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1 Introduction

Quite unsurprisingly, scattering theory aims at describing scattering experiments. These exper-
iments consist, in a nutshell, in taking bunches of free particles, throw them at each other or at
some fixed target, and observe what happens. If we wait long enough, what generally happens
is that one sees again (possibly different) free particles coming out of the collision. Free particles
thus label the possible setups of the experiments, i.e., their initial states, and their possible
outcomes, i.e., their final states. It is thus worth spending a few words on this concept.

Free particles Free particles are first of all an experimental concept. A free particle is some-
thing well localised in space that moves on a straight-line trajectory at constant speed. Its
energy, E, and momentum, ~p, are constant in time, and are related as follows:

E =
~p 2

2m
(non-relativistic case) , E =

√

~p 2 +m2 (relativistic case) , (1.1)

where m is a constant called the mass of the particle. There are other measurable quantities,
like, e.g., spin, electric charge,. . . , which are also constants of motion for a free particle, and fully
characterise the particle state. In particular, mass, spin and electric charge essentially identify
a particle species. A free multiparticle state is observed when there are several localised objects
travelling independently on straight lines. Notice that all the quantities mentioned above have
a well-defined experimental meaning.

The concept of free particles is actually an idealised concept: experimentalists are well aware
that in order to observe a free particle they have to reduce any possible external disturbance, and
the more they are able to do so the more they observe something which satisfies our definition of
a free particle. In the case of multiparticle states, this means in particular that the particles have
to be localised far away from each other, in order to make their mutual interaction negligible.
Summarising: free particles are defined by their behaviour in an idealised situation, which can
never really be achieved, but can be approximated arbitrarily well. As experimental accuracy
is always limited, this is of no practical consequence: since beyond some point it is impossible
to detect any deviation from the ideal behaviour, the state observed is indistinguishable from a
free particle state for all practical purposes.

Scattering experiments As we have briefly explained above, in a scattering experiment we
prepare the system in a free particle state, let it evolve and finally look at it after a while. The
initial state typically consists of two beams of particles, initially far away and moving towards
each other; or of one such beam and some fixed target. Beams and targets are usually prepared
in such a way that the particles within them are practically free, i.e., interacting only weakly
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Figure 1: Schematic depiction of a scattering process.

with each other, due to the typically large inter-particle distance;1 and that only one particle
in one beam interacts with only one particle in the other beam or in the target. For practical
purposes one can use a simplified description of the initial state, with two free particles initially
far away and moving towards each other.

After having let evolve the system for some time, observations are made with detectors
located sufficiently far away from the initial (classical) trajectories. What is observed is again a
free particle state, different from the initial one.2 Indeed, if detectors are placed sufficiently far
away from the initial trajectories, then the particles in the final state are observed far apart from
each other, and behave like free particles. How do we describe in words what has happened?
Initially the system consists of two free particles, far enough not to feel each other: we say that
they are outside of the interaction region, and the system evolves essentially freely. When we
observe again the system after a sufficiently long time, we see it evolving freely but in a different
state, and so something must have happened in the meantime, with interactions taking place
and changing the state of the system. We can therefore define qualitatively three stages of the
scattering process: an initial stage, usually called the “past”, where the system is in a specified
state and evolving freely; an intermediate stage, where the evolution is not free anymore due
to the interactions between the two initial particles, which we call “collision time”; and a final
stage, called the “future”, where the system evolves freely again, albeit typically in a different
state. The experiment is set up in the “far past”, when one prepares two well-separated particle

1Taken at face value, this statement is obviously wrong for particles in the target, since this is usually a piece
of some solid material. However, the typical crystal and electronic binding energies are much smaller than the
typical energy of particles in the beam, and can therefore be neglected.

2The case of the final state being equal to the initial state is of course a possibility, but one that cannot be
observed directly. Furthermore, one cannot of course distinguish the case of no scattering from that of scattering
leading to the same state. To observe what is called forward elastic scattering one needs to extrapolate from the
near-forward direction.
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states; measurements are made in the “far future”, when the system appears again as a collection
of well-separated particles if we look at it. “Collision time” corresponds to the particles being
in the interaction region, i.e., feeling the presence of each other: of course here we are speaking
loosely, since we cannot even make sense of the concept of particles when they are interacting.

It is a fact that the time passing between the setup of the experiment and the moment when
interactions cannot be neglected anymore, and similarly the time between the moment when
interactions are negligible again and the measurements, are much larger than the duration of
collision time.3 There should therefore be no problem in considering the far past as t = −∞,
and the far future as t = +∞.

Theoretical description of scattering The work of theorists (in between coffees) is to set up
an appropriate mathematical description of the experimental findings. Since all we know about
the scattering system are the free particle states corresponding to the initial and final states of the
collision process, there is no point in trying to account for its detailed (and also experimentally
inaccessible) time evolution. What we would rather do is to predict the probability that given
a certain initial free-particle state, we will observe a prescribed final free-particle state.

The first step of our program consists in finding how to describe the states of a scattering
system. In general, the states of a system are associated to vectors (or rather rays) in a Hilbert
space. In quantum mechanics (QM), the appropriate Hilbert space is the tensor product of
L2(R3) spaces, one for each particle involved, times possibly internal spaces to account for spin
degrees of freedom.4

The second step consists in finding the appropriate dynamics governing the time evolution
of the system. In both cases, this must be such that certain states of the system, when looked at
in the far past or in the far future, look like free-particle states - as it happens in experiments.
Of course, a description in terms of freely evolving states only would be insufficient, for there
would be no scattering at all.

Finally, we need a way to relate the experimentally accessible information about the initial
and final states, which is associated to freely evolving states, to the exact states of the system, i.e.,
those evolving according to the full (interacting) dynamics. This is accomplished by the so-called
formal theory of scattering. Having done this, we can compute all the desired probabilities.

Outline of the course After this brief introduction, here is the outline of the course. We
will mainly discuss the non-relativistic case, but the relativistic generalisation of certain results
will also be presented. In Section 2 we describe in detail the most common types of scattering
experiments, and we introduce the main observable, i.e., the cross section. In Section 3 we briefly
review some useful results of Quantum Mechanics. In Section 4 we discuss the formal theory
of scattering in the time-dependent formalism, introducing the S-matrix and relating it to the
experimentally measurable cross sections. We also discuss the consequences of unitarity and of
symmetries. In Section 5 we introduce the time-independent formalism, relating the scattering
amplitudes to the asymptotic behaviour of the positive-energy solutions of the Schrödinger
equation. In Section 6 we discuss in more detail the case of central potentials. Finally, in
Section 7 we discuss the analiticity properties of the S-matrix.

3In the worst case collision time lasts around 10−10s, which is much less than the overall time scale of the
typical experiment.

4In quantum field theory (QFT) the situation is more complicated; however, we know how to properly describe
free particle states in terms of vectors in the so-called Fock space.
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The main reference for the course is the excellent book by J. R. Taylor [Taylor], on which
the course itself is based. Further references for some specific mathematical results are also
included.

2 Scattering experiments and cross sections

Typical scattering experiments are of two types: fixed target experiments and collider experi-
ments. In this section we describe them, and introduce the central observable quantity, i.e., the
cross section. Before doing that, we briefly describe the classification of scattering processes.

Usually, the initial state of a scattering process consists of two particles directed towards
each other. If an interaction takes place, changing the initial state, we say that the particles
have been scattered. After the collision, one might observe that the final state contains the
same two particles as the initial state, although moving now with different velocities. In this
case one speaks of an elastic scattering process. Otherwise, the final state might consist of a
(partially or totally) different set of particles: in this case one speaks of an inelastic scattering
process. One can further refine the classification of inelastic scattering processes, and distinguish
between particle production processes (the final state contains the same particles of the initial
state and some more), ionisation processes, excitation processes, and so on. In general, a process
is denoted as

a+ b −→ c+ d+ . . . , (2.1)

where a, b, etc., correspond to the various particles. For an elastic process we thus have

a+ b −→ a+ b , (2.2)

while, for example, for a particle production process we have

a+ b −→ a+ b+X , (2.3)

where X stands for all the remaining particles in the final state.

2.1 Fixed target experiments

In a fixed target experiment, a beam of particles (projectiles) is accelerated and directed to a
sample of some material (the target) at rest in the laboratory. The target is usually a thin layer
of material, in order to avoid multiple scatterings from its constituents (scatterers). The beam
has to be sufficiently collimated, but not too much in order to avoid interactions among the
particles. The target has usually a flat surface and the beam is directed onto it perpendicularly.
Detectors are placed sufficiently far from the target to observe the final products of the process.

In a typical experiment the targets are “dilute”, i.e., they have low surface density (number
of scatterers in the target over the area of its surface): this requires that they be thin and with
typical interatomic distance larger than the coherence length of the projectile (the size of the
wave packet). In this setting, the projectile will then see at most one scatterer while traversing
the target. In a typical experiment also the beams are “dilute”, so that the projectiles do not
interact with one another, and do not get close to the same scatterer at the same time. Under
these conditions, scattering events will therefore be independent, involving only one particle
from the target and one from the beam. The initial stage of the process can thus be described
by a two-particle state. Moreover, the total number of events will be proportional to the number
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beam
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Figure 2: Setup of a fixed target experiment.

of particles in the beam, Nb, and to the number of scatterers in the target “under” the beam (in
the full depth of the target), Nt.

5 For short-range interactions, a projectile from the beam will
effectively “see” a scatterer from the target only if its trajectory happens to pass close enough
to it. This identifies a small part of the surface of the target that the projectile has to “hit” in
order to interact with the scatterer. The probability that a scattering event takes place involving
a given projectile and a given scatterer will then be inversely proportional to the area of the
cross-section of the beam, A, since 1/A is the probability density for that projectile to be near
the point where that scatterer is.

We thus have that the number of scattering events, Ns, can be written as

Ns = σ
NbNt

A
, (2.4)

with σ a proportionality constant with dimensions of an area. From the discussion above, it is
clear that σ plays the role of the effective area of a scatterer as seen by the projectile. Indeed,
classically, a particle in the beam is scattered if it hits that fraction of the surface of the target
which is actually filled by the scatterers, so that Ns = Nb

Aeff
A

. The area Aeff of this surface is
Nt times that corresponding to a single scatterer, and rearranging Eq. (2.4) one easily identifies
Aeff = σNt, i.e., σ can be interpreted as the effective area of a scatterer. This quantity is called
total cross section of the process. In general, it will depend not only on the type of scatterer,
but also on the type of beam: it is an effective area which depends on the type of particles
involved and on their mutual interaction. The commonly used unit for cross sections is the barn
(b), which corresponds to 1b = 10−24cm. The phenomenological definition of total cross section
given above can be equivalently recast as

σ =
Ns

Nb
Nt

A

=
Ns

Φ∆tNt
, (2.5)

where the flux Φ = Nb/(A∆t) is the number of particles in the beam impinging on the target
per unit area and unit time. Thus, σ is the number of scattering events divided by the number

5The scatterers need not be on the surface, as the impinging particle might travel essentially undisturbed for
some distance within the target before scoring a hit. One can then imagine the target as having effectively all its
scatterers on the surface. Nt is thus the number of scatterers within the area illuminated by the beam and in the
full depth of the target.
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Figure 3: The target as seen from the beam.

of beam particles and by the surface density Nt

A
of the target, or equivalently the number of

scattering events per unit flux, per unit time and per scatterer in the target. With one final
rearrangement we write this as

Ns

∆t
= ΦNtσ = Lσ , (2.6)

so that the number of events per unit time is given by the cross section times the luminosity
L = ΦNt.

Usually, detectors are capable of more than just recording a scattering event, and they collect
information about the energy, speed, direction, etc., of the outgoing particles. The scattering
events can then be grouped into bins according to, e.g., the momenta of the final particles. The
number of events corresponding to a prescribed choice of momenta will again be proportional to
NbNt

A
since each scattering event is independent from the others. The proportionality constant

is the differential cross section,

dσ =
dNs(ξ)
NbNt

A

=
dNs

dξ NbNt

A

dξ ⇒ dσ

dξ
=

dNs

dξ NbNt

A

=
dNs

dξΦ∆tNt
. (2.7)

Here ξ denotes collectively the momenta of the particles in the final state, and dNs(ξ) =
dNs

dξ
dξ

is the number of events with momenta in an infinitesimal range dξ about the desired value.

2.2 Collider experiments

In a collider experiment, two beams of particles are accelerated and directed against each other.
If the beams are sufficiently diluted, both in the longitudinal and transverse directions (with
respect to the beam trajectory), then interactions will involve at most one particle from each
beam. Reasoning as in the case of a fixed target experiment, we see that the number of scattering
events will be

Ns = σ
Nb1Nb2

A
, (2.8)

where Nb1,2 are the number of particles in each beam and A the area of their cross sections
(taken equal for simplicity). The proportionality constant is again the total cross section of the
process.
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Figure 4: Setup of a collider experiment.

In a typical experiment at a circular collider, the beams are constituted by two groups of
NB1,2 bunches of Nb1,2 particles, respectively, travelling on a circular trajectory in opposite
directions. Interactions take place at each bunch crossing; since two bunches cross twice as they
complete an orbit in the period T , the number of events per second is given by

dNs

dt
=

2NB1NB2

T

Nb1Nb2

A
σ = Lσ , (2.9)

where we have not taken into account the loss of particles from the beams due to scattering.
Here L is again the luminosity. More precisely, L is the istantaneous luminosity, while the
integrated luminosity, as its name suggests, is the integral of L over time (this applies to fixed
target experiments as well).

2.3 Cross section and boosts

One might wonder if the σ appearing in Eq. (2.4) and that in Eq. (2.8) are the same. To answer
this question, notice that going over to the rest frame of, say, beam 2, the process looks exactly
like a fixed target experiment, with beam 2 acting as the target. In doing so, the number of
recorded events, as well as the number of particles in the beams, will obviously not change. As
for the area of the cross-section of the beam, it will not change either, as it is orthogonal to
the relative velocity of the two frames, and is therefore unaffected by the change of reference
frame, both in the non-relativistic and in the relativistic cases.6 As a consequence, σ is the
same, independently of the type of experiment.

The reference frame in which one of the initial particles is at rest is called the laboratory (lab)
frame, and is the most convenient for the description of fixed target experiments. The frame
in which the total (spatial) momentum is zero is the center of mass (CM) frame, and collider
experiments are usually carried in such a way that the center of mass frame coincides with the
experimental facility.

Differently from total cross sections, differential cross sections will change when changing
reference frame. Consider the same scattering experiment observed in the lab and in the CM
frame. Let dN lab

s (ξlab, dξlab) be the number of recorded events that in the lab frame have
momenta in an interval dξlab around ξlab. In the CM frame, those same events will appear

6For more general reference frame transformations, σ will remain invariant provided A is taken to be the area
of the cross section of the beams orthogonal to the relative direction of motion.
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to have momenta in an interval dξCM around ξCM, related to that in the lab frame by known
transformation laws. Therefore,

dN lab
s (ξlab, dξlab) = dNCM

s (ξCM, dξCM) (2.10)

and one concludes
(

dσ

dξ

)lab

=

(

dσ

dξ

)CM dξCM

dξlab
. (2.11)

At high energy an accurate description of scattering processes requires the use of special rela-
tivity. It is therefore worth writing down the definition of cross section in a manifestly Lorentz-
invariant way. To do so, consider the process in the lab frame and notice that the flux Φ of the
beam can be written as Φ = ρ1v where ρ1 is the (volume) density of the beam and v its velocity,
and that Nt = ρ2V with ρ2 the density of the target or of the other beam, and V its volume.7

We have therefore

σ =
Ns

Φ∆tNt
=

Ns

∆t V ρ1ρ2v
. (2.12)

In this expression, Ns and ∆t V are relativistic invariants. As for ρi, they have to transform like

an energy,8 and therefore ρi = ρ0i
p0i
mi

, with ρ0i being the density in the corresponding rest frame,

p0i the energy of a particle in the system (beam/target) labelled by i, and mi the corresponding

mass. Moreover, v = |~p1|
p01

. In the lab frame p02 = m2, and so

σ =
Ns

∆t V ρ01ρ
0
2
|~p1|m2

m1m2

. (2.13)

The last step is finding the relativistically invariant expression for I = |~p1|m2. One can verify
that in the lab frame, where P1 = (Elab, ~p lab) and P2 = (m2, 0), one has

(P1 · P2)
2 − P 2

1P
2
2 = (Elabm2)

2 −m2
1m

2
2 = I2 . (2.14)

In the CM frame, where P1 = (ECM
1 , ~pCM) and P2 = (ECM

2 ,−~pCM) one thus finds (choosing for
simplicity the momentum along direction 1)

I2 =
1

2
εµναβε

µν
γδP

α
1 P

β
2 P

γ
1 P

δ
2 = (ε23αβP

α
1 P

β
2 )

2 = [(ECM
1 + ECM

2 )pCM]2

= (ECMpCM)2 .
(2.15)

3 Review of Quantum Mechanics

Before embarking in the development of the formal theory of scattering in QM, it is worth
collecting and reviewing a few useful results.

3.1 Abstract Hilbert spaces

In quantum mechanics the states of a system are associated with vectors |ψ〉 in an abstract
separable Hilbert space H, and observables with linear operators in H. Here we review some
general notions about Hilbert spaces.

7For a fixed target, the volume is of that part of the sample illuminated by the beam.
8This is because ρi times a volume is the number of particles within a certain region, which is a relativistically

invariant quantity.
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Hilbert spaces A Hilbert space is a complex linear space endowed with a positive-definite
scalar product, which is furthermore complete, in the sense explained below. A vector is denoted
by |ψ〉; we will sometimes use the unconventional notation |αψ+βφ〉 = α|ψ〉+β|φ〉. We denote
the scalar product of two vectors |ψ〉 and |φ〉 as 〈φ|ψ〉 = 〈ψ|φ〉∗, and the norm of a vector
as ‖ψ‖ ≡

√

〈ψ|ψ〉. Notice that every element of H has a finite norm. Positive-definiteness
means that 〈ψ|ψ〉 > 0 if |ψ〉 6= 0, so 〈ψ|ψ〉 = 0 if and only if |ψ〉 = 0. We note in passing
the useful Schwartz inequality, |〈φ|ψ〉| ≤ ‖φ‖‖ψ‖, valid for any pair of vectors. A separable
Hilbert space is one that possesses a countable orthonormal basis, i.e., it is such that each
vector can be written uniquely as |ψ〉 =

∑

n cn|en〉 with countably many basis elements |en〉
satisfying 〈en|em〉 = δnm. A sequence {|ψn〉} of elements of H is said to be a Cauchy sequence
if ‖ψn − ψm‖ → 0 as n,m → ∞. Completeness means that every Cauchy sequence {|ψn〉} is
convergent, i.e., limn→∞ |ψn〉 = |ψ〉 for some |ψ〉 ∈ H. A Hilbert subspace H′ is a subset H′ ⊆ H
which is also a Hilbert space; in particular, completeness requires that any convergent sequence
in H′ must converge in H′.

Linear operators Observables are associated with linear self-adjoint operators in H. A linear
operator A is such that for every |ψ〉, |φ〉 ∈ D(A) ⊆ H and for every α, β ∈ C one has A(α|ψ〉+
β|φ〉) = αA|ψ〉 + βA|φ〉. Also in this case we will sometimes use the unconventional notation
|Aψ〉 = A|ψ〉. The subset D(A) is called the domain of A, and need not coincide with the whole
of H, but we will always assume that it is a dense subset thereof, i.e., that for any |ψ〉 ∈ H and
any positive ǫ one can find |ψǫ〉 ∈ D(A) so that ‖ψ − ψǫ‖ < ǫ. The image of D(A) under A
is called the range of A and is denoted as R(A). Let D∗(A) be the set of those |φ〉 such that

〈φ|Aψ〉 = 〈ηφ|ψ〉 for some |ηφ〉 and for all |ψ〉 ∈ D(A). The adjoint A† of an operator is then

defined on the domain D(A†) = D∗(A) as A†|φ〉 = |ηφ〉, and 〈φ|Aψ〉 = 〈A†φ|ψ〉 = 〈ψ|A†φ〉∗. An
operator is called Hermitian if 〈φ|Aψ〉 = 〈Aφ|ψ〉 for |ψ〉, |φ〉 ∈ D(A), and it is called self-adjoint

if D(A) = D(A†). For these operators we can use the notation 〈φ|A|ψ〉 = 〈φ|Aψ〉 = 〈Aφ|ψ〉
without any ambiguity. For general operators, we understand that 〈φ|A|ψ〉 = 〈φ|Aψ〉 = 〈A†φ|ψ〉.

Self-adjoint operators admit a so-called spectral decomposition of the form

A =
∑

n

an|an〉〈an|+
∫

σ(A)
dλλ |λ〉〈λ| , an ∈ R , σ(A) ⊆ R , (3.1)

where |an〉 are the proper normalised eigenstates of A and an the corresponding (real) eigen-
values, A|an〉 = an|an〉 with 〈an|am〉 = δnm, and |λ〉 are the improper eigenvectors of A, with
A|λ〉 = λ|λ〉 and 〈λ′|λ〉 = δ(λ′−λ). The set {an} forms the discrete spectrum of A, and the sub-
set σ(A) of the real line is the continuous spectrum of A. Moreover, the following completeness
relation holds,

1 =
∑

n

|an〉〈an|+
∫

σ(A)
dλ |λ〉〈λ| . (3.2)

The improper eigenvectors |λ〉 are clearly not elements of H, and their rigorous treatment is way
beyond the scope of these lectures. For our purposes, it suffices to say that they are well-defined
objects such that the “scalar product” (technically, the linear functional) 〈λ|ψ〉 is well defined in
(a dense subset of) H, yielding a well defined complex number, and such that 〈λ|A|ψ〉 = λ〈λ|ψ〉.
One has also that 〈ψ|λ〉 = 〈λ|ψ〉∗.

There are other important classes of operators. An operator A : D(A) → S ⊆ H is said to be
onto S if every element of S is the image of an element of D(A). In particular, A is onto its image
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R(A). An operator A is said to be one-to-one if |ψ〉 6= |φ〉 ⇒ A|ψ〉 6= A|φ〉. Since A is linear,
this is equivalent to A|ψ〉 = 0 ⇔ |ψ〉 = 0. In this case every element |χ〉 ∈ R(A) is associated to
a unique element |ψχ〉 ∈ D(A), and so we can define the inverse operator A−1 : R(A) → D(A),
which is onto D(A) and satisfies A−1A = 1D(A) and AA

−1 = 1R(A). Finally, a norm-preserving
operator is one satisfying ‖Aψ‖ = ‖ψ‖. A norm-preserving operator is automatically one-to-one,
thus invertible on its range. We can now define two important classes of operators:

• a linear operator Ω is isometric if it is norm-preserving and defined on the whole of H, i.e.,
D(Ω) = H and ‖Ωψ‖ = ‖ψ‖;

• a linear operator U is unitary if it is norm-preserving, defined on the whole of H, and onto
H.

A unitary operator is obviously isometric, but in general the converse is not true.9 We will return
on these kinds of operators as they play an immportant role in the formal theory of scattering.

Temporal evolution The temporal evolution of the system (in the Schrödinger representa-
tion) is described by assigning the state vector |ψ(t)〉 to the system at time t, and treating
the observables as time-independent. The dynamics governing the evolution of the system is
determined by the Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 , (3.3)

where Ĥ is the Hamiltonian of the system. This is a self-adjoint operator in H. The formal
solution of Eq. (3.3) is

|ψ(t)〉 = U(t)|ψ(0)〉 , U(t) ≡ e−iĤt . (3.4)

A theorem in functional analysis (Stone’s theorem) guarantees that the exponential of a self-
adjoint operator is unitary (see [Reed & Simon], vol. 1, §VIII.4), and so the temporal evolution
U(t) is unitary.

3.2 Systems of free particles

For practical calculations one needs a concrete (as opposed to abstract) realisation of the Hilbert
space of the states of the system. These realisations constitute the representations of the abstract
Hilbert space associated to the system, and of course they depend on which physical system is
under consideration. For a single (spinless) free particle, the state of the system in the so-
called coordinate representation is described by a wavefunction ψ(~x) ∈ L2(R3), assigned at
some definite time, which we take to be t = 0. The space L2(R3) is the complex linear space
formed by (Lebesgue) square-integrable functions ψ(~x), i.e.,

∫

d3x |ψ(~x)|2 < ∞.10 Endowing
it with the scalar product (φ, ψ) =

∫

d3xφ∗(~x)ψ(~x) makes it into a separable Hilbert space
(Riesz-Fischer theorem, see [Reed & Simon], vol. 1, chapter II, or [Riesz & Nagy], pag. 59). In
this space of functions one can construct a concrete representation of the algebra of canonical

9It is true for finite-dimensional spaces.
10Elements of L2 are actually equivalence classes of functions differing only on a set of zero measure, but our

sloppier definition will suffice for our purposes.
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commutation relations [q̂j , p̂k] = iδjk, [q̂j , q̂k] = [p̂j , p̂k] = 0, where q̂j and p̂k are the (abstract)
position and momentum operators, respectively. This representation is obtained through

(q̂jψ)(~x) = xjψ(~x) ,

(p̂kψ)(~x) = −i ∂
∂xk

ψ(~x) ,
(3.5)

i.e., q̂j = xj and p̂k = −i ∂
∂xj

in this representation. The temporal evolution of the wavefunction

is governed by the free Schrödinger equation, which reads i∂t|ψ(t)〉 = Ĥ0|ψ(t)〉 in abstract
notation, with Ĥ0 the free Hamiltonian,

Ĥ0 =
~̂p 2

2m
, (3.6)

where m is the mass of the particle. The formal solution of the free Schrödinger equation is

|ψ(t)〉 = U0(t)|ψ〉 , U0(t) ≡ e−iĤ0t , (3.7)

where |ψ〉 = |ψ(0)〉, and U0(t) is unitary. In the coordinate representation

i
∂

∂t
ψ(t, ~x) = − ∆

2m
ψ(t, ~x) , (3.8)

with ψ(0, ~x) = ψ(~x) corresponding to the state at time t = 0. Wavefunctions are usually
normalised to 1,

∫

d3x |ψ(~x)|2 = 1, and the normalisation is preserved by the unitary temporal
evolution. The physical interpretation of the wavefunction is that dp(t, ~x) = |ψ(t, ~x)|2d3x is
the probability of observing the particle at time t in an infinitesimal neighbourhood of ~x; the
normalisation guarantees that the probability to find the particle anywhere is just 1.

Analogously, one can construct the momentum representation, where the state of the particle

(at t = 0) is described by the function ψ̃(~k) ∈ L2(R3). In this representation the momentum
operators act multiplicatively and the position operators act as derivatives,

(p̂jψ̃)(~k) = kjψ̃(~k) ,

(q̂kψ̃)(~k) = i
∂

∂kk
ψ̃(~k) ;

(3.9)

the free Hamiltonian is therefore diagonal and ψ̃(t,~k) = (e−iĤ0tψ̃)(~k) = e−iEktψ̃(~k), where

Ek =
~k 2

2m . The momentum wavefunction is usually normalised as
∫

d3k |ψ̃(~k)|2 = 1, where we

have introduced the notation d3k = d3k
(2π)3

. The probability dp̃(t,~k) = |ψ̃(t,~k)|2d3k = |ψ̃(~k)|2d3k
to find the particle in the interval d3k around momentum ~k is independent of time.

