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Relativistic kinematics: Minkowski space

Relativistic theories are conveniently formulated in Minkowski space

Minkowski space = R* + Minkowski (pseudo)metric

Euclidean space = R3 + Euclidean metric

Distance between points in E. space: d(X,y) = (X —y)? = (X — ¥ )i(X — ¥ )05
Latin indices 1,...,3, sum over repeated indices understood

Invariant under translations X — X + 3 and rotations X — RX

Point in Minkowski space (=event): X*, un=0,1,2,3
Xt = (ct,X) = (t,X)

Greek indices 0, ..., 3; speed of light c =1
In Minkowski space distances replaced by interval

AP =(X - YV =X - Y)X = Y)gw=X-Y)X-Y),
S (X0 YR (XYY
Minkowski metric tensor: g, = diag(1,—-1,—1,—1)
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Relativistic kinematics: the lightcone

Contravariant vectors: X* = (X°, X) .
Covariant vectors: X, = g X" = (X% —X)
Indices lowered by g, and raised by g"” = diag(1,—1,—1,—1)
g defined by gh?g,, = 6",
Minkowski scalar product X - Y = X#YVg,, = XI'Y), = X0y _X.Y
X - ¥: three-dimensional Euclidean scalar product
Interval is not a distance because it is not positive-definite:
o As? > 0 timelike interval — X2 > 0 timelike vector
o As? < 0 spacelike interval — X2 < 0 spacelike vector

o As? = 0 lightlike or null interval — X2 = 0 lightlike or null vector

For a fixed event X

(Y —X)2=0, YO - X° > 0: forward (future) lightcone of X

(Y —X)2=0, YO~ X% < 0: backward (past) lightcone of X

(Y = X)?2>0, YO~ X% > 0: future of X (inside future lightcone)
(Y —X)2>0, YO — X% < 0: past of X (inside past lightcone)
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Relativistic kinematics: the lightcone (contd.)

e Future lightcone of X = 0: events (Y?, \7) where Y is reached at
time YO by light emitted by a point source at time X° =0 from X =0

Equation for the front of the spherical wave of light emitted at time O from X =o0:
X? = (X% = X2 =0
o Past lightcone of X = 0: events (YY) where a ray of light emitted
at time Y© from Y reaches X = 0 at time X° =0

If X1 and X5 are inside the forward light cone = Xj; + X5 is still inside the
forward lightcone
Proof: (X)7, >0, XY, >0 = X{, > |X12]; using Schwartz inequality

(X1+X2)? = (X1)*+(X2)?+2X1 - X2 = (X1)2 (X2)2+2(XPX9 — X1 - Xa)
2XPXS— Xy - Xo) = 2(XPXF | Xu]| Xa]) > 0

so (X1 + X2)2>0and X2+ X9 >0
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Lorentz transformations

Principles of special relativity:
@ homogeneity and isotropy of space

@ equivalence of all inertial reference frames
= travelling at a relative constant speed

@ constancy of speed of light
= equivalent frames are related by a Lorentz transformation X’ = AX:
linear transformation that leaves every interval invariant

Analogous to rotations in 3D Euclidean space that leave the distance between points invariant

X' = Y)Y =(X-Y)? VX, Y
=S X244 Y2 2X Y =X24Y2-2X-Y VX,Y
=X .Y'=X.Y VX, Y

In components X'* = A X
8apXOYP = g, XYY = g N' N g XOYFP XY
= 8ap = GuN'ay
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Lorentz transformations (contd.)

Using matrix notation Aye =AYy, 80 = G g;l} =g" =gu
g=NA"gh

(detN)?> =1 = det A = £1, A invertible

o det A = 1: proper transformations, leave orientation of space
unchanged

o det A = —1: improper transformations invert the orientation of space
A! =g ATg still a Lorentz transformation

0o g=[AM1Tg[AN ] =ATT[ATgAIA-"L =A"1Tgn !

o N ;=g\ gp =N
From the o = 0, S = 0 component of the defining relation

o A% > 1: orthocronous (does not change the sign of time)

e A9 < —1: non-orthocronous (changes the sign of time)
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Proper orthocronous Lorentz group

Proper orthocronous Lorentz transformations = three-dimensional
rotations (the SO(3) group) and boosts
Most general transformation: rotation X boost in x direction x rotation

