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1 Introduction

Elementary particles are (or more precisely are thought to be) the fundamental, indivisible con-
stituents of all matter. Elementary particles come in different types, characterised by several
identifying properties such as mass, spin, electric charge, and others to be discussed later. An
important characteristic is that all particles of the same type are identical, and so indistinguish-
able. The aim of elementary particle physics is to study their properties and their interactions,
through which macroscopic objects are ultimately built.

The idea that matter is made of indivisible constituents dates back to ancient Greece, most
notably to the philosophical work of Democritus and his master Leucippus (around 6th century
b.C.). Although this idea proved to be right in the end, it was obviously not based on experi-
mental results, and came from metaphysical speculation only – elementary particle metaphysics,
as it were. The first scientifically sound proposal in this direction came from Dalton and his
atomic theory at the beginning of the 19th century. Dalton proposed that chemical elements are
composed of basic building blocks, the atoms (meaning “indivisible” in Greek), which cannot
be further divided into smaller pieces, but can be combined forming the various chemical com-
pounds. Contrary to Democritus, he proposed his theory to explain established empirical facts,
and the theory was corroborated by further experiments, which led to its refinement. This is
how science works, in a nutshell.

In that day and age, atoms were what we would call elementary particles, from which the
whole of the matter is built up. As it turned out, however, the indivisible atoms were in
fact divisible, and made up of “more elementary” particles. The concept of elementary particle
seems therefore to be dependent on the historical period. . . and in a certain sense it is. Quantum
mechanics tells us that to investigate length scales of order ∆x we need momenta of the order
of ∆p ∼ ~/∆x. The scale down to which one can reach at a given time in history is thus limited
by the available energy. While relating elementarity and time is just a (not so funny) pun,
relating it to energy makes more sense: if we are interested in a chemistry problem, then it is
appropriate to treat atoms as elementary particles. If we are interested instead in problems at
higher energies, then the internal structure of the atoms will play a role, and we will have to use
electrons, protons and neutrons as elementary particles, and at yet higher energies the internal
structure of protons and neutrons will also show up.

Of course, strictly speaking “elementarity” does not come in degrees: something is either
elementary or it is not. At the same time, the depth at which we have studied the structure of
matter is limited by our current technological capabilities, and what is considered elementary
today might not be so tomorrow. Same goes for what we think is right or wrong.1 Again, this
is science at work.

It is worth to get to the list of what are currently considered the elementary particles through
a brief historical survey. A nice summary of when and how elementary particles were discovered
can be found, e.g., in Griffiths’ book [1]. Here I will adopt the point of view of what was
considered elementary in a certain period of time.

1This does not apply to putting pineapple on pizza: that is and always will be an abomination which deserves
a special place in Hell.
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1.1 Brief history of particle physics

Electrons The birth of elementary particle physics can be considered the discovery of the
electron (e) by J. J. Thomson in 1897. Experiments with cathode rays had shown that these
were deflected by electric and magnetic fields. This suggested that they were actually streams
of light, negatively charged particles (from now on, the absolute value of the electron charge
will define the unit of electric charge). Thomson determined their speed using (perpendicular)
crossed electric and magnetic fields, tuning them so that the stream was undeflected, and making
use of the formula v/c = E/B where c is the speed of light. From the deflection of the particles
in the presence of the electric field only, he determined their charge-to-mass ratio; from the heat
generated by the stream when hitting the screena at the end of the tube, he estimated their
energy, and so their mass, which turned out to be about a thousand times smaller than that of
a hydrogen atom.

Protons and neutrons Electrons had to come from somewhere, and where else but from
atoms? Moreover, their properties turned out to be independent of the material of which the
cathode was made, which meant that they had to be present (and the same) in every atom.2 Since
atoms are electrically neutral, that required the presence in the atom of something positively
charged. In the period 1908-1917 E. Rutherford (also making use of the experimental results of
H. Geiger and E. Marsden) developed his planetary model of the atom, with the electron orbiting
around the positively charged nucleus, which contained almost all the mass of the atom. Different
atoms contained different nuclei, and a number of electrons equal to the electric charge of the
nucleus. He later understood that each unit of positive charge in a nucleus corresponded to
one hydrogen nucleus, which came to be known as the proton (p). There was still a mismatch
between the masses of nuclei and what one would have expected from their charge: this was
settled by the discovery of the neutron (n) by J. Chadwick in 1932. The neutron forms part of
the nuclei, has a mass slightly larger than that of the proton, but is electrically neutral. Decays
of unstable nuclei with emission of an electron and increase of their electric charge by one unit
(β decays) were then understood in terms of one of their neutrons decaying into a proton and
an electron.

Photons At this point in time the elementary particles where only four. Indeed, besides the
three discussed above, it had become clear that as far as subatomic physics was concerned,
the electromagnetic radiation had to be considered as formed by particles, called photons (γ).
Only in this way it was possible to explain the photoelectric effect (A. Einstein, 1905) and the
scattering of light on particles at rest (A. H. Compton, 1926). Photons are electrically neutral
and massless; their energy is proportional to the frequency of the radiation.

In terms of photons, the electromagnetic interaction can be seen as the exchange of a stream
of photons between the interacting, electrically charged objects (see Fig. 1), carrying energy and
momentum (and other quantum numbers as well) from one to the other. This will be the point
of view adopted in this course, and later we will describe it in greater detail.

Muons and pions It still remained to be explained how protons could stay together in nuclei
despite the strong electric repulsion – and how neutrons could be bound there, too. This

2The idea that the atom was not indivisible was actually not new. We tend to forget that often a new
understanding of Nature does not come out of the blue, but develops in an already fertile soil.
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Figure 1: Electromagnetic interactions can be described as exchange of photons between charged
particles.

required the existence of a new interaction, called strong interaction. This interaction had to
be strong to overcome electromagnetic repulsion, but at the same time short-ranged, as it had
no effects at macroscopic scales. In analogy with the photon, H. Yukawa proposed in 1934
that the strong interaction was mediated by a new type of massive particle which he called
meson. The term was coined to distinguish it from the proton and the neutron, which were
referred to as baryons (from the Greek “heavy”). Together, baryons and mesons form the class
of strongly interacting particles, the hadrons (from the Greek “strong”).3 From the range of
the force, Yukawa estimated the meson mass to be about one sixth of the proton mass. The
quest for Yukawa’s meson began, and by 1937 a particle with approximately the appropriate
mass was found in cosmic rays (C. D. Anderson & S. H. Neddermeyer, 1936). . . except it was
not Yukawa’s meson! More detailed studies of cosmic rays in 1946-47 (C. Lattes, G. Occhialini,
H. Muirhead, C. F. Powell, 1947) led to conclude that in cosmic rays there were two types of
particles with masses in the range of interest: one heavier and with a shorter lifetime, which
disintegrated almost entirely in the upper atmosphere, and which was the true Yukawa meson;
and one lighter and with a longer lifetime, which was what had been initially and incorrectly
identified as the meson, but which actually interacted very little with nuclei. The first particle
is the pion (π), while the second one is the muon (µ), into which the pion mainly decays.4 While
the pion was the missing piece in the strong interaction puzzle, the muon was not expected (and
I. I. Rabi famously asked: “Who ordered that?”): it appeared as a sort of heavier electron, and
so was grouped with it in the family of leptons (from the Greek “small”).

Antiparticles In the meantime, it had become clear that each particle had a “twin”, called
antiparticle, with the same mass but opposite electric charge. In fact, after having been pre-
dicted theoretically by P. A. M. Dirac, in 1931 the antielectron, or positron, had been observed
experimentally by C. D. Anderson. The number of elementary particles had grown suddenly by
a factor of approximately 2 (some particles, like the photon, are their own antiparticles), even
before observations, which came later: in 1955 and 1956 the antiproton and the antineutron5

3Other exotic objects interacting strongly exists as well. We will ignore them for the time being.
4More precisely, pions come in three types, with electric charges ±1 and 0, and it is the charged ones that

decay into muons and antimuons (see below).
5For a particle to coincide with its own antiparticle, electric neutrality is a necessary but not sufficient condition:

the neutron is different from the antineutron. More on this later.
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were also observed, by E. Segrè and O. Chamberlain, and by B. Cork, respectively.