An easy way to connect the abstract and the concrete Hilbert space, and to connect the
coordinate and the momentum representations, is provided by the (improper) eigenstates of the
position and momentum operators, ~̂q |~x〉 = ~x|~x〉 and ~̂p |~k 〉 = ~k |~k 〉. These states satisfy the
normalisation conditions

〈~x ′|~x〉 = δ(3)(~x ′ − ~x) , 〈~k ′|~k 〉 = (2π)3δ(3)(~k ′ − ~k ) , (3.10)

and the completeness relations

1 =

∫

d3x |~x〉〈~x| =
∫

d3k |~k 〉〈~k | . (3.11)
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The coordinate representation of the state |ψ〉 is obtained by projecting it on the coordinate
eigenstates,

ψ(~x) = 〈~x|ψ〉 . (3.12)

Analogously, the momentum representation of the state |ψ〉 is obtained by projecting it on the
momentum eigenstates,

ψ̃(~k) = 〈~k |ψ〉 . (3.13)

With our choice of normalisation, the momentum eigenstates in the coordinate basis read

〈~x|~k 〉 = ei
~k·~x . (3.14)

This expression allows to connect the coordinate and momentum representations, the link being
simply the Fourier transform:

ψ(~x) = 〈~x|ψ〉 =
∫

d3k 〈~x|~k 〉〈~k |ψ〉 =
∫

d3k e
i~k·~x ψ̃(~k) . (3.15)

As already mentioned in our general discussion, it is evident from Eq. (3.10) that the improper
vectors |~x〉 and |~k 〉 are not elements of H, and a rigorous treatment of these objects would lead
us too far. For practical purposes, they are just objects whose (formal) scalar product with a
proper abstract vector yields the corresponding representative in the desired representation.

The generalisation to several free particles is immediate. Denoting with Ha the one-particle
Hilbert space of particle a, we have that the full Hilbert space is simply the tensor product
H = ⊗N

a=1Ha, and the N -particle free Hamiltonian is just

H
(N)
0 =

N
∑

a=1

~̂p 2
(a)

2ma
, (3.16)

with ~̂p(a) the momentum operator of particle a and ma its mass. Coordinate operators ~̂q(a) are
also defined, and the canonical commutation relations are extended to [q̂(a) j , p̂(b) k] = iδabδjk
(all other commutators being zero). The concrete representation of the system (for spinless
particles) is provided by the space11 L2

N = ⊗N
a=1L

2(R3
a), with L

2(R3
a) corresponding to particle

a. Elements of L2
N are the functions ψ(~x1, . . . , ~xN ) generated by the basis {∏N

a=1 ψ
(a)
n (~xi)}, with

{ψ(a)
n (~x)} a basis of L2(R3

a). In L
2
N , the coordinate operators and the momentum operators are

represented as ~̂q(a) = ~x(a) and ~̂p(a) = −i~∇(a), respectively.
The inclusion of spin is also straightforward. For a particle of spin s, i.e., such that ~s2 =

s(s + 1) on its states, bases of (improper) vectors of the Hilbert space are now |~x, s3〉 and
|~p, s3〉, where s3 = −s, . . . , s is the third component of the spin. The coordinate and the
momentum representation are realised in the Hilbert space L2(R3)⊗R

2s+1, and instead of a single
wavefunction one has 2s + 1 wavefunctions 〈~x, s3|ψ〉 = ψs3(~x), and momentum wavefunctions
〈~p, s3|ψ〉 = ψ̃s3(~p). For factorised states we will write the wavefunction as ψ(~x)χs3 , with ~x-
independent (2s + 1)-dimensional spinor χ. The generalisation to N particles with possibly
different spins is immediate.

11The notation L2
N for the N -particle space has just been made up.

13



3.3 Free-particle wave packets

As a first application of the formalism described in the previous subsection, we will review in
some detail the temporal evolution of general one-particle states.

The general solution of the time-dependent Schrödinger equation Eq. (3.8) is most easily
obtained starting from the eigenvalue equation (time-independent Schrödinger equation)

Ĥ0|ψ〉 =
~̂p 2

2m
|ψ〉 = E|ψ〉 . (3.17)

The solutions of this equation are simply the momentum eigenstates |~p〉, which satisfy it with

energy E = Ep ≡ ~p 2

2m . Using the formal solution in terms of U0(t) = e−iĤ0t and |ψ(0)〉 = |ψ〉,
and expanding the latter in the momentum basis |ψ〉 =

∫

d3p |~p 〉〈~p |ψ〉, we find

|ψ(t)〉 =
∫

d3p e
−iĤ0t|~p 〉〈~p |ψ〉 =

∫

d3p e
−iEpt|~p 〉〈~p |ψ〉 . (3.18)

For a momentum eigenstate the temporal evolution corresponds to multiplication by an appro-
priate phase, so its wavefunction at any time will be that of a plane wave. A general vector
|ψ〉 contains various momentum eigenstates, and it represents therefore not a plane wave, but
rather a wave packet.

It is instructive to study how the wave packet evolves over time. Obviously the expectation
values of ~̂p and ~̂p 2 are time-independent. One can show that

[q̂i, f(~̂p )] = i
∂f

∂pi
(~̂p ) , (3.19)

starting with polynomials and using induction, and then extending the result to analytic func-
tions. From this one proves that

U0(t)
†q̂U0(t) = q̂ + U0(t)

†[q̂, U0(t)] = q̂ + t
p̂

m
, U0(t)

†q̂nU0(t) =

(

q̂ + t
p̂

m

)n

. (3.20)

Using these results we obtain

〈q〉t =〈ψ(t)|q|ψ(t)〉 = 〈q〉0 +
t

m
〈p〉0

∆ψq
2(t) ≡ 〈ψ(t)|q2|ψ(t)〉 − 〈ψ(t)|q|ψ(t)〉2

= ∆ψq
2(0) +

(

t

m

)2

∆ψp
2(0) +

t

m
[〈ψ|{q, p}|ψ〉 − 2〈ψ|q|ψ〉〈ψ|p|ψ〉] ,

(3.21)

which shows that the center of the packet moves along a straight line with constant velocity
〈p〉0/m, and that the wave packet inevitably spreads out as time passes.

The abstract result Eq. (3.18) can be projected on the desired basis. Let us look at the
wavefunction in the coordinate basis,

ψ(t, ~x) = 〈~x|ψ(t)〉 =
∫

d3p e
−iEpt〈~x|~p 〉〈~p |ψ〉 =

∫

d3p e
−iEptei~p·~x

∫

d3x′〈~p |~x ′〉〈~x ′|ψ〉

=

∫

d3x′〈~x ′|ψ〉
∫

d3p e
−iEptei~p·(~x−~x

′) =

∫

d3x′Kt(~x− ~x ′)ψ(~x ′) ,

(3.22)
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where

Kt(~x− ~x ′) ≡
∫

d3p e
−iEptei~p·(~x−~x

′) . (3.23)

To carry out this integral, notice that

−Ept+ ~p · (~x− ~x ′) = − t

2m

[

~p− m

t
(~x− ~x ′)

]2
+
m

2t
(~x− ~x ′)2 . (3.24)

A simple change of variables thus yields

Kt(~x− ~x ′) = ei
m
2t
(~x−~x ′)2

∫

d3p e
−i t

2m
~p 2

=

(

2m

|t|

)
3
2

ei
m
2t
(~x−~x ′)2

∫

d3p e
−isgn (t)~p 2

=
( m

2πti

)
3
2
ei

m
2t
(~x−~x ′)2 ,

(3.25)

where in the last step we have applied Cauchy theorem for the integral of analytic functions to
obtain

∫

d3p e
∓i~p 2

=

(

1

2

√

1

±iπ

)3

.

In conclusion,

ψ(t, ~x) =
( m

2πti

)
3
2

∫

d3x′ei
m
2t
(~x−~x ′)2ψ(~x ′) =

( m

2πti

)
3
2
ei

m
2t
~x 2

∫

d3x′e−i
m
t
~x·~x ′

ei
m
2t
~x ′ 2

ψ(~x ′) .

(3.26)
A few comments are now in order.

1. The integral Eq. (3.26) certainly exists if ψ(~x) is a smooth (infinitely differentiable) rapidly
vanishing function, i.e., such that it and all its derivatives vanish at infinity faster than
any polynomial. The set of such functions is usually denoted by S . In this case

|ψ(t, ~x)| ≤
(

m

2π|t|

)
3
2
∫

d3x′|ψ(~x ′)| <∞ . (3.27)

Since S is dense in L2(R3), we have thus found the action of U0(t) on a dense subset of the
Hilbert space.12 Moreover, if we have a convergent, or equivalently (due to completeness)
Cauchy sequence |ψn〉 → |ψ〉, then ‖ψn(t) − ψm(t)‖ = ‖ψn − ψm‖ → 0 due to the fact
that U0(t) is norm-preserving, and completeness implies that |ψn(t)〉 → |ψ(t)〉 for some
|ψ(t)〉 ∈ L2(R3). This limit is independent of the sequence: given two convergent sequences
|ψn〉, |ψ′

n〉 → |ψ〉 with |ψn(t)〉 → |ψ(t)〉 and |ψ′
n(t)〉 → |ψ′(t)〉, then 0 = limn→∞ ‖ψn −

ψ′
n‖ = limn→∞ ‖U0(t)ψn − U0(t)ψ

′
n‖ = limn→∞ ‖ψn(t)− ψ′

n(t)‖ = ‖ψ(t)− ψ′(t)‖. We can
thus extend the action of U0(t) to the whole Hilbert space by continuity.

2. If ψ(~x) ∈ S , then from Eq. (3.26) we see that ψ(t, ~x) ∈ S : clearly ei
m
2t
~x ′ 2

ψ(~x ′) ∈ S ;
the ensuing Fourier transform leaves S invariant; and for the remaining phase factor the
same applies as above.

12It would actually suffice to consider the dense subset L1(R3)∩L2(R3), for which the bound Eq. (3.27) holds,
but S is a “nicer” set.
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3. Given two arbitrary convergent sequences |χn〉 → |χ〉 and |ψn〉 → |ψ〉 (including the
identical ones) of elements of S , then

∣

∣〈χ|ψ(t)〉
∣

∣ =
∣

∣〈χ− χn|ψ(t)− ψn(t)〉+ 〈χ− χn|ψn(t)〉+ 〈χn|ψ(t)− ψn(t)〉+ 〈χn|ψn(t)〉
∣

∣

≤ ‖χ− χn‖‖ψ − ψn‖+ ‖χ− χn‖‖ψn‖+ ‖χn‖‖ψ − ψn‖+
∣

∣〈χn|ψn(t)〉
∣

∣ .
(3.28)

The first three terms can be taken arbitrarily small, and add up to some arbitrarily small
ǫ > 0. Therefore

|〈χ|ψ(t)〉| < ǫ+

(

m

2π|t|

)
3
2
∣

∣

∣

∫

d3xχ∗
n(~x)

∫

d3x′ei
m
2t
(~x−~x ′)2ψn(~x

′)
∣

∣

∣

≤ ǫ+

(

m

2π|t|

)
3
2
∫

d3x|χn(~x)|
∫

d3x′|ψn(~x ′)| .
(3.29)

The integrals certainly exist, and so as t→ ∞ one finds limt→∞ |〈χ|ψ(t)〉| ≤ ǫ for arbitrarily
small ǫ, i.e., limt→∞〈χ|ψ(t)〉 = 0 for any |χ〉, |ψ〉. In particular, for elements of S , 〈χ|ψ(t)〉
vanishes at least as |t|− 3

2 . Both results will be useful later.

4. The inclusion of spin does not involve any additional difficulty: since H0 commutes with
~s, one can treat the wavefunction components independently, and for each of them the
results obtained above apply.

3.4 Interacting systems: the two-particle Hamiltonian

In order to describe real physical systems, for which we observe that the time evolution cannot be
(always) described as a free evolution, we have to somehow modify the mathematical description.
The space of possible states has to include the free states, since these are (approximately)
observed in Nature. If we furthermore want this space to be a separable Hilbert space, then the
essential uniqueness of the spaces L2(Rn) implies that the appropriate setting for interacting
systems will be the same as that of free systems, i.e., a space of square-integrable functions.

To change the dynamics of the system we have then to change the Hamiltonian. For clarity
we discuss this issue in the case of a system of two spinless particles. The simplest possible
modification of the free two-particle Hamiltonian consists in adding to Ĥ0 a function of the
coordinates of the two particles, i.e., a potential. If the system is translation-invariant, then
the potential has to depend only on the relative position of the particles; if the system is also
rotation invariant, then the potential must depend only on their relative distance. Another
sensible physical requirement is that the potential becomes constant at large distance; this
constant can be freely chosen to be zero. The Hamiltonian of our system therefore reads

Ĥ =
~̂p 2
1

2m1
+

~̂p 2
2

2m2
+ V (|~̂q1 − ~̂q2|) , (3.30)

and the temporal evolution of a state described by |Ψ〉 at t = 0 is

|Ψ(t)〉 = e−iĤt|Ψ〉 . (3.31)
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A canonical transformation to the center of mass and relative coordinates,

Q̂ =
m1q̂1 +m2q̂2
m1 +m2

, q̂ = q̂1 − q̂2 ,

P̂ = p̂1 + p̂2 p̂ =
m2p̂1 −m1p̂2
m1 +m2

,

(3.32)

allows to rewrite H as follows,

Ĥ =
~̂
P 2

2M
+
~̂p 2

2m
+ V (|~̂q|) , (3.33)

where M = m1 +m2, and m = m1m2
m1+m2

is the reduced mass of the system. Since [
~̂
P, Ĥ] = 0, the

total momentum is a constant of motion. The dynamics factors exactly into a free center-of-mass
part, and an interacting relative part, i.e.,

e−iĤt = e−i
~̂
P 2

2M
te−iĤrelt , (3.34)

with Ĥrel =
~̂p 2

2m + V (|~̂q|) being the Hamiltonian of one particle in a potential. Since V → 0 at

large distance, bound states of Ĥrel have negative energy.
The case of two particles with spin is not very much different, besides the fact that now the

potential can be spin dependent. If we denote with ~s1,2 the spin operators associated with the
two particles, and still assume rotational invariance, then possible extra terms in the Hamiltonian
are for example ~s1 ·~s2Vss(|~̂q) and ~L · ~SVLS(|~̂q), where ~L = ~q∧ ~p is the orbital angular momentum
and ~S = ~s1 + ~s2 is the total spin, and Vss and VLS are scalars.

In the discussion above we have used the expression “two-particle Hamiltonian”, but as we
have repeatedly pointed out in the introduction the concept of particle is well-defined when the
particle is free. What has been understood in the previous discussion is that the temporal evo-
lution generated by the Hamiltonian Eq. (3.30) is expected to lead, in the appropriate situation,
to states evolving like freely evolving two-particle states. Showing that this is actually the case
is the subject of the next section.

4 The formal theory of scattering

This section is devoted to the formal theory of scattering. Our purpose is to lay the foundations
for any practical calculation related to a physical scattering process. We adopt here the so-called
time-dependent approach, which provides a description of the scattering process as it develops
through time.

From now on, except when explicitly stated otherwise, our discussion of scattering processes
will focus on systems described by a Hamiltonian of the form Eq. (3.33). Since particles cannot
be created or destroyed in quantum mechanics, the scope of our discussion will therefore be
limited to two-body elastic scattering processes. This will be sufficient to introduce the main
ideas, which can then be generalised to more complicated systems. A brief comment on this will
be made at the end of this section.

Before starting, a comment about notation is in order: from now on we will omit the “hat”
on top of operators, as it will always be clear whether the object under consideration is an
operator or a c-number.

17



4.1 Asymptotic condition

As we have repeatedly said, in a scattering experiment the system is initially prepared in a free
particle state, or more accurately, in a state whose evolution is indistinguishable from the free
evolution; and that after a long time it is observed again behaving like a free particle state. We
know that these statements have to be approximate, because the particles are never really free
due to interactions. We also know that the farther apart the particles, the more accurate the
description as a freely evolving state is. Let us now express these ideas in mathematical form.

It is convenient to use center-of-mass and relative coordinates, which for a two-particle
system have been defined in Eq. (3.32). Without loss of generality we can assume that the
system is in a factorised state |Ψ〉 = |ψ̄〉CM ⊗ |ψ〉rel at t = 0, with |ψ̄〉CM ∈ L2(R3

CM) and
|ψ〉rel ∈ L2(R3

rel). Since the time evolution of |ψ̄〉CM is trivial [see Eq. (3.34)], we can just focus
on the relative part, drop the subscripts for notational simplicity and denote H = L2(R3

rel).
The problem is thus reduced to the study of scattering of one particle in a potential. The
exact time evolution of |ψ〉 is governed by the full relative Hamiltonian H = H0 + V , and reads
|ψ(t)〉 = U(t)|ψ〉 with U(t) ≡ e−iHt. A freely evolving state reads instead U0(t)|φ〉, for some
|φ〉 ∈ H and with U0(t) ≡ e−iH0t. Indistinguishability of two states |ψ1,2〉 means that they
yield indistinguishable results for any measurement. Since these can be expressed in terms of
projectors |χ〉〈χ|, indistinguishability of any expectation value entails that |〈χ|ψ1〉|2 = |〈χ|ψ2〉|2,
∀|χ〉 ∈ H. This in turn implies that |ψ1〉 and |ψ2〉 are equal up to a phase.13 In our case we
have practical indistinguishability, which means that there are some |φi〉 and |φf 〉 such that
‖U(t)ψ − U0(t)φi,f‖ < ǫ, for some small ǫ, when t → −∞ and t → +∞, respectively. There
is no need for |φi〉 to be the same as |φf 〉. As the indistinguishability improves as |t| becomes
larger, we eventually expect that it becomes exact in the far past t = −∞ and in the far future
t = +∞:

lim
t→−∞

‖U(t)ψ − U0(t)φi‖ = 0 ,

lim
t→+∞

‖U(t)ψ − U0(t)φf‖ = 0 .
(4.1)

These relations are called the asymptotic conditions, and φi and φf are the past and future
asymptotes, respectively.

So far we have just argued that the asymptotic conditions should hold for states describing
a scattering process, and before trying to prove them, two questions are in order. Do we expect
the conditions Eq. (4.1) to hold, with appropriate |φi,f 〉, for any state |ψ〉? Conversely, what
kind of states |φi,f 〉 do we expect to describe the asymptotic, free-like behaviour of states at
large times?

The first question amounts to asking if we expect any possible state of the system to look
asymptotically like a freely-evolving state, and stated in this way it is obvious that in general the
answer is no: we know of the possible existence of bound states, in which the two particles can
never escape to infinity, and which therefore will never look like a system of two free particles.
There might be also other states which do not satisfy Eq. (4.1): to prove that this is not the
case is a very hard task, and will be discussed at the qualitative level in subsection 4.3.

As for the second question, since we are free to prepare the initial state that we want, we
expect no limitation on |φi〉; since the final state of a scattering process can be used as the initial

13Using as |χ〉 the elements of a complete basis and finite linear combinations thereof, one can prove equality
of the modulus of the expansion coefficients and of their relative phases.
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state of another one, the same expectation holds for |φf 〉. For a wide class of potentials, this
can be proved rather easily as we now show.

The central result of this section is the proof of the validity of the asymptotic conditions:

(asymptotic condition) for any |φ〉 ∈ H, there exist vectors |ψ±〉 such that the
following relations hold,

lim
t→∓∞

‖U(t)ψ± − U0(t)φ‖ = 0 . (4.2)

The apparently bizarre choice of signs |ψ±〉 in Eq. (4.2) is of historical origin, and we will keep
it not as a homage to tradition, but as a torment for students.

Proof. Since U(t) is unitary, proving Eq. (4.2) is equivalent to prove

lim
t→∓∞

‖ψ± −W (t)φ‖ = 0 , W (t) ≡ U(t)†U0(t) . (4.3)

The existence of |ψ±〉 is guaranteed by the completeness of the Hilbert space, if we are able to
prove that W (t)|φ〉 is Cauchy, i.e., if ∆(t1, t2) = ‖W (t2)φ−W (t1)φ‖ → 0 as t1,2 → ±∞. To do
this we write14

W (t2)|φ〉 −W (t1)|φ〉 =
∫ t2

t1

dt
d

dt
W (t)|φ〉 = i

∫ t2

t1

dtU(t)†V U0(t)|φ〉 . (4.4)

Using the properties of the norm and of the integral, and the unitarity of U(t), we have

∆(t1, t2) ≤
∫ t2

t1

dt ‖V U0(t)φ‖ . (4.5)

In the coordinate representation

‖V U0(t)φ‖2 =
∫

d3xV (~x)2|φ(t, ~x)|2 , (4.6)

where φ(t, ~x) = 〈~x |U0(t)|φ〉. We now take |φ〉 such that φ(~x) = 〈~x |φ〉 ∈ S . For such functions

the bound Eq. (3.27) applies, and φ(t, ~x) vanishes at least like |t|− 3
2 as t → ±∞.15 Moreover,

S is dense in L2(R3), and this will allow us to extend easily our result to the whole space.
Furthermore, we assume that the potential is square-integrable. With these assumptions, it is
easy to show that

‖V U0(t)φ‖2 ≤
(

m

2π|t|

)3 ∫

d3xV (~x)2
(
∫

d3x′|φ(~x ′)|
)2

=
C

|t|3 , (4.7)

14We ignore for the moment whether we are allowed to take the derivative of W (t). If you care, then look at
footnote 15.

15 Since also Eq. (3.26) applies, one has that also ψ(t, ~x) ∈ S ∀t. Functions in S are in the domain of both
the free and the interacting Hamiltonian (at least for potentials which are not too singular). Stone’s theorem
(see [Reed & Simon], vol. 1, §VIII.4) guarantees that given some self-adjoint operator A, then U(t) = eiAt is a
one-parameter group of unitary operators, and moreover if |ψ〉 ∈ D(A) then limǫ→0

1
ǫ
[U(t+ ǫ)−U(t)]|ψ〉 = iA|ψ〉.

Taking the derivative of W (t) is thus justified for our choice of ψ(~x).
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with some positive constant C. We finally conclude that, taking t2 ≥ t1 > 0 or 0 > t1 ≥ t2
without loss of generality.

∆(t1, t2) ≤
∫ t2

t1

dt
C

1
2

|t| 32
= 2C

1
2

(

1

|t1|
1
2

− 1

|t2|
1
2

)

→
t1,t2→∞

0 . (4.8)

This concludes the proof for φ(~x) ∈ S . Since S is dense in L2(R3), for a generic vector |φ〉 we
can find |φǫ〉 with φǫ(~x) ∈ S and ‖φ− φǫ‖ < ǫ/2. Then

∆(t1, t2) = ‖[W (t2)−W (t1)][(φ− φǫ) + φǫ]‖
≤ ‖[W (t2)−W (t1)](φ− φǫ)‖+ ‖[W (t2)−W (t1)]φǫ‖
≤ ǫ+ ‖[W (t2)−W (t1)]φǫ‖ ,

(4.9)

from which it follows that limt1,t2→∞∆(t1, t2) ≤ ǫ for arbitrarily small ǫ, i.e., that this limit
vanishes.

In conclusion, the limits

lim
t→∓∞

W (t)|φ〉 = lim
t→∓∞

U(t)†U0(t)|φ〉 = |ψ±〉 (4.10)

exist ∀|φ〉 ∈ H if the potential V is sufficiently well-behaved. We give here a list of conditions
for which the above derivation holds, and for which all the results that we will further discuss in
this section also hold, in the case of a spherical potential, i.e., V = V (r), r = |~x| (see [Taylor],
pag. 27):

1. V (r) = O(r−3−ǫ) as r → ∞, for some ǫ > 0;

2. V (r) = O(r−
3
2
+ǫ) as r → 0, for some ǫ > 0;

3. V (r) is continuous for r ∈ (0,∞), with at most a finite number of finite discontinuities.

These conditions on V can actually be relaxed, and it is possible to show (Kupsch-Sandhas
theorem) that the limit exists as long as V (~x) ∼ |~x|−1−ǫ as |~x| → ∞ (and as long as it is not
too singular anywhere else).

The inclusion of spin presents no particular difficulty. The proof given above remains un-
changed until Eq. (4.6), which now reads

‖V U0(t)φ‖2 =
∫

d3xφ(t, ~x)†V (~x)2φ(t, ~x) , (4.11)

where now φ(t, ~x) is a spinor collecting the (2s1+1)(2s2+1) components φ
s
(1)
3 s

(2)
3

(t, ~x) of the wave

function, where s
(1,2)
3 denote the third components of the spin of the two particles. Similarly,

V (~x) is now a Hermitian matrix with entries V
s
(1)′
3 s

(2)′
3 ,s

(1)
3 s

(2)
3

(~x). The bound Eq. (4.7) is changed

into

‖V U0(t)φ‖2 ≤
∫

d3x‖V (~x)‖2spin‖φ(t, ~x)‖spin

≤
(

m

2π|t|

)3 ∫

d3x‖V (~x)‖2spin
∑

s
(1)
3 s

(2)
3

(
∫

d3x′|φ
s
(1)
3 s

(2)
3

(~x ′)|
)2

=
C

|t|3 ,
(4.12)
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Figure 5: Relation between exact and asymptotic trajectories.

with some new constant C. Here ‖φ(t, ~x)‖spin denotes the norm of the spinor φ(t, ~x) in the spin
Hilbert space, ‖φ(t, ~x)‖2spin =

∑

s
(1)
3 s

(2)
3

|φ
s
(1)
3 s

(2)
3

(t, ~x)|2, and ‖V (~x)‖spin is the norm of the matrix

V (~x) in the same space, which coincides with the magnitude of its largest eigenvector. The rest
of the proof remains the same.

4.2 Scattering operators

The result above shows that given |φ〉, we can assign a unique |ψ±〉 to it: this defines two
operators Ω± on the whole of H,

|ψ±〉 = Ω±|φ〉 . (4.13)

The Ω± are called scattering (or Møller) operators, and map the vectors that describe the free
evolution at asymptotic times to the vectors that describe the exact evolution. In practical
terms, they map our physical knowledge about the system at asymptotic times to the exact
state vector. The situation is illustrated in Fig. 5. We now prove two important properties of
these operators.

The first property is that scattering operators are isometric. Since they are defined on the
whole of H, to prove this it is enough to show that they are norm-preserving, and this follows
at once from the fact that they are the limits (in the strong sense) for t → ±∞ of the unitary
operator W (t) = U(t)†U0(t). Indeed,

‖ψ±‖ = ‖ψ± −W (∓T )φ+W (∓T )φ‖ ≤ ‖φ‖+ ‖ψ± −W (∓T )φ‖ ,
‖φ‖ = ‖W (∓T )φ‖ = ‖ψ± +W (∓T )φ− ψ±‖ ≤ ‖ψ±‖+ ‖W (∓T )φ− ψ±‖ ,

(4.14)

and since the last term in both inequalities can be made arbitrarily small by choosing T suffi-
ciently large, we conclude that ‖ψ±‖ = ‖φ‖.

Isometric operators can be inverted on their range, so we can define Ω−1
± : R(Ω±) → H

(which is onto H). We can now easily construct the adjoint operators Ω†
±, which by definition

are such that 〈Ω†
±χ|φ〉 = 〈χ|Ωφ〉 on the whole domain of Ω±, which is H. Let first |χ〉 ∈ R(Ω±).
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Then |χ〉 = Ω±|φ′〉 for some |φ′〉, and so16

〈χ|Ω±φ〉 = 〈Ω±φ
′|Ω±φ〉 = 〈φ′|φ〉 = 〈Ω−1

± χ|φ〉 = 〈Ω†
±χ|φ〉 . (4.15)

For |χ〉 ∈ R(Ω±)
⊥, i.e., in the orthogonal complement of the range, we simply have 〈χ|Ω±φ〉 =

0 = 〈Ω†
±χ|φ〉, and in conclusion

Ω†
± =

{

Ω−1
± on R(Ω±) ,

0 on R(Ω±)
⊥ .

