈Ψ|O|Ψ〉 =
∫

dΩpO(~p )〈Ψ|
2
∑

j=1

aj(~p )aj(~p )
†|Ψ〉 . (7.50)

The form Eq. (7.45) is actually that of the four-momentum operators. These can be obtained
via Noether’s theorem from the Lagrangian LF , which we write here explcitly:

LF = −1

2
∂µAν∂

µAν = −1

2
∂µA0∂

µA0 +
1

2
∂µAj∂

µAj . (7.51)

This is the Lagrangian of four real scalar fields, one of which comes with the wrong sign,
LF = −L0 +

∑3
j=1 Lj . It follows that the Noether charges will be the corresponding sum of

Noether charges for scalar fields, i.e. Q = −Q0 +
∑3

j=1Qj . Then

Pµ =

∫

dΩp p
µN(~p ) =

∫

dΩp p
µ



−a0(~p )a0(~p )† +
3
∑

j=1

aj(~p )aj(~p )
†





=

∫

dΩp p
µ



−a(0)(~p )a(0)(~p )† +
3
∑

j=1

a(j)(~p )a(j)(~p )
†



 .

(7.52)

One can show that also the Lorentz generators are of the “good” type, satisfying Eq. (7.44), so
they are good observables as well. Any gauge-invariant functional of Aµ is also a good observable.
In fact, one has

[L(~p ), Aµ(x)] = pν
∫

dΩq e
iq·x[aν(~p ), aµ(~q )

†] = pν
∫

dΩq e
iq·x(−ηνµ)2p0δ(3)(~p− ~q )

= −pµeip·x = ∂µ
(

ieip·x
)

≡ δL(~p )Aµ(x) ,
(7.53)

135



which is essentially a gauge transformation. For a functional F [A] one then finds

[L(~p ),F [A]] =
∫

d4x
δF [A]
δAµ(x)

δL(~p )Aµ(x) = 0 , (7.54)

since F is gauge-invariant.60 Similarly, one shows that

[L(~p )†, Aµ(x)] == pµe
−ip·x = ∂µ

(

ie−ip·x
)

≡ δL(~p )†Aµ(x) , (7.55)

and so

[L(~p )†,F [A]] =
∫

d4x
δF [A]
δAµ(x)

δL(~p )†Aµ(x) = 0 . (7.56)

Gauge invariance of an observable therefore implies that it commutes with all L(~p ) and L(~p )†.
A few final comments are now in order. Instead of the Lagrangians L ′ or LF of Eq. (7.11),

one could use

Lα ≡ −
1

4
FµνF

µν − 1

2α
(∂µA

µ)2 , (7.57)

which leads to the following EOM,

∂µF
µν +

1

α
∂ν(∂µA

µ) = ✷Aν −
(

1− 1

α

)

∂ν(∂µA
µ) = 0 . (7.58)

Taking the divergence with respect to ν we find

1

α
✷(∂µA

µ) = 0 . (7.59)

If we impose ∂µAµ = 0 everywhere at t = −∞, it will remain zero at all times, and the solution
of Eq. (7.58) will be a solution of Maxwell’s equations in Lorenz gauge. Quantisation can be
done starting from this Lagrangian, solving the EOM and imposing ∂µAµ = 0 on physical states
in the same way we have done above. To see that the physics will be the same, it suffices to
check that the symmetry generators (from which all the observables can be built out) change by
terms that vanish when acting on physical states. We then have to check that the change δQa

of a Noether charge due to the change δL = ( 1
α
− 1)(∂µA

µ)2 of the Lagrangian does not affect
physical states. We have

δQa =

∫

d3x

{

∂δL

∂(∂0Aµ)

[

Ma
µνA

ν +Aaν∂νAµ
]

−Aa0δL
}

=

(

1− 1

α

)∫

d3x

{

ηµ0(∂βA
β)
[

Ma
µνA

ν +Aaν∂νAµ
]

− 1

2
Aa0(∂βAβ)2

}

,

(7.60)

and when imposing normal ordering we always have either ∂βA
β
+ on the right or ∂βA

β
− on the

left, so that there is no contribution of : δQa : to matrix elements between physical states.
Let us work out the implications of the consequences Eqs. (7.54) and (7.56) of gauge invari-

ance of an observable imply, in the case of a scalar normal-ordered observable. The most general

60Gauge-invariance means that F [A+∂Λ]−F [A] = 0. For infinitesimal transformations 0 = F [A+ǫ∂Λ]−F [A] =

ǫ
∫

d4x δF[A]
δAµ(x)

∂µΛ(x) +O(ǫ2), so
∫

d4x δF[A]
δAµ(x)

∂µΛ(x) = 0.
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such observable is of the form

O =
∑

n,m

O(n,m) ,

O(n,m) =

∫

dΩp1 . . .