Neutrinos Not all problems had been solved: it remained to be explained why the energy
spectrum of the electron in nuclear β decays was extended and not point-like. Energy conser-
vation requires that in this case at least one more particle has to be produced, which in the
case at hand has to be neutral and (at least almost) massless. This led to the neutrino (ν)
hypothesis proposed by W. Pauli in 1930, and incorporated by E. Fermi in 1933 in the first
theory of β decay. Direct observation of neutrinos proved to be extremely difficult, since these
particles interact very weakly, and it had to wait until the mid-fifties (F. Reines & C. L. Cowan,
1956). Several neutrino experiments were successfully conducted in the ’50s and early ’60s, and
actually revealed that neutrinos and antineutrinos were not the same particle, and, on top of
that, that there were two types of neutrinos, one corresponding to the electron (νe) and one
corresponding to the muon (νµ). Neutrinos were included in the lepton family. At this point the
interaction responsible for β decays and for processes involving neutrinos, the weak interaction,
was still poorly understood; strong interactions were not faring much better. We will return on
this later.

Strange particles: the quark model and parity violations Everything seemed now to
be in place, except possibly for the apparent uselessness of the muon. But the story was far from
over. In fact, in 1947 the existence of a new charged particle with mass between that of the pion
and that of the proton was confirmed (G. D. Rochester & C. C. Butler): this was the kaon (K),
the first of what will become known as “strange” particles, created quickly by strong interactions
but decaying slowly via weak interactions. Being affected by the strong interactions, the kaon
was included in the hadron family, more precisely in the meson subfamily. More hadrons (both
“strange” and not strange) were observed in the following years, leading to a whole new “zoo”
of particles. This apparent chaos could finally find some ordering principle when G. Zweig
and M. Gell-Mann (independently) proposed the quark model in 1964. In this model, mesons
and baryons are not elementary, but instead bound states of quarks and antiquarks, a new
type of (more. . . ) elementary particles. More precisely, mesons are formed by a quark and
an antiquark, and baryons by three quarks (and antibaryons by three antiquarks). Quarks
were proposed to exist in three different types: up (u), down (d), and strange (s). This could
neatly accomodate all the plethora of strongly interacting particles that had been discovered, and
actually correctly predict the existence of a new one, the Omega baryon, observed experimentally
in 1964 (V. A. Barnes et al.). The story of the success of the quark model is, however, a quite
intricate one, and quite surprisingly what convinced most of the community of its validity was
the discovery of a fourth type of quark, the charm (c), in 1974 (B. Richter et al.; S. Ting et al.).

Kaons were also responsible for one of the most dramatic discoveries of the 20th century,
namely the fact that parity is not a symmetry of nature (Lee and Yang, 1956). A parity
transformation is the inversion of all the spatial coordinates, and was for a long time considered
a symmetry of nature. A violation of parity means, in a nutshell, that the physics that we see in
the mirror is not equivalent to the one that we see here. Experimental signatures of this where
sought and found right away (Wu et al., 1957; Garwin et al., 1957).

More leptons and quarks From here on, a third charged lepton, the tau (τ) was discovered
in 1975 by M. Perl and collaborators; the corresponding neutrino was immediately theorised,
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but observed only in 2000 by the DONUT experiment at Fermilab. A fifth quark was observed
in 1977 by L. Lederman and collaborators, the bottom or beauty (b), which by symmetry reasons
led to theorise a sixth one, the top or truth (t), finally observed in 1995 by the CDF and DØ
experiments at Fermilab.

Interactions: the Standard Model The discovery of parity violations discussed above led
to a full reconsideration and a better theoretical understanding of weak interactions, with the
development of a model involving intermediate vector bosons as mediators of the weak force
(Glashow, 1960). These are similar to the photon mediating electromagnetic interactions, but
massive instead of massless.6 The resulting model unified the treatment of electromagnetic
and weak interactions, taking also into account the intrinsically parity-violating nature of weak
interactions. This was later coupled with the recently discovered Higgs mechanism (Higgs,
1964; Brout and Englert, 1964; Guralnik, Higgs, and Kibble, 1964) to yield the currently ac-
cepted description of electroweak interactions (Weinberg, 1967; Salam, 1967). The experimental
vindication of the Glashow-Salam-Weinberg model required fifty years of intense experimental
activity. The intermediate vector bosons, namely theW (charged) and Z (neutral) bosons, were
observed in 1983 by the UA1 and UA2 experiments at CERN. The Higgs mechanism requires
the existence of a scalar particle known as Higgs boson (H), observed in 2012 by the ATLAS
and CMS experiments at CERN, whose role will be discussed later.

A few years after the development of the Glashow-Salam-Weinberg model, a successful mi-
croscopic model was proposed to describe strong interactions in terms of the exchange of suitable
mediators. In fact, the success of the quark model had made clear that the pion could not be
considered the fundamental quantum of the strong interactions. This role was taken over by
the so-called gluons (g), that mediate the interactions between quarks, and also self-interact.
Quarks and gluons turned out to carry a further conserved quantum number called colour, and
for this reason the theory describing their interactions is known as Quantum Chromodynamics
(QCD) (Fritzsch, Gell-Mann, and Leutwyler, 1973). However, according to QCD, quarks and
gluons are permanently bound together inside hadrons, a property known as confinement, which
explains why they have not been observed in isolation. Moreover, while gluons are the funda-
mental mediators of the interaction, due to confinement it is effectively the pions (and other,
heavier hadrons as well) that are exchanged to mediate the interaction, thus determining the
long-distance properties of the theory. Together, the Glashow-Salam-Weinberg model and QCD
form the Standard Model of particle physics.

The last of the fundamental interactions is gravity, for which a fully developed quantum-
mechanical theoretical formulation does not exist yet. The hypothetical quantum of gravitational
interactions, the graviton (G), has also not been experimentally observed yet.

1.2 The elementary particles

Let us now summarise what are the known elementary particles (at least, as of now). As it
should be clear from the brief history told above, they are organised into two big groups: matter
particles and interaction particles. They are listed in Tables 1 and 2. The known nonzero masses
of elementary particles span five orders of magnitude, from the 0.5 MeV/c2 of the electron to
the 170 GeV/c2 of the top quark. This range is expected to widen as soon as neutrino masses
will be measured.

6The idea of massive mediators of the weak interactions was already proposed by Yukawa.
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leptons

particle charge mass spin

e− −1 0.5109989461(31) MeV 1
2

µ− −1 105.6583745(24) MeV 1
2

τ− −1 1.77686(12) GeV 1
2

νe 0 < 1.1 eV 1
2

νµ 0 < 0.19 MeV 1
2

ντ 0 < 18.2 MeV 1
2

quarks

particle charge mass(*) spin

u 2
3 2.16+0.49

−0.26 MeV 1
2

d −1
3 4.67+0.48

−0.17 MeV 1
2

s −1
3 93+11

−5 MeV 1
2

c 2
3 1.27+0.02

−0.02 GeV 1
2

b −1
3 4.18+0.03

−0.02 GeV 1
2

t 2
3 172.76+0.30

−0.30 GeV 1
2

Table 1: Matter particles. Mass values taken from Ref. [2]. Quark masses are the current quark
masses in the MS scheme at µ ≈ 2GeV for light quarks, and at the quark mass for the heavy
quarks.7

1.2.1 Matter particles

Matter particles have a common feature: they are all spin-12 fermions.8 They are further subdi-
vided into two groups, leptons and quarks, each of which is further divided into three families
(or generations).

The leptons include the electron (e−), the muon (µ−) and the tauon or tau (τ−), which are
electrically charged, and the corresponding electronic, muonic and tauonic neutrinos, which are
electrically neutral. To each particle corresponds an antiparticle: the anti-electron or positron,
the anti-muon and the anti-tau, and the three anti-neutrinos, which we will collectively call
sometimes antileptons. Particle and antiparticle have the same mass and spin, but are dis-
tinguished by having opposite electric charge (for the charged ones) or opposite helicities, i.e.,
spin component in the direction of motion (for the neutrinos). Each charged lepton and its
corresponding neutrino form a family, i.e., (e−, νe), (µ−, νµ), (τ−, ντ ).

The quarks come in different kinds called flavours, named up, down, strange, charm, bottom

7If you do not know what this means do not worry, it is just to make clear that quark masses are a much more
delicate issue than it might seem.

8For those who forgot. Fermions and bosons are characterised by their symmetry properties under exchange
of two of them. The state of a system of identical fermions is antisymmetric under the exchange of any two of
them, while the state of a system of identical bosons is symmetric. This in particular implies that no two identical
fermions can be in the same state (Pauli’s exclusion principle), while there is no such limitation for bosons.
Fermions are particles with half-integer spin, while bosons have integer spin. The spin of a particle determines
how its states transform under rotations, or more precisely under which representation of the rotation group its
states transform. The connection between spin and statistics is a theorem in quantum field theory.
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particle charge mass spin

γ 0 0 1
W± ±1 80.4 GeV 1
Z 0 91.2 GeV 1
g 0 0 1
H 0 125 GeV 0

Table 2: Interaction particles.