(4.16)

It then follows
Ω†
±Ω± = 1 , Ω±Ω

†
± = PR(Ω±) , (4.17)

where PS is the orthogonal projector on subspace S. The first relation can also be seen to follow
directly from the fact that Ω± are isometries.

The second important result is the intertwining relation

HΩ± = Ω±H0 . (4.18)

To prove this, notice that17

U(s)Ω±|φ〉 = U(s) lim
t→∓∞

W (t)|φ〉 = lim
t→∓∞

U(s)W (t)|φ〉

= lim
t→∓∞

W (t− s)U0(s)|φ〉 = Ω±U0(s)|φ〉 ,
(4.19)

for any |φ〉 ∈ H, so that U(s)Ω± = Ω±U0(s). Taking the derivative with respect to s and then
setting s = 0, Eq. (4.18) follows.

The intertwining relation expresses conservation of energy in a scattering process. To see
this, recall that the experimentalists make measurements on the particles in the initial and final
state by observing their temporal evolution, which is that of free particles. The information
so collected enters the state vectors |φi,f 〉, which allow to describe the (asymptotic) temporal
evolution through the action of the free Hamiltonian. Measurements of energy correspond
therefore to the determination of the expectation values Ei,f = 〈φi,f |H0|φi,f 〉. Suppose that the
exact state vector of the system is |ψ〉, and that it possesses asymptotes |φi,f 〉 at t→ ∓∞, i.e.,
|ψ〉 = Ω−|φf 〉 = Ω+|φi〉. From Eq. (4.18) we thus find

Ei,f = 〈φi,f |H0|φi,f 〉 = 〈φi,f |Ω†
±Ω±H0|φi,f 〉 = 〈φi,f |Ω†

±HΩ±|φi,f 〉 = 〈ψ|H|ψ〉 , (4.20)

i.e., Ei and Ef are equal, and both are equal to the expectation value of the exact Hamitonian
on the exact state vector.

To conclude this section, we now derive an expression for Ω± which will be useful later.
Recalling that Ω+ = limt→−∞W (t), and taking the derivative of W (t) and integrating between
−∞ and 0 we find

W (0)− lim
t→−∞

W (t) =

∫ 0

−∞
dt

d

dt
W (t) = i

∫ 0

−∞
dt (HW (t)−W (t)H0)

= i

∫ 0

−∞
dtU(t)†V U0(t) ,

(4.21)

16We use here the fact that 〈Ω±φ
′|Ω±φ〉 = 〈φ′|φ〉 for arbitrary |φ〉, |φ′〉. This is proved by using norm preser-

vation for the vectors |φ〉+ |φ′〉 and |φ〉+ i|φ′〉.
17The second equality follows from the relation ‖Bχt − Bχ‖ ≤ ‖B‖‖χt − χ‖ → 0 as t → ±∞, valid for any

bounded operator B and any convergent sequence |χt〉 → |χ〉 as t→ ±∞.
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from which it follows at once that (since W (0) = 1)

Ω+ = 1− i

∫ 0

−∞
dtU(t)†V U0(t) = 1− i

∫ 0

−∞
dt eiHtV e−iH0t . (4.22)

A similar calculation yields

Ω− = 1+ i

∫ +∞

0
dtU(t)†V U0(t) = 1+ i

∫ +∞

0
dt eiHtV e−iH0t . (4.23)

4.3 Orthogonality and asymptotic completeness

In the introductory discussion at the beginning of section 4.1 we asked ourselves if there are
states which do not satisfy the asymptotic conditions Eq. (4.1), and we argued that bound states
should not. We now prove this assertion.

States which satisfy the asymptotic condition lie in the range R(Ω±) of Ω±. It then follows
that states which lie in the orthogonal complements R(Ω±)

⊥ do not satisfy it.18 We now prove
that for the subspace of bound states, B, one has B ⊆ R(Ω±)

⊥. The subspace B is the subspace
spanned by the (proper) eigenvectors |En〉 of H, i.e., H|En〉 = En|En〉 with 〈En|En〉 < ∞, and
so to check B ⊆ R(Ω±)

⊥ it suffices to check that |En〉 ∈ R(Ω±)
⊥. For |ψ±〉 = Ω±|φ〉 ∈ R(Ω±)

we have

〈En|ψ±〉 = 〈En|Ω±|φ〉 = lim
t→∓∞

〈En|U(t)†U0(t)|φ〉 = lim
t→∓∞

eiEnt〈En|U0(t)|φ〉 . (4.24)

From subsection 3.3 [see Eq. (3.29)] we know that |〈En|U0(t)|φ〉| → 0 as t→ ±∞, so we conclude
that 〈En|ψ±〉 = 0.

Having shown that B ⊆ R(Ω±)
⊥ is not sufficient to characterise completely the states for

which the asymptotic conditions do not hold, for there might be other states in R(Ω±)
⊥. One

might also wonder if it is possible that R(Ω+) 6= R(Ω−), i.e., that the sets of states with a past or
future asymptote do not match exactly. According to experience, we expect that if |ψ〉 = Ω+|φi〉
is the vector corresponding to some initial state of free particles |φi〉, then the time evolution of
|ψ〉 at large positive times will also look like a free particle state, so that |ψ〉 = Ω−|φf 〉 for some
|φf 〉, i.e, R(Ω+) ⊆ R(Ω−). In fact, for a wide class of potentials, including those satisfying the
conditions listed on pag. 20, one can actually prove (after a lot of work) the following result:

(asymptotic completeness)

1. R(Ω+) = R(Ω−) ≡ R;

2. B ⊕R = H.

The subspace R is called the subspace of scattering states. The result above is called asymptotic
completeness, and a theory for which it holds is called asymptotically complete. In such a theory,
besides the bound states, there are only scattering states which possess both a past and a future
asymptote, i.e., for all |ψ〉 ∈ R one has |ψ〉 = Ω±|φ±〉 for some |φ±〉, and so |φ±〉 = Ω†

±|ψ〉.
18The most general state not satisfying the asymptotic condition has a nonvanishing projection on R(Ω±)

⊥.
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4.4 The S matrix

We finally have all the tools to (formally) predict all the transition probabilities in a scattering
experiment. More precisely, we want to predict the probability of observing a certain final state
given the knowledge of the initial free-particle state.

Scattering experiments are set up by preparing an initial, “accelerator” state |acc(−Ti)〉
at some early time t = −Ti (Ti > 0). After letting the system evolve, at some late time
t = Tf (Tf > 0) we use detectors to make measurements on the system. This can be expressed
mathematically as projecting the state of the system on a prescribed “detector” state |det(Tf )〉.
Here Ti and Tf are taken large enough so that the evolution of the system is indistinguishable
from the free evolution. The probability that at time t = Tf we activate our detector is given
by the expectation value

Pi→f = 〈acc(Tf )|det(Tf )〉〈det(Tf )|acc(Tf )〉 = |〈det(Tf )|U(Ti + Tf )|acc(−Ti)〉|2 = |〈ψ−|ψ+〉|2 ,
(4.25)

where |ψ+〉 = |acc(0)〉 and |ψ−〉 = |det(0)〉. The states |ψ+〉 and |ψ−〉 are called the in and the
out state of the process, and label the exact trajectories of the states of the system as functions
of time.19 Now, |ψ+〉 = Ω+|φi〉 for the appropriate incoming asymptote |φi〉, and similarly
|ψ−〉 = Ω−|φf 〉 for the appropriate outgoing asymptote |φf 〉. Therefore

Pi→f = |〈ψ−|ψ+〉|2 = |〈φf |Ω†
−Ω+|φi〉|2 = |〈φf |S|φi〉|2 , (4.26)

where we have introduced the operator

S ≡ Ω†
−Ω+ .

The matrix elements Sfi = 〈φf |S|φi〉 are the scattering amplitudes, which taken together form
the so-called S-matrix. The S-matrix encodes all the relevant information as far as the pre-
diction of the outcome of a scattering experiment is concerned, which is now possible once the
experimentally available information on the initial and final state is given.

Before turning to the study of the properties of S, we want to make a brief remark about the
experimental accessibility of the asymptotes. Knowledge of |acc(−Ti)〉 is equivalent to knowledge
of

|φi, exp,Ti〉 = U0(Ti)|acc(−Ti)〉 = U0(Ti)U(−Ti)|ψ+〉 =W (−Ti)†|ψ+〉 .
This vector is experimentally accessible, since we know |acc(−Ti)〉 and we know how to compute
the free evolution, but it differs from the exact asymptote |φi〉. Nevertheless, by construction 0 =
W (−Ti)|φi, exp,Ti〉−Ω+|φi〉 and so 0 = ‖W (−Ti)φi, exp,Ti −Ω+φi‖ = ‖φi, exp,Ti −W (−Ti)†Ω+φi‖.
For a vector |ψ〉 ∈ R such that |ψ〉 = Ω+|χ〉 one has

0 = lim
t→−∞

‖ψ −W (t)χ‖ = lim
t→−∞

‖W (t)†ψ − χ‖ = lim
t→−∞

‖W (t)†ψ − Ω†
+ψ‖ ,

i.e., W (t)† → Ω† in R. Therefore,

0 = lim
Ti→∞

‖φi, exp,Ti −W (−Ti)†Ω+φi‖ = ‖ lim
Ti→∞

φi, exp,Ti − Ω†
+Ω+φi‖ = ‖φi, exp,∞ − φi‖ , (4.27)

19The usage of this nomenclature in the literature is of course not consistent: some authors reserve the qualifi-
cation of in and out states for the initial and final asymptotes |φi〉 and |φf 〉.
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and so taking Ti sufficiently large we can approximate |φi〉 arbitrarily well. Similarly, we can
approximate |φf 〉 arbitrarily well by taking Tf sufficiently large.20

The most important property of S is that it is a unitary operator. This is equivalent to the
operator relations

S†S = SS† = 1 . (4.28)

Indeed, since a unitary operator U is necessarily isometric, the relation U †U = 1 follows at once
[see the first relation in Eq. (4.17)], and it shows that U † = U−1 on the range of U , which is the
whole of H. Multiplying the relation above by U on both sides, we find U(U †U) = U = (UU †)U
using associativity, which implies UU † = 1 on R(U) = H. Conversely, an operator S defined
on the whole Hilbert space and satisfying Eq. (4.28) is such that S† = S−1 on R(S). Since in
R(S)⊥ one has S† = 0, the second relation can hold only if R(S)⊥ = {0}, i.e., R(S) = H.

To prove unitarity of S, notice first that the adjoint S† = Ω†
+Ω− is defined on the whole of

H. We can now write, using both relations in Eq. (4.17) and asymptotic completeness

S†S = Ω†
+Ω−Ω

†
−Ω+ = Ω†

+PRΩ+ = Ω†
+Ω+ = 1 ,

SS† = Ω†
−Ω+Ω

†
+Ω− = Ω†

−PRΩ− = Ω†
−Ω− = 1 ,

(4.29)

where we have also used the obvious fact that PRΩ± = Ω±.
Another important property of S is that it commutes with the free Hamiltonian. Indeed,

using the intertwining relations, Eq. (4.18), we see at once that

SH0 = Ω†
−Ω+H0 = Ω†

−HΩ+ = H0Ω
†
−Ω+ = H0S ⇒ [H0, S] = 0 . (4.30)

This expresses again conservation of energy in a scattering process: if |Ei,f 〉 denote eigenstates
of H0, then

0 = 〈Ef |[H0, S]|Ei〉 = (Ef − Ei)〈Ef |S|Ei〉 , (4.31)

i.e., 〈Ef |S|Ei〉 can be nonzero only if Ef = Ei.
More generally, any symmetry generator M commuting both with H0 and H will commute

with S. Indeed, such aM will commute withW (t) for all times, and so also with Ω±. The phys-
ically relevant symmetries in QM are spatial translations, rotations, (non-relativistic) boosts,
parity and time reversal. We will discuss their consequences in detail in due time. Here we briefly
mention that translation and rotation invariance imply conservation of the total momentum, ~P
and of the total angular momentum, ~J : the proof is as in Eq. (4.31). Invariance under boosts
implies that the scattering amplitude between two given states is independent of the reference

20Neglecting these small errors, we could have taken the limit of a scattering process taking place from minus
to plus temporal infinity, defining

Pi→f = lim
Ti,Tf→∞

|〈det(Tf )|U(Tf + Ti)|acc(−Ti)〉|
2 = |〈ψ−|ψ+〉|

2 ,

which would have led to the alternative derivation

Pi→f = |〈ψ−|ψ+〉|
2 = lim

Ti,Tf→∞
|〈ψ−|U(Tf )

†U(Tf + Ti)U(Ti)
†|ψ+〉|

2

= lim
Ti,Tf→∞

|〈φf |U0(Tf )
†U(Tf )U(Ti)U0(Ti)

†|φi〉|
2

= lim
Ti,Tf→∞

|〈φf |W (Tf )
†W (−Ti)|φi〉|

2 = lim
Ti,Tf→∞

|〈φf |Ω
†
−Ω+|φi〉|

2 .
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frame that one uses.21 These symmetries, together with parity and time reversal, also imply
useful relations between different S-matrix elements.

We conclude this section by restoring the full description of the two-body system in terms
of CM and relative coordinates. A general state of the system is a superposition of factorised
states |Φ〉 =

∑

i ci|φ̄i〉CM ⊗ |φi〉rel, and one can immediately show that

lim
t→±∞

U(t)†U0(t)|Φ〉 =
∑

i

ci lim
t→±∞

[U0CM(t)Urel(t)]
†U0CM(t)U0 rel(t)|φ̄i〉CM ⊗ |φi〉rel

=
∑

i

ci lim
t→±∞

|φ̄i〉CM ⊗ Urel(t)]
†U0 rel(t)|φi〉rel

=
∑

i

ci|φ̄i〉CM ⊗ Ω± rel|φi〉rel = 1CMΩ± rel|Φ〉 = Ω±|Φ〉 ,

(4.32)

i.e., there is an isometry Ω± that maps Ω±|Φ〉 = |Ψ±〉 with ‖e−iHtΨ± − e−iH0tΦ‖ → 0 as
t→ ∓∞, which acts trivially on the CM quantities. Similarly, S = 1CMSrel.

As we have already remarked, elastic two-body scattering is mathematically equivalent to
scattering of a single particle with mass given by the reduced mass of the system in an external
potential. Before studying this problem in detail in the next section, we want to spend a
few words on more general scattering processes and the relative required generalisations of the
formalism.

4.5 Multichannel scattering

The results discussed so far can be quite readily extended to describe elastic processes involving
more than two particles. In this case, what one looks for are mappings between N -particle

states obeying the free evolution, determined by the free N -particle Hamiltonian H
(N)
0 , and

states obeying the exact evolution determined by the interacting N -particle Hamiltonian H(N).

The interacting Hamiltonian is usually of the form H(N) = H
(N)
0 +

∑

i<j Vij , with Vij the two-
body interaction between particles i and j. These mappings are defined by the requirement that

e−iH
(N)t|Ψ±〉 ∼ e−iH

(N)
0 t|Φ〉 at large negative or positive times.

However, for such systems there are also new kinds of processes that can take place. Consider
for example an idealised system of three particles, a, b, c, in which only a single bound state bc
can form. For such a system, besides elastic scattering a+ b+ c → a+ b+ c, one can consider
the disintegration process a+ bc→ a+ b+ c. Configurations of type a+ b+ c and of type a+ bc
are said to correspond to two different scattering channels of the system.

Let us focus on the disintegration process. The Hamiltonian reads Ha,b,c = Ha,b,c
0 + Vab +

Vbc + Vca. While the free asymptotic evolution of the final state is determined by the free
three-particle Hamiltonian Ha,b,c

0 , to describe the initial state we have to take into account
also the interaction Vbc between b and c which keeps the state bc bound. This yields the
channel Hamiltonian Ha,bc = Ha,b,c

0 + Vbc, which, separating the motion of b and c into the

corresponding center of mass and relative part, can be written as Ha,bc = Ha,bc
0 +Hrel bc. Here

21Here one should be careful in distinguishing the physical state and the state vector: observers in different
frames will assign different state vectors to the same physical state, as they measure different values for the
observables. Still, the transition probability between given physical states should not depend on the reference
frame, and this is certainly the case if the amplitudes do not depend on which particular choice is made for the
state vectors between the various equivalent possibilities (i.e., the various frames of reference).
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Ha,bc
0 is the free two-body Hamiltonian for a and the center of mass of the bc system, and

Hrel bc is the interacting Hamiltonian which describes the internal motion of the bound state.
Moreover, the part of the asymptotic wave function of the system that depends on the relative
coordinates must be precisely the eigenfunction of Hrel bc corresponding to the bc bound state.
A state corresponding to this early-time behaviour must therefore evolve asymptotically like

e−iH
a,b,ct|ψ〉 → e−iH

a,bc
0 te−iEbct|φbc〉 with |φbc〉 of the type discussed above, for t → −∞. A

similar reasoning can be made in the case when the final state is of type a + bc. States of the
type |φbc〉 form the channel subspace Sa,bc = S1. For states which asymptotically look like a

free three-particle state one has instead e−iH
a,b,ct|ψ〉 → e−iH

a,b,c
0 t|φ〉, with any |φ〉 ∈ H. For

uniformity of notation, we say that they form the channel subspace Sa,b,c = S0, with channel
Hamiltonian Ha,b,c.

The construction above can be easily generalised to any number of channels, with corre-
sponding channel subspaces Sα containing the possible corresponding asymptotes. One can then
proceed and show the existence of isometric operators Ωα±, one for each channel, which map the

asymptotes to the corresponding exact state. It is possible to show that R(Ωα+) ⊥ R(Ωα
′

+ ) for
α 6= α′ and R(Ωα+) ⊥ B, and similarly for R(Ωα−): this is expected since states with asymptotes
in different channels should be clearly different. For suitable potentials, one has furthermore
that H = ⊕αR(Ωα+) ⊕ B = ⊕αR(Ωα−) ⊕ B. One can now construct the channel S-matrix

Sα′α = Ωα
′

−
†Ωα+, and express the scattering amplitudes as Si,α→f,α′ = 〈f, α′|Sα′α|i, α〉. The final

step is to define the space of asymptotic states Has = ⊕αSα as the direct sum of the channel
subspaces: an element |φ〉〉 ∈ Has is specified by a sequence |φ〉〉 = {|φ, α〉}, with |φ, α〉 ∈ Sα.
Correspondingly, one defines the operator S : Has → Has as

〈〈f |S|i〉〉 ≡
∑

αα′

〈f, α′|Sα′α|i, α〉 , (4.33)

and one finally shows that S is a unitary operator.
Except for this brief discussion, we will not be dealing with multichannel scattering in QM

in these lectures, and we will focus on single-channel elastic scattering only. Although this
is certainly far from covering all the possible experimental outcomes, nevertheless it allows to
introduce all the main ideas. Besides this, it is not only of academic interest, since it can be
consistently applied in low energy non-relativistic processes, when the energy is so low that it
does not allow the breakup of bound states or the creation of new particles. Most of the results
that we will derive are valid also in multichannel scattering after the appropriate generalisation,
but deriving them in that case would cost a lot more in terms of fine details, and this is outside
the purpose of these introductory lectures.

4.6 Cross section from the S-matrix

The last step we need to take before turning to the development of tools for the actual compu-
tation of scattering amplitudes is to establish the relation between the S-matrix elements and
the experimentally observable cross sections. We will be dealing only with the most common
experimental setup, namely two-particle scattering processes, but the results obtained here are
valid for any kind of final state, i.e., both for single-channel and multi-channel scattering. More-
over, the derivation given below applies essentially unchanged to the relativistic case, with minor
modifications due to the different normalisation usually chosen for the momentum eigenstates,
and to the different relation between energy and momentum.
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As we have already repeated ad nauseam, in a typical scattering experiment one fires a
beam of particles against a fixed target or against another beam of particles. If the beams
and the targets involved are sufficiently dilute, then only two particles at a time (if any) can
effectively interact. The initial state of the relevant part of the system is thus a two-particle
state |φ1 φ2〉, which we take normalised to 1, 〈φ1 φ2|φ1 φ2〉 = 1. The final state, corresponding to
the information accessed through a detector, will be denoted by |Φf 〉, again with 〈Φf |Φf 〉 = 1.
The transition probability corresponding to the activation of our detector reads therefore22

Pi→f = |Sfi|2 = |〈Φf |S|φ1φ2〉|2 . (4.34)

Let us now go over to the momentum representation. For the initial state we have

|φ1 φ2〉 =
∫

d3k1

∫

d3k2 φ1(~k1)φ2(~k2)|~k1 ~k2〉 ,
∫

d3k |φi(~k)|2 = 1 . (4.35)

In a typical experiment, the wavefunctions φi(~k) describe wave packets peaked with some small
width ∆p around some values ~pi of the momenta, corresponding to the average (nominal)
momenta of the particles produced by the accelerator. For a fixed target one obviously has
~ptarget = 0. The uncertainty principle implies that these wave packets will be localised in space
with typical length scale of the order of ∆x ∼ 1/∆p.23 Detectors are usually devised to measure
precisely the momenta of the outgoing products, so the corresponding state will be strongly
peaked in momentum. We can therefore replace |Φf 〉 with a momentum eigenstate, provided
we take into account the appropriate normalisation. It is a simple exercise to show that for a

factorised state |Φf 〉 =
∏

n |φ
(n)
f 〉, with |φ(n)f 〉 =

∫

d3k φ
(n)(~k)|~k〉 and wavefunctions of the form

φ(n)(~k) =
3
∏

j=1

(

2π

∆
(n)
j

)
1
2

χ[

p
(n)
j −

∆
(n)
j
2

,p
(n)
j +

∆
(n)
j
2

](kj) , (4.36)

we obtain for the projector on |φ(n)f 〉 in the limit ∆
(n)
j → 0

|φ(n)f 〉〈φ(n)f | =





3
∏

j=1

(

∆
(n)
j

2π

)

∫ + 1
2

− 1
2

dκj

∫ + 1
2

− 1
2

dκ′j



 |~p (n) +
−−−−−→
(∆(n)κ)〉〈~p (n) +

−−−−−→
(∆(n)κ′)|

→





3
∏

j=1

(

∆
(n)
j

2π

)



 |~p (n)〉〈~p (n)| = d3p(n)

(2π)3
|~p (n)〉〈~p (n)| ,

(4.37)

where (∆(n)κ)j = ∆
(n)
j κj , and in the last step we made ∆

(n)
j infinitesimal. Therefore

|Φf 〉〈Φf | →
[

∏

n

d3p(n)

(2π)3

]

(

⊗n|~p (n)〉〈~p (n)|
)

= dpf |~pf 〉〈~pf | , (4.38)

22At the present stage we have to assume that also in the relativistic case there esists a unitary operator S,
whose matrix elements 〈Φf |S|φ1φ2〉 determine the scattering amplitude for the transition between the given initial
and final states.

23This need not be a large scale, since putting back factors of ~ one has ∆x ∼ ~/∆p.
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beam 1 beam 2

Figure 6: Schematic representation of the collision of two beams, showing the relative transverse
displacement of wave packets.

where ~pf denotes collectively the momenta of all the particles in the final state, and

dpf ≡
∏

n

d3pn
(2π)3

, |~pf 〉 ≡
(

⊗n|~p (n)〉〈~p (n)|
)

, (4.39)

with products running over the particles in the final state. Finally, denoting with 〈~pf |S|~k1 ~k2〉
the S operator in the momentum representation, we can write for the infinitesimal transition
probability dPi→f

dPi→f = dpf

∫

d3k1

∫

d3k2

∫

d3k
′
1

∫

d3k
′
2 φ1(

~k1)φ2(~k2)φ1(~k
′
1)

∗φ2(~k
′
2)

∗

× 〈~pf |S|~k1 ~k2〉〈~pf |S|~k ′
1
~k ′
2〉∗ .

(4.40)

In principle, in order to compute any scattering amplitude it would now suffice to compute
the matrix elements 〈~pf |S|~k1 ~k2〉.24 Unfortunately, the state of the system cannot be known

with infinite precision, i.e., φi(~k) are not known exactly: accelerators produce wave packets
with reasonably well known average momenta and positions, but the details of the wave packets
are unknown, and moreover fluctuate from packet to packet. The calculation of Eq. (4.40) is
therefore out of reach. In any case, however, Eq. (4.40) does not really describe the probability
that we can measure in an experiment, for we should actually average over the details of the
wave packets. This seems to complicate things to a hopeless level, but in fact simplifies them
quite a lot.

Among the properties of the wave packets, the one which is expected to affect the most the
way the process develops is how they are displaced in the direction transverse to the beam veloc-
ity (their displacement along the beam is irrelevant), while their precise size and shape should
not be as important. Let us therefore study in detail what are the consequences of averaging
over the transverse displacement, which we denote by the vector ~bi. For this purpose we make

explicit the dependence of the wave packets on ~bi, replacing φi(~ki) → φbii (
~ki) = e−i

~ki·~biφi(~ki).

24Although the terminology “matrix elements” is common, strictly speaking, and as we said above, this notation
represents the S operator in the momentum representation, and not the matrix element of S corresponding to
the given momentum (improper) eigenstate. If you do not appreciate the difference, then forgetting about this
footnote will do you no harm - for the time being.
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Denoting the distribution of the packets in the transverse plane as ni(~bi) we have for the relevant
probability

dPi→f = dpf

∫

d2b1 n1(~b1)

∫

d2b2 n2(~b2)

∫

d3k1

∫

d3k2

∫

d3k
′
1

∫

d3k
′
2

× φb11 (~k1)φ
b2
2 (~k2)φ

b1
1 (~k ′

1)
∗φb22 (~k ′

2)
∗〈~pf |S|~k1 ~k2〉〈~pf |S|~k ′

1
~k ′
2〉∗ .

(4.41)

Exploiting translation invariance (and the fact that |~pf 〉 is a momentum eigenstate) we can also

write (~b = ~b1 −~b2)

dPi→f = dpf

∫

d2b2 n2(~b2)

∫

d2b n1(~b+~b2)

∫

d3k1

∫

d3k2

∫

d3k
′
1

∫

d3k
′
2

× φb1(
~k1)φ2(~k2)φ

b
1(
~k ′
1)

∗φ2(~k
′
2)

∗〈~pf |S|~k1 ~k2〉〈~pf |S|~k ′
1
~k ′
2〉∗ .

(4.42)

Particles in the beam and in the target are usually distributed uniformly within some area A,
where therefore ni =

Ni

A
. Furthermore, since the wave packets are spatially localised, there will

be no overlap between φb1 and φ2 when |~b| is much larger than the interaction range and than the
packet size, and the transverse size of the beam is typically much larger than this. This means
that we can extend the integration over ~b to the whole transverse plane without appreciably
changing the result. This yields at once

dPi→f = dpf
N1N2

A

∫

d2b

∫

d3k1

∫

d3k2

∫

d3k
′
1

∫

d3k
′
2 e

−i(~k1−~k ′
1)·
~b

× φ1(~k1)φ2(~k2)φ1(~k
′
1)

∗φ2(~k
′
2)

∗〈~pf |S|~k1 ~k2〉〈~pf |S|~k ′
1
~k ′
2〉∗

= dpf
N1N2

A

∫

d3k1

∫

d3k2

∫

d3k
′
1

∫

d3k
′
2 (2π)

2δ
(2)
⊥ (~k1 − ~k ′

1)

× φ1(~k1)φ2(~k2)φ1(~k
′
1)

∗φ2(~k
′
2)

∗〈~pf |S|~k1 ~k2〉〈~pf |S|~k ′
1
~k ′
2〉∗ .