∫

dΩpn

∫

dΩq1 . . .

∫

dΩqm O
µ1...µnν1...νm(~p1, . . . , ~pn, ~q1, . . . , ~qm)

× aµ1(~p1)† . . . aµn(~pn)†aν1(~q1) . . . aνm(~qn) ,

(7.61)

where Hermiticity imposes that

Oµ1...µnν1...νm(~p1, . . . , ~pn, ~q1, . . . , ~qm) = Oν1...νmµ1...µn(~q1, . . . , ~qm, ~p1, . . . , ~pn)
∗ , (7.62)

and Bose symmetry allows to take Oµ1...µnν1...νm(~p1, . . . , ~pn, ~q1, . . . , ~qm) symmetric under ex-
change of µj , ~pj with µk, ~pk, and similarly under exchange of νj , ~qj with νk, ~qk. Imposing gauge

invariance in the form [L(~k ),O] = [L(~k )†,O] = 0, we arrive at the conditions

pj µjO
µ1...µnν1...νm(~p1, . . . , ~pn, ~q1, . . . , ~qm) = qj νjO

µ1...µnν1...νm(~p1, . . . , ~pn, ~q1, . . . , ~qm) = 0 , (7.63)

for all j. The coefficient functions should then be divergenceless in all indices.61

As a final comment, notice that in the presence of a nonzero current, Eqs. (7.57) and (7.58)
are modified to

Lα = −1

4
FµνF

µν − 1

2α
(∂µA

µ)2 − JµAµ , (7.64)

and

∂µF
µν +

1

α
∂ν(∂µA

µ) = ✷Aν −
(

1− 1

α

)

∂ν(∂µA
µ) = Jν . (7.65)

Taking the divergence with respect to ν we find now

1

α
✷(∂µA

µ) = ∂νJ
ν = 0 . (7.66)

The field ∂µA
µ is thus a free field also in the presence of interaction with matter, if the coupling

is with a conserved current. This means that also in the interacting case we can identify the
positive and negative-frequency components of ∂µA

µ. We can proceed á la Gupta-Bleuler also
in the interacting case, quantising canonically the theory in Lorenz gauge and then imposing
the subsidiary condition (∂µA

µ)+|Ψ〉 = 0 to select physical states out of the full Hilbert space.

7.2 Photon propagator

We now compute the photon field contraction, or photon propagator. This quantity depends
on the particular gauge used in the quantisation procedure: it is therefore crucial to show that
physical quantities are independent of the choice of gauge. Having quantised the theory á la
Gupta-Bleuler, the propoagator that we will obtain is the one in Lorenz gauge. The calculation

61The condition pµÕ(p) = 0 is the Fourier transform of the divergenceless condition ∂µO(x) = 0, hence the
nomenclature.
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is rather easy, and as one can expect from the discussion of the previous subsection, the result
amounts essentially to four scalar propagators, one of which with the wrong sign. We have

Dµν(x− y) ≡ 〈0|T (Aµ(x)Aν(y)) |0〉

=

∫

dΩp

∫

dΩq

{

θ(x0 − y0)e−i(p·x−q·y)〈0|aµ(~p )aν(~q )†|0〉

+ θ(y0 − x0)e−i(p·y−q·x)〈0|aν(~p )aµ(~q )†|0〉
}

= −ηµν
∫

dΩp

[

θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)eip·(x−y)
]

= −ηµνD(x− y) .
(7.67)

In momentum space,

Dµν(x− y) =
d4p

(2π)4
e−ip·xD̃µν(p) , (7.68)

we find

D̃µν(p) =
−iηµν
p2 + iǫ

. (7.69)

The momentum-space expression follows (up to the prescription at the poles) from the fact that
Dµν solves the inhomogeneous equations of motion. In fact, since