I
. wo_ | 7 Y
Boost along x: Ny = 0 0 1 0 1

0 0 01 7:\/1—62

Boost in general direction 7: rotate i to x, boost, rotate back
Coordinates in the new frame:
ct' =y(ct+Bx) X' =~(x+ Bet)
y =y 7=z
= relates R to R’ moving with speed 3 in the negative x direction
Nonrelativistic limit 8 = v/c < 1 = Galilei transformations
ct' =ct x'=x+vt
y/ =Yy Z, =Zz
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Full Lorentz group

Most general Lorentz transformation = proper orthocronous
transformation times P (parity), T (time reversal), or PT

P*, = diag(1,—-1,—1,—1) T#, = diag(—1,1,1,1)

detA=1 detA = -1
/\00 >1 ‘ proper orthocronous ? improper orthocronous
I I
A% < —1 | proper non-orthocronous | = | improper non-orthocronous
0 P
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Point particles: kinematics

Trajectory X#(t) of point particle; over infinitesimal dt, X* — X* + dX*
XH(t) = (ct, X(t)) = (£, %(t))
dX*(t) = (dt, d%(t)) = dt(1, ¥(t)) = dt(1, ¥(t))
Empirical fact: for massive particles V2 < 1, for massless particles V2 = 1
(dX)? = dX"dX, = dt*(1 — ¥2) >0  (timelike)
G (8) = (1,(t))
% not a Lorentz vector: dX* = vector, dt # scalar
Massive particle V2 < 1: 3 reference frame in which v = 0 (rest frame)
Xlest(7) = (7,0)
T: proper time (time measured in the particle's rest frame)

— 2
(dXrest)? = d7? = (dX)? = dt*(1 - v?) = 95
= 7T true scalar, Lorentz-invariant notion of time
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Point particles: kinematics (contd.)

Proper time:
o d72 =95 = |dt| > |d7] (time-dilation effect)
@ determine the elapsed proper time by going over to the instantaneous
rest frame of the particle = twins' paradox

T:de:ftZdt'mg t—to

Four-velocity

u -
uu_dX __(dt dx)_

= &K = (& Y = (v,4%%) = (7,77) = (7,75)

Four-momentum (vector u* times scalar m)

p' = mut = (ym,ymp)
po = m"y = L = E i i mv

— pI:mBI: — :I—j‘i
1-v? ! V1—v?2
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Point particles: four-momentum in the NR limit

vl
c

Do E, p match their non-relativistic definition when = <17

Needs reinstating powers of ¢

Second line ok, first line times ¢

pPc=mc® +imiP + ... = B+ EQ% + ...

= NR kinetic energy E}}IR of a particle plus rest energy Eg = mc

2
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Point particles: four-momentum for m % 0 and m =0

Massive particles: p> = m? > 0

Mass = relativistic invariant

pP=m(1-B%)=m*>0 P =7(1-5%=1

Trajectory always inside the forward lightcone

Any constant would do, but m is the constant such that total momentum

> pi =>_; mjuj of a system of particles is conserved

Also: correct NR limit of p#* =mu*

Energy-momentum relation is called dispersion relation
E2 =524+ m?
Massless particles: p?> =0
p" = (w, k)
0=p>=w?— k2= w=|k|>0

Trajectory always on the lightcone
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Kinematics of two-particle scattering

Two particle — two particle scattering process ab — ¢ d

Lab frame: one initial particle is at rest (= target)
Pa = (EL7 5L) Pb = (mb70)
Pc = (Eaﬁc) Pd = (Ed75d)
Scattering angle 6, in the lab: angle between trajectories of ¢ and a
— ﬁL‘ﬁc
cos O = 515
CM frame: vanishing total spatial momentum
pa:(Ea*uﬁ*) pb:(E[;kv_ﬁ*)
pc = (ESB™)  pa=(Ej—P")
Scattering angle 6* in the CM: angle formed by the trajectories of a and ¢

Bk, g/
BRENIEE
Total center of mass energy /s = Lorentz invariant
2 * *\2 * * * *
s=(patpp) = (E;+E)° Vs=E +E =E+Ej
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Kinematics of two-particle

scattering (contd.)

