Particle physics - practice

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

October 6, 2020

Relativistic kinematics: Minkowski space

Relativistic theories are conveniently formulated in Minkowski space

Minkowski space = \mathbb{R}^4 + Minkowski (pseudo)metric

Euclidean space $= \mathbb{R}^3 + \text{Euclidean metric}$

Distance between points in E. space: $d(\vec{x}, \vec{y}) = (\vec{x} - \vec{y})^2 = (\vec{x} - \vec{y})_i (\vec{x} - \vec{y})_j \delta_{ij}$

Latin indices $1, \ldots, 3$, sum over repeated indices understood

Invariant under translations $\vec{x} \rightarrow \vec{x} + \vec{a}$ and rotations $\vec{x} \rightarrow R\vec{x}$

Point in Minkowski space (=event): X^{μ} , $\mu = 0, 1, 2, 3$

$$X^{\mu}=(ct,\vec{x})=(t,\vec{x})$$

Greek indices $0,\ldots,3$; speed of light c=1

In Minkowski space distances replaced by interval

$$\Delta s^2 \equiv (X - Y)^2 \equiv (X - Y)^{\mu} (X - Y)^{\nu} g_{\mu\nu} \equiv (X - Y)^{\mu} (X - Y)_{\mu}$$
$$= (X^0 - Y^0)^2 - (\vec{X} - \vec{Y})^2$$

Minkowski metric tensor: $g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$

Relativistic kinematics: the lightcone

Contravariant vectors:
$$X^{\mu}=(X^0,\vec{X})$$

Covariant vectors: $X_{\mu}=g_{\mu\nu}X^{\nu}=(X^0,-\vec{X})$

Indices lowered by $g_{\mu\nu}$ and raised by $g^{\mu\nu}={
m diag}(1,-1,-1,-1)$ $g^{\mu\nu}$ defined by $g^{\mu\rho}g_{\rho\nu}=\delta^{\mu}{}_{\nu}$

Minkowski scalar product
$$X\cdot Y\equiv X^\mu Y^\nu g_{\mu\nu}=X^\mu Y_\mu=X^0 Y^0-\vec X\cdot\vec Y$$
 $\vec X\cdot\vec Y$: three-dimensional Euclidean scalar product

Interval is not a distance because it is not positive-definite:

- $\Delta s^2 > 0$ timelike interval $X^2 > 0$ timelike vector
- $\Delta s^2 < 0$ spacelike interval $X^2 < 0$ spacelike vector
- $\Delta s^2 = 0$ lightlike or null interval $X^2 = 0$ lightlike or null vector

For a fixed event X

$$(Y-X)^2=0$$
, $Y^0-X^0>0$: forward (future) lightcone of X
 $(Y-X)^2=0$, $Y^0-X^0<0$: backward (past) lightcone of X
 $(Y-X)^2>0$, $Y^0-X^0>0$: future of X (inside future lightcone)
 $(Y-X)^2>0$, $Y^0-X^0<0$: past of X (inside past lightcone)

Relativistic kinematics: the lightcone (contd.)

• Future lightcone of X=0: events (Y^0, \vec{Y}) where \vec{Y} is reached at time Y^0 by light emitted by a point source at time $X^0=0$ from $\vec{x}=0$ Equation for the front of the spherical wave of light emitted at time 0 from $\vec{X}=0$:

$$\vec{X}^2 = (cX^0)^2 \Rightarrow X^2 = 0$$

• Past lightcone of X=0: events (Y^0, \vec{Y}) where a ray of light emitted at time Y^0 from \vec{Y} reaches $\vec{X}=0$ at time $X^0=0$

If X_1 and X_2 are inside the forward light cone $\Rightarrow X_1 + X_2$ is still inside the forward lightcone

Proof: $(X)_{1,2}^2 > 0$, $X_{1,2}^0 > 0 \Rightarrow X_{1,2}^0 > |\vec{X}_{1,2}|$; using Schwartz inequality

$$(X_1 + X_2)^2 = (X_1)^2 + (X_2)^2 + 2X_1 \cdot X_2 = (X_1)^2 + (X_2)^2 + 2(X_1^0 X_2^0 - \vec{X}_1 \cdot \vec{X}_2)$$

> $2(X_1^0 X_2^0 - \vec{X}_1 \cdot \vec{X}_2) \ge 2(X_1^0 X_2^0 - |\vec{X}_1||\vec{X}_2|) > 0$

so
$$(X_1 + X_2)^2 > 0$$
 and $X_1^0 + X_2^0 > 0$

Lorentz transformations

Principles of special relativity:

- homogeneity and isotropy of space
- equivalence of all inertial reference frames

= travelling at a relative constant speed

constancy of speed of light

 \Rightarrow equivalent frames are related by a Lorentz transformation $X' = \Lambda X$: linear transformation that leaves every interval invariant