∂2x 0Dµν(x− y) = ∂x 0
{

〈0|T (∂x 0Aµ(x)Aν(y)) |0〉+ δ(x0 − y0)〈0|[Aµ(x), Aν(y)]ET|0〉
}

= 〈0|T
(

∂2x 0Aµ(x)Aν(y)
)

|0〉+ δ(x0 − y0)〈0|[∂x 0Aµ(x), Aν(y)]ET|0〉
= 〈0|T

(

∂2x 0Aµ(x)Aν(y)
)

|0〉 − δ(x0 − y0)〈0|[πµ(x), Aν(y)]ET|0〉
= 〈0|T

(

∂2x 0Aµ(x)Aν(y)
)

|0〉+ iηµνδ
(4)(x− y) ,

(7.70)

we find that

✷xDµν(x− y) = 〈0|T
(

∂2x 0Aµ(x)Aν(y)
)

|0〉+ iηµνδ
(4)(x− y)− 〈0|T (∆Aµ(x)Aν(y))

= 〈0|T (✷Aµ(x)Aν(y)) |0〉+ iηµνδ
(4)(x− y) = iηµνδ

(4)(x− y) ,
(7.71)

which in momentum space reads −p2D̃µν = iηµν .
One can show that when quantising the photon field making use of one of the Lagrangians

Lα of Eq. (7.57), the photon propagator is found to solve the following equation,

[

✷ηµρ −
(

1− 1

α

)

∂µ∂ρ

]

Dρ
ν(x) = iηµνδ

(4)(x) . (7.72)

In momentum space, this reads

[

p2ηµρ −
(

1− 1

α

)

pµpρ

]

D̃ρ
ν(p) = −iηµν . (7.73)

The propagator is then obtained by inverting the matrix M
(α−1)
µν (p) = p2ηµρ −

(

1− 1
α

)

pµpρ.
Notice that in the absence of the extra term in the Lagrangian (corresponding to taking α→∞),
this matrix is not invertible: this reflects the gauge invariance of the action in that case, which

leads to the presence of a zero mode for M
(0)
µν (p), namely the longitudinal mode, M

(0)
µν (p)pν = 0.
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To invert M
(α−1)
µν (p) we can make use of this fact, and notice that M

(α−1)
µν (p) = M

(0)
µν (p) +

1
α
pµpν . The two terms are nonzero in orthogonal subspaces, and actually proportional to the

corresponding projectors Π⊥ and Π‖. We can write

M (α−1)
µν (p) = p2

(

ηµν −
pµpν
p2

)

+
p2

α

pµpν
p2

= p2Π⊥ +
p2

α
Π‖ , (7.74)

and obtain the propagator right away as

D̃µν(p) = −i
(

1

p2
Π⊥ +

α

p2
Π‖

)

=
−i
p2

(

ηµν − (1− α)pµpν
p2

)

(7.75)

A detailed calculation allows to determine the correct prescription to obtain the field contraction.
The momentum propagator in the gauge α reads

D̃µν(p) =
−i

p2 + iǫ

(

ηµν − (1− α) pµpν
p2 + iǫ

)

. (7.76)

It is common to refer to the various choices of α as different gaauge choice, although it is always
the Lorenz gauge that is being used. The choice α = 1 is called Feynman (or Fermi) gauge. The
choice α → 0 is called Landau gauge: notice that here the limit is taken after quantising the
theory. Another choice of α with a name attached is Yennie gauge, α = 3. Of course, physics
must not depend on α, so we must ensure that wherever the photon propagator gets inserted,
the longitudinal term gives no contribution.

8 Quantum Electrodynamics

We now have all the tools to formulate a relativistic quantum theory of the electromagnetic
interaction. At the classical level, if we couple matter to the electromagnetic field Aµ via a
current Jµ,

L = −1

4
FµνF

µν − JµAµ , (8.1)

then the current must be conserved. This can be reinterpreted geometrically as requiring that
gauge invariance be preserved also in the interacting case. In fact, on the one side, conservation
of the current implies gauge invariance of the action, in the sense that this chages by the integral
of a total divergence, which does not affect the EOM. On the other side, gauge invariance of the
action (again, up to irrelevant boundary terms) implies that

δS = −
∫

d4xJµ∂µΛ = −
∫

d4x ∂µ(J
µΛ)−

∫

d4x (∂µJ
µ)Λ⇒ ∂µJ

µ = 0 , (8.2)

since this must hold for arbitrary Λ.
Let us consider spinorial electrodynamics, in which spin-12 get coupled to the electromagnetic

field. We know that from the Dirac Lagrangian,

LD = ψ̄(i/∂ −m)ψ , (8.3)

we get a conserved current Jµ,
Jµ = ψ̄γµψ , (8.4)
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with the associated conserved charge