LAB CM
Pa = (ELvﬁL) Pp = (mb,O) Pa = (Ea*uﬁ*) Pp = (Ei)ku _5*)
Pc = (E675C) Pd = (Ed7l_jd) Pc = (Egal_j/*) Pd = (E;Iku _5/*)
¢ C
0 *
a ————————¢ b\-—% ————— a \0 b
d
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Kinematics of two-particle scattering (contd.)

‘Pa—FPb:Pc—FPd‘

o Four-momentum conservation implies E; ;, |p; 4| = [F"*| determined
uniquely in the CM, independent of 6*
® Ec 4, |Pcdl and 6, in the lab by Lorentz transformation, depend on #*
Pb = Pc + Pd — Pa
Po = (Pc + Pd)* + P — 2pa - (e + Pa)
m? =s+m>—2E:\/s

proStmMomy . stmpom
a 2\/§ assb b 2\/§
@ CM energy squared s Lorentz invariant = E} from E; in the lab:
_m2_m2
s = (patpb)? = M3-+mp+2ps-pyp = ma+mp+2E my = Ey = *—52

@ Exchanging a,b <> ¢, d
_s+m§—m2 _s+m3—m§

Ex—=2>"1 "< "~ d Ej="——49 ¢
c = =
NG NG
Matteo Giordano (ELTE) Particle physics October 6, 2020 14 /29



Kinematics of two-particle scattering: CM

Center of mass energies:

E*_s—i-mg—m% E*_s—i-m%—mg
a 2./s b 2/s

2 2 2 2

s+ ms—m s+ m5—m

E:: c d E*: d c

2./s d 2/s
Center of mass momentum magnitude |p*| from dispersion relation:

|5*|2 _ E;Z _ m2 _ (s+m2—m2)2—4sm2 _ s24(m2—m?)2—2s(m2+m?)

a 4s - 4s
_ (smm2m2)?—Am2md [s—(matmy)]s—(ma—my)?] _ Als.mdm?)
- 4s - 4s - 4s
‘_,,*‘ . E*z . 2 _ (stm2-m?)’—4sm? _ s*+(m2—-m?)*—2s(m2+m?)
- C - 4s - 4s
(s m2—m2)2—4m2m?  [s—(mc+mg)?][s—(mc—mg)?] _ A(s,mZ,m3)
4s - 4s - 4s

Kallén function: A(x,y,z) = x> + y? + 2% — 2xy — 2yz — 2zx
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Kinematics of two-particle scattering: lab

Lab kinematics recovered from CM kinematics

Given Piab,cM, Elab,om total spatial momentum /total energy in lab/CM

|Pom| = 0 = vem(|Piab] — BemEiab) = Yem(|PL] — Bem(mp + EL))

Inverse Lorentz transformation from CM to lab

Ec1ab = YoM (ES + Bem|B™| cos 0%),
|Betab| cos 01 = yen(|B"*| cos 0 + BomEL),
‘5c,1ab| sinf; = |,B/*| sin 0* ,

Transverse directions unaffected by Lorentz transformation, azimuthal
angle transforms trivially
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Example: proton-antiproton scattering

For pp scattering in circular collider, E, = E5 = 270 GeV
= /s = 540 GeV

Let now p be at rest in the lab.
Q. What should be the energy E; of p in the lab to obtain the same s?

A. CM energy square s is a relativistic invariant, can be evaluated in any
reference frame; in the lab

s=(po+pp)° = 2(mf, + ELmp) = 2mp(mp + Ep)
Solve for E; and impose /s = 540 GeV (> my)

s —2m? 40)2
E = P~ ° ~ (540) Ge\/zy-m4 GeV =150 TeV (!11)
2mp 2m, 2 2

In general total CM energy Ecnm ~ /2mpE;
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Mandelstam variables

Convenient set of relativistic invariant variables for 2 — 2 scattering

SE(Pa+Pb)2:(Pc+Pd)2
t = (pa — pe)’ = (Pb — Pa)’
u=(pa—pa)* = (P — pc)?