Analogous to rotations in 3D Euclidean space that leave the distance between points invariant

$$(X' - Y')^2 = (X - Y)^2 \qquad \forall X, Y$$

$$\Rightarrow X'^2 + Y'^2 - 2X' \cdot Y' = X^2 + Y^2 - 2X \cdot Y \qquad \forall X, Y$$

$$\Rightarrow X' \cdot Y' = X \cdot Y \qquad \forall X, Y$$

In components $X'^{\mu} = \Lambda^{\mu}{}_{\alpha}X^{\alpha}$

$$g_{\alpha\beta}X^{\alpha}Y^{\beta} = g_{\mu\nu}X^{\prime\mu}Y^{\prime\nu} = g_{\mu\nu}\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}X^{\alpha}Y^{\beta} \qquad \forall X, Y$$
$$\Longrightarrow g_{\alpha\beta} = g_{\mu\nu}\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}$$

Lorentz transformations (contd.)

Using matrix notation
$$\mathbf{\Lambda}_{\mu\alpha}={\Lambda^{\mu}}_{\alpha}$$
, $\mathbf{g}_{\mu\nu}=g_{\mu\nu}$, $\mathbf{g}_{\mu\nu}^{-1}=g^{\mu\nu}=\mathbf{g}_{\mu\nu}$

$$\mathbf{g} = \mathbf{\Lambda}^T \mathbf{g} \mathbf{\Lambda}$$

 $(\det \mathbf{\Lambda})^2 = 1 \Rightarrow \det \mathbf{\Lambda} = \pm 1$, $\mathbf{\Lambda}$ invertible

- $\det \mathbf{\Lambda} = 1$: proper transformations, leave orientation of space unchanged
- $\det \mathbf{\Lambda} = -1$: *improper* transformations invert the orientation of space

 $\mathbf{\Lambda}^{-1} = \mathbf{g}^{-1} \mathbf{\Lambda}^T \mathbf{g}$ still a Lorentz transformation

$$\bullet \ \mathbf{g} = [\mathbf{\Lambda} \mathbf{\Lambda}^{-1}]^T \mathbf{g} [\mathbf{\Lambda} \mathbf{\Lambda}^{-1}] = \mathbf{\Lambda}^{-1} T [\mathbf{\Lambda}^T \mathbf{g} \mathbf{\Lambda}] \mathbf{\Lambda}^{-1} = \mathbf{\Lambda}^{-1} T \mathbf{g} \mathbf{\Lambda}^{-1}$$

$$\bullet \ \mathbf{\Lambda}_{\alpha\beta}^{-1} = g^{\alpha\mu} \Lambda^{\nu}_{\ \mu} g_{\nu\beta} = \Lambda^{\alpha}_{\beta}$$

From the $\alpha=$ 0, $\beta=$ 0 component of the defining relation

$$1 = \Lambda^{0}_{0}\Lambda^{0}_{0} - \Lambda^{i}_{0}\Lambda^{i}_{0} \Longrightarrow \Lambda^{0}_{0}\Lambda^{0}_{0} = 1 + \Lambda^{i}_{0}\Lambda^{i}_{0} \ge 1$$

- $\Lambda^0_{0} \ge 1$: orthocronous (does not change the sign of time)
- $\Lambda^0_0 \le -1$: non-orthocronous (changes the sign of time)

Proper orthocronous Lorentz group

Proper orthocronous Lorentz transformations = three-dimensional rotations (the SO(3) group) and boosts

Most general transformation: rotation \times boost in x direction \times rotation

$$\beta = \frac{1}{c} = V < 1$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Boost in general direction \vec{n} : rotate \vec{n} to x, boost, rotate back

Coordinates in the new frame:

$$ct' = \gamma(ct + \beta x)$$
 $x' = \gamma(x + \beta ct)$
 $y' = y$ $z' = z$

 \Rightarrow relates R to R' moving with speed β in the negative x direction

Nonrelativistic limit $\beta = v/c \ll 1 \Rightarrow$ Galilei transformations

$$ct' = ct$$
 $x' = x + vt$
 $y' = y$ $z' = z$

Full Lorentz group

Most general Lorentz transformation = proper orthocronous transformation times P (parity), T (time reversal), or PT

$$P^{\mu}_{\ \nu} = \mathrm{diag}(1, -1, -1, -1)$$
 $T^{\mu}_{\ \nu} = \mathrm{diag}(-1, 1, 1, 1)$

	$\det \Lambda = 1$		$\det \Lambda = -1$
$\Lambda^0_{\ 0} \geq 1$	proper orthocronous	\Rightarrow P	improper orthocronous
	$\psi_{\mathcal{T}}$		$\psi_{\mathcal{T}}$
$\Lambda^0_0 \leq -1$	proper non-orthocronous	$\Rightarrow P$	improper non-orthocronous

Point particles: kinematics

Trajectory $X^{\mu}(t)$ of point particle; over infinitesimal $dt,\,X^{\mu} o X^{\mu}+dX^{\mu}$

$$X^{\mu}(t) = (ct, \vec{x}(t)) = (t, \vec{x}(t))$$

 $dX^{\mu}(t) = (dt, d\vec{x}(t)) = dt(1, \frac{d\vec{x}}{dt}(t)) = dt(1, \vec{v}(t))$