Q =

∫

d3xJ0 =

∫

d3x : ψ†ψ :=

∫

dΩp
∑

s

{

bs(~p )
†bs(~p ) + ds(~p )

†ds(~p )
}

. (8.5)

This current is associated to invariance under the U(1) transformation

ψ → eiαψ , ψ̄ → ψ̄e−iα . (8.6)

If we couple Aµ to Jµ with some coupling constant e, the resulting Lagrangian,

LQED = −1

4
FµνF

µν + ψ̄(i/∂ −m)ψ − eψ̄γµψAµ

= −1

4
FµνF

µν + ψ̄(i/∂ −m)ψ − eψ̄ /Aψ

= −1

4
FµνF

µν + ψ̄[iγµ(∂µ + ieAµ)−m]ψ ,

(8.7)

is still invariant under the U(1) transformation Eq. (8.6), so Jµ is conserved and gauge invariance
still holds. Here

Jµ = eψ̄γµψ , (8.8)

and the associated charge is

Q = e

∫

d3xψ†ψ . (8.9)

The coupling constant e is the electric charge of the b-type particles.62 The U(1) transformation
Eq. (8.6) wiht x-independent α is called a global gauge transformation, for reasons that will
become clear in a moment. If we make a gauge transformation Aµ → Aµ− ∂µΛ, the Lagrangian
changes by the term

δALQED = eψ̄γµψ∂µΛ = −eψ̄e−ieΛi/∂(eieΛ)ψ . (8.10)

This can be compensated by changing also ψ → eieΛψ, ψ̄ → ψ̄e−ieΛ, where Λ is now x-dependent,
since in this case

δψLQED = eψ̄e−ieΛi/∂(eieΛψ)− eψ̄i/∂ψ
= eψ̄e−ieΛi/∂(eieΛ)ψ + eψ̄e−ieΛeieΛi/∂ψ − eψ̄γµi/∂ψ
= eψ̄e−ieΛi/∂(eieΛ)ψ = −δALQED .

(8.11)

This is a local gauge transformation, since the U(1) rotation performed on the Dirac field de-
pends on the spacetime point. The Lagrangian is then invariant under the combined guage
transformation

Aµ → Aµ − ∂µΛ ,
ψ → eieΛψ ,

ψ̄ → ψ̄e−ieΛ ,

(8.12)

62Here we are anticipating the passage to the interaction picture, where Q will be written in terms of free fields
for which the particle interpretation is clear.
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for an arbitrary function Λ(x). Conversely, asking that the Lagrangian be invariant under such a
transformation forces us to couple the electromagnetic and the Dirac fields as in Eq. (8.7), if we
want to use derivatives of the fields. To see this, let us denote with Dµ the covariant derivative,

Dµ ≡ ∂µ + ieAµ , (8.13)

so that we can write

LQED = −1

4
FµνF

µν + ψ̄(i /D −m)ψ . (8.14)

The covariant derivative of ψ transforms like ψ itself under a gauge tranformation:

Dµψ → (∂µ + ieAµ − ie∂µΛ)eieΛψ = eieΛ(∂µ + ieAµ)ψ = eieΛDµψ . (8.15)

To obtain a Lorentz-invariant and gauge-invariant action we are then force to use scalar combi-
nations of Fµν , ψ and Dµψ. The simplest possibility is precisely Eq. (8.14). This explains the
origin of the so-called minimal coupling or minimal substitution in terms of gauge invariance.

Let us summarise our discussion so far. We have argued that a good Lagrangian for the
description of spin-12 particles coupled to the electromagnetic field is the one given in Eq. (8.14).
This can be motivated by the request of invariance under Lorentz transformations and under
the local gauge transformation Eq. (8.12). The theory obtained starting from this Lagrangian
has the Poincaré group and the U(1) group as its global symmetries, to which correspond con-
served currents and charges according to Noether’s theorem. The latter are the four-momentum
generators Pµ, the Lorentz generators J (ρσ) and the electric charge Q given in Eq. (8.9).