(or beauty) and top (or truth). Quarks are all electrically charged, and paired in families as
follows: (u, d), (c, s), (t, b). As with the leptons, with each quark is associated an antiquark.

All matter particles interact through the weak interactions, while only quarks are affected by
the strong ones. Quarks and charged leptons interact also electromagnetically, while neutrinos
do not.

1.2.2 Interaction particles

Interaction particles are all bosons. They are divided into classes according to what interaction
they mediate:

• the photon γ has spin 1, is massless and electrically neutral (i.e., it does not self-interact),
and mediates the electromagnetic interactions;

• the intermediate vector bosons W± and Z have spin 1, are massive, and mediate the weak
interactions; the W ’s are electrically charged, while the Z is neutral;

• the gluons g have spin 1, are massless, and mediate the strong interactions; they are
electrically neutral.

It must be noted that the intermediate vector bosons do interact with each other and with
themselves, but not with the gluons; and that the gluons interact with themselves but not with
the intermediate vector bosons.

To these particles one has to add the Higgs boson H, which is a massive, electrically neutral
particle of spin 0. This interacts with all other elementary particles, except for the photon
and the gluons. This interaction provides mass to the elementary particles (and so photon and
gluons are massless): we will give a brief explanation later.

The “periodic table” of all the elementary particles is shown in Fig. 2. This does not include
antiparticles, that can be easily reconstructed.

1.3 Interactions as particle exchange

As already mentioned above, the point of view adopted in this course is to describe the interaction
between particles in terms of the exchange of one or more mediators. In general, particles
interacting means that they exchange energy, momentum, angular momentum, and so on. This
exchange of quantum numbers is pictured as the exchange of a mediator particle, carrying
precisely the right amount of the various quantum numbers from one particle to another. The
process of emission or absorption of such a mediator by one of the interacting particles is called
an interaction vertex. These will be discussed in detail in Section 3.3.

9



quarks







leptons







matter families/generations

︷ ︸︸ ︷

gauge bosons

︷ ︸︸ ︷

the

God(damn)

particle

︷ ︸︸ ︷

I II III

up

2.2 MeV
2
3
1
2

u

charm

1.28 GeV
2
3
1
2

c

top

173.1 GeV
2
3
1
2

t

gluon

0

0

1 g

Higgs boson

125 GeV

0

0 H

down

4.7 MeV

− 1
3

1
2

d

strange

96 MeV

− 1
3

1
2

s

bottom

4.18 GeV

− 1
3

1
2

b

photon

0

0

1 γ

electron

0.511 MeV

−1
1
2

e

muon

105.7 MeV

−1
1
2

µ

tau

1.777 GeV

−1
1
2

τ

Z boson

91.2 GeV

0

1 Z0

electron neutrino

< 2.2 eV

0
1
2

νe

muon neutrino

< 0.17 MeV

0
1
2

νµ

tau neutrino

< 15.5 MeV

0
1
2

ντ

W boson

80.4 GeV

-1

1 W−

name of part X

mass

charge

spin X

Figure 2: “Periodic table” of elementary particles.

While we distinguished matter and interaction particles above, this does not mean that the
latter cannot be observed as well: photons surely can be observed, and to some extent so can
the W and Z. Similarly, being the particles associated with the various interactions does not
prevent them from interacting themselves. We have already mentioned how matter particles
interact by exchanging interaction particles, but the nature of the vertices is such that they can
swap roles, with interaction particles exchanging matter particles between them, and in certain
cases also other interaction particles of the same or of a different type.

It is easy to show that a process in which a particle a emits a particle b, i.e., a→ a′+b (where
a′ indicates that the quantum numbers of a have changed), cannot simultaneously conserve
energy and momentum.9 This shows that describing interactions as particle exchange will lead
to serious contradictions from a classical perspective. We will see this in more detail later,
when we will also clarify what the whole particle-exchange business actually means. In the
meantime, though, we can invoke quantummechanics to come to the rescue through Heisenberg’s
uncertainty principle. In its hand-waving form, this states that violations of energy conservation
are allowed if they take place on time scales satifying ∆E∆t ≥ ~

2 . The exchange of a particle
with non-trivial quantum numbers is then allowed if it takes place on such a short time scale.

9The only exception is the emission of a massless neutral particle of vanishing energy and momentum, which
therefore does not carry any quantum numbers and so mediates no interaction.
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Range of interactions This argument also allows us to obtain a qualitative estimate of the
range of the various interactions, i.e., “how far they are felt” in space. From the uncertainty
relation we find that the exchange of a particle of massM requires to violate energy conservation
for a time of order ∆t ∼ ~/∆E ∼ ~/(Mc2), over which the particle can travel a distance not
larger than ∆x = c∆t (if it moved at the speed of light). All in all then ∆x ∼ ~/(Mc), which is
the Compton length of the mediator. This argument is clearly a back-of-an-envelope calculation
for several reasons (see Ref. [1], ch. 1, problem 1.2), and we will make it more quantitative later
on, but nevertheless it already gives us the correct answer: the range of interaction is the inverse
of the mass of the lightest mediator (in appropriate units):

range =
~

Mc
=

~c

Mc2
=

197 MeV · fm
M [MeV/c2]MeV

=
197

M [MeV/c2]
fm . (1.1)

Plugging in the W mass, MW = 80GeV/c2, we find

rangeweak =
197

8 · 104 fm = 2.5 · 10−3 fm . (1.2)

As we have already remarked above, quarks and gluons are confined within hadrons. This entails
that only certain combinations of quarks and gluons can be effectively exchanged in a strong
process, corresponding to the various hadrons.10 The lightest mediator, corresponding to the
longest interaction range, is the neutral pion with mass Mπ0 = 135MeV/c2, and so the range of
strong interactions is

rangestrong =
197

135
fm = 1.5 fm , (1.3)

which is of the sam order as the typical size of nuclei. If we knew instead the interaction range,
then we could obtain an estimate of the mass of the lightest mediator, and so of the typical
energy scale of the strong and weak interactions, respectively O(100 MeV) and O(100 GeV).
Finally, electromagnetic interactions are mediated by massless photons, which entails an infinite
range: indeed, the classical description of the electromagnetic interaction between static charges
is provided by Coulomb’s potential VCoulomb = e

4πr (in Heaviside-Lorentz units), which contains
no length scale.

Strength of interactions In the particle-exchange picture of interactions, their strength is
determined by how likely the emission/absorption processes are at the interaction vertices. This
is encoded in the so-called coupling constants associated with the various vertices: a larger cou-
pling means a higher chance for emission/absorption to take place, and so a stronger interaction
between the particles involved in the process.

The type of processes usually considered in particle physics are particle scattering and particle
decay (see Fig. 3). In the first case, two particles are thrown against each other: if they happen
to pass sufficiently close by, they have a chance to feel each other and deviate from their course,
or to be partially or entirely replaced by a different set of particles. The first case is called an
elastic scattering process, while the second one is called an inelastic scattering process. How
likely they are to happen depends on how likely the basic emission/absorption processes are.

10The idea of hadrons exchanging hadrons was pushed ot its limit in the context of the so-called “bootstrap
model” of G. Chew, in which no hadron was considered more elementary or composite than any other (“nuclear
democracy”). This approach was abandoned after the discovery of QCD.
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Figure 3: Schematic depiction of a (two-body elastic) scattering process (left) and of a (two-
body) decay process (right).

This identifies a sort of surface around the particles, which is more or less “penetrable” without
effects, depending on the strength of the interaction. This leads to a typical effective area
scale associated with scattering processes, the cross section, which takes into account both the
geometric component determined by the interaction range, and the strength of the interaction.
In most cases it is just one of the various interactions that dominates the scene, so by comparing
cross sections from different processes governed by different interactions one can estimate their
relative strength. In the case of decay processes, an unstable particle breaks up into other
particles. This has an associated time scale, the lifetime, telling us for how long the unstable
particle is likely to survive before decaying. In turn, the inverse of the lifetime tells us the rate
(number of decays per unit time) at which a sample of unstable particle decays. Again, in most
cases the decay process is dominated by one of the interactions, and the stronger this is the
larger the decay rate (and so the shorter the lifetime) will be.11 Comparing lifetimes allows us
again to estimate the relative strength of the various interactions.