Empirical fact: for massive particles $\vec{v}^{\,2} < 1$, for massless particles $\vec{v}^{\,2} = 1$

$$(dX)^2=dX^\mu dX_\mu=dt^2(1-ec v^2)\geq 0$$
 (timelike) $rac{dX^\mu}{dt}(t)=(1,ec v(t))$

 $rac{dX^{\mu}}{dt}$ not a Lorentz vector: $dX^{\mu}=$ vector, dt
eqscalar

Massive particle $\vec{v}^{\,2} < 1$: \exists reference frame in which $\vec{v} = 0$ (rest frame)

$$X_{ ext{rest}}^{\mu}(au)=(au,ec{\mathsf{0}})$$

 τ : proper time (time measured in the particle's rest frame)

$$(dX_{\text{rest}})^2 = d\tau^2 = (dX)^2 = dt^2(1 - \vec{v}^2) = \frac{dt^2}{\gamma^2}$$

 $\Rightarrow au$ true scalar, Lorentz-invariant notion of time

Point particles: kinematics (contd.)

Proper time:

- $d au^2 = rac{dt^2}{\gamma^2} \Rightarrow |dt| > |d au|$ (time-dilation effect)
- determine the elapsed proper time by going over to the instantaneous rest frame of the particle
 ⇒ twins' paradox

$$au = \int d au = \int_{t_0}^t dt' \, \sqrt{1-ec v^{\,2}(t')} \leq t-t_0$$

• true scalar $\Rightarrow \frac{d^n X^{\mu}}{d\tau^n}$ are true vectors

Four-velocity

$$u^{\mu} \equiv \frac{dX^{\mu}}{d\tau} = \left(\frac{dt}{d\tau}, \frac{d\vec{x}}{d\tau}\right) = \left(\gamma, \gamma \frac{d\vec{x}}{dt}\right) = \left(\gamma, \gamma \vec{v}\right) = \left(\gamma, \gamma \vec{\beta}\right)$$

Four-momentum (vector u^{μ} times scalar m)

$$p^{\mu} \equiv mu^{\mu} = (\gamma m, \gamma m \vec{\beta})$$

$$p^{0} = m\gamma = \frac{m}{\sqrt{1 - \vec{v}^{2}}} = E \qquad p^{i} = m\gamma \vec{\beta}^{i} = \frac{m\vec{v}^{i}}{\sqrt{1 - \vec{v}^{2}}} = \vec{p}^{i}$$

Point particles: four-momentum in the NR limit

Do E, \vec{p} match their non-relativistic definition when $\frac{|\vec{v}|}{c} \ll 1$?

Needs reinstating powers of c

$$p^{0} = mc \frac{1}{\sqrt{1 - \left(\frac{\vec{v}}{c}\right)^{2}}} = mc \left(1 + \frac{1}{2} \left(\frac{\vec{v}}{c}\right)^{2} + \mathcal{O}(\left(\frac{v}{c}\right)^{4}\right)\right)$$
$$\vec{p} = mc \frac{\frac{\vec{v}}{c}}{\sqrt{1 - \left(\frac{\vec{v}}{c}\right)^{2}}} = m\vec{v} \left(1 + \mathcal{O}(\left(\frac{v}{c}\right)^{2}\right)\right)$$

Second line ok, first line times *c*

$$p^0c = mc^2 + \frac{1}{2}m\vec{v}^2 + \ldots = E_0 + E_K^{NR} + \ldots$$

 \Rightarrow NR kinetic energy $E_K^{
m NR}$ of a particle plus rest energy $E_0=mc^2$

Point particles: four-momentum for $m \neq 0$ and m = 0

Massive particles: $p^2 = m^2 > 0$

$$p^{\mu} = m \frac{dX^{\mu}}{d\tau} = \left(\frac{E}{c}, \vec{p}\right) \underset{c=1}{=} (E, \vec{p}) = (p^0, \vec{p})$$

Mass = relativistic invariant

$$p^2 = m^2 \gamma^2 (1 - \vec{\beta}^2) = m^2 > 0$$
 $u^2 = \gamma^2 (1 - \vec{\beta}^2) = 1$

Trajectory always inside the forward lightcone

Any constant would do, but m is the constant such that total momentum $\sum_i p_i = \sum_i m_i u_i$ of a system of particles is conserved

Also: correct NR limit of $p^{\mu} = mu^{\mu}$

Energy-momentum relation is called dispersion relation

$$E^2 = \vec{p}^2 + m^2$$

Massless particles: $p^2 = 0$

$$p^{\mu} = (\omega, \vec{k})$$
$$0 = p^2 = \omega^2 - \vec{k}^2 \Rightarrow \omega = |\vec{k}| \ge 0$$