The EOM are obtained as usual via an action principle, and read

∂µF
µν = eψ̄γνψ ,

(i /D −m)ψ = 0 .
(8.16)

In particular, the second equation and its adjoint imply by themselves the conservation of
the electric current Jµ = eψ̄γµψ. Indeed, taking the adjoint of this equation in the form
i/∂ψ = (m+ /A)ψ, we find (∂µψ̄)γ = −ψ̄(m+ /A), so that

∂µ(eψ̄γ
µψ) = e[(∂µψ̄)γ

µψ + ψ̄γµ∂µψ] = eψ̄[−(m+ /A) + (m+ /A)]ψ = 0 . (8.17)

Our next task is to quantise this theory. We already know that gauge invariance does not allow
us to proceed directly via the canonical method, so we try to proceed again á la Gupta-Bleuler.
We then modify the Lagrangian to

LQED|GB = −1

4
∂µAν∂

µAν + ψ̄(i /D −m)ψ , (8.18)

having added the gauge non-invariant term −1
2(∂µA

µ)2 to the original Lagrangian (and having
dropped irrelevant total derivative terms). We then proceed to solve the modified EOM

✷Aν = eψ̄γνψ ,

(i /D −m)ψ = 0 ,
(8.19)

after which we will impose the subsidiary condition on the Hilbert space,

(∂µA
µ)+(x)|Ψ〉 = 0 . (8.20)
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As discussed at the end of Section 7.1, ∂µA
µ is a free field also in the interacting case, so that

it can be separated into positive and negative frequency parts. The Gupta-Bleuler procedure
requires that we impose the usual CCR/CAR on the fields and their conjugate momenta,

πµA =
∂LQED|GB

∂0Aµ
= −∂0Aµ , πψ =

∂LQED|GB

∂0ψ
= iψ† , (8.21)

and after that select physical states in the Hilbert space by imposing Eq. (8.20).
The procedure outlined above cannot be fully carried out in practice, so we have to resort

to some approximation technique. We will then go over to the interaction picture and com-
pute physical quantities by means of perturbastion theory. Since the interaction part of the
Lagrangian does not depend on time derivatives of the field, we have that

VI = −
∫

d3xLI(ψint, ψ̄int, Aintµ) ,

LI(ψint, ψ̄int, Aintµ) = −eψ̄int /Aintψ̄int .

(8.22)

From this we can develop perturbation theory as discussed in Section 6.
Before discussing in detail perturbation theory, we still have to clarify what happens to

the subsidiary condition when going over to the interaction picture. Since ∂ · A = ∂µA
µ is a

Hermitian free field, ✷∂ ·A = 0, we can write it as

∂ ·A(x) =
∫

dΩp

{

e−ip·xc(~p ) + eip·xc(~p )†
}

, (8.23)

for some operators c(~p ). All we need to know about them is that they can be extracted from
∂ ·A as usual,

c(~p ) =

∫

d3x eip·xi
↔

∂0∂ ·A(x) , (8.24)

for arbitrary x0. Since Aµ(x) = eiP ·xAµ(0)e
−iP ·x, thanks to translation invariance of the theory,

we also have

∂ ·A(x) = ∂µ
(

eiP ·xAµ(0)e−iP ·x
)

= [iPµ, A
µ(x)] = eiP ·x[iPµ, A

µ(0)]e−iP ·x

= eiP ·x∂ ·A(0)e−iP ·x .
(8.25)

This implies

eiP ·ac(~p )e−iP ·a =

∫

d3x eip·xi
↔

∂0∂ ·A(x+ a) = e−ip·a
∫

d3x eip·xi
↔

∂0∂ ·A(x) = e−ip·ac(~p ) , (8.26)

where we have made a change of variables in ~x, and we have used the arbitrariness in the choice
of the time variable in Eq. (8.24). We conclude that

[∂ ·A(x)]+ =

∫

dΩp e
−ip·xc(~p ) = eiP ·x

[∫

dΩp c(~p )

]

e−iP ·x = eiP ·x[∂ ·A(0)]+e−iP ·x . (8.27)

On the other hand, at t = 0 the fields and momenta in the Heisenberg and interaction pictures
coincide,

Aintµ(0, ~x ) = Aµ(0, ~x ) , πintµ(0, ~x ) = −∂0Aintµ(0, ~x )πµ(0, ~x ) = −∂0Aµ(0, ~x ) , (8.28)
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x µ −→ −ieγµ

Figure 9: Interaction vertex in QED.

from which it follows that [∂ · A(0, ~x )]+ = [∂ · Aint(0, ~x )]+ = ∂ · Aint+(0, ~x ), where in the last
passage we used our knowledge of free fields to write the positive-frequency part of the divergence
of the free photon field as the diverge of the positive-frequency part of the field (this is not true
for the interacting field). We now use the fact that the subsidiary condition Eq. (8.20) holds for
all x. Since Eq. (8.20) implies also that eiH0t(∂µA