(4.43)

We now restrict our attention to (physically accessible) non-forward processes, i.e., to |~pf 〉 6=
|~k1 ~k2〉. For our purposes it is convenient to set S = 1 + R: since S = 1 in the absence of
interactions, the first term corresponds to the amplitude for no scattering, while R accounts
for the consequences of the interactions, and thus gives the amplitude for the particles being
actually scattered. Clearly, for non-forward processes S = R. Recall now that S commutes with
the Hamiltonian and with the total momentum, and therefore so does R. We account for this
fact by writing

〈~pf |R|~k1 ~k2〉 = i(2π)4δ(Ef − E)δ(3)(~Pf − ~K)M(~k1,~k2 → ~pf ) . (4.44)

where Ef and ~Pf are the final energy and total momentum, ~K = ~k1 + ~k2 and E =
~k 2
1

2m1
+

~k 2
2

2m2
,

and M(~k1,~k2 → ~pf ), is the “reduced” matrix element, which is expected to be some reasonable
function, and to not contain any other delta function. The factor of i is chosen for future
convenience. Taking this into account, we see that in Eq. (4.43) we have the product of delta
functions

(2π)2δ
(2)
⊥ (~k1 − ~k ′

1)(2π)
4δ(Ef − E)δ(3)(~Pf − ~K)(2π)4δ(Ef − E′)δ(3)(~Pf − ~K ′)

= (2π)2δ
(2)
⊥ (~k1 − ~k ′

1)(2π)
2δ

(2)
⊥ (~k2 − ~k ′

2)2πδ(E − E′)2πδ‖( ~K − ~K ′)

× (2π)4δ(Ef − E+E′

2 )δ(3)(~Pf − ~K+ ~K ′

2 ) .

(4.45)
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Moreover,

E − E′ =
~K 2

2M
−
~K ′ 2

2M
+
~k 2

2m
−
~k ′2

2m
, (4.46)

where ~k = m2
~k1−m1

~k2
m1m2

is the relative momentum (and similarly for ~k ′), M the total mass and

m the reduced mass. The other delta functions impose that ~K = ~K ′, and similarly for the
transverse part of the relative momentum, so only the longitudinal reduced part remains. We
then have to consider

δ

(

k 2
‖

2m
−
k ′ 2
‖

2m

)

=
m

k‖

[

δ
(

k‖ − k ′
‖

)

+ δ
(

k‖ + k ′
‖

)]

. (4.47)

We now recall that the wave functions are peaked around the average momenta of the particles.
We can therefore drop the second term in Eq. (4.47), and get finally

Eq. (4.45) → (2π)3δ(3)(~k1 − ~k ′
1)(2π)

3δ(3)(~k2 − ~k ′
2)(2π)

4δ(Ef − E+E′

2 )δ(3)(~Pf − ~K+ ~K ′

2 )

=
m

k‖
(2π)3δ(3)(~k1 − ~k ′

1)(2π)
3δ(3)(~k2 − ~k ′

2)(2π)
4δ(Ef − E)δ(3)(~Pf − ~K) .

(4.48)

We can now carry out trivially the integration over the primed variables, and recalling that

dPi→f = dσi→f
N1N2

A
(4.49)

we obtain

dσi→f = dpf

∫

d3k1

∫

d3k2 (2π)
4δ(Ef − E)δ(3)(~Pf − ~K)

× |φ1(~k1)|2|φ2(~k2)|2
m

k‖
|M(~k1,~k2 → ~pf )|2 .

(4.50)

The expression for dσi→f has simplified a lot, but we still need the details of the wave packets.
However, recalling again that the wave functions are peaked around ~p1,2, we can approximate

~K ≃ ~Pi = ~p1 + ~p2 and E ≃ ~p 2
1

2m1
+

~p 2
2

2m2
= Ei, and similarly k‖ ≃ pi‖ for the relative momentum,

where ~p = m2~p1−m1~p2
m1m2

. Moreover, if the matrix element near ~p1,2 varies slowly (on the scale set
by the width of the packets), we can take it out of the integral and obtain

dσi→f = dΦ(f) m

pi
|M(~p1, ~p2 → ~pf )|2

∫

d3k1 |φ1(~k1)|2
∫

d3k2 |φ2(~k2)|2 , (4.51)

where we have used pi‖ = pi ≡ |~pi|, and we have defined the phase space element

dΦ(f) =
3
∏

j=1

d3pj
(2π)3

(2π)4δ(Ef − Ei)δ
(3)(~Pf − ~Pi) . (4.52)

The integration is now trivial and we finally get

dσi→f

dΦ(f)
=
m

pi
|M(~p1, ~p2 → ~pf )|2 . (4.53)

We thus see that if the wave packets are sufficiently peaked, their details actually drop out of the
calculation, and averaging over shape and size becomes trivial. By sufficiently peaked we mean
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that ∆p is much smaller than the scale over which the matrix element varies appreciably. Going
over to coordinate space and using the uncertainty principle, we therefore need that the size ∆x
be larger than the length scale over which the interaction changes appreciably; for short-range
interactions this is usually the case.

Spin The are only little modifications required in the case of particles with spin being involved
in the scattering process. For incoming particles in a definite spin state (i.e., with definite com-
ponent of the spin in some direction) the momentum wavefunction spinor has the factorised form
φ1,2(~k)χ1,2 s3 1,2 . If we measure the spin of the final products of the process, the corresponding
state contains the collective spinor ξf s3 f

, where s3 f denotes the third component of the spin of
the final particles. The relevant transition probability reads

dPi→f = dpf

∫

d2b1 n1(~b1)

∫

d2b2 n2(~b2)

∫

d3k1

∫

d3k2

∫

d3k
′
1

∫

d3k
′
2

× φb11 (~k1)φ
b2
2 (~k2)φ

b1
1 (~k ′

1)
∗φb22 (~k ′

2)
∗χ1 s3 1χ2 s3 2χ

∗
1 s′3 1

χ∗
2 s′3 2

ξ∗f s3 f
ξf s′3 f

× 〈~pf s3 f |S|~k1 s3 1 ~k2 s3 2〉〈~pf s′3 f |S|~k ′
1 s

′
3 1
~k ′
2 s

′
3 2〉∗ .

(4.54)

Exactly the same line of reasoning allows to simplify the expression above in the case of peaked
wave packets, and denoting the relevant S matrix elements as

〈~pf s3 f |S − 1|~p1 s3 1~p2 s3 2〉 = 〈~pf s3 f |R|~p1 s3 1~p2 s3 2〉
= i(2π)4δ(Ef − Ei)δ

(3)(~Pf − ~Pi)M(~p1, s3 1, ~p2, s3 2 → ~pf , s3 f ) ,
(4.55)

we find in this case that

dσi→f

dΦ(f)
=
m

pi

∣

∣

∣

∣

∑

s3 1,s3 2,s3 f

χ1 s3 1χ2 s3 2ξ
∗
f s′3 f

M(~p1, s3 1, ~p2, s3 2 → ~pf , s3 f )

∣

∣

∣

∣

2

. (4.56)

This expression can be written more compactly using the formalism of the density matrix. Let
ξi denote collectively the spin state of the initial set of particles, and let ξs3f be the spin state

corresponding to final particles with third components of the spin s3f . Let furthermore use
matrix notation for M in spin space. Eq. (4.56) then becomes

dσi→f

dΦ(f)
=
m

pi
|ξ†s3fMξi|2 = tr spin ξs3f ⊗ ξ†s3f

Mξi ⊗ ξ†iM
† . (4.57)

For an incoherent superposition of spin states, the initial state is described by a density matrix
ρi =

∑

nw
i
nξn ⊗ ξ†n. One then has

dσi→f

dΦ(f)
=
m

pi
tr spin ξs3f ⊗ ξ†s3f

MρiM
† =

m

pi
tr spin ξs3f ⊗ ξ†s3f

ρf , (4.58)

where ρf ≡MρiM
†. It often happens in experiments that the spins of the particles in the final

state are not observed. In this case one has to sum the expression above over such spins, and
since

∑

s3 f
ξs3f ⊗ ξ†s3f = 1, one finds

dσi→f

dΦ(f)

∣

∣

∣

∣

sum over final spins

=
m

pi
tr spin ρf . (4.59)
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In the case of unpolarised beams, the initial density matrix is proportional to the identity,
ρi =

1
(2s1+1)(2s2+1)1, and the cross section further simplifies to

dσi→f

dΦ(f)

∣

∣

∣

∣ sum over final spins

unpolarised beams

=
1

(2s1 + 1)(2s2 + 1)

m

pi
tr spinMM † . (4.60)

Relativistic case Eq. (4.53), together with the definition of phase space in Eq. (4.52), provide
the desired relation between theoretically and experimentally accessible quantities in the non-
relativistic case. The generalisation to the relativistic case is quite straightforward, and for this
reason we discuss it now although we will not use it until much later. The first difference with
the non-relativistic case is that in the relativistic theory, momentum eigenstates are usually
chosen to satisfy the relativistic invariant normalisation

(relativistic normalisation) 〈~p ′|~p 〉 = (2π)32p0δ(3)(~p ′ − ~p ) . (4.61)

With this choice one has to modify the completeness relations, substituting

d3p −→
d3p

(2π)32p0
=
d3p

2p0
. (4.62)

Finally, in Eq. (4.46) and (4.47) we have to use the relativistic expression for the energy, which
leads to

E − E′ =

√

~k 2
1 +m2

1 +

√

~k 2
2 +m2

2 −
√

~k ′2
1 +m2

1 −
√

~k ′2
2 +m2

2 . (4.63)

The energy and longitudinal-momentum delta functions can be recast as

δ(E − E′)δ(K‖ −K ′
‖) =

∣

∣

∣

∣

∣

det
∂(E′,K ′

‖)

∂(k′1‖, k
′
2‖)

∣

∣

∣

∣

∣

−1

δ(k′1‖ − k̄1‖)δ(k
′
2‖ − k̄2‖) , (4.64)

where k̄1,2‖ denote the solutions of the system of equations E = E′, K‖ = K ′
‖. The delta

functions of Eq. (4.45) force Kµ = K ′
µ = Pfµ, and so in the center-of-mass frame (~Pf = 0)

Pf = k1 + k2 ⇒ (Pf − k1)
2 = k22 = m2

2 ⇒ P 2
f +m2

1 − 2EfE1 = m2
2 , (4.65)

and since the same relation holds for E′
1,

E1 = E′
1 =

E2
f +m2

1 −m2
2

2Ef
. (4.66)

Since the transverse component of primed and unprimed momenta are equal, we find that
|k1‖| = |k′1‖| and |k2‖| = |k′2‖| in the center-of-mass frame, and since the wave functions are

peaked, only the case k1‖ = k′1‖, k2‖ = k′2‖ is relevant. We thus have k1,2µ = k′1,2µ in the CM
frame, and since the equation is covariant, this actually holds in any frame. After computing
the Jacobian we can therefore replace Eq. (4.64) with

δ(E − E′)δ(K‖ −K ′
‖) −→

∣

∣

∣

∣

∣

k1‖

E1
−
k2‖

E2

∣

∣

∣

∣

∣

−1

δ(k′1‖ − k1‖)δ(k
′
2‖ − k2‖) , (4.67)
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and thus obtain after carrying out the trivial integration over primed momenta

dσi→f = dpf

∫

d3k1

∫

d3k2 (2π)
4δ(4)(Pf −K) |4(k1‖E2 − k2‖E1)|−1

× |φ1(~k1)|2|φ2(~k2)|2|M(~k1,~k2 → ~pf )|2 .
(4.68)

The rest of the calculation proceeds as before and yields

dσi→f

dΦ
(f)
rel

=
1

4I
|M(~p1, ~p2 → ~pf )|2 , (4.69)

where dΦ
(f)
rel is the element of relativistic phase space,

dΦ
(f)
rel =

3
∏

j=1

d3pj
(2π)32p0j

(2π)4δ(4)(Pf − Pi) , (4.70)

and
I = E1E2v = |p1‖E2 − p2‖E1| = |ǫ23αβpα1 pβ2 | , (4.71)

where v is called the relative velocity, and it is indeed the velocity of one of the particles in the
rest frame of the other [see Eqs. (2.14) and (2.15)]. The inclusion of spin is straightforward. By

construction, dΦ
(f)
rel and the matrix element are relativistically invariant (since S commutes with

boosts). To make Eq. (4.69) manifestly invariant we notice that in the lab frame, since E2 = m2

and ~p2 = 0, we have

(P1 · P2)
2 − P 2

1P
2
2 = (E2

1 −m2
1)m

2
2 = ~p 2

1m
2
2 = I2 , (4.72)

see Eq. (2.15).

Two-body phase space To conclude this section, we now derive the explicit expression for
the phase space element dΦ(2) for a two-body state. In the non-relativistic case,

dΦ(2) = d3p1d3p2(2π)
4δ(

~p 2
1

2m1
+

~p 2
2

2m2
− Ei)δ

(3)(~p1 + ~p2 − ~Pi)

= d3Pfd3pf (2π)
4δ(

~p 2
f

2mf
− ~p 2

i

2mi
)δ(3)(~Pf − ~Pi)

= d3pf
2πmf

pf
δ(pf − pi

√

mf

mi
) =

dΩ

(2π)2
mfpi

√

mf

mi
,

(4.73)

with dΩ the solid angle element dΩ = d cos θdφ. For two-body→ two-body processes we thus
have

dσ2→2

dΩ
=
mimf

(2π)2
pf
pi

|M(~p1, ~p2 → ~p ′
1, ~p

′
2)|2 , pf =

√

mf

mi
pi . (4.74)

In the relativistic case

dΦ
(2)
rel =

d3p1
2p01

d3p2
2p02

(2π)4δ(4)(Pf − Pi) , (4.75)

and we can perform the calculation in any reference frame thanks to Lorentz invariance. Things
are especially simple in the CM frame, where ~p1 + ~p2 = 0. Integrating out ~p2 and setting
~pCM = ~p1 and pCM = |~pCM| , we find

dΦ
(2)
rel = d3pCM

1

2p012p
0
2

2πδ(Ef − Ei) =
dΩCM

(2π)2
p2CM

2p012p
0
2

∣

∣

∣

∣

∂(p01 + p02)

∂pCM

∣

∣

∣

∣

−1

=
dΩCM

16π2
pCM

ECM
. (4.76)
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For two-body→ two-body processes we thus have (recall that I = ECMpCM)

dσ2→2

dΩ
=

1

64π2E2
CM

p ′
CM

pCM
|M(~p1, ~p2 → ~p ′

1, ~p
′
2)|2 . (4.77)

4.7 The optical theorem

In this subsection we discuss an important consequence of the unitarity of S. As we did in
the previous subsection, we show explicitly in S the “no scattering” term, i.e., the identity, by
writing S = 1 + R. The matrix element of S for forward scattering, i.e., for identical initial
and final state, will receive contributions both from the case of no scattering, and from the
case in which the particles actually interact but end up being in the same state. The two cases
are experimentally indistinguishable, but nevertheless the forward matrix element of R can
be obtained through extrapolation from the near-forward case. In the previous subsection we
also conveniently used the momentum representation, and isolated an energy-conserving delta
function and total-momentum-conserving delta functions from R, writing

Sfi = δfi + i(2π)4δ(Ef − Ei)δ
(3)(~Pf − ~Pi)Mfi , (4.78)

where the numerical factor is chosen for convenience, and Ei,f are the total energies in the
initial and final state. Here we are using the shorthand notations δfi = 〈{~pf}|{~pi}〉 and Sfi =
〈{~pf}|S|{~pi}〉, with {~pi,f} sets of momenta corresponding to the initial and final particles, and
similarlyMfi =M({~pi} → {~pf}). From S†S = 1, and inserting a complete set of states, we find

∑

n

S∗
nfSni =

∑

n

[δfn − i(2π)4δ(Ef − En)δ
(3)(~Pf − ~Pn)M

∗
nf ]

× [δni + i(2π)4δ(En − Ei)δ
(3)(~Pn − ~Pi)Mni] = δfi ,

(4.79)

and through simple manipulations

(2π)4δ(Ef − Ei)δ
(3)(~Pf − ~Pi)

×
{

i(Mfi −M∗
if ) +

∑

n

(2π)4δ(En − Ei)δ
(3)(~Pn − ~Pi)M

∗
nfMni

}

= 0 .
(4.80)

Focusing now on the term in braces and specialising to forward scattering f = i we obtain

2 ImMii =
∑

n

(2π)4δ(En − Ei)δ
(3)(~Pn − ~Pi)|Mni|2 . (4.81)

The right-hand side is easily recognised to be proportional to the sum of the differential cross
sections dσ

dΦ(n) over the accessible final states n. More precisely, we find in the non-relativistic
case

ImMii =
pi
2m

σi , σi =
2m

pi
ImMii . (4.82)

In the relativistic case we have instead25

ImMii = 2Iσi = 2ECMpCMσi , σi =
1

2ECMpCM
ImMii . (4.83)

25The different mass dimension of the prefactor reflects the different dimensions of the matrix element when
the non-relativistic or the relativistic normalisation is used for the momentum eigenstates.
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The equations Eq. (4.81), (4.82) and (4.83) express the optical theorem.
An obvious consequence of the optical theorem is that, since σ ≥ 0, the imaginary part of

the forward amplitude Mii must be positive.

4.8 Symmetries of the S-matrix

We now discuss in some details the consequences of symmetry for the S-matrix.

Rotations For a spinless particle, the effect of a proper rotation R ∈ SO(3) on a momentum
eigenstate is U(R)|~p 〉 = |R~p 〉, where U(R) is the unitary operator representing R on the Hilbert

space H. If R is a rotation of angle θ around the direction θ̂, then U(R) = ei
~θ· ~J with ~J the total

angular momentum operator and ~θ = θθ̂.26 Denoting collectively with ~pi,f the momenta in the
initial and final states, for a system of spinless particles

〈~pf |S|~pi〉 = 〈~pf |U(R)†SU(R)|~pi〉 = 〈R~pf |S|R~pi〉 , (4.84)

so that 〈~pf |S|~pi〉 must be a scalar function of the scalar combinations of the initial and final
momenta. To make further progress, notice that S acts trivially on the CM part of the state,
so that only the relative momenta have to be considered. For two-particle elastic scattering
one is thus left only with the initial and final relative momenta, which moreover have the same
magnitude due to conservation of energy. Rotation invariance implies then that the S-matrix
element depends only on the magnitude p and on the relative angle θ ∈ [0, π] between the initial
and final momenta. Since exchanging the initial and final relative momenta does not change
neither p nor cos θ, one has that in this case Sfi = 〈~pf |S|~pi〉 = 〈~pi|S|~pf 〉 = Sif . This can be seen
also more directly by noticing that in the center of mass one can transform the sets ~pi and ~pf
into each other by means of a rotation.

The situation is more complicated in the case of particles with spin. In this case the effect
of a rotation on a momentum eigenstate is

U(R)|~p s3〉 = D
(s)
s′3 s3

(R)|R~p s′3〉 (4.85)

where D
(s)
s′3 s3

(R) is a unitary matrix, more precisely the representative of R in the spin-s repre-

sentation of the rotation group. In general it has a complicated expression, but for a rotation
of ϕ around the 3̂ direction one finds simply

U(R)|~p s3〉 = eiϕs3 |R~p s3〉 . (4.86)

The most important consequence of rotation invariance is that since the S-matrix commutes
with energy and angular momentum, it will be diagonal in a basis where the energy and the
angular momentum are diagonal. Considering for generality the multichannel case, we have27

〈E′ j′ j′z , α
′|S|E j jz , α〉 = δj′jδj′zjzN(E)δ(E′ − E)Sjα′α(E) (4.87)

26We are using here the so-called active point of view on symmetry transformations: here R~p is the result of an
anticlockwise rotation of angle θ around θ̂ applied on the vector ~p. In the passive point of view it is the reference
frame to be rotated, and one can be easily convinced that Rpassive(θ) = Ractive(θ)

−1 = Ractive(−θ), so that the

effect of the transformation on the states is implemented instead by U(R)passive = e−i~θ·~J .
27For notational simplicity we drop the subscript α′, α from the S operator.
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where N(E) = (2π)3

mp
has been factored out for convenience. As the notation indicates, Sjα′α(E) is

independent of jz: this is a consequence of the Wigner-Eckart theorem, and can also be verified
explicitly using the fact that [ ~J, S] = 0. As a consequence of unitarity, the matrix Sj(E) with
entries Sjα′α(E) is a unitary matrix:

δj′jδj′zjzN(E)δ(E′ − E)δα′α =
∑

j̄ j̄z ᾱ

∫

dĒ

N(Ē)
〈E′ j′ j′z , α

′|S†|Ē j̄ j̄z , ᾱ〉〈Ē j̄ j̄z , ᾱ|S|E j jz , α〉

=
∑

j̄ j̄z

∫

dĒ

N(Ē)
δj′j̄δj′z j̄zN(E′)δ(E′ − Ē)δj̄jδj̄zjzN(E)δ(E′ − Ē)Sj

′

ᾱα′(E
′)∗Sjᾱα(E)

= δj′jδj′zjzN(E)[δ(E′ − E)Sj(E)†Sj(E)]α′α .
(4.88)

Parity The effect of parity, P , is to change momenta into ~p → −~p, and to leave the spin
unchanged. Then

P |~p s3〉 = η| − ~p s3〉 . (4.89)

The phase is spin-independent, since [P, ~S] = 0.28 One then has

〈~pf s3 f |S|~pi s3 i〉 = 〈~pf s3 f |P †SP |~pi s3 i〉 = ηiη
∗
f 〈−~pf s3 f |S| − ~pi s3 i〉 . (4.90)

Suppose we are interested in the average of some observable over the final state |f〉. An observ-
able will be in general of the form O =

∑

mOm|m〉〈m|, where O are the eigenvalues of O and
|m〉 are the corresponding eigenstates. The average 〈O〉f we are interested in is then given by

〈O〉f =

∑

mOmPi→m
∑

m Pi→m ,
, (4.91)

where Pi→m is the transition probability from the initial state i to |m〉. If the initial state is
an incoherent superposition of states |n〉 with weights wn, then it is described by the density
matrix ρi =

∑

nwn|n〉〈n|, and

Pi→m =
∑

n

wn|〈m|S|n〉|2 = tr |m〉〈m|SρiS† = tr |m〉〈m|ρf , (4.92)

where ρf ≡ SρiS
†. We then find

〈O〉f =
∑

m

Om

∑

n

wn〈m|S|n〉〈n|S†|m〉 =
∑

m

∑

n

wn〈m|OS|n〉〈n|S†|m〉

=
∑

m

〈m|OS
(

∑

n

wn|n〉〈n|
)

S†|m〉 = trOSρiS† = trOρf .
(4.93)

From this result we can costruct other kind of averages. For example we might be interested in
averaging only over part of the possible momenta and spins. Denoting with Πf =

∑

m πm|m〉〈m|
with πm = 0, 1 the appropriate projector, the relevant average will read

〈〈O〉〉f =
trΠfOρf
trΠfρf

. (4.94)

28It is also p-independent since we are using momentum states for which |~p 〉 = e−i~q·~p|~0 〉, and P †~qP = −~q. In
the relativistic case the same holds, provided one uses the appropriate boost generator instead of the position
operator ~q.
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Notice that if the subspace corresponding to Πf is orthogonal to the subspace spanned by {|n〉},
then in Eq. (4.94) we can replace S with S − 1 in the explicit expression for ρf . In the limit
where the initial states are well-peaked wave packets in momentum space times some spin state,
and the weights wn correspond to a uniform beam of cross section A containing Nb particles,
times the weights for the different spin components, one can carry on the derivation of section
4.6 and obtain

trΠfρf =
∑

m

πmdΦ
(f)dσi→m

dΦ(f)
Φ∆tNt , (4.95)

where dσi→m

dΦ(f) is the one of Eq. (4.56). From Eq. (4.91)

〈〈O〉〉f =

∑

mOmπmdΦ
(f) dσi→m

dΦ(f) Φ∆tNt
∑

m πmdΦ
(f) dσi→m

dΦ(f) Φ∆tNt

=

∑

mOmπm
dσi→m

dΦ(f)
∑

m πm
dσi→m

dΦ(f)

, (4.96)

as it should be intuitively.29

Let us now consider a symmetry transformation U that leaves ρi invariant (it leaves S
invariant as well since it is a symmetry). Then

〈U †OU〉f = trU †OUρf = trOUρfU † = trOρf = 〈O〉f , (4.97)

since
UρfU

† = USρiS
†U † = ρf . (4.98)

The symmetry transformation we want to use is the composition of parity, P , and a rotation
Rπ of π around an axis orthogonal to the initial momentum ~pi (we work in the CM or in
the lab frame, where there is only one relevant direction for the initial momentum). Such a
transformation leaves ~pi invariant. If the cross section of the beams is symmetric under rotation
around the beam directions, which we take along 3̂, and made of wave packets which are similarly
symmetric under rotations around 3̂, then one sees that the momentum part of the initial density
matrix is invariant under U = RπP . In order to make the spin part invariant as well, we take
the initial beams to be unpolarised: in this case the spin density matrix is a multiple of the
identity, and so unaffected by rotations (it is not affected by parity at all).

Consider now the following observables,

O1 = |~pf 〉〈~pf |~sf · ~pi , O2 = |~pf 〉〈~pf |~sf · ~pf , O3 = |~pf 〉〈~pf |~sf · ~pi ∧ ~pf , (4.99)

where |~pf 〉〈~pf | selects the momentum of one of the final particles to be equal to ~pf , ~sf is the spin
operator for this particle, and ~pi is the momentum of one of the two initial particles involved
in the process. Let Rπ be the rotation of π around the axis determined by ~pi ∧ ~pf . Then for
U = U(Rπ)P we have that RπP~pi,f = ~pi,f , and so

U †O1U = |RπP~pf 〉〈RπP~pf |(RπP~sf ) · ~pi = |~pf 〉〈~pf |(−~sf · ~pi) = −O1 . (4.100)

Similarly,
U †O2U = −O2 . (4.101)

29We assumed here that [O,Πf ] = 0. If not, then in Eq. (4.94) one should replace ΠfO → ΠfOΠf in the
numerator, and in Eq. (4.96) one has to replace Om → Om ≡ 〈m|O|m〉.
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On the other hand,

U †O3U = |RπP~pf 〉〈RπP~pf |(RπP~sf ) · ~pi ∧ ~pf = |~pf 〉〈~pf |~sf · ~pi ∧ ~pf = O3 . (4.102)

From Eq. (4.97), we have therefore that for unpolarised beams 〈O1,2〉f = 0, while 〈O3〉f can be
nonzero: in other words, the polarisation of a particle in the final state can only be orthogonal
to the scattering plane, i.e., the one spanned by ~pi and ~pf (Adair’s argument).

Time reversal Time reversal is a particularly annoying symmetry, in that it is realised in the
Hilbert space by an antiunitary operator rather than a unitary one. An antiunitary operator A
is defined as follows. Recall that an antilinear operator is defined through the following relation,

A(α|ψ〉+ β|φ〉) = α∗A|ψ〉+ β∗|φ〉 . (4.103)

For an antilinear operator, the adjoint is defined via the relation

〈ψ|Aφ〉 = 〈A†ψ|φ〉∗ . (4.104)

An antiunitary operator W is a norm-preserving antilinear operator which is onto H. Norm-
preservation together with Eq. (4.104) implies that W satisfies the identity

〈Wψ|Wφ〉 = 〈ψ|φ〉∗ . (4.105)

This can be seen rewriting the scalar product 〈ψ|φ〉 as a linear combination of the norms of
appropriate vectors. In turn, Eq. (4.104) implies W †W = 1. Being onto, W satisfies also
WW † = 1.