Trajectory always on the lightcone

Kinematics of two-particle scattering

Two particle o two particle scattering process $a\,b o c\,d$

Lab frame: one initial particle is at rest (= target)

$$p_a = (E_L, \vec{p}_L)$$
 $p_b = (m_b, 0)$
 $p_c = (E_c, \vec{p}_c)$ $p_d = (E_d, \vec{p}_d)$

Scattering angle θ_L in the lab: angle between trajectories of c and a

$$\cos heta_L = rac{ec{p}_L \cdot ec{p}_c}{|ec{p}_L| |ec{p}_c|}$$

CM frame: vanishing total spatial momentum

$$p_a = (E_a^*, \vec{p}^*)$$
 $p_b = (E_b^*, -\vec{p}^*)$
 $p_c = (E_c^*, \vec{p}'^*)$ $p_d = (E_d^*, -\vec{p}'^*)$

Scattering angle θ^* in the CM: angle formed by the trajectories of a and c

$$\cos\theta^* = \frac{\vec{p}^* \cdot \vec{p}^{\,\prime *}}{|\vec{p}^*||\vec{p}^{\,\prime *}|}$$

Total center of mass energy $\sqrt{s} = \text{Lorentz invariant}$

$$s = (p_a + p_b)^2 = (E_a^* + E_b^*)^2$$
 $\sqrt{s} = E_a^* + E_b^* = E_c^* + E_d^*$

Matteo Giordano (ELTE)

Kinematics of two-particle scattering (contd.)

LAB

$$p_a = (E_L, \vec{p}_L)$$
 $p_b = (m_b, 0)$
 $p_c = (E_c, \vec{p}_c)$ $p_d = (E_d, \vec{p}_d)$

CM

$$p_a = (E_a^*, \vec{p}^*)$$
 $p_b = (E_b^*, -\vec{p}^*)$
 $p_c = (E_c^*, \vec{p}'^*)$ $p_d = (E_d^*, -\vec{p}'^*)$

Kinematics of two-particle scattering (contd.)

$$p_a + p_b = p_c + p_d$$

- Four-momentum conservation implies $E_{c,d}^*$, $|\vec{p}_{c,d}^*| = |\vec{p}'^*|$ determined uniquely in the CM, independent of θ^*
- ullet $E_{c,d}$, $|ec{p}_{c,d}|$ and $heta_L$ in the lab by Lorentz transformation, depend on $heta^*$

$$p_{b} = p_{c} + p_{d} - p_{a}$$

$$p_{b}^{2} = (p_{c} + p_{d})^{2} + p_{a}^{2} - 2p_{a} \cdot (p_{c} + p_{d})$$

$$m_{b}^{2} = s + m_{a}^{2} - 2E_{a}^{*} \sqrt{s}$$

$$E_{a}^{*} = \frac{s + m_{a}^{2} - m_{b}^{2}}{2\sqrt{s}} \Rightarrow_{a \leftrightarrow b} E_{b}^{*} = \frac{s + m_{b}^{2} - m_{a}^{2}}{2\sqrt{s}}$$

• CM energy squared s Lorentz invariant $\Rightarrow E_a^*$ from E_L in the lab:

$$s = (p_a + p_b)^2 = m_a^2 + m_b^2 + 2p_a \cdot p_b = m_a^2 + m_b^2 + 2E_L m_b \Rightarrow E_L = \frac{s - m_a^2 - m_b^2}{2m_b}$$

• Exchanging $a, b \leftrightarrow c, d$

$$E_c^* = \frac{s + m_c^2 - m_d^2}{2\sqrt{s}}$$
 $E_d^* = \frac{s + m_d^2 - m_c^2}{2\sqrt{s}}$

Kinematics of two-particle scattering: CM

Center of mass energies:

$$E_a^* = \frac{s + m_a^2 - m_b^2}{2\sqrt{s}} \qquad E_b^* = \frac{s + m_b^2 - m_a^2}{2\sqrt{s}}$$
$$E_c^* = \frac{s + m_c^2 - m_d^2}{2\sqrt{s}} \qquad E_d^* = \frac{s + m_d^2 - m_c^2}{2\sqrt{s}}$$

Center of mass momentum magnitude $|\vec{p}^*|$ from dispersion relation:

$$\begin{split} |\vec{p}^*|^2 &= E_a^{*2} - m_a^2 = \frac{(s + m_a^2 - m_b^2)^2 - 4sm_a^2}{4s} = \frac{s^2 + (m_a^2 - m_b^2)^2 - 2s(m_a^2 + m_b^2)}{4s} \\ &= \frac{(s - m_a^2 - m_b^2)^2 - 4m_a^2 m_b^2}{4s} = \frac{[s - (m_a + m_b)^2][s - (m_a - m_b)^2]}{4s} = \frac{\lambda(s, m_a^2, m_b^2)}{4s} \\ |\vec{p}^{\,\prime *}|^2 &= E_c^{*2} - m_c^2 = \frac{(s + m_c^2 - m_d^2)^2 - 4sm_c^2}{4s} = \frac{s^2 + (m_c^2 - m_d^2)^2 - 2s(m_c^2 + m_d^2)}{4s} \\ &= \frac{(s - m_c^2 - m_d^2)^2 - 4m_c^2 m_d^2}{4s} = \frac{[s - (m_c + m_d)^2][s - (m_c - m_d)^2]}{4s} = \frac{\lambda(s, m_c^2, m_d^2)}{4s} \end{split}$$