1.4 Natural units

You may have noticed that the masses of the elementary particles in Tables 1 and 2 are expressed
in energy units. This is possible because of the existence of a fundamental constant, the speed
of light c, that allows one to translate masses into energies. Recalling the Einstein relation
E = mc2, we see that a correct mass unit in the usual system is [m] = eV/c2. Nothing would
prevent us though from reporting mc2 instead of m, if we so wished. Similarly, the existence
of the Planck constant ~ allows one to express times in terms of inverse energies: recalling here
the relation between the energy of a photon and its frequency, E = ~ν, we see that in the usual
system [t] = ~/eV is a correct time unit. Using together c and ~ we can express lengths in
units of [l] = ~c/eV. Combining this with the relation between energy and mass we can write
a length in units of ~c/(c2 · eV/c2) = (~/c)/(eV/c2) = (~/c)/[m]. Finally, from the Coulomb

11One way to see it is to imagine to reverse the process, throwing the decay products against each other and
counting how many unstable particles are produced. Up to factors, the original decay rate is turned now into
the production rate, and a stronger interaction leads to a higher production rate – so a larger decay rate and a
shorter lifetime in the original problem. Notice also that it is not only the strength of the interaction that matters
enters, but other features as well, such as the mass difference between the parent and daughter particles.
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quark content spin charge mass

meson

π+ ud̄ 0 +1 140 MeV

π− dū 0 −1 140 MeV

π0 uū, dd̄ 0 0 135 MeV

ρ+ ud̄ 1 +1 775 MeV

ρ− dū 1 −1 775 MeV

ρ0 uū, dd̄ 1 0 775 MeV

K+ us̄ 0 +1 494 MeV

K− sū 0 −1 494 MeV

K0 ds̄ 0 0 498 MeV

K̄0 sd̄ 0 0 498 MeV

J/ψ cc̄ 1 0 3.1 GeV

baryon

p uud 1
2 +1 0.938 GeV

n udd 1
2 +1 0.940 GeV

∆+ uud 3
2 +1 1.232 GeV

∆0 udd 3
2 +1 1.232 GeV

Λ uds 1
2 0 1.1 GeV

Table 3: Hadrons. Masses are very different from the quark masses (for light mesons), the
difference being accounted for by the interactions.

potential energy (in Heaviside-Lorentz units) U = e2/(4πr) we find [e]2 = [E][l] = [~c]. Also in
these cases we could report times, lengths, and electric charges after multiplying them with the
appropriate powers of c and ~.

In particle physics it is convenient to choose our system of units such that ~ = c = 1: this is
the so called system of natural units. In this system a length has dimensions of an inverse mass;
mass and energy have the same dimensions, and so do time and length; finally, electric charge is
dimensionless. For example, the length scale associated with a particle is the Compton length
λC = ~

mc , that we saw above when discussing the range of interactions; in natural units this is
just λC = 1

m . The fine structure constant α = e2/(4π~c) is dimensionless, and in natural units it
reads simply e2/(4π). Notice that the two fundamental constants c and ~ originate respectively
from special relativity and quantum mechanics, that both play a role in the description of
high-energy but microscopic processes such as those studied in particle physics.

The typical energy unit used in particle physics is the electronvolt (eV). An electronvolt eV =
1.6 · 10−19 J is the energy acquired by an electron after travelling through an electric potential
difference of one volt: this turns out to be a very convenient unit in accelerator experiments.
Practically useful units of energy and length are the megaelectronvolt, 1 MeV = 106 eV and the
gigaelectronvolt, 1 GeV = 109 eV; and the fermi, 1 fm = 10−15 m. In natural units, conversion
between fm and eV−1 is most easily done by exploiting the relation ~c ≃ 197 MeV · fm: in
natural units the left-hand side is one, so 1 fm ≈ (1/5)GeV−1.
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1.5 Building up matter

From the elementary particles in Tables 1 and 2 one can ultimately build up all the matter
surrounding us, all the way from the electron and the proton to that particularly dirty yellow
bathroom towel that your cousin never changes (yes Gary, you know which one). This happens
in several stages, characterised by different length and energy scales.

The first stage is the construction of hadrons from quarks and gluons (see Table 3). As
we have already mentioned, it is a fact of life that free quarks and gluons are not observed in
Nature, but always come along bounded into mesons and baryons due to confinement. To a first
approximation, mesons are bound states of a quark and an antiquark, while baryons are made
up of three quarks (and antibaryons of three antiquarks).12

The lightest meson is the pion, that comes in three versions: π0, π+ and π−. The pions
are built from the lightest quarks and antiquarks, the u, d, ū and d̄, combined into states of
vanishing total spin and orbital angular momentum, so that they have spin 0. The same quark
content can lead to different mesons if quarks are in a different spin and/or orbital angular
momentum state: for example the ρ mesons have the same quark content of the pions, but in
a combination with total spin 1 and vanishing orbital angular momentum, so that they have
spin 1. Of course, other mesons can be built changing the quark content: this is the case of the
kaons, which contain a strange quark, or of the J/ψ, which is a cc̄ state.

The lightest baryon is the proton, made up of two u and one d quark, followed by the neutron
with two d and one u quark. Similarly, the lightest antibaryons are the antiproton, made up of
two ū and one d̄ antiquark, and the antineutron made up of two d̄ and one ū antiquark – and so
different from the neutron, as anticipated. The neutron is slightly more massive than the proton,
and it actually decays into it via β decay. The proton on the other hand is stable (and luckily
so), precisely because it is the lightest baryon: as a matter of fact, the baryon number, i.e., the
number of baryons minus the number of antibaryons, is a conserved quantity, and having no
other baryon to decay into, the proton sits quietly at the centre of the hydrogen atom, or together
with other protons and neutrons13 in the nucleus of heavier atoms, guaranteeing the stability
of ordinary matter. On the contrary, there is no such a thing as a conserved meson number; in
fact, even the pion is not stable and decays (mostly) into a muon and a muonic antineutrino, or
an antimuon and a muonic neutrino, for the charged types; and into two photons for the neutral
type. As with the mesons, heavier baryons exist with the same quark content but in different
internal states, and of course with different quark content. An example of the first case are the
∆+ and ∆0, which have the same quark content as the proton and the neutron, respectively,
but spin 3

2 . An example of the second case is the Λ, which contains a u, a d and an s quark.
We will discuss in detail the taxonomy of mesons and baryons in Section 5.

As mentioned above, protons and neutrons form the nuclei of atoms, where they are bound
together by the strong interaction, i.e., by the exchange of gluons and quarks, or effectively by
pions and other hadrons. Nuclei are the second stage of the construction of matter. They come
in a large variety, characterised by their electric charge (i.e., the number of protons) and mass
(i.e., the number of proton and neutrons, up to a proportionality factor and small corrections),
and they can be stable or not. The study of nuclei is the subject of nuclear physics.

The next stage is the formation of atoms, out of some nucleus and of electrons bound to

12A more refined description should take into account also how many gluons and quark-antiquark pairs are
present. We will content ourselves with the simplest picture.

13Neutrons can be stable when part of nuclei, although not in all cases.
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particle main decay mode lifetime

µ− µ− → e−νµν̄e 2.2 · 10−6 s
n n → pe−ν̄e 8.8 · 102 s
π+ π+ → µ+νµ 2.6 · 10−8 s
π0 π0 → γγ 8.4 · 10−17 s
∆0 ∆0 → pπ−, nπ0 5.6 · 10−24 s

Table 4: Decays of unstable particles.

it by electromagnetic forces. The electron is the lightest charged particle and is stable (again,
luckily for us) thanks to conservation of electric charge. Atoms are electrically neutral, with as
many electrons as protons in the nucleus; atoms differing only by the numbers of neutrons in the
nucleus are called isotopes. Atoms with one or more electrons missing, or in excess, are called
ions. The study of atoms is the subject of atomic physics. Also all the following stages up to
everyday’s scales are governed by electromagnetic interactions: these are responsible for binding
atoms together in molecules, and molecules together in more and more complicated structures,
leading ultimately to apples, cows, humans, or Donald Trump. Larger scales (planetary and
above) involve gravity, and are outside of the scope of this course.

1.6 Unstable particles and decays

The proton, the electron, the neutrinos,14 the photon and their corresponding antiparticles,
are the only stable particles.15 Other hadrons and leptons, as well as the intermediate vector
bosons,16 decay, i.e., they “break up” in various ways,

X → X1X2 . . . Xn , (1.4)

yielding ultimately the stable particles listed above. The typical mean time τ that it takes for a
particle to decay is called lifetime: this is τ = t 1

2
/ ln 2 where the half-life t 1

2
is the time it takes

for half of a large sample of particles to decay. A list of the main decay modes of a few unstable
particles and their lifetimes is given in Table 4.