µ)+(0, ~x )e
−iHt|Ψ〉 = 0, for all t, we can write

0 = lim
t→−∞

eiH0t

∫

d3x eip·x[∂ ·A(0, ~x )]+e−iHt|Ψ〉

= lim
t→−∞

eiH0t

∫

d3x eip·x∂ ·Aint+(0, ~x )e
−iHt|Ψ〉

= lim
t→−∞

eiH0t

∫

d3x eip·x∂ ·Aint+(0, ~x )e
−iH0t|Ψ0〉

= lim
t→−∞

∫

d3x eip·x∂ ·Aint+(t, ~x )|Ψ0〉

=

∫

d3x eip·x∂ ·Aint+(t, ~x )|Ψ0〉 = −ipµaµ(~p )|Ψ0〉 = −iL(~p )|Ψ0〉 ,

(8.29)

where |Ψ0〉 is defined as the free state leading to the in state |Ψ〉, |Ψ〉 = Ω+|Ψ0〉, and aµ(~p ) are
the annihilation operators associated to the free photon field in Lorenz gauge. We thus recover
the Gupta-Bleuler subsidiary condition for free particle states. The same argument can be made
for out states. We can then build the free physical Hilbert space as described in the previous
Section, and then obtain the interacting physical Hilbert space through the scattering operators
Ω±. Being unitary operators (or at least isometric), we are guaranteed that all negative and
zero norm states are eliminated from the theory.

At this point we construct the S operator in the usual way, but we have to make sure that
it has no matrix elements between physical and unphysical states, so that the identification of
state vectors differing by zero-norm vectors does not affect the physics. We will show later that
S is actually gauge invariant, in the sense that [L(~p ), S] = [L(~p )†, S] = 0, so that we end up
having a well-defined unitary scattering matrix acting on a positive-norm Hilbert space. Since
Lorentz invariance is manifest at all stages, we are guaranteed that the S matrix will also be
Lorentz invariant. All that is left to do (it may seem. . . ) is to actually compute the S-matrix.
We now outline how this is done.

8.1 Feynman rules for spinorial electrodynamics

We now give the extra rules required to compute the perturbative series in QED. In general,
the construction of the perturbative series proceeds as discussed in Section 6, expanding Dyson
formula in powers of the coupling (here the electric charge e), and dealing with the time-ordered
products of fields by means of Wick’s theorem. All we need to add is how the interaction vertex
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p1 − p′1

e− p′1s
′

1

e− p1s1

µ− p′2s
′

2

µ− p2s2

Figure 10: Lowest-order diagram for elastic e−µ− scattering.

behaves in the theory at hand, and how to deal with photon fields, both when they appear in
contractions and when they act on the incoming and outgoing particles.

• The interaction vertex is represented by two fermionic lines, one ingoing and one outgoing,
and a wiggly line corresponding to the photon field (see Fig. 9). The corresponding factor
reads−ieγµ, where the Dirac indices are contracted as usual by going against the flow of the
fermion lines, while the Lorentz index µ is contracted with the contribution corresponding
to the photon field.

• A photon field acting on an incoming or outgoing photon gives rise to an external photon
line in the diagram. Photon states are denoted by |~p λ〉, where λ = 1, 2 is one of the two
physical polarisations. To determine the contribution of an external line, it suffices to
evaluate the following matrix elements,

〈0|Aµ(x)|~p λ〉 =
∫

dΩq
∑

λ′

e−iq·xε(λ
′)

µ (~q )〈0|a(λ′)(~q )|~p λ〉 = e−ip·xε(λ)µ (~p ) ,

〈~p λ|Aµ(x)|0〉 = 〈0|Aµ(x)|~p λ〉∗ = eip·xε(λ)µ (~p )∗ .

(8.30)

We have then the following rules: in coordinate space, associate a factor e−ip·xε
(λ)
µ (~p ) to

an incoming particle attached to the vertex x, and a factor factor e+ip·xε
(λ)
µ (~p )∗ to an

outogoing particle attached to the vertex x; in momentum space, drop the phase factors.

• The only nontrivial contraction for the photon field is Dµν(x− y) = 〈0|T (Aµ(x)Aν(y))|0〉.
In a Feynman diagram, such a contraction corresponds to an internal line running from
vertex y to vertex x,63 and the corresponding factor Dµν(x − y) must be included in
coordinate space. In momentum space, a momentum p is associated to each internal line,
and a factor D̃µν(p) must be included.