The time reversal operator T is defined as the antilinear operator realising

T |~p s3〉 = ηs3 | − ~p − s3〉 , (4.106)

so that T †~pT = −~p and T †~sT = −~s. This time the phase ηs3 is spin dependent,30 and a simple
calculation shows that

T |~p s3〉 = C+
s3
TSs−s3− |~p s〉 = C+

s3
(−1)s−s3Ss−s3+ T |~p s〉 = ηsC

+
s3
(−1)s−s3Ss−s3+ | − ~p − s〉

= ηs(−1)s−s3
C+
s3

C−
−s3

| − ~p − s3〉 = ηs(−1)s−s3 | − ~p − s3〉 ,
(4.107)

where C±
s3

are real positive constants satisfying

C±
s3

2 = 〈s3|Ss−s3± Ss−s3∓ |s3〉 . (4.108)

Since a rotation Rπ = eiπs2 gives Rπ|s3〉 = ζ| − s3〉 for some phase factor ζ, then

C−
−s3

2 = 〈−s3|Ss−s3− Ss−s3+ | − s3〉 = 〈s3|R†
πS

s−s3
− Ss−s3+ Rπ|s3〉

= 〈s3|(−S+)s−s3(−S−)s−s3 |s3〉 = C+
s3

2 .
(4.109)

30It still is p-independent: since we are using momentum states for which T |~p s3〉 = Te−i~q·~p|~0 s3〉 =
e+i~q·~pT |~0 s3〉 = e+i~q·~pη0,s3 |~0 − s3〉, since T

†~qT = ~q. In the relativistic case one has to use the transformation
properties of the appropriate boost generator.
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In conclusion,
ηs3 = ηs(−1)s−s3 . (4.110)

The remaining phase factor ηs is physically irrelevant, and can be redefined away: setting
|~p s3〉 = ζ|~p s3 , new〉, then

T |~p s3 , new〉 = ζ∗ηs(−1)s−s3 |~p s3〉 = (ζ∗)2ηs(−1)s−s3 |~p s3 , new〉 , (4.111)

and we can choose (ζ∗)2ηs = 1 so that ηs disappears.
If we ask our Hamiltonian to be invariant under time reversal, then since T †U(t)T = U(−t)

and T †U0(t)T = U0(−t), one finds that

T †Ω±T = Ω∓ =⇒ T †ST = T †Ω†
−Ω+T = T †Ω†

+Ω− = S† . (4.112)

It follows that the matrix elements obey

〈T (~pf s3 f )|S|T (~pi s3 i)〉 = cs3 f ,s3 i
〈−~pf − s3 f |S| − ~pi − s3 i〉 = 〈~pf s3 f |T †ST |~pi s3 i〉∗

= 〈~pf s3 f |S†|~pi s3 i〉∗ = 〈~pi s3 i|S|~pf s3 f 〉 .
(4.113)

In compact form STf T i = Sif , or equivalently Sfi = ST i Tf . This is sometimes referred to as the
principle of detailed balance. Consider now a 2 → 2 scattering process. Since it is the absolute
value square of the matrix elements that enters the cross section, one has from Eq. (4.74)

dσfi
dΩ

=
mimf

(2π)2
pf
pi

|Mfi|2 =
mimf

(2π)2

(

pf
pi

)2 pi
pf

|MT i Tf |2 =
(

pf
pi

)2 dσT i Tf
dΩ

. (4.114)

If we sum over final spins and average over initial spins, then denoting with dσ̄
dΩ the corresponding

cross section and using Eq. (4.60) and Eq. (4.114) we find

(2si 1 + 1)(2si 2 + 1)
dσ̄fi
dΩ

= (2sf 1 + 1)(2sf 2 + 1)

(

pf
pi

)2 dσT i Tf
dΩ

, (4.115)

i.e., from the ratio of the cross sections of the direct (i → f) and inverse (Tf → Ti) processes
one obtains information on the spin of the particles involved:

(

pi
pf

)2 dσ̄fi
dΩ

dσTi Tf

dΩ

=
(2sf 1 + 1)(2sf 2 + 1)

(2si 1 + 1)(2si 2 + 1)
. (4.116)

This formula has been used to determine experimentally the spin of the pion: studying the
processes π+ d→ p p and its inverse p p→ π+ d, and knowing the spins of the proton and of the
deuteron, the spin of the pion can be determined via Eq. (4.116).

5 The time-independent formalism

The time-dependent formalism developed in the previous section, based on the temporal evo-
lution of physical states, has allowed a physically clear derivation of the S-matrix, the central
quantity in scattering theory. However, it has not provided us with a practical recipe for calcu-
lating the S-matrix elements. This is provided instead by the time-independent approach, which
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is based on the study of the positive-energy stationary solutions of the Schrödinger equation.
These solutions are not normalisable, and therefore they do not represent physical states. In
practice, however, they can be consistently treated in the same way as the momentum eigen-
functions, i.e., as a convenient basis for the representation of the physical (scattering) states.

As we will see, from a logical point of view the time-independent approach is not alternative
to the time-dependent one, but it represents its natural development. As is often the case, this
was not the way in which things developed historically.

5.1 In and out momentum states

The basis of the time-independent formalism is the construction of in and out states correspond-
ing to the momentum eigenstates. One might immediately object that this is an ill-advised
program. First of all, momentum eigenstates are not possible states of a physical system. Sec-
ondly, even if they were, they would yield in and out states that are stationary states of the full
interacting Hamiltonian (as it follows from the intertwining relations, and as we will see below),
and as such they could never develop into freely evolving states, since they do not develop at
all. These objections are actually correct, but they should not intimidate you: although our
derivation will be heuristic, we will be able to fully make sense of our results. Indeed, a rigorous
formulation of the problem is possible, which shows that the results that we will obtain have a
well-defined mathematical meaning: we will briefly comment on this point later. In any case,
one has to keep in mind that the in and out momentum eigenstates are not really states of the
system evolving asymptotically into (free) momentum eigenstates.

Consider as usual a system of two particles of masses m1 and m2, undergoing elastic scatter-
ing processes of the type ~p1+ ~p2 → ~p ′

1+ ~p
′
2, where the notation indicates explicitly the momenta

of the particles. We can describe the process using center-of-mass and relative coordinates
~P = (~p1 + ~p2)/M and ~p = (m2~p1 −m1~p2)/M , where M = m1 +m2, and m = m1m2/M will
denote the reduced mass of the system. As before, we assume that the system is in a factorised
state |~P 〉CM⊗|φ〉rel, and we ignore the trivial evolution of the CM part, focussing on the relative
part only and dropping all subscripts for clarity.

We now proceed with the derivation. Recall that [see Eq. (4.22) and Eq. (4.23)]

Ω+ = 1− i

∫ 0

−∞
dt eiHtV e−iH0t , Ω− = 1+ i

∫ +∞

0
dt eiHtV e−iH0t . (5.1)

Applying both sides of the equations on a state |φ〉, and expanding in the momentum basis, we
obtain

Ω±|φ〉 =
∫

d3p |~p 〉〈~p |φ〉+ i

∫ ∓∞

0
dt

∫

d3p e
iHtV e−iH0t|~p 〉〈~p |φ〉 . (5.2)

For |φ〉 with smooth and rapidly decreasing eigenfunction φ(~x) ∈ S , the integral over t is nicely
convergent and does not change if we add a damping factor, i.e., for well-behaved functions f(t)

∫

dt f(t) = lim
ǫ→0

∫

dt e−ǫ|t|f(t) . (5.3)

Exchanging now the order of integration we find

Ω±|φ〉 =
∫

d3p

[

1+ lim
ǫ→0

i

∫ ∓∞

0
dt eiHtV e−iEpte−ǫ|t|

]

|~p 〉〈~p |φ〉 , (5.4)
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with Ep =
~p 2

2m . We now set

|~p±〉 ≡ |~p 〉+ lim
ǫ→0

i

∫ ∓∞

0
dt eiHtV e−iEpte−i(±iǫ)t|~p 〉 ≡ Ω±(Ep)|~p 〉

= |~p 〉+ lim
ǫ→0

1

Ep −H ± iǫ
V |~p 〉 = lim

ǫ→0
±iǫ 1

Ep −H ± iǫ
|~p 〉 ,

(5.5)

where we have defined the operators Ω±(Ep), which depend explicitly on energy, and we have
carried out the integration explicitly. Notice that Ω±(Ep) involves operators that can be mean-
ingfully applied on the momentum eigenfunctions. We see from Eq. (5.4) that

Ω±|φ〉 =
∫

d3pΩ±(Ep)|~p 〉〈~p |φ〉 =
∫

d3p |~p±〉〈~p |φ〉 . (5.6)

The states |~p±〉 are the in and out states corresponding to momentum eigenstates that we were
looking for. For those who were still wondering about it, the signs of the ±iǫ term in Eq. (5.5) is
the origin of the sign convention for Ω±. One mistery solved, now to explaining why neighbours
like the sound of power drills in the morning.

We now discuss the properties of the states |~p±〉. First of all we show that they are normalised
like momentum eigenstates. Indeed, since Ω± are isometric, one has

0 = 〈φ1|φ2〉 − 〈φ1± |φ2±〉 =
∫

d3p1

∫

d3p2 φ
∗
1(~p1)φ2(~p2) [〈~p1|~p2〉 − 〈~p1± |~p2±〉] , (5.7)

for any φ1,2(~p), and so

〈~p1± |~p2±〉 = 〈~p1|~p2〉 = (2π)3δ(3)(~p1 − ~p2) . (5.8)

This implies the formal relation

Ω±(Ep′)
†Ω±(Ep) = (2π)3δ(3)(~p ′ − ~p) , (5.9)

which is valid when sandwiched between the momentum states |~p ′〉 and |~p 〉. A similar reasoning
leads to the following completeness relation for the states |~p±〉 in the scattering subspace R:

1 =

∫

d3p |~p 〉〈~p | =⇒ Ω±Ω
†
± = ΠR =

∫

d3pΩ±(Ep)|~p 〉〈~p |Ω±(Ep)
† =

∫

d3p |~p±〉〈~p ±| . (5.10)

We next show that the states |~p±〉 are stationary, i.e., eigenstates of the time-independent
Schrödinger equation, with eigenvalue Ep, i.e., with the same energy as their asymptotes:31 for
this reason, we will refer to them as the in and out stationary states. The shortest proof would be
based on the intertwining relations and goes H|~p±〉 = HΩ±(Ep)|~p〉 = Ω±(Ep)H0|~p〉 = Ep|~p±〉.
However it is not clear if these relations hold, so it is better to proceed as above, applying the
intertwining relation on a proper vector and expanding in the momentum basis:

H|φ±〉 =
∫

d3p φ(~p)H|~p±〉 = Ω±H0|φ〉 = Ω±

∫

d3p φ(~p)Ep|~p〉 =
∫

d3p φ(~p)Ep|~p±〉 . (5.11)

31Notice that “energy” corresponds to different Hamiltonians in the two cases.
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This shows that the intertwining relations indeed hold also for Ω±(Ep), HΩ±(Ep) = Ω±(Ep)H0.
A more direct proof is obtained from Eq. (5.5):

(H − Ep)|~p±〉 = lim
ǫ→0

±iǫ
(

−1± iǫ
1

Ep −H ± iǫ

)

|~p 〉 = (lim
ǫ→0

±iǫ) (|~p±〉 − |~p 〉) = 0 . (5.12)

Now the announced comment about rigour. The rigorous way to proceed would have been
backwards: one should have shown that the states |~p±〉, as defined in the first line of Eq. (5.5),
exist, satisfy the time-independent Schrödinger equation with energy Ep, and are properly nor-
malised; that they can be used to expand any scattering (in or out) state |ψ±〉 = Ω±|φ〉, in the
same sense in which a function in L2 is represented by its Fourier transform; and finally that
the coefficients of the expansion of |ψ±〉 in the basis |~p±〉 are the same as those of |φ〉 in the
basis |~p〉. All these things can actually be proved, and this justifies a posteriori our heuristic
derivation (see [Reed & Simon], vol. 3, chapter XI).

The important point to retain from the discussion above is that the in and out momentum
states make physical sense when (and only when) smeared by some momentum wavefunction
φ(~p ): in that case they describe the scattering state of the system that evolves asymptotically
in the wave packets of momentum eigenstates described by the same φ(~p ). Conversely, given
the knowledge of the momentum eigenfunctions of the initial and final states of a scattering
process, we can readily construct the relevant in and out states in terms of |~p±〉. Setting
φi,f (~p ) = 〈~p |φi,f 〉 we can thus write for the S-matrix element32

Sfi = 〈φf |S|φi〉 =
∫

d3p

∫

d3p
′ φi(~p )φf (~p

′)∗〈~p ′|S|~p 〉

=

∫

d3p

∫

d3p
′ φi(~p )φf (~p

′)∗〈~p ′|Ω†
−(Ep′)Ω+(Ep)|~p 〉

=

∫

d3p

∫

d3p
′ φi(~p )φf (~p

′)∗〈~p ′− |~p+〉 .

(5.13)

We conclude that formally one can write the suggestive relation

〈~p ′|S|~p 〉 = 〈~p ′− |~p+〉 . (5.14)

Knowledge of the in and out stationary states thus guarantees the full knowledge of the S-matrix.
In the remainder of this section we will see how one can actually compute the right-hand side of
Eq. (5.14). In doing this one has to keep in mind that this quantity is not really a scalar product
in our Hilbert space. Nevertheless, to obtain physical quantities this object is integrated over
with suitable wave functions, and remembering this one can proceed with formal manipulations.
In this sense, one has from Eq. (5.9)

〈~p ′|S|~p 〉 = 〈~p ′|1+[Ω−(Ep′)−Ω+(Ep′)]
†Ω+(Ep)|~p 〉 = 〈~p ′|1+[Ω−(Ep′)−Ω+(Ep′)]

†|~p+〉 . (5.15)

5.2 Green’s operators, T -operator, and Lippmann-Schwinger equations

The study of Eq. (5.14) is made simpler by the introduction of certain energy-dependent oper-
ators. We begin by writing Eq. (5.5) as follows,

|~p±〉 = Ω±(Ep)|~p 〉 = |~p 〉+ lim
ǫ→0

G(Ep ± iǫ)V |~p 〉 , (5.16)

32Remember that we are considering here only the relative part of the S-matrix: a delta function conserving
the total momentum of the system should multiply the expression below.
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where G(z) is the resolvent or Green’s operator,

G(z) ≡ (z −H)−1 , (5.17)

defined in general for complex z ∈ C. For a generic operator O, the inverse (z − O)−1 exists
for those z not in the operator’s spectrum. Since H is self-adjoint, its spectrum is real, and so
G(z) is certainly defined for all z such that Im z 6= 0. In fact, in this case it is also analytic in
z. The equation Eq. (5.16) is known as the Low equation, but it is of limited practical utility
due to the appearance of the exact Green’s operator G(z), which is as difficult to compute as
the spectrum of the full Hamiltonian.

In full analogy with Eq. (5.17), one can define the free Green’s operator G0(z),

G0(z) ≡ (z −H0)
−1 . (5.18)

Since H = H0 + V , one shows immediately that G−1
0 − G−1 = V , where we have dropped the

dependence on z. Multiplying with G on the left and with G0 on the right, and viceversa, one
finds (Hilbert identity)

G−G0 = GV G0 = G0V G . (5.19)

Using this relation one can show that

(1−G0V )(1+GV ) = 1+ (G−G0)V −G0V GV = 1 . (5.20)

We can thus recast the Low equation into the following alternative form,

|~p±〉 = |~p 〉+G0(Ep ± iǫ)V |~p±〉 . (5.21)

From now on the limit ǫ → 0 at the end of the calculation will be understood. This is the
Lippmann-Schwinger equation for the stationary states. Since it is the free Green’s operator
appearing this time, one can use this equation to compute |~p±〉 iteratively:

|~p±〉 = |~p 〉+G0(Ep ± iǫ)V |~p 〉+G0(Ep ± iǫ)V G0(Ep ± iǫ)V |~p±〉 = . . . . (5.22)

Similarly, from Eq. (5.19) we find the analogous equation

G = G0 +G0V G , (5.23)

known as the Lippmann-Schwinger equation for G, which also allows a straightforward iterative
approach to its solution.

We now use Eq. (5.16) to find a convenient expression for the matrix elements 〈~p ′|S|~p 〉 of
Eq. (5.14). We have from Eq. (5.15)

〈~p ′|S|~p 〉 = 〈~p ′|~p 〉+ 〈~p ′|[Ω−(Ep′)− Ω+(Ep′)]
†Ω+(Ep)|~p 〉 , (5.24)

and from Eq. (5.16)

[Ω−(Ep′)− Ω+(Ep′)]|~p 〉 = [G(Ep − iǫ)−G(Ep + iǫ)]V |~p 〉 = 2iǫ

(H − Ep)2 + ǫ2
V |~p 〉

≡ 2πiδǫ(H − Ep)V |~p 〉 .
(5.25)
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We then find

〈~p ′|S|~p 〉 = (2π)3δ(3)(~p ′ − ~p )− 2πi〈~p ′|V δǫ(H − Ep′)Ω+(Ep)|~p 〉
= (2π)3δ(3)(~p ′ − ~p )− 2πi〈~p ′|V Ω+(Ep)δǫ(H0 − Ep′)|~p 〉
= (2π)3δ(3)(~p ′ − ~p )− 2πiδǫ(Ep − Ep′)〈~p ′|V Ω+(Ep)|~p 〉 .

(5.26)

In the last line the arguments of δǫ are now c-numbers, and there is no problem in sending
ǫ to zero, obtaining the usual Dirac delta. Using again Eq. (5.16), we see that V Ω+(Ep) =
V + V G(Ep + iǫ)V , and if we now define the T -operator

T (z) = V + V G(z)V , (5.27)

we conclude that

〈~p ′|S|~p 〉 = (2π)3δ(3)(~p ′ − ~p)− 2πiδ(Ep − Ep′)〈~p ′|T (Ep + iǫ)|~p 〉 . (5.28)

It is straightforward to see that the T -matrix elements appearing in Eq. (5.28) are minus the
“reduced” R-matrix elements of Eq. (4.78) in the case of two-body elastic scattering, i.e.,

M(~p→ ~p ′) = − lim
ǫ→0

〈~p ′|T (Ep + iǫ)|~p 〉 = − lim
ǫ→0

〈~p ′|V |~p±〉 . (5.29)

The scattering amplitudesM(~p→ ~p ′) are thus the boundary values on the real axis of the matrix
elements of the bounded analytic operator T (z). We mention in passing that a straightforward
application of Eq. (5.19) shows that T satisfies the equation

T (z) = V + V G0(z)T (z) , (5.30)

known as (guess what?) the Lippmann-Schwinger equation for T , which can be used to solve
for T iteratively (you don’t say?).

5.3 Asymptotic behaviour of the in states

We now make the decisive step in relating the scattering amplitudes with the positive-energy
solutions of the Schrödinger equation. Expressing Eq. (5.21) in the coordinate representation,
we find33

ψp±(~x) ≡ 〈~x |~p±〉 = ei~p·~x +

∫

d3x′ 〈~x | 1

Ep −H0 ± iǫ
|~x ′〉V (~x ′)ψp±(~x

′) . (5.31)

Expanding in the momentum basis, the matrix element of the Green’s operator can be recast as

〈~x | 1

Ep −H0 ± iǫ
|~x ′〉 =

∫

d3p
′〈~x |~p ′〉〈~p ′| 1

Ep −H0 ± iǫ
|~x ′〉

=

∫

d3p
′ei~p

′·(~x−~x ′) 2m

~p 2 − ~p ′2 ± iǫ
=

∫

d3p
′ei|~p

′||~x−~x ′| cos θ 2m

~p 2 − ~p ′2 ± iǫ
.

(5.32)

33Instead of ψp±(~x
′), we should write 〈~x ′|~p±〉ǫ in the right-hand side, since the limit ǫ → 0 has to be taken

at the end of the calculation. However, since this limit exists for 〈~x ′|~p±〉ǫ, we can replace this quantity with its
limit ψp±(~x

′).
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Going over to polar coordinates and integrating over the angular variables we find

〈~x | 1

Ep −H0 ± iǫ
|~x ′〉 = 2m

(2π)2i

1

|~x− ~x ′|

∫ ∞

0
dp ′
(

eip
′|~x−~x ′| − e−ip

′|~x−~x ′|
) p ′

p2 − p′ 2 ± iǫ

=
m

2π2i

1

|~x− ~x ′|

∫ +∞

−∞
dp ′ eip

′|~x−~x ′| p ′

(p− p′ ± iǫ)(p+ p′ ± iǫ)
.

(5.33)

This integral can be computed using the residue theorem. Since |~x−~x ′| is positive, we can close
the contour of integration in the upper half plane, thus picking the pole with positive imaginary
part, i.e., p′ = ±p+ iǫ. This finally yields

〈~x | 1

Ep −H0 ± iǫ
|~x ′〉 = m

2π2i

1

|~x− ~x ′|2πie
±ip|~x−~x ′|∓p

2p
= ∓m

2π

1

|~x− ~x ′|e
±ip|~x−~x ′| . (5.34)

Plugging this into Eq. (5.31) we find

ψp±(~x) = ei~p·~x ∓ m

2π

∫

d3x′
1

|~x− ~x ′|e
±ip|~x−~x ′|V (~x ′)ψp±(~x

′) . (5.35)

Let us focus now on ψp+(~x), and consider the limit of large r ≡ |~x|. For potentials with finite
range (compact support, exponentials,. . . ) this amounts to consider r much larger than such a
range. Using

|~x− ~x ′| ≃ r − x̂ · ~x ′ , (5.36)

where x̂ = ~x/r, we obtain from Eq. (5.35)

ψp+(~x) = ei~p·~x − m

2π

eipr

r

∫

d3x′ e−i~p
′x̂·~x ′

V (~x ′)ψp+(~x
′) , (5.37)

where we have set ~p ′ = px̂. But from Eqs. (5.26), (5.27) and (5.29) we know that

M(~p→ ~p ′) = −〈~p ′|V |~p+〉 = −
∫

d3x′ 〈~p ′|~x ′〉V (~x ′)〈~x ′|~p+〉 = −
∫

d3x′ e−i~p
′·~x ′

V (~x ′)ψp+(~x
′) ,

(5.38)
and so comparing the two equations we see that

ψp+(~x) = ei~p·~x +
m

2π

eipr

r
M(~p→ ~p ′) = ei~p·~x +

eipr

r
f(p, θ, ϕ) , (5.39)

where
f(p, θ, ϕ) ≡ m

2π
M(~p→ ~p ′) = −m

2π
〈~p ′|T (Ep + iǫ)|~p 〉 . (5.40)

We can now write down the final expression for the differential cross section in two-body elastic

scattering. From Eq. (4.74) (using pf =
√

mf

mi
pi and mf = mi)

dσ2→2

dΩ
=

m2

(2π)2
|M(~p→ ~p ′)|2 = |f(p, θ, ϕ)|2 . (5.41)

The main conclusion is that the scattering amplitude, and therefore the differential cross section,
are determined by the asymptotic, large-distance behaviour of the solution of the Schrödinger
equation satisfying the following boundary condition: at large distances it looks like the sum
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of a plane wave, corresponding to the incoming particle, and an outgoing spherical wave. The
relative weight of the two terms determines the probability of detecting the particle scattered
in a given direction.

This conclusion is actually not so surprising, as we now show, and in fact it would be the
basis for the definition of cross section if the time-independent approach were taken as the
fundamental one. This was the point of view when scattering theory was originally developed,
with the time-dependent approach appearing later. Recall that a solution ψ(t, ~x) of the time-
dependent Schrödinger equation obeys the continuity equation

∂

∂t
ρ(t, ~x) + ~∂ · ~ (t, ~x) = 0 , (5.42)

where

ρ(t, ~x) = |ψ(t, ~x)|2 , ~ (t, ~x) =
1

m
Im
[

ψ(t, ~x)∗~∂ψ(t, ~x)
]

. (5.43)

This equation expresses the conservation of probability: if the probability to find the particle in
an infinitesimal volume changes over time, then there must be a flux of probability crossing its
surface. Therefore, as ρ gives the probability density, ~ represents a probability current. Let us
compute ~ for a solution of the form Eq. (5.39). We have

m~ = Imψ∗~∂ψ = Im

{[

e−i~p·~x +
e−ipr

r
f∗
] [

i~p ei~p·~x + f
eipr

r

(

ip− 1

r

)

~x

r
+
eipr

r
~∂f

]}

= Im

{

i~p+ |f |2 1

r2

(

ip− 1

r

)

~x

r
+ e−i~p·~xf

eipr

r

(

ip− 1

r

)

~x

r
+ i~p ei~p·~xf∗

e−ipr

r
+

+e−i~p·~x
eipr

r
~∂f +

1

r2
f∗~∂f

}

= ~p+ |f |2 p
r2
~x

r
+ Im

{

eipr(1−cos θ)

[

f

r

(

ip− 1

r

)

~x

r
+ i~p

f∗

r
+
~∂f

r

]

+
1

r2
f∗~∂f

}

.

(5.44)

The first term clearly represents the current corresponding to the incoming packet, which might
also go unscattered. The flux of incoming particles is therefore ~in = ~p

m
(i.e., the velocity of the

incoming particle).34 The remainder ~− ~in is made of two terms, namely

~scat =
p

m

|f |2
r2

x̂ , (5.45)

which represents a radially expanding wave, and an interference term ~int = ~ − ~in − ~scat. We
now show that this last term can be neglected. If we look at the system from a large distance
R in direction x̂ over a small solid angle ∆Ω, the flux of ~scat is R-independent and given by

∫

∆Ω
dΩR2~scat · x̂ =

∫

∆Ω
dΩ

p

m
|f |2 ≃ ∆Ω

p

m
|f |2 . (5.46)

34 Since ψ is not normalisable, we cannot interpret the flux as given here as the probability that the particle
crosses a unit area in a unit of time. In the real world the incoming particle is localised within some spatial region,
so one could as well impose a spatial cutoff and substitute R

3 with a finite cubic box of volume V . Momentum
eigenfunctions would still look exactly the same (besides constraints on the allowed values of the momenta), but

could be normalised to 1 simply by multiplying them by the factor V − 1

2 . The current ~in would therefore be
multiplied by V −1, thus fully recovering its meaning of incoming flux of particles.
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The flux of ~int that we observe is given instead by
∫

∆Ω
dΩR2m~int · x̂

= mR

∫

∆Ω
dΩ Im

{

eipR(1−cos θ)

[

f
(

ip− 1
R

)

+ ip cos θ f +
∂f

∂r

]

+
1

R
f∗

∂

∂r
f

}

≃ mR

∫

∆Ω
dΩ Im

{

ipeipR(1−cos θ)f(1 + cos θ)
}

,

(5.47)

where we used ∂f
∂r

= 0, and we neglected a subleading term. For small ∆Ω = δϕδ cos θ we can
bring f outside of the integral (assuming it is slowly varying), and get

∫

∆Ω
dΩR2m~int · x̂ ≃ R Im

{

feipR
(

ip− ∂

∂R

)
∫

∆Ω
dΩ e−ipR cos θ

}

. (5.48)

An integration by parts gives to leading order in R35

∫

∆Ω
dΩR2m~int · x̂ ≃ −R Im

{

feipR
(

ip− ∂

∂R

)

δϕ

−ipRe
−ipR cos θ

(

e−ipRδ cos θ − 1
)

}

≃ −Re

{

feipR
δϕ

p

(

ip− ∂

∂R

)

e−ipR cos θ
(

e−ipRδ cos θ − 1
)

}

= −Re
{

ifeipRδϕ
[

(1 + cos θ + δ cos θ)e−ipR(cos θ+δ cos θ) − (1 + cos θ)e−ipR cos θ
]}

.