Notice that the classifications in elementary and composite, stable and unstable, or observ-
able and unobservable are quite independent: particles can be elementary, stable and observable
(e.g., the electron), elementary, unstable and observable (e.g., the muon), composite, stable and
observable (e.g., the proton), elementary and unobservable (e.g., the up quark in a proton), and
so on.

The meaning of lifetime is related to the empirical (approximate, but rather accurate) finding
that the decay rate of unstable particles, i.e., the probability of decaying per unit time per
particle, is independent of time and of sample size (at least for sufficiently big samples). If dP
is the probability for a particle to decay over an infinitesimal time interval dt, one then writes
dP = Γdt with time-independent Γ. The quantity Γ is the decay width of the particle. Since

14For simplicity we will treat the neutrinos as massless, which guarantees their stability, even though we know
that they are not. Nevertheless, even in this case there is a linear combination of neutrinos which is the lightest in
mass, and which is the lightest lepton: its stability is then guaranteed by lepton number conservation (see below).

15We are not including nuclei in the discussion here, since we look at them as composite particles at a higher
level. Also neutrons, which can become stable in nuclei, are not included.

16Like quarks, gluons do not exist as isolated particles.
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each particle decays independently of the others (at least for sufficiently big samples), the size
N(t) of the sample as a function of time obeys the equation

dN(t) = −N(t)dP = −ΓN(t)dt , (1.5)

and so one finds the exponential decay law

N(t) = N(0)e−Γt = N(0)e−
t
τ , (1.6)

where we have identified the lifetime τ as τ = Γ−1. The relation between τ and the half-life t 1
2

then follows.
Typically, unstable particles decay through different decay modes, yielding different final

products. Each of these modes is a decay channel, and the i-th channel is characterised by the
partial width Γi, with the total width being given by Γ =

∑

i Γi. The ratio Γi/Γ is the branching
ratio (or fraction) of the i-th channel, and tells us the relative probability that the decay will
take place through channel i.

In general, not all ways of decaying are allowed, due to kinematical and dynamical con-
straints. The most important kinematical constraint stems from energy-momentum conserva-
tion. Denoting with P the four-momentum of the initial particle, of mass M , and with pi those
of the decay products, of masses mi, we have from P =

∑

i pi that

M2 = P 2 = P ·
∑

i

pi =M
∑

i

ECM
i ≥M

∑

i

mi , (1.7)

where CM denotes the rest frame of the initial particle and ECM
i =

√

(~pCM
i )2 +m2

i . This means

that the sum of the masses of the decay products cannot exceed that of the initial particle.
Other constraints of dynamical nature come about because of how the various interactions

work, and lead to further interaction-specific conservation laws. Examples are conservation of
electric charge, baryon number, lepton and (approximately) lepton family number (see below).

1.7 How to tell the nature of a process: decays and conservation laws

We have mentioned above that by comparing cross sections or lifetimes of processes governed
by different interactions we can estimate their relative strength – but how can we tell that two
processes are governed by different interactions, and decide which one is governed by which?

Focussing on decay processes, it is an experimental finding that lifetimes fall in three clearly
separated ranges. At the fast end, there are processes with lifetimes in the range τ ∼ 10−23 ÷
10−20s; in the middle there are those with τ ∼ 10−16s; and at the slow end there are those with
τ ∼ 10−13 ÷ 103s. From our considerations above, this indicates that the interactions causing
the processes in the three sets have clearly different and increasing strengths. This already tells
us that the interactions governing the three sets of processes must be different. It would be
natural to call strong the interactions behind the fast processes, and weak those behind the slow
ones: as we will see momentarily, these correspond precisely to what we called strong and weak
interactions in our introductory discussion, leaving the electromagnetic interactions as the ones
responsible for the intermediate processes.

In fact, there is a second feature that is common to many processes in the same set, namely
the presence of “signature particles”: the slow processes are often characterised by the presence of
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neutrinos or antineutrinos; the intermediate ones often produce photons; and the fast ones often
produce pions. This should reassure you that our classification based on interaction strength
matches our previous discussion, with the hierarchy strong > electromagnetic > weak.

Given now a process, we can reverse the reasoning and use signature particles and lifetimes
to identify the relevant interaction: if we see a photon or a neutrino coming out of a process we
can be sure that those processes involve the electromagnetic interaction or the weak interaction,
respectively, and if we see pions (without neutrinos) there are good chances that we are dealing
with a strong process (although we cannot be entirely sure). In the absence of signature particles,
we can still rely on the strong hierarchy in the strength of the various interactions, reflecting
into the very different orders of magnitude for the lifetimes of the decays that they govern. On
the other hand, we may not know the lifetime of the process; or we may be wondering if a
process may or may not take place, and if so what would be the relevant interaction.17 In this
case we have a powerful tool at our disposal, namely conservation laws, that we know discuss.
While we keep focussing on decay processes for simplicity, similar considerations can be made
for scattering processes as well.

As we have already mentioned, particles generally decay into lighter particles, unless this is
forbidden by some conservation law. Similarly, certain inelatic processes are forbidden due to the
mismatch of some conserved quantity on the two sides of the reaction. Certain conservation laws
are valid for all interactions, namely conservation of energy, momentum, and angular momentum,
that imply kinematical constraints on the decay processes. For example, as we proved above,
energy conservation implies that for a decay process to be allowed the mass of the products
cannot exceed the mass of the initial particle. Other conservation laws are instead of dynamical
nature, deriving from the details of the various interactions. In general, conservation laws are
associated with the symmetries of the system: for example, energy, momentum, and angular
momentum conservation are consequences respectively of invariance under temporal translations,
spatial translations, and rotations, which are very general properties of any system of interacting
particles.

Among the dynamical conservation laws, some are universally valid: for example, we have
already mentioned above that all interactions conserve electric charge, baryon number and lepton
number. A process violating any of these laws is immediately forbidden. Other conservation
laws are instead valid for certain interactions and not for others, and this allows one to identify
what is the interaction responsible for a given process where such conservation laws are violated,
by excluding those interactions that do not allow any such violation. We want to stress that
although we have mostly been discussing decay processes, of course these and other conservation
laws do apply to scattering processes as well.

While we will discuss symmetries in greater detail later on, here we want to give a brief
overview of the symmetries of the various interactions. Strong interactions are certainly the
“most symmetrical” ones, respecting all the important symmetries exactly and some further
symmetries approximately, followed by electromagnetism which again exactly respects all the
important symmetries, and by weak interactions that violate a good number of them.

Particle-type conservation laws We begin with particle-type conservation laws, i.e., regard-
ing the conservation of the number of particles minus number of antiparticles of a specific type,
or of a specific subset of particle types. Both strong and electromagnetic interactions conserve

17If several are available, it is the strongest one that dominates.
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each individual particle number, while weak interactions conserve only certain combinations of
these numbers, so it is useful to establish some nomenclature.

To each of the different types (flavours) of quarks is associated a flavour quantum number:
“upness”, U = u − ū, “downness”, D = d̄ − d, “strangeness” S = s̄ − s, “charm” C = c − c̄,
“beauty” B = b̄ − b, and “topness” T = t − t̄.18 Among these numbers, topness is of scarce
relevance, as no hadrons containing t or t̄ exist (the top quark decays too fast for a bound
state to form). Moreover, upness and downness are never used, as they are usually traded
for the quark number Q (total number of quarks minus antiquarks) or equivalently and more
commonly for the baryon number B = Q/3 (recall that a baryon contains three quarks, and
an antibaryon three antiquarks); and for the hadronic component of the electric charge Qh =
2
3 (U + C + T ) + 1

3(D + S + B). All flavour quantum numbers are conserved by strong and
electromagnetic interactions, and so a fortiori are B and Qh, while only the total baryon number
B is conserved by weak interactions.

Leptonic flavour numbers are similarly (but more regularly) assigned to the various types
of leptons as number of leptons minus number of antileptons; as above, one can trade the
flavour number of one of the charged types for the leptonic component of the electric charge,
Ql = −(e+ µ+ τ). All of these are individually conserved by electromagnetic interactions, and
trivially by strong interactions as well, but again not conserved by weak interactions. On the
other hand, if we count together leptons in the same family by assigning lepton family number
Le,µ,τ = 1 to e−, µ−, τ− and νe, νµ, ντ , respectively, and Le,µ,τ = −1 to e+, µ+, τ+ and ν̄e, ν̄µ, ν̄τ ,
respectively, and zero in any other case, then the total lepton family numbers (i.e., the sum of
the lepton family number of each particle in the system, and so the total number of leptons
minus antileptons of a given family) are conserved also by weak interactions. While a similar
“quark family” number could be defined by combining the flavour numbers of quarks in the same
family, this would be of very limited usefulness, as it is does not add any information in the
strong and electromagnetic case, and it is not conserved in the weak case. Finally, while Qh and
Ql are not individually conserved by weak interactions, the total electric charge Q = Qh+Ql is.