Let us apply these rules to the calculation of the simplest process, namely the elastic scat-
tering of two different fermions. To fix the ideas, let them be an electron and a muon, both of
charge e = −|e|. In this case there is a single Feynman diagram contributing to lowest order,
the one shown in Fig. There are no special symmetries in this diagram, so the usual degeneracy
counting applies, and we find

M(eµ→eµ)
fi =

1

i
ū
(e)
s′1

(~p ′
1 )(−ie)γµu(e)s1 (~p1 )

(−i)ηµν
(p1 − p′1)2 + iǫ

ū
(µ)
s′2

(~p ′
2 )(−ie)γνu(µ)s2

(~p2 )

=
e2

t
ū
(e)
s′1

(~p ′
1 )γ

µu(e)s1 (~p1 )ū
(µ)
s′2

(~p ′
2 )γµu

(µ)
s2

(~p2 ) ,

(8.31)

63Photon lines are usually drawn without an orientation, since the photon is a neutral particle.
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′

1 µ+ p′2s
′

2

Figure 11: Lowest-order diagram for e−e+ → µ−µ+ scattering.

where t = (p1 − p′1)2 is the usual Mandelstam variable. We can verify explicitly that the same
result is obtained in any other α gauge. In fact, replacing the Feynman gauge propagator with
the one for α 6= 1 we find the extra contribution

1

i
ū
(e)
s′1

(~p ′
1 )(−ie)γµu(e)s1 (~p1 )

i(1− α)(p1 − p′1)µ(p1 − p′1)ν
[(p1 − p′1)2 + iǫ]2

ū
(µ)
s′2

(~p ′
2 )(−ie)γνu(µ)s2

(~p2 ) , (8.32)

which vanishes since

ū
(e)
s′1

(~p ′
1 )γ

µu(e)s1 (~p1 )(p1 − p′1)µ = ū
(e)
s′1

(~p ′
1 )(/p1 − /p

′
1
)u(e)s1 (~p1 )

= ū
(e)
s′1

(~p ′
1 )(m−m)u(e)s1 (~p1 ) = 0 ,

(8.33)

the other factor is seen to vanish as well since p1− p′1 = p′2− p2 due to momentum conservation.
This reflects a general result: due to current conservation, the factor Oµ1...µn that in a Feynman
diagram is contracted with internal and external photon lines satisfies qj µjO

µ1...µn = 0 for all
j, where qj is the momentum flowing in the j internal or externl photon line. These are the
so-called Ward identities, that guarantee the gauge invariance of the S-matrix.

Another simple process is the inelastic scattering process e−e+ → µ−µ+. Also in this case
one finds a single Feynman diagram to lowest order, which is evaluated to be

M(e−e+→µ−µ+)
fi =

1

i
ū
(e)
s′1

(~p ′
1 )(−ie)γµv(µ)s′2

(~p ′
2 )

(−i)ηµν
(p1 + p2)2 + iǫ

v̄
(µ)
s′2

(~p2 )(−ie)γνu(e)s1 (~p1 )

=
e2

s
ū
(e)
s′1

(~p ′
1 )γ

µv
(µ)
s′2

(~p ′
2 )v̄

(µ)
s2

(~p2 )γµu
(e)
s2

(~p1 ) ,

(8.34)

where s = (p1 + p2)
2 is the usual Mandelstam variable. For the processes e−e− → e−e− and

e−e+ → e−e+ there are instead two diagrams, similar to those in Figs. 4 and 5, except for the
replacement of the internal scalar line with a photon line. Their value is of course different.

The physical quantity measured in experiments is not the transition amplitudeMfi but the
cross section, which is proportional to |Mfi|2. Often the particles in the initial state are not
polarised, and the spins of those in the final state are not observed. What is measured is then
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the cross section averaged over initial spins and summed over final spins, in which enters the
following averaged quantity,

〈|Mfi|2〉 ≡
1

(2s1 + 1)(2s2 + 1)

∑

s1,s2,sf

|Mfi(s1, s2 → sf |2 . (8.35)

For processes involving fermions one can exploit the identities of Eq. (5.86) to simplify the final
expressions. Let us see how this works in the case of elastic e−µ− scattering. From Eq. (8.31)
we find

〈|M(eµ→eµ)
fi |2〉 = 1

4

∑

s1,s2,s
′
1,s

′
2

(

e2

t

)2

ū
(e)
1′ γ

µu
(e)
1 ū

(µ)
2′ γµu

(µ)
2 ū

(e)
1 γνu

(e)
1′ ū

(µ)
2 γνu

(µ)
2′

=
1

4

e4

t2
tr γµ(/p1 +me)γ

ν(/p
′
1
+me)γµ(/p2 +mµ)γν(/p

′
2
+mµ) .