(5.49)

Now we take into account that scattering processes actually involve wave packets, so that the
current is obtain by folding Eq. (5.44) with some peaked wave function. In practice, this corre-
sponds to integrating Eq. (5.44) over a small shell of momenta with |~p | ∈ [p− δp

2 , p+
δp
2 ]. The

contribution from Eq. (5.49) is

4π

∫ p+ δp
2

p− δp
2

dp′ p′2
∫

∆Ω
dΩR2m~int · x̂

≃ −4πRe

{

ifδϕ

∫ p+ δp
2

p− δp
2

dp′ p′ 2
[

(2−A(θ))eip
′RA(θ) − (2−B(θ))eip

′RB(θ)
]

}

= 4π
∂2

∂R2
Re

{

ifδϕ

∫ p+ δp
2

p− δp
2

dp′
[

2−A(θ)

A(θ)2
eip

′RA(θ) − 2−B(θ)

B(θ)2
eip

′RB(θ)

]

}

(5.50)

where A(θ) = 1 − cos θ − δ cos θ and B(θ) = 1 − cos θ. Performing the integration, we have to
leading order

∫ p+ δp
2

p− δp
2

dp′ p′2
∫

∆Ω
dΩR2m~int · x̂

≃ 1

R
Re

{

fδϕ
∂2

∂R2

[

2−A(θ)

A(θ)3

(

eiRA(θ)(p+
δp
2
) − eiRA(θ)(p−

δp
2
)
)

−2−B(θ)

B(θ)3

(

eiRB(θ)(p+ δp
2
) − eiRB(θ)(p− δp

2
)
)

]}

.

(5.51)

35Notice that the integral in θ reads
∫ cos θ

cos θ−δ cos θ
d(cos θ)′.
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After this long and undeservedly detailed calculation we finally get to the main point: the
contribution of the interference term to physical quantities vanishes like 1/R at large distance.
This is true as long as we are not looking in the forward direction, for in that case the last line
of Eq. (5.50) does not follow: in this case one gets instead
∫

∆Ω(θ=0)
dΩR2m~int · x̂ ≃ −Re

{

ifδϕ
[

(2 + δ cos θ)e−ipRδ cos θ − 2
]}

,

4π

∫ p+ δp
2

p− δp
2

dp′ p′2
∫

∆Ω
dΩR2m~int · x̂ ≃ −Re

{

−2ifδϕ
4πδp3

3

∣

∣

∣

p+ δp
2

p− δp
2

}

= −2δϕIm f · 4πδp ,
(5.52)

the only contribution in the large-R limit coming from the second term in square brackets in
the first line. For this reason, this contribution is independent of δ cos θ; moreover, since for any
other θ one gets no contribution from the interference term, one can extend the integration over
the whole polar angle without changing the result. If one extends the integration also to the
whole range of the azimuthal angle, one gets for the first line above

∫

dΩR2~int · x̂ ≃ −4π

m
Im
{

f
[

1− (1 + 1
2δ cos θ)e

−ipRδ cos θ
]}

→ −4π

m
Im f , (5.53)

having dropped the oscillating term since it does not contribute after integrating over the mo-
menta.

We thus have that at large distance the flux of scattered particles will be simply given
by36 ~scat. Since we are dealing with a stationary solution, the physical situation that is being
represented is that of a steady flux of incoming particles, plus a steady flux of scattered particles.
Recalling Eq. (2.5), we see that their ratio (times the area of the detector) gives the number of
events per unit time, unit flux and unit target, i.e., the cross section. For infinitesimal detectors
we have

dσ =
~scat · x̂R2dΩ

|~in|
=

p
m
|f |2
p
m

dΩ = |f |2dΩ , (5.54)

i.e., |f |2 is the differential cross section.
It is worth writing down explicitly the optical theorem in the case at hand. Recalling that

M = 2π
m
f , we have from Eq. (4.82) (the choice ϕ = 0 is of course arbitrary at θ = 0)

Im f(p, 0, 0) =
p

4π
σ , σ =

4π

p
Im f(p, 0, 0) . (5.55)

From Eq. (5.41) we then have

Im f(p, 0, 0) =
p

4π

∫

dΩ |f(p, θ, ϕ)|2 . (5.56)

This result can be rederived from Eqs. (5.45), (5.53) and (5.54), and from the fact that the
probability current ~ = ~in+~scat+~int is conserved, ∇·~ = 0. Indeed, integrating the divergence
of ~ inside a sphere of (large) radius R we get

0 =

∫

R

d3x∇ · ~ =
∫

dΩR2 x̂ · (~in + ~scat + ~int) . (5.57)

36The same discussion made in footnote 34 applies also here: in a finite box ~scat would be multiplied by V −1,
recovering its usual meaning. Since the volume factors cancel out in the ratio, Eq. (5.54) below would not change.
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Since the incoming flux gives no contribution (since
∫

dΩcos θ = 0), in the limit of large R one
gets from the other two terms

0 =

∫

dΩ

[

p

m
|f |2 − 4π

m
Im f

]

=
1

m

{

p

∫

dΩ

[

dσ

dΩ
− 4π Im f

]}

=
1

m
{pσtot − 4π Im f} , (5.58)

which is again the optical theorem.
One last comment on the dependence of f on the direction of observation. When the potential

is central, i.e., invariant under rotations, we have from the transformation law UR|~p 〉 = |~pR〉 and
from the definition |~p+〉 = Ω+|~p 〉 that

UR|~p+〉 = URΩ+|~p 〉 = Ω+UR|~p 〉 = Ω+|~pR〉 = |~pR+〉 . (5.59)

In the case of rotations around the direction of ~p, i.e., R~p = ~p, we thus find |~pR+〉 = |~p+〉, and
therefore ψp+(~xR) = ψp+(~x). It then follows that

f = −m

2π

∫

d3x′ e−ipx̂·~x
′

V (|~x ′|)ψp+(~x ′) = −m

2π

∫

d3x′ e−ipx̂R·~x ′
RV (|~x ′|)ψp+(~x ′)

= −m

2π

∫

d3x′ e−ipx̂R·~x ′

V (|~x ′|)ψp+(~x ′) ,

(5.60)

i.e., f = f(p, θ).

5.4 The Born approximation

In the previous subsection we have seen how the calculation of scattering amplitudes reduces
to solving the Schrödinger equation with a specific boundary conditions. This is no easy task,
and solutions in closed form are known only for a limited number of potentials. In the general
case we therefore have to rely on approximation techniques, a very common situation in physics.
An obvious possibility is to solve the equations numerically, but it is nevertheless very useful to
have also analytic approximation techniques.

The prototype of analytic approximations is the expansion of the quantities of interest in
powers of some small numbers, most commonly the overall strength of the potential. In our case
we want to solve the Lippmann-Schwinger equation Eq. (5.21), which can be written in compact
form as

|~p+〉 = (1+G+V )|~p 〉 , (5.61)

where G+ is a shorthand for G(Ep + iǫ). Using equation Eq. (5.20) we can write this in terms
of G+

0 = G0(Ep + iǫ) as
|~p+〉 = (1−G+

0 V )−1|~p 〉 . (5.62)

If G+
0 V is suitably small, in a sense to be better specified below, we can expand this equation as

|~p+〉 =
∞
∑

n=0

(G+
0 V )n|~p 〉 . (5.63)

This equation defines the Born series for the scattering states |~p+〉. In the same spirit, denoting
T = T (Ep + iǫ), we can rewrite Eq. (5.30) as

(1− V G+
0 )T = V ⇒ T = (1− V G+

0 )
−1V =

(

∞
∑

n=0

V G+
0

)

V . (5.64)
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This is the Born series for the T -matrix. To lowest orders we have

T = V + V G+
0 V + V G+

0 V G
+
0 V + . . . ; (5.65)

the first term T ≃ V is the Born approximation for T . From Eq. (5.39) we thus have

f(p, θ, ϕ) ≃ fB(p, θ, ϕ) = −m

2π
〈px̂|V |~p 〉 = −m

2π

∫

d3x′ei(~p−px̂)·~x
′

V (~x ′)

= −m

2π

∫

d3x′e−i~q·~x
′

V (~x ′) ,

(5.66)

i.e., fB is the Fourier transform of the potential at −~q, with ~q = ~p ′ − ~p = px̂− ~p the transferred
momentum. For central potentials

f(p, θ) ≃ −m
∫ ∞

0
drr2

∫ +1

−1
dz e−iqrzV (r) = −2m

q

∫ ∞

0
dr r sin qr V (r) . (5.67)

One has for q = |~q |
q2 = 2p2(1− cos θ) = 4p2 sin2 θ2 , (5.68)

where cos θ = p̂ · x̂ is the cosine of the angle between the beam velocity and the direction of
observation. A few comments are in order.

1. The last integral in Eq. (5.67) is convergent for V decaying at least as V ∼ r−1−ǫ at large
r, and V no more singular than V ∼ r−3+ǫ at the origin.

2. For small q,
1

q

∫ ∞

0
dr r sin qr V (r) →

∫ ∞

0
dr r2V (r) , (5.69)

if the latter integral is convergent: this requires V to vanish at least as V ∼ r−(3+ǫ) at
large r. In this case fB becomes isotropic if p is small.

3. To study the large q behaviour, we write [Ṽ (r) = rV (r)]
∫ ∞

0
dr sin qr Ṽ (r) =

∫ ǫ

0
dr sin qr Ṽ (r) +

∫ ∞

ǫ

dr sin qr Ṽ (r)

=

∫ ǫ

0
dr sin qr Ṽ (r) +

1

q
cos qǫ Ṽ (ǫ) +

1

q

∫ ∞

ǫ

dr cos qr Ṽ ′(r) ,

(5.70)

with some small ǫ. Assuming that Ṽ vanishes faster than 1/r at large r, we have
∣

∣

∣

∣

∫ ∞

ǫ

dr cos qr Ṽ ′(r)

∣

∣

∣

∣

≤
∫ ∞

ǫ

dr |Ṽ ′(r)| <∞ , (5.71)

so the last two terms in the second line of Eq. (5.70) are of order q−1. If Ṽ is regular at
the origin we can set ǫ to 0, and find that fB ∼ q−2 at large q. If it diverges like r−α with
0 < α < 2, taking ǫ sufficiently small we can approximate the first term in the second line
of Eq. (5.70) as

∫ ǫ

0
dr sin qr Ṽ (r) ≃ C

∫ ǫ

0

dr

rα
sin qr = Cqα−1

∫ ǫq

0

dx

xα
sinx

→
q→∞

Cqα−1

∫ ∞

0

dx

xα
sinx ,

(5.72)
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the latter integral being convergent for α < 2. We thus find fB ∼ qα−2. In general, at
large energies we then find that the scattering amplitude is non negligible only within a
cone of angular width θ ∼ p−1 (forward cone).

We now briefly comment on when one can expect the Born approximation to work, and more
generally the Born series to be convergent. Clearly, if V is weak enough we expect each new
term appearing in Eq. (5.65) to be further suppressed. The discussion at point 3 above suggests
that the insertion of a potential brings about a suppressing factor at large q, and so we expect
the approximation to work at high energy (at least away from the forward cone). In fact, the
two following results hold for potentials that vanish sufficiently fast at large r and are not too
singular at r = 0:

• for potentials of the form V = λV̄ the Born series converges at all energies if λ is sufficiently
small;

• the Born series converges for sufficiently large energies.

By taking a smaller λ, or a larger energy, the convergence is improved, and eventually the Born
approximation will be accurate.

From Eq. (5.66) we see that if the potential is invariant under parity and/or under rotations,
then fB is real. In any case, fB is real in the forward direction ~q = 0. On the other hand,
Im f(p, 0, 0) = 0 is inconsistent with the optical theorem, see Eqs. (5.55) and (5.56). The Born
approximation therefore violates unitarity. To understand more precisely how this happens,
replace formally V with λV , so that the Born series becomes a power expansion in λ starting
with the power λ1. Since the right-hand side of Eq. (5.56) starts with λ2, it is clear that the
theorem will be satisfied to order λ2 only if the first correction to the Born approximation is
included. More generally, one can show that if the Born series is known only up to order λn,
then the optical theorem (and so unitarity) will be violated to order λn+1.

6 Scattering in a central potential

As we have seen in the previous section, the problem of elastic two-body scattering is formally
solved once we have determined the scattering amplitude f(θ, ϕ) which governs the large-distance
behaviour of the positive-energy solutions of the (time-independent) Schrödinger equation. In
this section we discuss this problem in detail in the case of a central potential.

6.1 Schrödinger equation in spherical coordinates

The time-independent Schrödinger equation,

(

p2

2m
+ V

)

|ψ〉 = E|ψ〉 , (6.1)

reads in the coordinate representation

(

− ∆

2m
+ V (~x)

)

ψ(~x) = Eψ(~x) , (6.2)
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where ∆ = ~∇2 is the Laplace operator. For central potentials V = V (|~x|) it is convenient to
work in spherical coordinates,

x = r sin θ cosϕ ,

y = r sin θ sinϕ ,

z = r cos θ .

(6.3)

The easiest way to proceed is to notice that in spherical coordinates the gradient reads

~∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ
. (6.4)

One thus has for the angular momentum operator

~L = ~x ∧ ~p = −i~x ∧ ~∇ = −i
(

r̂ ∧ θ̂ ∂
∂θ

+ r̂ ∧ ϕ̂ 1

sin θ

∂

∂ϕ

)

= −i
(

ϕ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂ϕ

)

, (6.5)

i.e., ~L acts only on the angular variables. Furthermore,

~L 2 = −εijkεilmxj∂kxl∂m = −(δjlδkm − δjmδkl)(xjxl∂k∂m + δklxj∂m)

= −r2(∆− x̂ix̂j∂i∂j − 2r−1x̂i∂i) = −r2
(

∆− ∂2

∂r2
− 2

1

r

∂

∂r

)

,
(6.6)

and so

∆ =
∂2

∂r2
+ 2

1

r

∂

∂r
− 1

r2
~L 2 =

1

r

∂2

∂r2
r − 1

r2
~L 2 . (6.7)

These results show explicitly something that we already knew, namely that the free Hamiltonian
and the angular momentum commute.

We can now solve the Schrödinger equation by separation of variables. A complete set of
angular momentum eigenfunctions is provided by the spherical harmonics Yllz(x̂), satisfying

~L 2Yllz(x̂) = l(l + 1)Yllz(x̂) , LzYllz(x̂) = lzYllz(x̂) ,

∫

dΩY ∗
l′l′z

(x̂)Yllz(x̂) = δl′lδl′zlz . (6.8)

We are interested in positive-energy solutions, so we set E = p2

2m . The eigenfunctions of definite
energy and angular momentum, ψEllz(~x), read therefore ψEllz(~x) = Yllz(x̂)Rpl(r) with Rpl(r)
satisfying

(

1

r

∂2

∂r2
r − l(l + 1)

r2
− U(r) + p2

)

Rpl(r) = 0 , (6.9)

where U(r) = 2mV (r). It is convenient to factor out 1/r, setting Rpl(r) = 4πil
upl(r)
pr

, where the
numerical factor is chosen for future convenience. The function upl(r) satisfies the equation,

(

∂2

∂r2
− l(l + 1)

r2
− U(r) + p2

)

upl(r) = 0 , (6.10)

known as the radial Schrödinger equation. Since we want Rpl(r) to be sufficiently regular at
r = 0, we need to impose the boundary condition upl(0) = 0.37 Thanks to rotation invariance,
we have reduced a three-dimensional problem to a one-dimensional one. This is the kind of
simplifications that derive from symmetry.

37 Actually, a solution of Eq. (6.10) must satisfy upl(0) = 0 in order to be a solution of the Schrödinger
equation Eq. (6.2), so this boundary condition is more than just a regularity condition. The reason is that setting
Rpl(r) ∝ upl(r)/r and substituting it in Eq. (6.2), one gets an extra singular term due to ∆ 1

r
= −4πδ(3)(r). This

therefore demands that upl vanish at the origin to have a solution (see [Shankar], §12.6).
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6.2 The free case

We first study the radial Schrödinger equation Eq. (6.9) in the free case, V = 0. We will attach
a superscript 0 to all functions to distinguish this case from the interacting one. By setting
z = pr, we see from Eq. (6.10) that the solution depends only this combination of p and r,

(

∂2

∂z2
− l(l + 1)

z2
+ 1

)

vl(z) = 0 , (6.11)

where we have temporarily set u0pl(r) = vl(z). The solutions of this equation are linear combi-
nations of the Riccati-Bessel and Riccati-Neumann functions,

̂l(z) = zjl(z) = z
( π

2z

)
1
2
Jl+ 1

2
(z) ,

n̂l(z) = znl(z) = (−1)lz
( π

2z

)
1
2
J−l− 1

2
(z) .

(6.12)

Here jl(z) and nl(z) are respectively the spherical Bessel functions and the spherical Neumann
functions, and Jα(z) are the Bessel functions of the first kind. For future utility we introduce
also the Riccati-Hankel functions,

ĥ±l (z) = n̂l(z)± i̂l(z) . (6.13)

The behaviour for small z of ̂l(z) and n̂l(z) is
38

̂l(z) ≃
z→0

zl+1

(2l + 1)!!
, n̂l(z) ≃

z→0

(2l − 1)!!

zl
, (6.14)

and, except for the numerical factor, it can be derived directly from Eq. (6.11), since for small
z the second term in brackets dominates over the constant term. One can similarly determine
that the large-z behaviour must be a combination of e±iz, by neglecting this time the second
term. One has in fact

̂l(z) ≃
z→∞

sin(z − π
2 l) , n̂l(z) ≃

z→∞
cos(z − π

2 l) , ĥ±l (z) ≃
z→∞

e±i(z−
π
2
l) . (6.15)

The boundary condition vl(0) = 0 forces us to choose the Riccati-Bessel functions, vl(z) = ̂l(z).
We are still free to choose the normalisation, and we fix it so that u0pl(r) = ̂l(pr), i.e., R

0
pl(r) =

4πiljl(pr). The reason for our choice of normalisation will soon become clear.
All in all, the solutions ψ0

Ellz
of the free Schrödinger equation with definite energy and angular

momentum read
ψ0
Ellz

(~x) = Yllz(x̂)4πi
ljl(pr) . (6.16)

Since
∫

dr r2 jl(p
′r)jl(pr) =

π

2p2
δ(p′ − p) ,

∫

dr ̂l(p
′r)̂l(pr) =

π

2
δ(p′ − p) , (6.17)

one has that ψ0
Ellz

are normalised according to
∫

d3xψ0
E′l′l′z

(~x)∗ψ0
Ellz

(~x) = δl′lδl′zlz
π

2p2
δ(p′ − p)(4π)2 = δl′lδl′zlzN(E)δ(E′ − E) , (6.18)

38For odd n > 0, (−n)!! = (−1)
n−1

2 n

n!!
, so when l = 0, (2l − 1)!! = (−1)!! = 1.
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where we set N(E) = (2π)3

mp
. The ψ0

Ellz
form a complete set of solutions of the free Schrödinger

equation, and so we have the following resolution of the identity,

∞
∑

l=0

l
∑

lz=−l

∫ ∞

0

dE

N(E)
ψ0
Ellz

(~x)ψ0
Ellz

(~y)∗ = δ(3)(~x− ~y) . (6.19)

Recall that we already knew another such complete set, namely the plane waves. It must
therefore be possible to express a plane wave in terms of the solutions above. This corresponds
to changing our basis from the momentum eigenbasis to the energy and angular momentum
eigenbasis. To do this, we need the following two results:

eiz cos θ =
∑

l

(2l + 1)Pl(cos θ)i
ljl(z) ,

∑

lz

Yllz(p̂)
∗Yllz(x̂) =

2l + 1

4π
Pl(p̂ · x̂) . (6.20)

Here Pl(x) are the Legendre polynomials. An important property of the Legendre polynomials
is that they form a complete set of orthogonal functions in L2([−1, 1]), with normalisation

∫ 1

−1
dxPl′(x)Pl(x) =

2

2l + 1
δl′l . (6.21)

We then write

ei~p·~x = eipx cos θ =
∞
∑

l=0

(2l + 1)Pl(cos θ)i
ljl(pr) =

∞
∑

l=0

l
∑

lz=−l

Yllz(p̂)
∗Yllz(x̂)4πi

ljl(pr)

=

∞
∑

l=0

l
∑

lz=−l

Yllz(p̂)
∗ψ0

Ellz
(~x) .

(6.22)

Using the abstract notation |E l lz〉 for the energy and angular momentum eigenvectors, so that
ψ0
Ellz

(~x) = 〈~x|E l lz〉, we can thus write

|~p 〉 =
∞
∑

l=0

l
∑

lz=−l

Yllz(p̂)
∗|E l lz〉 . (6.23)

Normalisation and completeness read in this notation

〈E′ l′ l′z|E l lz〉 = δl′lδl′zlzN(E)δ(E′ − E) ,
∞
∑

l=0

l
∑

lz=−l

∫ ∞

0

dE

N(E)
|E l lz〉〈E l lz| = 1 . (6.24)

6.3 The partial-wave expansion

We have already commented on the fact that for central potentials one has independence of the
azimuthal angle, f = f(p, θ). In general, for any square integrable function defined for θ ∈ [0, π]
one can exploit the completeness of the Legendre polynomials to write

f(p, θ) =
∑

l

(2l + 1)Pl(cos θ)fl(E) . (6.25)

55



Rotation invariance implies therefore that the scattering amplitude can always be written in the
form Eq. (6.25). For such an expression to be of practical utility, one needs that only a few
coefficients fl be relevant: it turns out that at low energy this is actually the case.

We turn now to relating the coefficients fl to theoretical computable quantities. The useful-
ness of the result Eq. (6.23) should be apparent once we recall that the S-matrix commutes with
energy and angular momentum: this implies that it will be diagonal in the energy and angular
momentum eigenbasis:

〈E′ l′ l′z|S|E l lz〉 = δl′lδl′zlzN(E)δ(E′ − E)sl(E) , (6.26)

where N(E) = (2π)3

mp
has been factored out for convenience. We have already seen this result in

the general case in section 4.8, here we focus on the case of spinless particles. In the case at hand
there is only the orbital angular momentum ~L, and sl(E) is independent of lz, as a consequence
of the Wigner-Eckart theorem. As a consequence of unitarity, sl(E) is a phase factor:

δl′lδl′zlzN(E)δ(E′ − E) =
∑

l̄ l̄z

∫

dĒ

N(Ē)
〈E′ l′ l′z|S†|Ē l̄ l̄z〉〈Ē l̄ l̄z|S|E l lz〉

=
∑

l̄ l̄z

∫

dĒ

N(Ē)
δl′ l̄δl′z l̄zN(E′)δ(E′ − Ē)δl̄lδl̄zlzN(E)δ(E′ − Ē)sl′(E

′)∗sl(E)

= δl′lδl′zlzN(E)δ(E′ − E)|sl(E)|2 .

(6.27)

We thus write sl(E) = e2iδl(E), where the factor of 2 is again conventional. The quantities δl(E)
are called phase shifts, and determine entirely the S-matrix in the case at hand (single-channel
scattering). The phase shifts are affected by an inherent ambiguity modulo π: we will see below
how this can be conveniently resolved.

We now make use of Eq. (6.23) to write for the usual matrix elements in the momentum
basis

〈~p ′|S|~p 〉 =
∑

l′,l

∑

l′z ,lz

Yl′l′z(p̂
′)Yllz(p̂)

∗〈E′ l′ l′z|S|E l lz〉

=
∑

l′,l

∑

l′z ,lz

Yl′l′z(p̂
′)Yllz(p̂)

∗δl′lδl′zlzN(E)δ(E′ − E)sl(E)

= N(E)δ(E′ − E)
∑

l

2l + 1

4π
Pl(cos θ)sl(E) ,

(6.28)

where we used Eq. (6.20), and we have set cos θ = p̂′ · p̂. Similarly,

〈~p ′|~p 〉 = N(E)δ(E′ − E)
∑

l

2l + 1

4π
Pl(cos θ) . (6.29)

Recalling

〈~p ′|S|~p 〉 − 〈~p ′|~p 〉 = i
(2π)2

m
δ(E′ − E)f(p, θ) , (6.30)

we find

i
(2π)2

m
f(p, θ) =

(2π)3

mp

∑

l

2l + 1

4π
Pl(cos θ)(sl(E)− 1) , (6.31)
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i.e.,

f(p, θ) =
∑

l

(2l + 1)Pl(cos θ)
sl(E)− 1

2ip
=
∑

l

(2l + 1)Pl(cos θ)fl(E) . (6.32)

This is the partial-wave expansion of the scattering amplitude. The nontrivial content of this
calculation is the relation between the partial-wave coefficients fl and the phase shifts,

fl(E) =
sl(E)− 1

2ip
=
eiδl(E)

p
sin δl(E) . (6.33)

As we mentioned above, Eq. (6.32) provides a good parameterisation of the low-energy scattering
amplitude, in the sense that at low energies only a few coefficients are required to satisfactorily
describe a scattering process.

It is instructive to check how the optical theorem is satisfied by the partial-wave expansion.
To this end, we need the following properties of the Legendre polynomials [recall Eq. (6.21)]:

∫

dΩPl′(cos θ)Pl(cos θ) =
4π

2l + 1
δl′l , Pl(1) = 1 . (6.34)

We thus find

Im f(0) =
∑

l

(2l + 1)
1− cos 2δl(E)

2p
=
∑

l

(2l + 1)
sin2 δl(E)

p
,

∫

dΩ |f(θ)|2 = 4π

p2

∑

l

(2l + 1) sin2 δl(E) ,

(6.35)

and the optical theorem is satisfied.

6.4 Interacting case

We now turn to the interacting case. In analogy with the free case, we set Rpl(r) = 4πil
upl(r)
pr

.

Also in this case we need upl(0) = 0 (see footnote 37). If the potential is less singular than r−2,
the behaviour of the solutions of the radial Schrödinger equation, Eq. (6.10), for small r is the
same as in the free case. For the regular solution we thus have

upl(r) ≃ rl+1 . (6.36)

For large r, on the other hand, upl(r) will be a linear combination of spherical waves, e±ipr.
The kind of solutions we are interested in are those representing in and out states, in the same
sense in which the states |~p±〉 do. Since all we used in the construction of |~p±〉 was that the
momentum eigenstates |~p 〉 are energy eigenstates, the same construction works here, and we
can define

|E l lz ±〉 = Ω±(E)|E l lz〉 , 〈~x|E l lz ±〉 = Yllz(x̂)4πi
lupl(r)

pr
. (6.37)

The states |E l lz ±〉 are clearly normalised like the free states |E l lz〉. From the intertwining
relations it follows that they are eigenstates of H; from the fact that the scattering operators
commute with angular momentum due to rotation invariance of the Hamiltonian, it follows that
they are also eigenstates of ~L 2 and Lz. Using now Eq. (6.23) we obtain

|~p±〉 =
∑

l,lz

Yllz(p̂)
∗|E l lz ±〉 . (6.38)
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In the coordinate representation

ψp+(~x) =
∑

l,lz

Yllz(p̂)
∗Yllz(x̂)4πi

lupl(r)

pr
=
∑

l

(2l + 1)Pl(cos θ)i
lupl(r)

pr
. (6.39)

For large r, ψp+(~x) ≃ ei~p·~x+f(θ) e
ipr

r
. Using the expansions Eqs. (6.22) and (6.32), and matching

the coefficients of the Legendre polynomials we obtain

iljl(pr) + fl
eipr

r
=

il

pr

(

̂l(pr) + pfle
i(pr−π

2
l)
)

≃ il
upl(r)

pr
, (6.40)

i.e.,
upl(r) ≃ ̂l(pr) + pfle

i(pr−lπ
2
) . (6.41)

Using the asymptotic behaviour of the Riccati-Bessel functions,

̂l(pr) ≃ sin
(

pr − π

2
l
)

, (6.42)

we finally get

upl(r) ≃
1

2i

[

(1 + 2ipfl) e
i(pr−π

2
l) − e−i(pr−

π
2
l)
]

=
1

2i

[

ei(pr−
π
2
l+2δl(E)) − e−i(pr−

π
2
l)
]

= eiδl(E) 1

2i

[

ei(pr−
π
2
l+δl(E)) − e−i(pr−

π
2
l+δl(E))

]

= eiδl(E) sin
(

pr − π

2
l + δl(E)

)

.