Nowadays it is known that the lepton family numbers are actually not exactly conserved.
In fact, this would be the case if neutrinos were exactly massless, but for nonzero masses it is
possible for neutrinos to “oscillate”, changing their type, e.g., from electronic to tauonic, thus
violating family lepton number conservation. Such oscillations have actually been observed,
proving that neutrinos have nonzero masses. Nonetheless, in this course we will mostly treat
them as massless for simplicity, as this describes accurately most of the important physics. On
the other hand, the total lepton number L = Le+Lµ+Lτ remains conserved by weak interactions
also in the presence of neutrino oscillations.

A summary of the conservation laws related to particle types is given in Table 5. Their
origin will become apparent in Section 3.3. An obvious consequence of these conservation laws
is that if an interaction conserves a certain particle number, then it cannot be responsible for
decays in which this number is violated: for example, strong interactions cannot be responsible
for strangeness-changing processes.

18Notice the different choices of signs, due to historical reason: when the quark model was formulated, the
empirical assignement of the strangeness quantum number to hadrons turned out to correspond to the number
of strange antiquarks minus number of strange quarks. The flavour quantum numbers of the other negatively
charged quarks are defined in analogy with this.
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interaction

quantity strong electromagnetic weak

lepton type
✓

✓ ✗
(trivially)

lepton family Lℓ
✓

✓
✓

(trivially) (if νℓ are massless)

lepton number L =
∑

ℓ Lℓ
✓

✓ ✓
(trivially)

flavour U,D, S,C,B, T
✓ ✓ ✗

(equivalently U,D → B, Qh)
quark family

✓ ✓ ✗
(not really useful. . . )

quark number Q or
✓ ✓ ✓

baryon number B = Q/3
electric charge Q ✓ ✓ ✓

Table 5: Conservation laws (I): particle-type quantum numbers.

Approximate flavour symmetries Strong interactions also conserve approximately a quan-
tity called isospin. We will see later that this is a very good approximate symmetry, that origi-
nates from the fact that only the quark mass distinguishes the different quark flavours as far as
strong interactions are concerned: since the two lightest quarks (u and d) have similar masses,
they are basically indistinguishable for strong interactions. One can then “rotate” one flavour
into the other without physical effects. This rotational symmetry is mathematically identical
to the spacetime one, from which the concept of spin originates. From the physical point of
view, however, it is very different and totally unrelated: in fact, these flavour rotations act in
the internal space spanned by the up and down component of the quark state, and do not affect
spacetime in any way. For this reason, isospin is called an internal symmetry. Analogously to
the angular-momentum multiplets of degenerate energy levels found in atomic spectra due to
rotation symmetry, isospin manifests through the appearance of multiplets of (nearly) degen-
erate light hadrons (i.e., those made of u, d and s). Borrowing from the theory of spin, these
multiplets can be classified by assigning them a total isospin number I, with 2I + 1 being their
degeneracy, and further distinguishing its members by a second number I3 = −I, . . . ,+I, chosen
to increase with their electric charge. All other particles (non-light hadrons, leptons, etc.) are
assigned I = I3 = 0. To list a few examples:

• the three pions form a triplet to which it is assigned the value I = 1, and to each of them
one assigns I3 equal to their charge, I3 = Q;

• the proton and the neutron form a doublet with I = 1
2 and I3 = Q− 1

2 ;

• the K+ and K0 form again a doublet with I = 1
2 and I3 = Q− 1;

• the ∆ resonances ∆++, ∆+, ∆0 and ∆− form a quartet with I = 3
2 and I3 = Q− 1

2 .

In general I3 = Q− 1
2 (B + S), so I3 is automatically conserved since Q,B and S are. However,

also I2 = I21 + I22 + I23 is conserved, and as we will see this has interesting consequences for
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interaction

quantity strong electromagnetic weak

isospin I ✓ ✗ ✗

discrete symmetries

P ✓ ✓ ✗

C ✓ ✓ ✗

T ✓ ✓ ✗

CP ✓ ✓ ✗

CPT ✓ ✓ ✓

Table 6: Conservation laws (II): isospin and discrete symmetries.

scattering processes. Both electromagnetic and weak interactions do not conserve this quantity
(pion decay modes should convince you of that).

If one relaxes how accurate the approximate symmetry has to be, one can extend the dis-
cussion from the two lightest quarks to the three lightest quarks, and so on, possibly up to the
full set of flavours. These flavour symmetries are less and less accurate, but still provide useful
information on strongly interacting matter. In particular, in Section 5.2.5 we will discuss in
detail the approximate flavour symmetry involving the three lightest quarks.

Discrete symmetries Finally, there are three important discrete symmetries to mention,
namely parity P (i.e., spatial inversion), charge conjugation C (exchange of particle with antipar-
ticle) and time reversal T (i.e., inversion of the direction of time). Strong and electromagnetic
interactions conserve all three of them, while weak interactions do not conserve any of them
taken individually. Also relevant are the combinations CP and CPT : the first is conserved by
weak interactions to some extent but not exactly, while CPT is conserved exactly, so making
CP and T equivalent symmetries. Conservation of the combination CPT is expected on very
general theoretical grounds, and experimental observations of CPT violations would require a
radical revision of our theoretical description of particle physics.19

The status of the main symmetries for the various interactions is summarised in Tables 5
and 6. As already pointed out, they can be used to identify by exclusion what interaction is
responsible for a process. For example, if we see a process that does not conserve neither isospin
nor strangeness we know that it is happening via weak interactions; if it conserves strangeness
but not isospin then it happens via electromagnetic interactions; and so on. If it conserves
everything, then it is most likely taking place through the strong interactions, but we cannot
exclude the others: non-conservation of a quantum number does not imply that it is always not
conserved in a process.

2 Scattering processes

If unstable particles decay, how are we even able to know about their existence? For some of
them, we might argue that if they have been created when the Earth (or even the Universe

19Currently, particle interactions are successfully described in the framework of Quantum Field Theory, where
CPT conservation is a general theorem.
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itself) appeared, and their lifetime is long enough, then part of them might have survived this
long and can still be observed. This is the case, e.g., for uranium nuclei. However, this does not
fully answer our question, since we know of particles with lifetimes much shorter than the age
of the Universe, and indeed much shorter than the lifespan of a cat on a highway. How can we
possibly know about them?

Imagine to look at an unstable particle decay, breaking up into a certain number of decay
products. If we reverse the direction of time, what we would see is a set of particles getting
closer, colliding, and building up the unstable particle. After all, the laws of physics are (to
a good extent) invariant under time reversal, and the process resulting from “projecting the
movie backwards” would be a possible physical process. Here is then our answer to our initial
question: to see unstable particles we have to create them, and this can be achieved by means
of scattering processes, in which particles are thrown at each other, and the products of the
collision are studied. If an unstable particle is created in the processes, the final products will
show its distinctive footprint. Scattering processes are actually much more than just a tool to
find out the spectrum of unstable particles, as they reveal important information on how the
interactions between particles work. For this reason, scattering experiments are the main type
of experiment in particle physics.

Scattering experiments are set up by throwing a bunch of particles against a fixed target or
against another bunch of particles, and carefully analysing what comes out of the collision. Such
experiments are typically arranged so that only one pair of particles is interacting at a time. It
is an experimental fact that particle states can be prepared so that the particles are far enough
from each other that they do not interact appreciably, thus travelling essentially undisturbed on
straight-line trajectories. This is justified a posteriori by the fact that interactions are typically
short-ranged.20 These states are typically used as the initial states of scattering experiments. It
is another experimental fact that the state of the system, after a sufficiently long time has elapsed
after the collision, looks again like a state of freely-evolving particles. What is a sufficiently long
time in a scattering experiment depends on the type of interaction, but it is safe to say that no
matter how long it is, it is a very short time on human scales: an estimate of 10−10s for an upper
bound is reported in Taylor’s book [3]. For all practical purposes we can then imagine that the
system is prepared in its initial state in the distant past (formally t = −∞), when particles are far
away from each other, and that observations are made in the distant future (formally t = +∞),
when particles are again far away from each other after having interacted. Observations are
made by means of detectors that measure energy, momentum, electric charge, etc., of the final
particles, and which therefore (in the language of Quantum Mechanics) project the state of the
system on some particle state with definite particle content and particle momenta.

2.1 Scattering experiments

The two main types of scattering experiment are fixed-target and collider experiments.