Källén function: $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2zx$

Kinematics of two-particle scattering: lab

Lab kinematics recovered from CM kinematics

Given $ec{p}_{\mathrm{lab,CM}}$, $E_{\mathrm{lab,CM}}$ total spatial momentum/total energy in lab/CM

$$ert ec{p}_{\mathrm{CM}} ert = 0 = \gamma_{\mathrm{CM}} (ert ec{p}_{\mathrm{lab}} ert - eta_{\mathrm{CM}} E_{\mathrm{lab}}) = \gamma_{\mathrm{CM}} (ert ec{p}_{L} ert - eta_{\mathrm{CM}} (m_b + E_L))$$
 $\Longrightarrow eta_{\mathrm{CM}} = rac{ert ec{p}_L ert}{E_L + m_b}$

Inverse Lorentz transformation from CM to lab

$$\begin{split} E_{c,\mathrm{lab}} &= \gamma_{\mathrm{CM}} (E_c^* + \beta_{\mathrm{CM}} | \vec{p}^{\,\prime *} | \cos \theta^*) \,, \\ | \vec{p}_{c,\mathrm{lab}} | \cos \theta_L &= \gamma_{\mathrm{CM}} (| \vec{p}^{\,\prime *} | \cos \theta^* + \beta_{\mathrm{CM}} E_c^*) \,, \\ | \vec{p}_{c,\mathrm{lab}} | \sin \theta_L &= | \vec{p}^{\,\prime *} | \sin \theta^* \,, \end{split}$$

Transverse directions unaffected by Lorentz transformation, azimuthal angle transforms trivially

Example: proton-antiproton scattering

For $p\bar{p}$ scattering in circular collider, $E_p=E_{\bar{p}}=270~{
m GeV}$

$$\Rightarrow \sqrt{s} = 540 \text{ GeV}$$

Let now p be at rest in the lab.

Q. What should be the energy E_L of \bar{p} in the lab to obtain the same s?

A. CM energy square s is a relativistic invariant, can be evaluated in any reference frame; in the lab

$$s = (p_p + p_{\bar{p}})^2 = 2(m_p^2 + E_L m_p) = 2m_p(m_p + E_L)$$

Solve for E_L and impose $\sqrt{s}=540~{
m GeV}~(\gg m_p)$

$$E_L = \frac{s - 2m_p^2}{2m_p} \simeq \frac{s}{2m_p} \simeq \frac{(540)^2}{2} \text{ GeV} \simeq \frac{30}{2} \cdot 10^4 \text{ GeV} = 150 \text{ TeV}$$
 (!!!)

In general total CM energy $E_{
m CM} \simeq \sqrt{2m_p E_L}$

Mandelstam variables

Convenient set of relativistic invariant variables for $\mathbf{2} \to \mathbf{2}$ scattering

$$s \equiv (p_a + p_b)^2 = (p_c + p_d)^2$$

 $t \equiv (p_a - p_c)^2 = (p_b - p_d)^2$
 $u \equiv (p_a - p_d)^2 = (p_b - p_c)^2$

- s = total CM energy squared
- t =square of four-momentum transfer from a to c

$$t = p_a^2 + p_c^2 - 2p_a \cdot p_c = m_a^2 + m_c^2 - 2(E_a^* E_c^* - |\vec{p}^*||\vec{p}'^*| \cos \theta^*)$$

• u =square of four-momentum transfer from a to d

$$u=p_a^2+p_d^2-2p_a\cdot p_d=m_a^2+m_d^2-2(E_a^*E_d^*+|\vec{p}^*||\vec{p}^{\,\prime*}|\cos\theta^*)$$

 u obtained from t after $m_c o m_d$ and $\cos\theta^* o -\cos\theta^*$

Energies and magnitudes of momenta entirely determined by s and particle masses $\Rightarrow t = t(s, \theta^*)$, or instead $\theta^* = \theta^*(s, t)$ and use s, t

Mandelstam variables (contd.)