(6.43)

This relation explains the origin of the name “phase shift”: δl is precisely the difference between
the phases of the solutions of the Schrödinger equation in the interacting and in the free case at
asymptotically large distances.

In order to determine the phase shifts one has therefore to solve the radial Schrödinger
equation with boundary condition upl(r) = 0 and look at the large-r asymptotic behaviour. By
construction, upl(r) are normalised like Riccati-Bessel functions,

∫

dr up′l(r)upl(r) =
π

2
δ(p′ − p) . (6.44)

For this reason, the solutions upl(r) are called the normalised solutions. Any other (physically
acceptable) solution ũpl(r) differs from upl(r) only in the normalisation. As far as the phase
shifts are concerned, the normalisation is not important: since any solution is asymptotically
of the form ũpl(r) ≃ Aple

ipr + Bple
−ipr, the phase shifts are obtained as e2iδl =

Apl

Bpl
(−1)l+1,

regardless of the normalisation.

6.5 Properties of the phase shifts. The Jost function

The study of the properties of the phase shifts is simpler if we consider a different normalisation
for the solution. The convenient choice is to ask for the solution to be proportional to ̂l(pr) at
small r. Denoting the corresponding solution as χpl(r), we impose

lim
r→0

χpl(r)

̂l(pr)
= 1 . (6.45)
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The solution χpl(r) is called the regular solution. A consequence of our choice is that χpl is
real, since it obeys a real equation and a real boundary condition. In general, the asymptotic
behaviour for large r is different from that of upl, and can be written as

χpl(r) ≃
1

2i

[

ϕ∗
l (p)e

i(pr−π
2
l) − ϕl(p)e

−i(pr−π
2
l)
]

. (6.46)

Comparing with Eq. (6.43), we see that

χpl(r)

upl(r)
= ϕl(p) , e2iδl(E) =

ϕ∗
l (p)

ϕl(p)
. (6.47)

The function ϕl is called the Jost function, and is central in the study of the analyticity properties
of the solution and of the S-matrix.

The reason why it is simpler to work with the regular solution rather than the normalised
solution becomes apparent when we convert the radial Schrödinger equation and the desired
boundary condition into an integral equation. This approach is standard in the study of partial
differential equations, but we will not describe it in detail here. Instead, we will just pick the
answer out of our hat: in the case at hand, the relevant integral equation for the regular solution
is

χpl(r) = ̂l(pr) + λ

∫ r

0
dr′ gpl(r, r

′)U(r′)χpl(r
′) , (6.48)

where

gpl(r, r
′) =

1

p

[

̂l(pr)n̂l(pr
′)− n̂l(pr)̂l(pr

′)
]

, (6.49)

and we have replaced U → λU for future convenience. Notice that the integral in Eq. (6.48)
extends only up to r: this reflects the fact that our boundary condition is given at a single
point, namely r = 0. A similar equation can be written also for upl, but in that case the integral
extends up to infinity, reflecting the fact that the normalisation condition involves the function
at all points.

To prove that the solution of Eq. (6.48) automatically satisfies both the radial Schrödinger
equation and the desired boundary condition one proceeds as follows. Applying the differential
operator Or =

∂2

∂r2
− l(l+1)

r2
− λU(r) + p2 to the right-hand side of Eq. (6.48) we find

Orχpl(r) = Or

{

̂l(pr) + λ

∫ r

0
dr′ gpl(r, r

′)U(r′)χpl(r
′)

}

= −λU(r)

[

̂l(pr) + λ

∫ r

0
dr′ gpl(r, r

′)U(r′)χpl(r
′)

]

+ λ

[

∂

∂r
gpl(r, r

′)

]

r=r′
U(r)χpl(r)

+ λ
∂

∂r

[

gpl(r, r
′)
∣

∣

r=r′

]

U(r)χpl(r) ,

(6.50)
where we have made use of the fact that ̂l(pr) and n̂l(pr) satisfy the free equation (U = 0). To
proceed, notice that gpl(r, r) = 0 identically, and that

∂

∂r
gpl(r, r

′)
∣

∣

r=r′
= −1

p
W (̂l(pr), n̂l(pr)) , (6.51)

where we have introduced the Wronskian of two functions,

W (f, g) = fg′ − f ′g . (6.52)
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Since
∂

∂r
W (f, g) = f

∂2g

∂r2
− ∂2f

∂r2
g , (6.53)

it is clear that the Wronskian of ̂l(pr) and n̂l(pr) is constant, and can be calculated where we find
it most convenient. Using the small-p behaviour Eq. (6.14), we obtain W (̂l(pr), n̂l(pr)) = −p,
and so

Orχpl(r) = −λU(r)χpl(r) + λU(r)χpl(r) = 0 , (6.54)

as asserted. To prove that the desired boundary condition is satisfied one has to show that the
integral vanishes faster than l(pr) ≃ rl+1 as r → 0, so one has to discuss first the properties of
the solution of Eq. (6.48).

To solve Eq. (6.48), one writes χpl =
∑

n λ
nχ

(n)
pl and matches the coefficients of λn on both

sides of the equation. This leads to the iterative solution

χ
(n+1)
pl (r) =

∫ r

0
dr′ gpl(r, r

′)U(r′)χ
(n)
pl (r

′) , χ
(0)
pl (r) = ̂l(pr) . (6.55)

One can prove, using appropriate bounds for the Riccati-Bessel and Riccati-Neumann functions,
that the power series in λ converges for any complex value of λ (so in particular for λ = 1),
so that Eq. (6.55) really provides the solution of Eq. (6.48). As a function of λ, χpl is thus an
entire function. One can also show that the convergence is uniform, so that χpl is a continuous
function of p for all real p. The relevant bounds are

|̂l(z)| ≤ const.

(

z

1 + z

)l+1

, |n̂l(z)| ≤ const.

(

z

1 + z

)−l

, z ∈ R . (6.56)

From this it also follows that

|χpl(r)| ≤ const.

(

pr

1 + pr

)l+1

. (6.57)

For U(r) ∼ r′α with α > −2 for small r, one can thus show that as r → 0

∫ r

0
dr′ gpl(r, r

′)U(r′)χpl(r
′)

≃ const.

∫ r

0
dr′

1

p

[

(pr)l+1 (pr′
)−l −

(

pr′
)l+1

(pr)−l
]

r′α
(

pr′
)l+1

≃ const.′ (pr)l+1rα+2 ,

(6.58)

which vanishes faster than ̂l(pr), thus completing our proof.
From Eq. (6.48) one can derive an analogous equation for the Jost function. To this end,

consider the Riccati-Hankel functions ĥ±l (z) = n̂l(z)± i̂l(z). Expressing the Riccati-Bessel and
Riccati-Neumann functions in terms of these, one finds

χpl(r) =
1

2i

{

ĥ+l (pr)− ĥ−l (pr) +
λ

p

∫ ∞

0
dr′

[

ĥ+l (pr)ĥ
−
l (pr

′)− ĥ−l (pr)ĥ
+
l (pr

′)
]

U(r′)χpl(r
′)

}

= − 1

2i

{

ĥ−l (pr) +
λ

p

∫ ∞

0
dr′ ĥ−l (pr)ĥ

+
l (pr

′)U(r′)χpl(r
′)

}

+ c.c. .

(6.59)

60



Using the asymptotic behaviour of ĥ±l (z) given in Eq. (6.15), together with Eq. (6.46), we find

ϕl(p) = 1 +
λ

p

∫ ∞

0
dr′ ĥ+l (pr

′)U(r′)χpl(r
′) . (6.60)

We now discuss a few consequences of this result.

Small λ and large p limits By properly bounding the integrand [see Eq. (6.56)], one gets
from this result that ϕl(p) → 1 as either λ→ 0 or p→ ∞, and it does so uniformly in the other
variable. This implies in turn that in the same limits sl → 1, and so δ → nπ for some n ∈ Z. We
see now how one can resolve the modulo-π ambiguity: it is enough to ask for the phase shifts δl
to be continuous and to tend to 0 (not just any nπ) as p→ ∞.

Analyticity in λ and Born series Using the same bounds that allow to prove the conver-

gence of the power series in λ for χpl, one can show that the series ϕl =
∑

n λ
nϕ

(n)
l is convergent

for any λ ∈ C, i.e., ϕl is an entire function of λ. As long as ϕl(p, λ) 6= 0, one thus finds that also
upl is analytic in λ. If we make explicit the dependence on λ, and we define for general complex
λ

sl(p, λ) = ei2δl(p,λ) =
ϕl(p, λ

∗)∗

ϕl(p, λ)
, (6.61)

we see that also sl is analytic in λ, provided ϕl(p, λ) 6= 0. Notice that we are considering now sl
and δl as functions of p rather than E. In both cases, the radius of convergence of the power-
series expansion in λ (i.e., the Born series) of the normalised solution and of the S-matrix is
determined by the position λ0(p) of the zero of the Jost function closest to the origin (certainly
λ0(p) 6= 0 since ϕ(p, 0) = 1). Furthermore, for |λ| ≤ 1 and large p, one has that since the Jost
function converges to 1 uniformly in λ as p → ∞, it is possible to find p0 such that for p > p0
one has, say, |ϕ(p, λ)| > 1

2 inside the whole unit circle. Setting λ = 1, this implies that the Born
series converges for any potential (satisfying our “reasonableness” assumptions, pag. 20) if the
energy is sufficiently large.

Amplitude from the Jost function Recall that fl =
sl−1
2ip . Using Eq. (6.61) we find

fl(p) =
ϕl(p, λ

∗)∗ − ϕl(p, λ)

2ipϕl(p, λ)
, (6.62)

where we keep λ complex for generality, and we are considering fl(p) as a function of p. Using
the fact that h±l (z)

∗ = h∓l (z) and the expression Eq. (6.60), we find that

ϕl(p, λ
∗)∗ − ϕl(p, λ) =

λ

p

∫ ∞

0
dr [ĥ−l (pr)− ĥ+l (pr)]U(r)χpl(r)

= −2i
λ

p

∫ ∞

0
dr ̂l(pr)U(r)χpl(r) ,

(6.63)

and so

fl(p) = − λ

p2ϕl(p, λ)

∫ ∞

0
dr ̂l(pr)U(r)χpl(r) . (6.64)
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Small p behaviour of the amplitude We now focus on the physical case, setting λ = 1
and dropping it from the notation. What we want to derive is the small-p behaviour of the
amplitude. Using Eqs. (6.56), (6.57), and (6.64), we have that

|fl(p)| ≤
1

p2|ϕl(p)|

∫ ∞

0
dr |U(r)|

(

pr

1 + pr

)2(l+1)

. (6.65)

Let us now assume that ϕl(0) 6= 0. If U(r) vanishes faster than any inverse power of r at large
r, we can drop the denominator in the integrand of Eq. (6.65) and obtain |fl(p)| ≤ const.× p2l.
Since the contribution from small r is precisely of this order, we have fl(p) = O(p2l) as p → 0.
If U(r) vanishes like r−ν , this result still holds for 2l + 2 − ν < −1. For l > (ν − 3)/2 we split
the integral as

∫∞
0 =

∫ 1
0 +

∫∞
1 : for the first term the bound above still applies. For the second

contribution we have instead

∫ ∞

1
dr U(r)

(

pr

1 + pr

)2(l+1)

≤ const.

∫ ∞

1

dr

rν

(

pr

1 + pr

)2(l+1)

= pν−1const.

∫ ∞

p

dr

rν

(

r

1 + r

)2(l+1)

≤ pν−1const.

∫ ∞

0

dr

rν

(

r

1 + r

)2(l+1)

,

(6.66)

where the last integral is convergent since 2l+ 2− ν > −1. Since 2l > ν − 3, the second term is
dominant at small p, and |fl(p)| ≤ const.×pν−3. Again, since the large-r contribution is precisely
of this order, we have for l > (ν − 3)/2 that fl(p) = O(pν−3) as p→ 0. When l = (ν − 3)/2, the
last integral in Eq. (6.66) is logarithmically divergent as p→ 0, and so fl(p) = O(pν−3 ln(p0/p))
with p0 some fixed momentum scale.

We have thus shown that fl vanishes as p→ 0 like

fl(p) ≃ −alp2l or − alp
ν−3 . (6.67)

The constants al are known as scattering lengths; for l = 0, a0 has indeed dimensions of length.
It is clear from the above that at very low energy the scattering amplitude is dominated by the
s-wave (l = 0), so that it is isotropic, and that it is energy-independent. For the S-matrix the
results above imply

sl(p) = 1 +O(p2l+1) =⇒ δl(p) = n′π +O(p2l+1) , (6.68)

for rapidly vanishing potentials, and for potentials vanishing like r−ν when l ≤ (ν − 3)/2, or

sl(p) = 1 +O(pν−2) =⇒ δl(p) = n′π +O(pν−2) , (6.69)

for potentials vanishing like r−ν and l ≥ (ν − 3)/2. We thus have that δl(p) becomes an integer
multiple of π both at large and small energies, although possibly with different proportionality
constants. In particular, if we resolve the modulo-π ambiguity as discussed above by setting
δl(∞) = 0, then δl(0) will be in general a nonzero multiple of π. Is there some physics hidden
in this constants? As we will see below, the answer is yes.

The results above hold if ϕl(0) 6= 0: this case can be handled as well, and if ϕl vanishes at
zero like pα, then the powers of the power-law terms in the expressions above have to be reduced
by α.
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Large-l behaviour of the phase shifts There is one more property of the phase shifts
worth discussing. Returning to the radial Schrödinger equation Eq. (6.10), it is clear that as
l → ∞ the repulsive centrifugal barrier dominates over the potential (unless this has a “long
tail”). The larger l, the smaller becomes the chance that the incident particle penetrate the
barrier and reach into the region where the potential is non-negligible. This means that it will
be essentially unaffected by the potential, so that it will behave as a free particle, and thus
the phase shift will be zero (modulo π). If a is the range of the potential, one can estimate
the height of the centrifugal barrier at the edge of the interaction region as h = l2/(2ma2). In

order to penetrate the barrier one needs that E = p2

2m > h, so for E ≪ h one will not have any
appreciable effect. This means that for l ≫ pa all the phase shifts will be small. Classically, one
has that l = pb where b is the impact parameter: if b ≫ a one does not have scattering at all,
and this corresponds to l ≫ pa.

7 Analyticity properties of the S-matrix

The study of the analyticity properties of the S-matrix allows to uncover many useful results,
both in the non-relativistic and in the relativistic case. In the simple case of non-relativistic,
single-channel, elastic two-body scattering there are several rigorous results, which we now
discuss.

7.1 Analytic properties of the regular solution

We begin our analysis by studying the analyticity properties of the regular solution. As we have
already said, this is that solution of the radial Schrödinger equation,

(

∂2

∂r2
− l(l + 1)

r2
− U(r) + p2

)

χpl(r) = 0 , (7.1)

that behaves like χpl(r) ∼ ̂l(pr) for r → 0. Although in the physical case p is a real quantity,
there is in principle nothing preventing us to consider the equation for complex p. As for the
boundary condition, ̂l(pr) is an entire function of p (i.e., analytic for all p). As in the case
of real p, the Schrödinger equation plus the boundary condition are equivalent to the integral
equation

χpl(r) = ̂l(pr) +

∫ r

0
dr′ gpl(r, r

′)U(r′)χpl(r
′) , (7.2)

where

gpl(r, r
′) =

1

p

[

̂l(pr)n̂l(pr
′)− n̂l(pr)̂l(pr

′)
]

, (7.3)

which is again an entire function of p. The integral equation Eq. (7.2) can be solved by iteration,

as we did in the real-p case, setting χpl(r) =
∑

n χ
(n)
pl (r) with

χ
(n+1)
pl (r) =

∫ r

0
dr′ gpl(r, r

′)U(r′)χ
(n)
pl (r

′) , χ
(0)
pl (r) = ̂l(pr) . (7.4)

One can show that the series converges for all complex p, and does so uniformly in p; moreover,
each term is analytic in p, and therefore so is the sum of the series, i.e., the regular solution.
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One thus concludes that χpl(r) is an entire function of p. It is easy to generalise the proof to
the case U → λU with complex λ, in which case the solution is entire both in p and in λ.

In order to prove the statements above, one needs the generalisation of the bounds Eq. (6.56)
to the case of complex arguments:

|̂l(z)| ≤ const.

( |z|
1 + |z|

)l+1

e|Im z| , |n̂l(z)| ≤ const.

( |z|
1 + |z|

)−l

e|Im z| . (7.5)

Moreover, since

gpl(r, r
′) =

1

2ip

[

ĥ+l (pr)ĥ
−
l (pr

′)− ĥ−l (pr)ĥ
+
l (pr

′)
]

, (7.6)

and
ĥ±l (z) →

|z|→∞
e±i(z−

π
2
l) , (7.7)

one has for r ≥ r′

|gpl(r, r′)| ≤
const.

|p| e|Im p|(r−r′)

( |p|r
1 + |p|r

)l+1( |p|r′
1 + |p|r′

)−l

. (7.8)

The n-th term of the iteration reads

χ
(n)
pl (r) =

∫ r

0
drn gpl(r, rn)U(rn)

∫ rn

0
drn−1 gpl(rn, rn−1)U(rn−1) . . .

×
∫ r3

0
dr2 gpl(r3, r2)U(r2)

∫ r2

0
dr1 gpl(r2, r1)U(r1)̂l(pr1) .

(7.9)

Taking the modulus and using the bounds above we find

|χ(n)
pl (r)| ≤ const.n × 1

|p|n e
|Im p|r

( |p|r
1 + |p|r

)l+1 ∫ r

0
drn . . .

∫ r2

0
dr1

n
∏

i=1

|p|ri
1 + |p|ri

|U(ri)|

= const.n × e|Im p|r

( |p|r
1 + |p|r

)l+1 ∫ r

0
drn . . .

∫ r2

0
dr1

n
∏

i=1

ri
1 + |p|ri

|U(ri)|

= const.n × e|Im p|r

( |p|r
1 + |p|r

)l+1 1

n!

[
∫ r

0
dr′

r′

1 + |p|r′ |U(r′)|
]n

≤ const.n × e|Im p|r

( |p|r
1 + |p|r

)l+1 1

n!

[
∫ r

0
dr′ r′ |U(r′)|

]n

.

(7.10)

This bound has three important consequences.

1. It shows that |χ(n)
pl (r)| → 0 as n → ∞. It also shows that |χ(n)

pl (r)| → 0 faster than rl+1

as r → 0, which implies that χpl(r) as given by Eq. (7.2) really satisfies its boundary
condition at r = 0.

2. The series is bounded by a convergent one, so it is convergent:

|χpl(r)| =
∣

∣

∣

∑

n

χ
(n)
pl (r)

∣

∣

∣
≤ econst.×α(r)e|Im p|r

( |p|r
1 + |p|r

)l+1

, α(r) =

∫ r

0
dr′ r′ |U(r′)| .

(7.11)
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This provides also a bound on the regular solution. Finally, this also shows that |χpl(r)| →
0 like |p|l as |p| → 0, a result that we used in the previous section, in the case of real p, to
determine the small-p behaviour of the scattering amplitude.

3. For p in any bounded complex domain, the series converges uniformly in p.

Moreover, each term of the recursion is analytic: assuming that the nth term is analytic in p,
the (n + 1)-th one is analytic in p as well, being obtained via Eq. (7.4) as the integral in r′

of a function which is both analytic in p and continuous in r′ (see, e.g., [Titchmarsh], §2.83).
Since the zeroth term is analytic in p and continuous in r, each term is. Combined with uniform
convergence of the series, this implies that the regular solution is analytic for all p.

Notice the following symmetry property of χpl(r). Since the radial Schrödinger equation
depends only on p2, and its solution is unique up to normalisation, it follows that χpl(r) and
χ−pl(r) must be proportional, χ−pl(r) = Cχpl(r). Since ̂l(−z) = (−1)l+1̂l(z), we have

C =
χ−pl(r)

χpl(r)
= lim

r→0

χ−pl(r)

χpl(r)
= lim

r→0

̂l(−pr)
̂l(pr)

= (−1)l+1 , (7.12)

i.e., χ−pl(r) = (−1)l+1χpl(r), exactly like the free solution.

7.2 Analytic properties of the Jost function

From the analyticity properties of the regular solution we can obtain those of the Jost function.
For real p, we know that the Jost function is related to the regular solution via Eq. (6.60),

ϕl(p) = 1 +
1

p

∫ ∞

0
dr′ ĥ+l (pr

′)U(r′)χpl(r
′) . (7.13)

If the upper bound of integration were finite, this expression would define an analytic function
of p. If we can show that the integral converges uniformly at least for p in some complex domain
connected to the real positive axis, then we would have found the unique analytic extension of
the Jost function.

For complex p, in general χpl(r) ∼ e|Im p|r at large r, while ĥ+l (pr
′) ∼ e−Im pr. For Im p > 0

we have that the exponentials cancel out, and the integral can be convergent. More precisely,
using the bounds Eqs. (7.5) and

|ĥ+l (z)| ≤ const.× e−Im z

( |z|
1 + |z|

)−l

, (7.14)

we find

|ϕl(p)− 1| ≤ const.

|p|

∫ ∞

0
dr′ |U(r′)|e(|Im p|−Im p)r′ |p|r′

1 + |p|r′ . (7.15)

When Im p > 0, the exponentials cancel out as anticipated, and the integral converges uniformly
in p: since the integrand is analytic in p and continuous in r, this implies that ϕl(p), as defined by
Eq. (7.13), is analytic in the upper half of the complex plane. Moreover, the integral converges
uniformly in p for Im p ≥ 0, where the integrand is continuous both in p and in r, so ϕl(p) is
continuous in Im p ≥ 0. This means that the physically relevant Jost function (real positive p)
is continuously connected to an analytic function in the whole upper half-plane.
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It is rather straightforward to generalise the results above to the case in which one makes
explicit the dependence of the potential on an overall scale λ, i.e., for Hamiltonians of the form
H = H0+λV . Since χpl is in this case an entire function of λ, and the only change in Eq. (7.13)
is the replacement U → λU , it follows that ϕl(p, λ) is entire in λ.

An important property of the Jost function is that it is real on the imaginary axis. To prove
this result, recall that χpl(r) is a real function of p for real p, so by Schwartz’s reflection principle
χp∗l(r) = χpl(r)

∗. As we saw above, the regular solution satisfies χ−pl(r) = (−1)l+1χpl(r). Recall
furthermore the following symmetry property of the Riccati functions, ̂l(−z) = (−1)l+1̂l(z) and
n̂l(−z) = (−1)ln̂l(z), from which it follows ĥ±l (−z) = (−1)lĥ∓l (z) = (−1)lĥ±l (z

∗)∗. Inserting this
into Eq. (7.13) we find

ϕl(−p) = 1 +
1

−p

∫ ∞

0
dr′ ĥ+l (−pr′)U(r′)χ−pl(r

′)

= 1 +
1

−p

∫ ∞

0
dr′ ĥ+l (p

∗r′)∗(−1)lU(r′)χp∗l(r
′)∗(−1)l+1 = ϕl(p

∗)∗ .

(7.16)

This relation can be written equivalently as

ϕl(p) = ϕl(−p∗)∗ , (7.17)

and for purely imaginary p = −p∗ one sees that the Jost function is real.
So far we have shown that the Jost function is analytic in the upper half-plane, but in order

for analytic properties to be useful in the physical region, we need that the domain of analyticity
extends into the lower half-plane. For this to be possible we need more restrictive requirements
on the potential, which should vanish sufficiently fast to kill the exponential growth of the
Riccati-Hankel function and of the regular solution. An obvious possibility is that the potential
is exponentially bounded at large r, U(r) . e−µr. In this case for µ− |Im p|+ Im p ≥ 0 one still
has uniform convergence of the integral in Eq. (7.13), so the region of analyticity is extended to
include the strip 0 ≥ Im p > −µ

2 .
An interesting class of potentials is that of analytic potentials, which contains potentials

which are analytic functions of r, and that moreover satisfy our “reasonableness” conditions
along any ray r = ρeiθ in the right half of the complex plane, i.e., for Re r > 0 (for the
“reasonableness” conditions see section 4.1, pag. 20). One such potential is the Yukawa potential.
For such potentials, one has that the regular solution is also analytic for complex r in Re r > 0
(this is shown making use of the iterative solution). By deforming the contour of integration
one can thus identically write

ϕl(p) = 1+
1

p

∫ ∞

0
dr′ ĥ+l (pr

′)U(r′)χpl(r
′) = 1+

eiθ

p

∫ ∞

0
dr′ ĥ+l (pe

iθr′)U(eiθr′)χpl(e
iθr′) . (7.18)

The same argument given above allows to extend the second integral into that part of the
complex plane for which Im (peiθ) > 0. This part of the complex plane overlaps with the upper
half-plane and extends into the lower half-plane: due to the uniqueness of the analytic extension,
the second expression in Eq. (7.18) provides the analytic extension of ϕl(p) into part of the lower
half-plane. Repeating the argument for all θ, one can continue ϕl(p) in the whole lower half-
plane, with the negative imaginary axis excluded. For a Yukawa potential one can combine
the results obtained from analyticity and from the exponential boundedness, so adding to the
general analyticity domain also the interval (−µ

2 , 0] on the negative imaginary axis, where the
Jost function is real.
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7.3 Analytic properties of the S-matrix

The reason why we were interested in extending the domain of analyticity of the Jost function
into the lower half-plane becomes clear if we recall the expression for the S-matrix elements in
terms of ϕl(p), Eq. (6.47), which we rewrite here:

sl(p) = e2iδl(p) =
ϕ∗
l (p)

ϕl(p)
. (7.19)

This expression is valid for physical p. In order to extend it to complex momenta, we notice
that for real p one clearly has ϕ∗

l (p) = ϕ∗
l (p

∗). The second expression is however analytic in p.
Moreover, exploiting Eq. (7.17) we have ϕl(p

∗)∗ = ϕl(−p), so we can write

sl(p) = e2iδl(p) =
ϕl(−p)
ϕl(p)

. (7.20)

For this expression to have any meaning for nonreal p, we need that both the numerator and the
denominator be analytic in the same complex domain, and this is possible only if the domain of
analyticity of ϕl(p) extends into the lower half-plane. If this is the case, we have immediately
the following result: the S-matrix has a pole whenever the Jost function vanishes. Nice, but
what is the physical content of this?