Fixed target In a fixed-target experiment, a bunch of particles is accelerated and focussed
into a beam, which is then directed against a target, for example a thin foil of metal, at rest in
the laboratory (see Fig. 4). What comes out of the collision is carefully analysed by means of
detectors placed behind (or around) the target. The beam is characterised by the number Nb of

20Even the long-ranged electromagnetic interactions are in most of the cases effectively short-ranged in practice,
due to screening effects.
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Figure 4: Setup of a fixed-target scattering experiment.

particles that it contains, by their velocity v, and by its cross-sectional area Ab. The target is
characterised by its density and thickness, from which one obtains the number Nt of particles
in that part of the target on which the beam impinges. Experiments are typically designed so
that the target is much wider than the beam cross-section.

Since interactions are typically of short-range nature, a particle in the beam will interact
with a particle in the target only if it gets close enough to it to “feel” it. This effectively defines
a region around the target particle (“scatterer”) in the plane orthogonal to the trajectory of
the beam particle (“projectile”) in which this trajectory has to pass, if a scattering event is to
take place. The strength (and other details) of the interaction further affects how likely this is
to happen, making this region more or less penetrable. The effective area of this region, which
combines its geometric size with its “opacity”, measures how likely it is for a scattering event
to take place, once that the technical details mentioned above about the beam and the target
are known. In fact, for sufficiently dilute beams and targets, interactions will involve at most
one projectile and one scatterer, and so scattering events will be independent: their number
will be proportional to the number of particles in the beam and in the target. In particular, if
the target is thin enough, a projectile will not undergo multiple scattering processes: from its
point of view the target then looks like a two-dimensional surface with separated “active” areas
corresponding to the scatterers, and so the target can effectively be imagined as being collapsed
on a single two-dimensional sheet (see Fig. 5). For each projectile, that we are assuming can
be found with uniform probability anywhere on the beam cross-section, the probability of being
scattered is then equal to the ratio of the active area under the beam (∝ Nt) divided by the
area of the beam cross-section (Ab).

All in all, the number of scattering events Nevents will be proportional to Nt and to Nb

(once the whole beam has passed though the target), and inversely proportional to Ab. The
proportionality factor is the total cross section, σ, of the scattering process, as it depends
uniquely on the type of particles involved (besides of course their energy and spin components).
The cross section has dimensions of an area, not surprisingly since it measures the effective area
of the “active” region around each scatterer in the target, as discussed above. In formulas,

Nevents = NtNb
σ

Ab
, (2.1)
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1

2

Figure 5: The target as seen from the beam. Target particles are the black discs, with area
corresponding to the cross section σ of the process, beam particles are the red dots. The dashed
line indicates the cross-section of the beam, of area Ab, Nb is the number of particles in the
beam, and Nt is the number of particles in the target “seen” by the beam. The beam particle
1 does not undergo scattering, while particle 2 does.

which when turned around gives the operative definition of the cross section,

σ =
Nevents

Nt
Nb
Ab

. (2.2)

For practical purposes it is convenient to elaborate on this formula. The number of particles in
the beam can be obviously expressed as the number of the particles that cross the target per unit
time, times the time it takes for the whole beam to cross the target. Assuming for simplicity a
uniform longitudinal distribution of particles in the beam and a constant velocity v, the number
of beam particles ∆Nb crossing the target in the small time interval (t, t+∆t) are those that are
at most a small distance ∆x = v∆t away from the target. If ρb is the volume density of particles
in the beam, then ∆Nb = ρbAb∆x = ρbAbv∆t. The number of events ∆Nevents happening in
∆t will be given by Eq. (2.1) with Nb replaced by ∆Nb, and so in Eq. (2.2) we can replace
Nevents
Nb/Ab

with ∆Nevents
∆Nb/Ab

= ∆Nevents
∆tρbv

. The quantity Φ ≡ ρbv measures the number of particles of the

beam crossing the target per unit time and unit area (on the plane perpendicular to the beam
velocity), and is called the flux of the beam. We can then write

σ =
1

NtΦ

∆Nevents

∆t
. (2.3)

i.e., the cross section is the number of scattering events per unit time (or event rate) per unit
target and unit flux.

As we already pointed out, the larger σ, generally stronger the interaction: a larger cross
section corresponds to a larger probability of interaction, and so to a stronger force. This is
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Figure 6: Collider experiment.

analogous to what happens with the decay rate Γ, and one can similarly use σ to estimate the
strength of the various interactions.

Instead of counting all the scattering events, one can classify them according to the type
and number of final particles, their momenta and polarisation, and so on, and count how many
events with prescribed features take place. Discrete variables, like number and type of particles
involved and their polarisations, essentially label different scattering processes: let us denote
them collectively with the symbol α. Let ξ instead denote collectively the continuous variables
used to classify the final states, and ∆ξ the size of the range of values around ξ that we decide
to include in our counting. The differential cross section is defined as

∆σα(ξ) =
∆Nevents(α, ξ)

∆t∆ξNtΦ
∆ξ , (2.4)

where now ∆Nevents(α, ξ) are the scattering events happening in the time interval t corresponding
to the values α for the discrete variables and in an interval ∆ξ around ξ of the continuous
variables. In the limit of infinitesimal time and ξ-intervals,21

dσα(ξ)

dξ
=
dNevents(α, ξ)

dtdξNtΦ
. (2.5)

Collider experiments In collider experiments two beams of particles are directed at each
other, usually circulating in opposite directions on the same circular trajectory. The beams are
typically built out of several bunches of particles, each bunch having Nb1 and Nb2 particles in
beam 1 and beam 2, respectively. In the period T that it takes to go around the whole circle
(which we take to be the same for the two beams), two bunches will cross twice, so the frequency
at which they collide is 2/T . If the beams have the same cross-sectional area Ab and velocity
v, over the time T/2 there will be Nb1Nb2 pairs of particles possibly interacting with each other

21A comment about the notation. The infinitesimal dξ in the denominator does not mean that one is taking
derivatives. Rather, it indicates the variables according to which we are distributing our events. In other words,
it indicates over what variables one should integrate to get integrated cross sections, e.g., corresponding to
final states falling in finite intervals of the continuous variables. As an example, the differential cross section
dσ

d3p(1)
(~p1) =

dσ

dp
(1)
x dp

(1)
y dp

(1)
z

( ~p1) for a two-body elastic scattering corresponds to the rate of events per unit flux per

unit target with the momenta of particle 1 within an infinitesimal cube around ~p1. If one is to count events with
~p1 in a finite cube C around ~p1, then the relevant cross section is ∆σ =

∫

C
d3p dσ

d3p(1)
(~p1).
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when two bunches meet,22 and so σ
Ab
Nb1Nb2 scattering events. In each beam there is typically

a large number of bunches, NB1 and NB2, for each of which the same considerations apply.
Following the same reasoning as above (and under the same conditions on the beam density),
the number of events per unit time will then be

∆Nevents

∆t
=

2

T

NB1NB2Nb1Nb2

Ab
σ = Lσ , (2.6)

where L is the luminosity delivered by the collider. The analogue of Eq. (2.2) reads then

σ =
1

L
∆Nevents

∆t
, (2.7)

and similarly for the differential cross section.

Breit-Wigner formula The distinctive sign of an unstable particle being created as an in-
termediate state in a scattering process is the appearence of a peak in the cross section as a
function of energy, which is called a resonance. The location and width of the peak are related
to the mass and decay width of the unstable particle. A hand-waving way to see this is as
follows: the state of an unstable system of approximate energy m created at t0 and decaying
exponentially with lifetime 1/Γ can be described by the wave function

ψ(t) = ψ(t0)e
−im(t−t0)e−

Γ
2
(t−t0)θ(t− t0) , (2.8)

so that its magnitude decays as

|ψ(t)|2 = |ψ(t0)|2e−Γ(t−t0)θ(t− t0) . (2.9)

Analysing the system in energy, which means taking the Fourier transform of Eq. (2.8), leads to

ψ̃(E) =

∫

dt eiEtψ(t) =
iψ(t0)

E −m+ iΓ2
eiEt0 . (2.10)

Assuming that such a state describes the intermediate stage of a scattering process, the total
cross section σ(E) will be proportional to the probability of observing this state at energy E,
i.e.,

σ(E) ∝ |ψ̃(E)|2 ∝
(
Γ
2

)2

(E −m)2 +
(
Γ
2

)2 , (2.11)

with the maximal value reached at E = m, and full width at half height equal to Γ. If a profile
of this form is observed in experimental data, the position m of the peak and its width Γ are
identified as the mass and decay width of an unstable particle (also referred to as a resonance).
Equation (2.11) is known as the Breit-Wigner formula, and it provides a reasonable approximate
description of many resonances.23

22We are neglecting here the loss of particles coming from the scattering events that actually take place: if the
cross section of the process is small, so will be this loss, and it will be possible to neglect it for some time.