Only two independent Mandelstam variables:

$$s + t + u = (p_a + p_b)^2 + (p_a - p_c)^2 + (p_a - p_d)^2$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2 + 2p_a \cdot (p_a + p_b - p_c - p_d)$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$

Bounds on Mandelstam variables determine physical region for s, t, u

$$s \ge \max((m_a + m_b)^2, (m_c + m_d)^2)$$

Bounds on t and u from

$$t = (p_a - p_c)^2 = m_a^2 + m_c^2 - 2p_a \cdot p_c = 2(m_a^2 + m_c^2) - (p_a + p_c)^2$$

$$\leq 2(m_a^2 + m_c^2) - (m_a + m_c)^2 = (m_a - m_c)^2$$

Similarly using p_b and p_d ; same approach for u

$$t \leq \min((m_a - m_c)^2, (m_b - m_d)^2)$$
 $u \leq \min((m_a - m_d)^2, (m_b - m_c)^2)$

Lower bound from this and $t|u=m_a^2+m_b^2+m_c^2+m_d^2-s-u|t$

$$t \ge \max(m_b^2 + m_c^2 + 2m_a m_d, m_a^2 + m_d^2 + 2m_b m_c) - s$$

$$u \ge \max(m_a^2 + m_c^2 + 2m_b m_d, m_b^2 + m_d^2 + 2m_a m_c) - s$$

Matteo Giordano (ELTE)

Mandelstam variables (contd.)

Simplification if
$$m_a = m_b$$
, $m_c = m_d \Rightarrow E_a^* = E_b^* = E_c^* = E_d^* = \frac{\sqrt{s}}{2}$

$$t = m_a^2 + m_c^2 - \frac{s}{2} \left(1 - \cos \theta^* \sqrt{1 - \frac{4m_a^2}{s}} \sqrt{1 - \frac{4m_c^2}{s}} \right)$$

If also $m_a = m_c \equiv m$

$$t = 2m^2 - \frac{s}{2} \left(1 - \cos \theta^* \left(1 - \frac{4m^2}{s} \right) \right) = -\left(s - 4m^2 \right) \sin^2 \frac{\theta^*}{2}$$
$$s \ge 4m^2 - \left(s - 4m^2 \right) \le t \le 0$$

- Upper limit: at threshold $s = 4m^2$ or when $\theta^* = 0$ (forward scattering)
- Lower limit: when $\theta^* = \pi$ (backscattering)
- In this case $u(s, \theta^*) = t(s, \pi \theta^*) \Rightarrow$ same bound applies to u; role of $\theta^* = 0$ and $\theta^* = \pi$ exchanged

Relevant for

- elastic processes involving only one type of particles/antiparticles
- very high energy limit (masses negligible, particles \approx massless) Matteo Giordano (ELTE)

Example: proton-proton scattering

Elastic *pp* scattering, $\sqrt{s} = 53 \text{ GeV}$

Differential cross section $\frac{d\sigma}{dt}(t)$ has a peak at $-t=t_0=1.81~{\rm GeV^2}$ E. Nagy et al., Nucl. Phys. **B150** (1979) 221

- Q. What is the corresponding scattering angle in the CM?
- **A.** Elastic scattering of identical particles, $s/m_p^2\gg 1$

$$-t = (s - 4m_p^2)\sin^2\frac{\theta^*}{2} \simeq s\sin^2\frac{\theta^*}{2}$$

$$\sin^2 \frac{\theta^*}{2} = -\frac{t}{s - 4m_\rho^2} = \frac{1.81}{53^2 - 4 \cdot 0.938^2} = \frac{1.81}{2805} = 6.45 \cdot 10^{-4}$$

$$\sin^2 \frac{\theta^*}{2} \simeq \frac{(\theta^*)^2}{4} \implies \theta^* \simeq 2\sqrt{5} \cdot 10^{-2} \simeq 5 \cdot 10^{-2}$$

Mandelstam plane

Sum of the distances from the sides of an equilateral triangle is constant

Sides of eq. triangle: s=0, t=0 and u=0 axes For appropriate side length $s+t+u=m_a^2+m_b^2+m_c^2+m_d^2$ Physical region for the $a+b\to c+d$ process (equal masses) = wedge defined by the prolongation of the u and t axes

Crossing symmetry

QFT result: scattering amplitudes for $a+b\to c+d$, $a+\bar c\to \bar b+d$, $a+\bar d\to c+\bar b$ are part of a single analytic function extending beyond physical momenta, and related to each other

$$A_{ab\to cd}(p_a, p_b; p_c, p_d) = A_{a\bar{c}\to \bar{b}d}(p_a, -p_c; -p_b, p_d) = A_{a\bar{d}\to c\bar{b}}(p_a, -p_d; p_c, -p_b)$$

Use Mandelstam variables

$$a+b o c+d$$
 $\mathcal{A}_{s}(s,t,u) = A_{ab o cd}(p_{a},p_{b};p_{c},p_{d})$ s-channel $a+ar{c} o ar{b}+d$ $\mathcal{A}_{t}(s_{t},t_{t},u_{t}) = A_{aar{c} o ar{b}d}(p_{a},p_{ar{c}};p_{ar{b}},p_{d})$ t-channel $a+ar{d} o c+ar{b}$ $\mathcal{A}_{u}(s_{u},t_{u},u_{u}) = A_{aar{d} o car{b}}(p_{a},p_{ar{d}};p_{c},p_{ar{b}})$ u-channel $s=(p_{a}+p_{b})^{2}$ $t=(p_{a}-p_{c})^{2}$ $u=(p_{a}-p_{d})^{2}$ $s_{t}=(p_{a}+p_{ar{c}})^{2}$ $t_{t}=(p_{a}-p_{ar{b}})^{2}$ $u_{t}=(p_{a}-p_{d})^{2}$ $s_{u}=(p_{a}+p_{ar{d}})^{2}$ $t_{u}=(p_{a}-p_{c})^{2}$ $t_{u}=(p_{a}-p_{ar{b}})^{2}$