@ s = total CM energy squared

@ t = square of four-momentum transfer from a to ¢
t= P2+ p2—2p, - pe = m2 + m2 — 2(ELE} — |B"]|"| cos0)
@ u = square of four-momentum transfer from a to d
_ 2 2_2 _ 2 2_2 E*E* = /x 0*
u=p;+ Py —2pa-pd = m;+mg—2(E;Eq+[B7|[p"|cosb7)
u obtained from t after m¢ — my and cos §* — — cos 6*

Energies and magnitudes of momenta entirely determined by s and particle
masses = t = t(s, §*), or instead 6* = 6*(s, t) and use s, t
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Mandelstam variables (contd.)

Only two independent Mandelstam variables:
s+t+u=(patpp)’+(pa— pc) + (P2 — pa)?
=m}+ mp + mZ+ my+2p.- (pa+ ps— P — Pd)
:mﬁ—i—m%—i—mf—i—mg
Bounds on Mandelstam variables determine physical region for s, t, u
s > max((m, + mp)?, (me + myg)?)
Bounds on t and u from
t = (pa—pe)’ = m}+ mZ—2p,-pc = 2(m; +mZ) — (ps + pc)°
< 2(m§ + mg) = (m, + mc)2 = (m, — mc)2
Similarly using pp and py; same approach for u
t < min((m, — m¢)?, (mp — mg)?) u < min((m, — mg)?, (mp — m.)?)
Lower bound from this and tlu = m2 + m? + m? + m?% — s — ult
t > max(m2 + m? 4+ 2m,my, m2 + m3 + 2mpm.) — s

u > max(m? + m? + 2mpmy, m? + m% +2m,m.) — s
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Mandelstam variables (contd.)

Simplification if my = my, mc = mg = E; = Ef = EZ = E = %

t:mg—i—mg—%(l—cosﬁ*\/l—“sﬁ\/l—%)

If also my = me = m

t=2m*—3 (l—cose* (1—4—"’2)> =—(s—4m?) sinz%

S

s> 4m? —(s—4m2)§t§0

e Upper limit: at threshold s = 4m? or when 6* = 0 (forward
scattering)
o Lower limit: when 6* = 7 (backscattering)
@ In this case u(s,0*) = t(s, ™ — 6*) = same bound applies to u; role
of 6 = 0 and 6* = 7w exchanged
Relevant for

e elastic processes involving only one type of particles/antiparticles
@ very high energy limit (masses negligible, particles &~ massless)
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Example: proton-proton scattering

Elastic pp scattering, /s = 53 GeV

Differential cross section 2(t) has a peak at —t = to = 1.81 GeV?

E. Nagy et al., Nucl. Phys. B150 (1979) 221

Q. What is the corresponding scattering angle in the CM?

A. Elastic scattering of identical particles, s/m,zJ >1

(e a2 O e cin2 OF
—t = (s —4my)sin” % ~ ssin® 5

sin G = — o = Bl = 53 =645.1071

s—4m2 — 532-4.0.938% _ 2805

sin® % ~ - = 0" ~2v5.1072 ~5.1072
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Mandelstam plane

Sum of the distances from the sides of an equilateral triangle is constant

Sides of eq. triangle: s =0, t =0 and v = 0 axes
For appropriate side length s +t 4+ u = m? + m% +m? + mg

Physical region for the a+ b — ¢ + d process (equal masses) = wedge
defined by the prolongation of the v and t axes
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Crossing symmetry

QFT result: scattering amplitudes for a+ b — c+d, a+¢ — b+d,

a+d — c+ b are part of a single analytic function extending beyond
physical momenta, and related to each other

Aab—scd(Pa; Pbi Pe, Pd) = Az 54(Pas—Pci—Pb, Pd) = As7—,c5(Pay—Pd; Pe,—Pb)

Use Mandelstam variables

atb—c+d As(s, t,u) = Aabscd(Pa; Pb; Pes Pd) s-channel
a+c—b+d Ae(st, te, ur) = Az 54(Pas Pe; Pg, Pd) t-channel
at+d—=c+b Au(su, tu, uy) = A,z 5(Pas P7: Pes PB) u-channel

s=(patp)  t=(pa—p)  u=(ps—ps)
se=(pa+pe)’  te=(pa—pp)°  ur=(ps— pd)’
su=(pa+ p8)2 ty = (pa— Pc)2 = (ps— Pg )2

Crossing-symmetry relations

As(s, t,u) = A(t, s, u) = Ay(u, t, s)
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Crossing symmetry (contd.)