We prove now a crucial result, relating the zeros of the Jost function and the discrete spec-
trum of the Hamiltonian: ϕl(p) vanishes at p̄ in the upper half-plane if and only if p̄ is purely

imaginary and the Hamiltonian has a bound state of energy E = p̄2

2m < 0. To do so, let us intro-
duce first the Jost solutions J±

lp(r) of the radial Schrödinger equation, identified by the boundary

condition J±
lp(r) → ĥ±l (pr) as r → ∞.39 As usual, the equation plus boundary condition are

equivalent to an integral equation, which now takes the form

J±
pl (r) = ĥ±l (pr)−

∫ ∞

r

dr′ gpl(r, r
′)U(r′)J±

pl (r
′) . (7.21)

Using the by now familiar technique of iterative solution, one can show that under our usual
assumptions on the potential the Jost solutions exist and are continuous in Im p ≥ 0, and
moreover they are analytic in Im p > 0.

From the asymptotic behaviours Eqs. (6.46) and (6.15) we find that for real p

χpl(r) =
1

2i

[

ϕ∗
l (p)J

+
pl (r)− ϕl(p)J

−
pl (r)

]

=
1

2i

[

ϕl(−p)J+
pl (r)− ϕl(p)J

−
pl (r)

]

. (7.22)

Recalling the definition given in Eq. (6.52) of the Wronskian W (f, g) of two functions f, g, we
see that

W (J+
pl , χpl) = − 1

2i
ϕl(p)W (J+

pl , J
−
pl ) . (7.23)

Since J±
lp are both solutions of the same Schrödinger equation, we have that their Wronskian is

constant:
d

dr
W (J+

pl , J
−
pl ) = J+

pl

d2J−
pl

dr2
−
d2J+

pl

dr2
J−
pl = 0 , (7.24)

39Notice that the Jost solutions need not vanish at r = 0.
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and so it can be evaluated where desired. Since we know the asymptotic behaviour J±
pl ∼

e±i(pr−l
π
2
), one can compute the Wronskian at r → ∞, and obtain W (J+

pl , J
−
pl ) = −2ip, so that

ϕl(p) =
1

p
W (J+

pl , χpl) . (7.25)

This relation can be analytically continued in the upper half plane, since both J+
pl and χpl are

analytic there.
Assume now that ϕl(p̄) = 0 for some p̄, Im p̄ > 0. From Eq. (7.25), we see that χp̄l ∝ J+

p̄l ;

moreover, J+
p̄l is a normalisable eigenfunction of the Hamiltonian with eigenvalue p̄2

2m , since

|J+
p̄l | ∼ e−Im p̄r at large r. Since the Hamiltonian is self-adjoint, it has only real eigenvalues and

so p̄ must be purely imaginary. Conversely, if the Hamiltonian has a bound state of energy

E < 0, then we can set E = p̄2

2m with p̄ purely imaginary, and the corresponding eigenfunction
χp̄l must be exponentially decaying at large r, and thus proportional to the Jost solution at p̄,
see Eq. (7.22). It then follows that ϕl(p̄) = 0. This proves our statement about the one-to-one
correspondence between bound states and zeros of the Jost function in the upper half plane.

It is worth noticing that this result is actually independent of the possibility of continuing
the Jost function into the lower half-plane. When this is possible, however, we can relate the
presence of a bound state in the spectrum with the appearance of a pole in the S-matrix. This is
the way the result is usually presented, for several reasons: for the physically interesting cases the
relevant analytic continuation into the lower half-plane can be made; for the full amplitude (as
opposed to the partial-wave amplitude) the complications related to the analytic continuation
do not appear and poles of the amplitude are in one-to-one correspondence with the bound
states; finally, in the relativistic case it is not clear whether a Jost function can be defined, while
the existence of the S-matrix is established.

There are a few more results to be discussed concerning the zeros of the Jost function. First
of all, we show that there are no zeros on the real axis, except perhaps at p = 0. Indeed, if
ϕl(p̄) = 0 for real p̄, then from the first equality in Eq. (7.22) we see that χpl would vanish
identically, but since χpl ∝ (pr)l+1 as r → 0 this is impossible, as long as p 6= 0. Secondly, from
the bound Eq. (7.15) one sees that for Im p ≥ 0 the Jost function tends to 1 uniformly in p as
|p| → ∞, decaying at least like some power of p. This implies that it has no zeros for |p| > R
for some R. Since an analytic function can have at most a finite number of zeros in a bounded
region (see [Titchmarsh], §2.6), it follows that there is only a finite number of bound states for
any angular momentum l.40

Finally, one can show that the zeros of ϕl at a bound state are always simple (unless p = 0:
see below). To see this one proceeds as follows. From Eq. (7.25) we have

d

dp
ϕl(p) = −1

p
ϕl(p) +

1

p
W

(

d

dp
J+
pl , χpl

)

+
1

p
W

(

J+
pl ,

d

dp
χpl

)

. (7.26)

Moreover, from
d

dr
W (J+

pl , χp′l) = (p2 − p′ 2)J+
plχp′l , (7.27)

40The zeros of an analytic function cannot have an accumulation point (and therefore there must be a finite
number of them) in a bounded region if the function is nonzero on the boundary. If we assume ϕl(0) 6= 0, then
there is no place on the boundary Im p = 0 of the analyticity domain Im p > 0 of ϕl where zeros could accumulate.
If ϕl(0) = 0, then it must vanish linearly or quadratically, as we will see below, so that the origin is an isolated
zero.
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from
W (J+

p̄l , χpl)|r=0 = 0 , (7.28)

which follows from J+
p̄l vanishing at 0 since it is proportional to the regular solution, and from

W (J+
pl , χp̄l)|r→∞ = 0 , (7.29)

since χp̄l and J
+
pl (for Im p > 0) vanish at infinity, we find

W (J+
p̄l , χpl) =

∫ r

0
dr′ (p̄2 − p2)J+

p̄l (r
′)χpl(r

′) ,

W (J+
pl , χp̄l) = −

∫ ∞

r

dr′ (p2 − p̄2)J+
pl (r

′)χp̄l(r
′) .

(7.30)

Taking derivatives with respect to p, setting p = p̄, and adding the two terms we obtain

d

dp
ϕl(p̄) = −2

∫ ∞

0
dr′ J+

p̄l (r
′)χp̄l(r

′) = −2κ

∫ ∞

0
dr′ χ2

p̄l(r
′) , (7.31)

where κ is the nonzero proportionality constant between the regular and the Jost solutions, and
χp̄l is a real quantity, so that the right-hand side in the equation above is nonzero.

Bound states at threshold What happens when p = 0? In this case the radial Schrödinger
equation reads

(

∂2

∂r2
− l(l + 1)

r2
− U(r)

)

χ̃l(r) = 0 , (7.32)

and one sees that the general solution behaves both at small and large r like a linear combination
of rl+1 and r−l. Imposing regularity at the origin, one is left in general with a divergent χ̃l(r) as
r → ∞. For specific choices of the potential it is possible that the rl+1 term vanishes: if l > 0
one has therefore a normalisable solution, while for l = 0 the solution is asymptotically constant
and so not normalisable. In other words, bound states at p = 0 might exist only for l > 0.

The use of a different notation for the solution at p = 0 is due to the fact that χ̃l is not
the limit of χpl as p → 0, for the latter function vanishes identically. Instead, given that χpl
satisfies the integral equation Eq. (6.48) and that ̂l(pr) ∝ (pr)l+1 as p → 0, one easily sees

that χ̃l = limp→0 p
−(l+1)χpl indeed satisfies Eq. (7.32). Since limp→0 p

−(l+1)̂l(pr) =
rl+1

(2l+1)!! , the

boundary condition is χ̃l(r) → rl+1

(2l+1)!! as r → 0. One similarly finds that limp→0 p
ln̂l(pr) =

limp→0 p
lĥ±l (pr) = (2l−1)!!

rl
. A reasoning similar to that used for the regular solution shows

that the appropriate limit for the Jost solutions is J̃±
l = limp→0 p

lJ±
pl , with boundary condition

J̃±
l (r) →

(2l−1)!!
rl

as r → ∞.
Rewriting now the Jost function as

ϕl(p) =
1

p
W (J+

l , χpl) =W (plJ+
l , p

−(l+1)χpl) , (7.33)

we see that in the limit p→ 0
ϕl(0) =W (J̃+

l , χ̃l) , (7.34)
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and therefore ϕl(0) = 0 if and only if χ̃l (∝ rl+1 as r → 0) is proportional to J̃+
l (∝ r−l as

r → ∞), and so, for l > 0, a bound state at p = 0 exists if and only if the Jost function vanishes
there. If for the s-wave ϕ0(0) = 0, one talks instead of a virtual state.

We can also discuss how ϕl(p) vanishes as p → 0 (in case it does so). First of all notice

that, since ̂l(pr) = (pr)l+1F
(j)
l

(

(pr)2
)

and n̂l(pr) = (pr)−lF
(n)
l

(

(pr)2
)

, one has that χpl(r) =

(pr)l+1F
(χ)
l

(

(pr)2
)

. To see this, observe that χpl(r) can be constructed through the iterative
solution Eq. (7.4), and that at each step one is convoluting gpl(r, r

′) = g̃l(r, r
′, p2) with pl+1

times a function of p2. From the relation Eq. (6.60) between the Jost function and the regular
solution (for λ = 1) we find for small p

ϕl(p) = 1 +
1

p

∫ ∞

0
dr′ n̂l(pr

′)U(r′)χpl(r
′) +

i

p

∫ ∞

0
dr′ ̂l(pr

′)U(r′)χpl(r
′)

= 1 + (α
(0)
l + α

(1)
l p2 + . . .) + ip2l+1(β

(1)
l + β

(2)
l p2 + . . .) ,

(7.35)

with real coefficients α
(n)
l and β

(n)
l . The Jost function vanishes at the origin if 1+α

(0)
l = 0, and

in that case it behaves like p2 if l > 0, i.e., a double zero, or like ip if l = 0, i.e., a simple zero.
This can be seen also from Eq. (7.31): for l > 0, one has that

d

dp
ϕl(p̄) = −2

∫ ∞

0
dr′ J+

p̄l (r
′)χp̄l(r

′) = −2p̄

∫ ∞

0
dr′ p̄lJ+

p̄l (r
′)p̄−(l+1)χp̄l(r

′)

→̄
p→0

−2p̄

∫ ∞

0
dr′ J̃+

l (r
′)χ̃l(r

′) = −2γp̄

∫ ∞

0
dr′ [χ̃l(r

′)]2 ,

(7.36)

and so ϕl(p) vanishes quadratically as the integral in Eq. (7.36) is nonzero. For l = 0 this
argument does not work since in that case this integral diverges. Instead, by noticing that
J+
p̄0 ∼ 1 at large r and χp̄0 ∝ p as p → 0, so that J+

p̄0 = p̄γχp̄0 as p̄ → 0,41 we can write (recall
Re p̄ = 0 if Im p̄ > 0)

d

dp
ϕ0(p̄) = −2γp̄

∫ ∞

0
dr′ [J+

p̄0(r
′)]2 = −2iγ

∫ ∞

0
dr′

[

J+
p̄0

(

r′

Im p̄

)]2

→̄
p→0

−2iγ

∫ ∞

0
dr′ e−2r′ = −iγ ,

(7.37)

so that ϕ0(p) vanishes linearly at the origin (if at all).
These results lead to the following remark. From the relation Eq. (7.19) we find, for general

l, when ϕ0(0) = 0, that at low energies (p real positive)

sl(p) =
ϕ∗
l (p)

ϕl(p)
≃ α

(1)
l p2 − ip2l+1β

(1)
l

α
(1)
l p2 + ip2l+1β

(1)
l

→
p→0















+ 1− 2i
β
(1)
l

α
(1)
l

p2l−1 , if l > 0 ,

− 1− 2i
α
(1)
l

β
(1)
l

p , if l = 0 .

(7.38)

Plugging this into Eq. (6.33) we find that

fl(p) =
sl(p)− 1

2ip
→
p→0















− β
(1)
l

α
(1)
l

p2(l−1) , if l > 0 ,

i

p
− α

(1)
l

β
(1)
l

, if l = 0 .

(7.39)

41Imagine that we are controlling the position of p̄ by changing the overall strength of the potential.
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Figure 7: Path of integration in the complex plane used in the proof of Levinson’s theorem.

We thus see that in the presence of a virtual state [i.e., ϕ0(0)] one has a diverging s-wave
scattering amplitude f0(p) as p → 0. For higher angular momenta the vanishing behaviour at
p = 0 is instead reduced by a power of 2; in particular, for the p-wave one finds a finite amplitude
at p = 0.

7.4 Levinson’s theorem

We are now ready to prove an important result concerning the phase shifts, known as Levinson’s
theorem:

For any “reasonable” spherical potential, the phase shifts δl(p) and the number nl
of bound states of angular momentum l satisfy the relation

δl(0)− δl(∞) = nlπ , (7.40)

as long as the Jost function ϕl(p) does not vanish at p = 0. If ϕl(0) = 0 then

δl(0)− δl(∞) =

{

nlπ if l > 0 ,
(

nl +
1
2

)

π if l = 0 .
(7.41)

In the case ϕl(0) 6= 0 the proof is rather straightforward. Consider the complex integral

I =

∮

C
dz

d
dz
ϕl(z)

ϕl(z)
, (7.42)

on the semicircular contour C closed in the upper half-plane, see Fig. 7. The integrand is analytic
everywhere in the upper half-plane, except at the zeros of the Jost function, where it has a pole
with residue 1 (here one has to make use of the fact that the zeros are simple). Therefore, by a
simple application of Cauchy’s residue theorem we find

I = 2πinl , (7.43)

where nl is the number of zeros of ϕl, which lie on the positive imaginary axis. Of course nl
matches the number of bound states of angular momentum l. On the other hand, for real p we
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Figure 8: Modified path of integration in the complex plane used in the proof of Levinson’s
theorem when ϕl(0) = 0.

can write the Jost function as ϕl(p) = |ϕl(p)|e−iδl(p) [see Eq. (6.47)]. Moreover, since ϕl(p) tends
to 1 at large |p|, one sees that the semicircle gives no contribution to the integral, and thus

I =

∫ ∞

−∞
dp

d

dp
logϕl(p) =

∫ ∞

−∞
dp

d

dp
{ln |ϕl(p)| − iδl(p)} . (7.44)

Since, for real p, ϕl(−p) = ϕl(p)
∗, we have that |ϕl(−p)|e−iδl(−p) = |ϕl(p)|eiδl(p), i.e., the modulus

is an even function of p while the phase is an odd function of p. The contribution of the modulus
thus cancels in Eq. (7.44), and we are left with

I = −2i[δl(∞)− δl(0)] . (7.45)

Comparing Eqs. (7.43) and (7.44), the desired result Eq. (7.40) follows.
If ϕl(0) = 0, then we have to modify the contour C in Eq. (7.42) by avoiding the origin

on a small semicircular contour, see Fig. 8. In this way Eq. (7.43) remains unchanged. On
the other hand, Eq. (7.44) contains now the contribution from this small contour, which reads
(dz = iǫeiθdθ = izdθ)

∫

Cǫ

dz
d
dz
ϕl(z)

ϕl(z)
=















2

∫

Cǫ

dz

z
= −2πi , if l > 0 ,

∫

Cǫ

dz

z
= −πi , if l = 0 .

(7.46)

We thus find 2πnl = −2π + δl(0)− δl(∞) if l > 0, and 2πnl = −π + δl(0)− δl(∞) if l = 0, from
which Eq. (7.42) follows.

Combined with the choice δl(∞) = 0, Levinson’s theorem shows that the scattering phase
at zero momentum is just nlπ (except for the s-wave in the presence of a virtual state). As p is
increased from 0 to ∞, δl(p) passes several times through multiples of π, and at those energies
one finds no contribution to the total cross section from the partial wave of momentum l. In
particular, this might happen to δ0(p) at energies low enough so that the other partial waves
are completely negligible. In this case one observes that the target is transparent to the beam
at a particular energy: this is the Ramsauer-Townsend effect.
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7.5 Resonances

We conclude this section discussing the phenomenon of resonances, and their relation with the
zeros of the Jost function in the lower half plane.

It is a fact of life that in certain scattering processes, the cross section shows one or more
pronounced peaks in correspondence with specific values ER of the energy. These peaks are
called resonances. The theoretical interpretation of this phenomenon is that when the scattering
system has energy near ER, it can form a metastable state, that quickly decays again into stable
objects. More precisely, in the non-relativistic setting, the resonance is related to the existence
of an almost-bound state of the two particles involved in the process: if the energy of the system
is near ER, then the two particles can be temporarily captured into this state, and this causes
the sharp variation of the cross section.

To see in more detail how this can happen in the single-channel scattering system discussed
in this section, assume that the Jost function can be analytically continued in the lower half
plane, and that it has a simple zero at some p = p̄ = pR − ipI with pI > 0.42 Since ϕl(p)
and ϕl(−p) cannot both vanish, this implies that the S-matrix has a pole at p̄. A zero of the
Jost function in the lower half plane does not correspond to a bound state: ϕl(p̄) = 0 means
that the regular solution is proportional to the Jost solution J+

p̄l , but since Im p̄ < 0 this is not
normalisable, and thus not a proper eigenfunction of the Hamiltonian.

In the vicinity of p̄, the Jost function can be approximated as

ϕl(p) ≈ ϕ′
l(p̄)(p− p̄) . (7.47)

If p̄ is close to the real axis, then there is an interval around pR where this approximation is
good. From the relation between the S-matrix and the Jost function we find for real p that

sl(p) = e2iδl(p) =
ϕl(p)

∗

ϕl(p)
≈ ϕ′

l(p̄)
∗(p− p̄)∗

ϕ′
l(p̄)(p− p̄)

= e2i(δbg+δres(p)) , (7.48)

where
δres(p) = − arg(p− p̄) , δbg = − argϕ′

l(p̄) , (7.49)

are respectively the resonant part of the phase shift, and the background phase shift. From
Eq. (7.49)

tan δres(p) =
pI

pR − p
, (7.50)

and we see that as we increase p past pR, the resonant part grows from zero to π, taking the
value δres(pR) = π

2 at pR. This rapid increase of the phase shift from δbg to δbg + π is the
signature of a resonance.

From Eq. (6.35) we see that the contribution σl of the l-th partial wave to the total cross
section reads

σl(p) =
4π

p2
(2l + 1) sin2 δl(p) =

4π

p2
(2l + 1) sin2(δbg + δres(p)) . (7.51)

In general δbg can take any value, but if p̄ is close to zero, then, as we will see below, δbg will
be small. In this case one has that sin2 δl(p) ≃ sin2 δres(p) takes its maximal value at pR. Since

42While zeros in the upper half plane must be simple, there is no general principle guaranteeing that it is so in
the lower half plane.
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usually the cross section is expressed as a function of the energy E = p2

2m , we now describe
how the analytic structure of the S-matrix in the complex-p plane translates into the analytic
structure in the complex-E plane.

As a function of E, the Jost function reads ϕl(p) = ϕl(
√
2mE) = ϕ̃l(E), where the tilde

is used temporarily to distinguish the two functions. The presence of the square root in this
expression implies that ϕ̃l(E) has a branching point at E = 0, and to make it a single-valued
function one needs two Riemann sheets, i.e., two copies of the complex plane. The first (“physi-
cal”) sheet is cut from 0 to ∞ along the real axis, and when one crosses the cut one goes into the
second sheet. Crossing the cut on the second sheet one goes back into the physical sheet. The
upper complex-p half plane is mapped into the first sheet, with the physical region p ≥ 0 being
mapped to the upper rim of the cut. The lower complex-p half plane is mapped instead into
the second sheet. More precisely, pairs ±p with Im p > 0 are mapped to the same value of E,
but while p is mapped into the first sheet, −p is mapped into the second sheet. It is now clear
what the analytic structure of ϕ̃l(E) lools like: a zero at pbound on the positive imaginary axis

in the p-plane, corresponding to a bound state, is mapped into Ebound =
p2bound
2m on the negative

real axis in the first sheet, while a resonance zero at pres is mapped into a point in the second

Riemann sheet. If pres is below and close to the positive real axis, then Eres =
p2res
2m will be below

and close to the positive real axis, but on the second sheet: in other words, Eres is on the second
sheet slighly below the cut.

After this digression, we can repeat the analysis of the phase shifts given above, this time in

terms of E. A resonance zero lies now at Ē = p̄2

2m = ER − iΓ2 on the second Riemann sheet of
ϕl(E) (where we have now dropped the tilde), and close to the cut. For real positive energies
near ER

ϕl(E) ≈ ϕ′
l(Ē)(E − Ē) , (7.52)

and the phase shift reads

δl(E) = δres(E) + δbg , δres(E) = − arg(E − Ē) , δbg = − argϕ′
l(Ē) . (7.53)

Furthermore,

tan δres(E) =
Γ
2

ER − E
, (7.54)

and

σl(E) =
2π

mE
(2l + 1) sin2 δl(E) =

2π

mE
(2l + 1) sin2(δbg + δres(E)) . (7.55)

For small δbg we can retain only the resonant part, so that

sin2(δbg + δres(E)) ≃ sin2 δres(E) =
tan2 δres(E)

1 + tan2 δres(E)
=

Γ2

4

(ER − E)2 + Γ2

4

. (7.56)

Up to a factor 1/E, Eq. (7.56) gives the energy dependence of the cross section near the peak:
this is the celebrated Breit-Wigner formula.

Let us now briefly repeat the argument in terms of poles of the S-matrix. If sl has a pole
at p̄ = pR − ipI (pI > 0), then sl(p) = r(p)/(p − p̄) with r(p̄) 6= 0. For real p, unitary implies

|r(p)| = |p− p̄|, so r(p) = e2iδ̃(p)(p− p̄∗), since r(p) cannot vanish at p̄. Analyticity then dictates
that for general complex p

sl(p) = e2iδ̃(p)
p− p̄∗

p− p̄
, (7.57)
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and for real p near pR (if pI is small) one finally finds

sl(p) ≃ e2iδ̃(p̄)
p− p̄∗

p− p̄
, (7.58)

so that δl(p) ≃ δbg + δres(p), with δbg = δ̃(p̄), and δres(p) as above in Eq. (7.49).
The result Eq. (7.58) shows that a resonance does not correspond to large values of the

amplitude due to the vicinity of a pole: for real p near p̄ the numerator in Eq. (7.49) is as
small in absolute value as the denominator, thus keeping |sl(p)| = 1, as it should. Similarly,
the contribution of the resonance to σl(p) can take any value, depending on the value of the
background phase. The really distinctive feature of a resonance is instead the rapid change of
the phase shift by an amount of π.

Resonances and bound states We have seen that zeros of the Jost function (or poles of
the S-matrix) in the upper half p-plane correspond to bound states, and that zeros of the Jost
function (or poles of the S-matrix) in the lower half p-plane correspond to resonances. This
similarity is the basis for the interpretation of resonances as the consequence of the presence of
an almost-bound state. To see this, consider a Hamiltonian of the form H = H0 + λV . The
Jost function ϕl(p, λ) is entire in λ and analytic in p in the upper half plane; we assume that
it is analytic also in the lower half plane. Suppose now that for some real λ0 there is a zero
at threshold, ϕl(0, λ0) = 0: for l > 0 this indicates the presence of a bound state and the zero
is double, while for l = 0 there is a virtual state and the zero is simple. If we now increase λ,
making the potential more attractive, then the zero will move up to some p̄(λ) on the positive
imaginary axis (i.e., there will be a larger binding energy, or the virtual state can become a true
bound state). If we make λ smaller, instead, the bound state will cease to exist (or the virtual
state will be made “more virtual”), and the zero will move down in the lower half plane.

To see this in more detail, notice first that the zero has to move as λ moves away from λ0:
if it did not for λ in an interval around λ0, then it would not for any λ due to analyticity; but
ϕl(p, 0) = 1, so this is impossible. Next, expand ϕl(p, λ) both in p and λ around some λ0,

ϕl(p, λ) = ϕl(p, λ0) + ϕ̇l(p, λ0)(λ− λ0) + . . .

= ϕl(0, λ0) + ϕ′
l(0, λ0)p+

1

2
ϕ′′
l (0, λ0)p

2 + ϕ̇l(0, λ0)(λ− λ0) + ϕ̇′
l(0, λ0)(λ− λ0)p+ . . .

(7.59)
where prime and dot indicate the derivative with respect to p and λ, respectively. Imposing now
ϕl(p, λ0) = 0, and recalling from Eq. (7.35) the small p behaviour of ϕl(p, λ0), we have to lowest
order [b ≡ ϕ̇l(0, λ0)]

ϕl(p, λ) ≃ b(λ− λ0) +

{

ic0p (l = 0) ,

clp
2 (l > 0) ,

(7.60)

with real cl, l ≥ 0. For l = 0, the zero of the Jost function is thus at

p̄ =
ib

c0
(λ− λ0) ; (7.61)

if for λ > λ0 there is a bound state and thus Im p̄ > 0 (which requires b/c0 > 0), then p̄ moves
down along the imaginary axis as λ is decreased, until it crosses zero and goes on the negative
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imaginary axis as λ becomes smaller than λ0. For l > 0 we have instead two zeros,

p̄ = ±i
√

b

cl
(λ− λ0) ; (7.62)

assuming that for λ ≥ λ0 there is a bound state, so that p̄ are purely imaginary in that case
(which requires b/cl > 0), then we see that the two zeros get closer to the origin as λ is
decreased, until they finally join into a double zero at λ = λ0, and then part ways again as λ
becomes smaller than λ0. They will not move into the upper half plane (they could only move
along the imaginary axis, but as the potential is made less attractive it will not support bound
states anymore), and there cannot be zeros on the really axis, so they will move in the lower
half plane, symmetrically away from the imaginary axis, since ϕl(p) = ϕl(−p∗)∗ implies that
if ϕl(p̄) = 0, then also ϕl(−p̄∗) = 0. From Eq. (7.35) one sees that the imaginary part of the
zero satisfies (to lowest order) Re p̄Im p̄ ∝ Re p̄2l+1, and so Im p̄ ∝ (λ − λ0)

l: this means that
for resonances of higher angular momentum the resonance zero will stay closer to the real axis,
thus leading to a sharper resonance due to a more rapid change of phase.

Background phase for low-energy resonances We now return on the background phase
and show that it must be small when the resonance is at low energy. Consider first the case
l > 0. As a function of energy, ϕl(E, λ) is real on the negative real axis (reflecting the fact that
it is real on the positive imaginary axis in the p-plane), and so must be its derivative; therefore,
dϕl

dE
|E=Ē is a real function of (real) λ as long as λ > λ0 and the potential supports a bound state.

By continuity, it will be almost real also in an interval with λ < λ0, since it does not vanish at
λ = λ0 (ϕl ∝ E in that case). Therefore, δbg will be small as long as the zero is near threshold.
For l = 0 it is more convenient to consider ϕl(p, λ) as a function of p. In this case, ϕl(p, λ) is
real on the positive imaginary axis, and so dϕl

dp
|p=p̄ is real as long as λ > λ0. Since it does not

vanish when the zero is at threshold, by continuity it will remain real also for λ−λ0 < 0 as long
as this is small.

As a final comment, we remark that the relation between resonances and zeros of the Jost
function in the lower half plane is not as mathematically compelling as the one between bound
states and zeros in the upper half plane. Indeed, zeros in the lower half plane have physical
implications only if they are close enough to the real axis, i.e., not every zero with negative
imaginary part gives rise to a resonance. Conversely, it is theoretically possible to have the
same physical effects typical of a resonance without there being any zero in the lower half plane.
Nevertheless, the picture discussed here allows to satisfactorily describe most of the experimental
results.
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