Crossing-symmetry relations

$$A_s(s,t,u) = A_t(t,s,u) = A_u(u,t,s)$$

Crossing symmetry (contd.)

$$A_s(s,t,u) = A_t(t,s,u) = A_u(u,t,s)$$

- If s, t, u take physical values for the s-channel process $ab \rightarrow cd$, crossing relations involve \mathcal{A}_t and \mathcal{A}_u at unphysical values of their arguments
- ullet Relations fully meaningful if ${\cal A}_s$ can be analytically continued outside the physical domain

Example: for equal masses, physical regions of A_t and A_u are $s_t \ge 4m^2$, $t_t \le 0$ and $s_u \ge 4m^2$, $t_u \le 0$, but $t \le 0$ and $s \ge 4m^2$

Physical regions = wedges outside Mandelstam triangle

Invariant phase space

States of spinless particle, mass m are characterised by four-momenta p^μ with $p^2=m^2$ and positive energy $p^0\geq m>0$

One-particle phase space:

$$\{\boldsymbol{p}\in\mathbb{R}^4|\boldsymbol{p}^2-\boldsymbol{m}^2=0\,,\ \boldsymbol{p}^0>0\}\subset\mathbb{R}^4$$

Measure of infinitesimal element of phase space

$$d\Phi^{(1)} = \frac{d^4p}{(2\pi)^4} 2\pi\delta(p^2 - m^2)\theta(p^0)$$

- Manifestly invariant under orthocronous Lorentz transformations: p^2 invariant, $sign(p^0)$ invariant under orthocronous transformations
- Overall scale appropriate for relativistic normalisation of one-particle states

$$\langle \vec{p}' | \vec{p} \rangle = (2\pi)^3 2 p^0 \delta^{(3)} (\vec{p}' - \vec{p})$$

Invariant phase space (contd.)

Recast $d\Phi^{(1)}$ in more convenient form: for any f with simple zeros $\{x_n\}$

$$\delta(f(x)) = \sum_{x_n, f(x_n) = 0} \frac{1}{|f'(x_n)|} \delta(x - x_n)$$

Proof:

- multiply both sides by some function h(x), integrate over \mathbb{R} , show that one gets the same result
- divide $\mathbb{R} = (-\infty, +\infty) = \bigcup_k I_k$ with f(x) monotonic in I_k $\Rightarrow f$ invertible in I_k and vanishes at most once (with $|f'| \neq 0$ there)
- set $y = f(x) \rightarrow x = f^{-1}(y)$ in each I_k

$$\begin{split} & \int_{-\infty}^{+\infty} dx \, \delta(f(x)) h(x) = \sum_{k} \int_{I_{k}} dx \, \delta(f(x)) h(x) \\ & = \sum_{k} \int_{f(I_{k})} dy \, \frac{1}{|f'(f^{-1}(y))|} \delta(y) h(f^{-1}(y)) \\ & = \sum_{k} \int_{0 \in f(I_{k})} dy \, \frac{1}{|f'(f^{-1}(0))|} \delta(y) h(f^{-1}(0)) = \sum_{k} \frac{1}{|f'(x_{k})|} h(x_{k}) \end{split}$$

Invariant phase space (contd.)

$$\begin{split} d\Phi^{(1)} &= \frac{d^4p}{(2\pi)^3} \delta(p^2 - m^2) \theta(p^0) = \frac{d^4p}{(2\pi)^3} \delta(p^{0\,2} - \vec{p}^{\,2} - m^2) \theta(p^0) \\ &= \frac{d^4p}{(2\pi)^3} \frac{1}{2|p^0|} \left[\delta(p^0 - \varepsilon(\vec{p}\,)) + \delta(p^0 + \varepsilon(\vec{p}\,)) \right] \theta(p^0) \\ &= \frac{d^4p}{(2\pi)^3} \frac{1}{2\varepsilon(\vec{p}\,)} \delta(p^0 - \varepsilon(\vec{p}\,)) \theta(p^0) = \frac{d^3p}{(2\pi)^3 2\varepsilon(\vec{p}\,)} \equiv d\Omega_p \\ &\varepsilon(\vec{p}\,) \equiv \sqrt{\vec{p}^{\,2} + m^2} \end{split}$$

n-particle phase space $\subset \mathbb{R}^{4n}$ corresponding to four-momenta of n particles subjected to a constraint on the total four-momentum Measure of infinitesimal element:

$$d\Phi^{(n)} = \prod_{j=1}^{n} d\Omega_{p_{j}}(2\pi)^{4} \delta^{(4)} (p_{\text{tot}} - \sum_{j=1}^{n} p_{j})$$