As(s, t,u) = Ae(t,s,u) = Ay(u, t,s)

o If s, t, u take physical values for
the s-channel process ab — cd,
crossing relations involve A; and

) A, at unphysical values of their

————————— / AN = arguments

@ Relations fully meaningful if A
can be analytically continued
outside the physical domain

Example: for equal masses, physical regions of A; and A, are
se >4m?, t; <0and s, >4m?,t, <0, but t <0and s> 4m?

Physical regions = wedges outside Mandelstam triangle
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Invariant phase space

States of spinless particle, mass m are characterised by four-momenta p*
with p2 = m? and positive energy p° > m > 0

One-particle phase space:
{peR*p?>—m?>=0, p°>0}cR*

Measure of infinitesimal element of phase space

d*p

(1) —
do (2n)

216(p? — m?)0(p°)

@ Manifestly invariant under orthocronous Lorentz transformations:

p? invariant, sign(p®) invariant under orthocronous transformations

@ Overall scale appropriate for relativistic normalisation of one-particle
states

=/ = 3 0¢(3)/ =/ —
(B'18) = (27)*2p°6) (B’ — B)
TS



Invariant phase space (contd.)

Recast d®() in more convenient form: for any f with simple zeros {x,}

()= Y ol )

!
om0 [T/ Gl

Proof:
e multiply both sides by some function h(x), integrate over R, show
that one gets the same result
e divide R = (—o00, +00) = Ukl with f(x) monotonic in I,
= f invertible in /, and vanishes at most once (with |f’| # 0 there)
e set y = f(x) = x = f~I(y) in each Iy

+oo
/ dx o(f Z dx S(F(x))h(x)

_ -1
- Zk:/oef(/k) v |f’(f’1(0))|6 ~ ) Z If’ )
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Invariant phase space (contd.)

4 4
40 = Z85a(0F — m)0F) = (00 = 5 = P )O(e")
dp 1 0 o 0 = 0
= G I [6(p° —(B)) + 6(p° +£(5))] 6(p°)
d4p 1 - 0 d3p

0 _¢ = =
“ )P P ) = O

(B) = V57 + m?

n-particle phase space C R*" corresponding to four-momenta of n particles
subjected to a constraint on the total four-momentum
Measure of infinitesimal element:

do(" = 17, dp, (21)*5 (prot — X0, py)

Lorentz invariant: dej Lorentz invariant

S (AP) = | det A|726()(P) = 6()(P)
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Invariant phase space: two-particle case

Total momentum piot = (Eiot, Prot), particle energies £;(5) = 1/p2 + m,-2

d*py d®ps
(2%)3261(ﬁ1 ) (271’)3262([_52 )
1 d®pr d3p

- B —»6(3)_'0__'__’5E0— D )— D
(2m)? 2e1(P1 ) 22(P2) (Prot = P1—P2)0(Eror —€1(P1 ) —€2(P2)

Integrate trivially over By, setting it equal to o = Prot — P1

do®) —

(27)*6™ (pror — p1—p2)

1 d®p; 1

do@ — - _ _
(27)? 2e1(P1 ) 222(Prot — P1

)6(Et0t —e€1(p1) — €2(Prot — P1))

To further integrate over |p1| requires changing variables, most easily done
working in the CM
Prot,cM = 0 = Prcm = —P2cM,  |Prom| = |Baom| = p

Dropping “CM" in the following
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Invariant phase space: two-particle case (contd.)

Delta function depends on Eiot — €1(p) — €2(p)
Dropped vector sign on +p

0 | p | p . .
g Earea(p) -2l | = | P P = — (e ea(o)

Changing variables to d3p; = dpp?d cos 8*d¢* = dpp?dQ*

1 dpp?dQ* 1 e1(p)e2(p)
(2m)? 2e1(p) 2e2(p) p [e1(p) + 22(p)]

do® = ~to(p—p*)

/

5(Etot—6;(rl3)_52(P))
_do p* _dQ pr 4 pt
~(2m)?Aelpr) +e2(p?))  (2m)24EL,  16m24/s

daQ* A, m%v m%)

= 3272 s

2

,m?) = s(s — 4m?) = do?) = LI, [s=4m’
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