(8.36)

The trace can be evaluated by making use of the following identities,

tr γµγν = 4ηµν ,

tr γµγνγργσ = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ) ,
(8.37)

and the fact that the trace of an odd number of gamma matrices vanishes. We will see below
how to proved these identities, for the time being we just use them to get

〈|M(eµ→eµ)
fi |2〉 = 4

e4

t2
(

ηµν(m2
e − p1 · p′1) + pµ1p

′ν
1 + pν1p

′µ
1

) (

ηµν(m
2
µ − p2 · p′2) + p2µp

′
2ν + p2νp

′
2µ

)

.

(8.38)
Notice now that t = 2(m2

e − p1 · p′1) = 2(m2
µ− p2 · p′2), s = m2

e +m2
µ+ p1 · p2 = m2

e +m2
µ+ p′1 · p′2

and u = (p1 − p′2)2 = m2
e +m2

µ − p1 · p′2 = m2
e +m2

µ − p2 · p′1, to find

〈|M(eµ→eµ)
fi |2〉 = 4

e4

t2

(

4

(

t

2

)2

+ 2
t

2
(p1 · p′1 + p2 · p′2) + 2((p1 · p2)(p′1 · p′2) + (p1 · p′2)(p′1 · p2))

)

= 4
e4

t2

(

t2 + t(m2
e +m2

µ − t) +
1

2
((s−m2

e −m2
µ)

2 + (u−m2
e −m2

µ)
2)

)

= 4
e4

t2

(

t(m2
e +m2

µ) +
1

2
((s−m2

e −m2
µ)

2 + (u−m2
e −m2

µ)
2)

)

.

(8.39)
Using the identity s+ t+ u = 2(m2

e +m2
µ), this can be written as

〈|M(eµ→eµ)
fi |2〉 = 2

e4

t2
(

6(m2
e +m2

µ)
2 − 4(s+ u)(m2

e +m2
µ) + s2 + u2

)

. (8.40)

In the limit of high energy at fixed t this simplifies to

〈|M(eµ→eµ)
fi |2〉 → 2e4

s2 + u2

t2
≃ 4e4

s2

t2
. (8.41)

The first expression above coincides with the one found in the limit of massless fermions.
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Let us now discuss how one can prove the trace identities Eq. (8.37). To this end, let us
introduce the following matrix,

γ5 =
1

4!i
ǫµνρσγ

µγνγργσ =
1

i
ǫ0123γ

0γ1γ2γ3 = −1

i
γ0γ1γ2γ3 = iγ0γ1γ2γ3 , (8.42)

which in the spinor representation that we are using reads

γ5 =

(

1 0

0 −1

)

. (8.43)

It is easy to see that γ5 anticommutes with all the γµ,

{γ5, γµ} = 0 , (8.44)

and that (γ5)2 = 1. If we now compute the trace of an odd number of gamma matrices, we find

tr {γµ1 . . . γµ2k+1} = tr {γµ1 . . . γµ2k+1(γ5)2} = tr {γ5γµ1 . . . γµ2k+1γ5}
= tr {γ5(−1)2k+1γ5γµ1 . . . γµ2k+1γ5} = −tr {γµ1 . . . γµ2k+1} = 0 .

(8.45)

For the trace of the product of two gamma matrices, we can use the basic anticommutators to
show

tr γµγν = tr γνγµ =
1

2
tr {γµ, γν} = 4ηµν . (8.46)

Finally, to prove the four-gamma identity we make repeated use of γµγν = 2ηµν − γνγµ to show
that

tr γµγνγργσ = 2ηµνtr γργσ − tr γνγµγργσ = 8ηµνηρσ − tr γµγργσγν

= 8(ηµνηρσ − ηµρηνσ) + tr γµγσγνγρ

= 8(ηµνηρσ − ηµρηνσ + ηµσηνρ)− tr γµγνγργσ ,

(8.47)

from which the identity follows.
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