Lorentz invariant: $d\Omega_{p_i}$ Lorentz invariant

$$\delta^{(4)}(\Lambda P) = |\det \Lambda|^{-1} \delta^{(4)}(P) = \delta^{(4)}(P)$$

Invariant phase space: two-particle case

Total momentum $p_{\mathrm{tot}} = (E_{\mathrm{tot}}, \vec{p}_{\mathrm{tot}})$, particle energies $\varepsilon_i(\vec{p}\,) = \sqrt{\vec{p}^{\,2} + m_i^2}$

$$d\Phi^{(2)} = \frac{d^{3}p_{1}}{(2\pi)^{3}2\varepsilon_{1}(\vec{p}_{1})} \frac{d^{3}p_{2}}{(2\pi)^{3}2\varepsilon_{2}(\vec{p}_{2})} (2\pi)^{4} \delta^{(4)}(p_{\text{tot}} - p_{1} - p_{2})$$

$$= \frac{1}{(2\pi)^{2}} \frac{d^{3}p_{1}}{2\varepsilon_{1}(\vec{p}_{1})} \frac{d^{3}p_{2}}{2\varepsilon_{2}(\vec{p}_{2})} \delta^{(3)}(\vec{p}_{\text{tot}} - \vec{p}_{1} - \vec{p}_{2}) \delta(E_{\text{tot}} - \varepsilon_{1}(\vec{p}_{1}) - \varepsilon_{2}(\vec{p}_{2}))$$

Integrate trivially over \vec{p}_2 , setting it equal to $\vec{p}_2 = \vec{p}_{\rm tot} - \vec{p}_1$

$$d\Phi^{(2)} = \frac{1}{(2\pi)^2} \frac{d^3p_1}{2\varepsilon_1(\vec{p}_1)} \frac{1}{2\varepsilon_2(\vec{p}_{\text{tot}} - \vec{p}_1)} \delta(E_{\text{tot}} - \varepsilon_1(\vec{p}_1) - \varepsilon_2(\vec{p}_{\text{tot}} - \vec{p}_1))$$

To further integrate over $|\vec{p}_1|$ requires changing variables, most easily done working in the CM

$$\vec{p}_{\rm tot,CM} = 0 \Rightarrow \vec{p}_{\rm 1\,CM} = -\vec{p}_{\rm 2\,CM}, \quad |\vec{p}_{\rm 1\,CM}| = |\vec{p}_{\rm 2\,CM}| = \rho$$

Dropping "CM" in the following

Invariant phase space: two-particle case (contd.)

Delta function depends on $E_{\rm tot} - \varepsilon_1(p) - \varepsilon_2(p)$

Dropped vector sign on $\pm \vec{p}$

$$\left|\frac{\partial}{\partial p}\left[E_{\text{tot}}-\varepsilon_{1}(p)-\varepsilon_{2}(p)\right]\right|=\left[\frac{p}{\varepsilon_{1}(p)}+\frac{p}{\varepsilon_{2}(p)}\right]=\frac{p}{\varepsilon_{1}(p)\varepsilon_{2}(p)}\left[\varepsilon_{1}(p)+\varepsilon_{2}(p)\right]$$

Changing variables to $d^3p_1 = dpp^2d\cos\theta^*d\phi^* = dpp^2d\Omega^*$

$$\begin{split} d\Phi^{(2)} &= \frac{1}{(2\pi)^2} \frac{d\rho p^2 d\Omega^*}{2\varepsilon_1(\rho)} \frac{1}{2\varepsilon_2(\rho)} \underbrace{\frac{\varepsilon_1(\rho)\varepsilon_2(\rho)}{\rho} \left[\varepsilon_1(\rho) + \varepsilon_2(\rho)\right]^{-1} \delta(\rho - \rho^*)}_{\delta(E_{\text{tot}} - \varepsilon_1(\rho) - \varepsilon_2(\rho))} \\ &= \frac{d\Omega^*}{(2\pi)^2} \frac{\rho^*}{4(\varepsilon_1(\rho^*) + \varepsilon_2(\rho^*))} = \frac{d\Omega^*}{(2\pi)^2} \frac{\rho^*}{4E_{\text{tot}}^*} = \frac{d\Omega^*}{16\pi^2} \frac{\rho^*}{\sqrt{s}} \\ &= \frac{d\Omega^*}{32\pi^2} \frac{\sqrt{\lambda(s, m_1^2, m_2^2)}}{s} \end{split}$$

For equal masses $\lambda(s, m^2, m^2) = s(s - 4m^2) \Rightarrow d\Phi^{(2)} = \frac{d\Omega^*}{32\pi^2} \sqrt{\frac{s - 4m^2}{s}}$

References