23The derivation given above is admittedly sketchy. The real reason why this functional form shows up is that
in correspondence with a resonance one of the partial waves in the partial wave expansion of the cross section
becomes maximal, which means that the related phase shifts passes through the value π

2
(see Ref. [3]).
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Both scattering and decay processes are governed by the fundamental interactions, that tell us
which processes can take place, and with what probability. The considerations made above about
kinematical and dynamical constraints extend to the case of scattering processes: conservation
laws put restrictions on the allowed processes, and such laws depend on the symmetries of the
interactions. To understand how decays and scattering processes happen and which quantities
they conserve, we have to look at how the various interactions work, but before we can do that
we need to know how one relates theory with experiment.

2.2 Brief review of Quantum Mechanics

We begin with a brief recap of quantum mechanics. The quantum mechanical description of
a physical system is in terms of vectors ψ (or rather rays eiωψ, with ω an arbitrary phase)
of a Hilbert space H, describing the state of the system by encoding the possible results and
relative frequencies of experimental measurements. These are determined by the eigenvalues
and eigenvectors of linear operators representing the physical observables.

Hilbert spaces A Hilbert space is a linear space, i.e., if ψ1,2 ∈ H then α1ψ1 + α2ψ2 ∈ H for
any α1,2 ∈ C, endowed with a positive-definite scalar product (φ,ψ), obeying

(φ, α1ψ1 + α2ψ2) = α1(φ,ψ1) + α2(φ,ψ2) , (ψ, φ) = (φ,ψ)∗ , (ψ,ψ) ≥ 0 , (2.12)

with the equal sign holding in the last inequality only if ψ = 0 is the zero vector. Associated
with the scalar product is a norm ‖ψ‖ ≡ (ψ,ψ)

1
2 . Any vector in H can be expressed as a linear

combination of the elements of a complete orthonormal basis {en}, n ∈ N, i.e., ψ =
∑

n cnen,
with (en, em) = δnm,

24 and
∑

n |cn|2 <∞.

Linear operators Linear operators A acting on H play a central role in Quantum Mechanics.
A linear operator obeys

A(α1ψ1 + α2ψ2) = α1Aψ1 + α2Aψ2 . (2.13)

The adjoint A† of an operator is defined by the relation

(ψ,Aφ) = (A†ψ, φ) . (2.14)

Eigenvectors ψ
(A)
n of a linear operator are defined by the equation

Aψ(A)
n = anψ

(A)
n . (2.15)

Unitary operators A unitary operator U is a linear operator defined by the properties (i)
‖Uψ‖2 = (Uψ,Uψ) = (ψ,ψ) = ‖ψ‖2, and (ii) the image of H under U is the whole Hilbert

24More precisely, a Hilbert space is a linear space with a scalar product which is furthermore complete with
respect to the distance function d(ψ, φ) = ‖ψ−φ‖. Completeness means that any Cauchy sequence of vectors ψn
converges to an element ψ ∈ H. A Cauchy sequence is one such that for every ǫ exists N such that d(ψn, ψm) < ǫ
for all n,m > N . Hilbert spaces with a countable orthonormal basis are called separable.
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space, UH = H. Property (i) is equivalent to U †U = 1,25 while property (ii) is equivalent to
UU † = 1,26 which are not equivalent properties when the Hilbert space is infinite-dimensional.

In general, a unitary transformation corresponds to a change of basis in the Hilbert space,
thus leading to an equivalent description of the physical system under consideration.

Observables Physical observables are represented inH by linear Hermitean operators A = A†.
The eigenvectors of an operator of this type form a complete basis of H, and the corresponding
eigenvalues an ∈ R are real, corresponding to the possible experimental outcomes of a measure-
ment. For a system in a state ψ, the probability of obtaining the result an for a measurement
of A is given by

P (A)
n =

|(ψ(A)
n , ψ)|2

(ψ
(A)
n , ψ

(A)
n )(ψ,ψ)

. (2.16)

The temporal evolution of a physical system is governed by its Hamiltonian H = H†, which
is here assumed to be time-independent. The temporal evolution in the Schrödinger picture is
expressed in terms of a time-dependent state vector ψ(t) = e−iHtψ, with ψ = ψ(0) the state
of the system at t = 0. The temporal evolution operator e−iHt is a unitary operator. Linear
operators corresponding to physical observables are time-independent in this picture, and so are
their eigenvectors. If a measurement is made at time t, then in Eq. (2.16) the state vector ψ(t)
at time t must be used.

Dirac notation State vectors and their scalar products are often written using Dirac notation.
State vectors ψ are represented by the ket |ψ〉, while the linear functional Lψ, Lψφ ≡ (ψ, φ), is
represented by the bra 〈ψ|. Scalar products then read (φ,ψ) = 〈φ|ψ〉, and expectation values
are written as (φ,Aψ) = 〈φ|A|ψ〉. While completely unambiguous for Hermitean operators, for
a general operator it must be understood that 〈φ|A|ψ〉 = 〈φ|Aψ〉 = 〈A†φ|ψ〉.

Schrödinger, Heisenberg, and Dirac (interaction) picture Quantum mechanics can be
equivalently formulated in the Schrödinger picture described above, in which states evolve with
time as determined by the Hamiltonian of the system, while observables are independent of time,

Schrödinger picture: |ψ(t)〉S = e−iHt|ψ(0)〉S , OS , (2.17)

and in the Heisenberg picture, in which states are fixed at their t = 0 value while observables
evolve with time as determined by the Hamiltonian of the system,

Heisenberg picture: |ψ〉H = |ψ(0)〉S , OH(t) = eiHtOSe
−iHt . (2.18)

25This follows from norm preservation, ‖Uψ‖ = ‖ψ‖, and the polarisation identity,

4(ψ, φ) = ‖ψ + φ‖+ ‖ψ − φ‖+ i‖ψ − iφ‖ − i‖ψ + iφ‖ ,

leading to
(Uψ,Uφ) = (ψ,φ) = (ψ,U†Uφ) ,

for arbitrary φ, ψ ∈ H.
26Since for every ψ there is a φ such that ψ = Uφ, then using associativity

ψ = U(U†U)φ = (UU†)Uφ = (UU†)ψ .
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Figure 7: Schematic depiction of the relation between free and exact evolution of the system in
a scattering process.

In this case the eigenvectors of OH(t) are generally time-dependent, and if a measurement is
made at time t, then in Eq. (2.16) the eigenvectors at time t must be used.

There is a third, intermediate picture, known as interaction or Dirac picture, where both the
observables and the states evolve in time but in different ways. This picture is useful when the
full Hamiltonian H = H0 + V can be split into a free Hamiltonian H0, corresponding to a free
system, and an interaction part V . In the interaction picture, observables obey the free temporal
evolution determined by H0, while the state vector evolves essentially with the interaction part
only. More precisely,

Dirac (interaction) picture: |ψ(t)〉I = eiH0te−iHt|ψ(0)〉S , OI(t) = eiH0tOSe
−iH0t . (2.19)

Notice that in general eiH0te−iHt 6= ei(H0−H)t = e−iV t! Clearly, expectation values (and thus the
physics) is independent of the picture one uses,

S〈φ(t)|OS |ψ(t)〉S = H〈φ|OH(t)|ψ〉H = I〈φ(t)|OI (t)|ψ(t)〉I , (2.20)

as can be explicitly verified.

2.3 Formal theory of scattering

In and out states Let us discuss in more detail what it means that the initial and final states
of the system in a scattering process look like freely-evolving particle states. In physical terms,
this means that as t → −∞ or t → +∞ the exact state of the system, e−iHt|ψ〉, which evolves
with the full Hamiltonian, is practically indistinguishable from freely evolving states e−iH0t|φi〉
and e−iH0t|φf 〉, respectively. Here H0 denotes a free Hamiltonian, corresponding to a system of
non-interacting particles. In mathematical terms, this translates into the fact that for states |ψ〉
describing a scattering system one has

lim
t→−∞

‖e−iHt|ψ〉 − e−iH0t|φi〉‖ = 0 ,

lim
t→+∞

‖e−iHt|ψ〉 − e−iH0t|φf 〉‖ = 0 ,
(2.21)
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for certain |φi,f 〉. A pictorial representation of the situation is given in Fig. 7. Turning the
argument around, this means that if we prepare our system in the distant past in the state
|φi〉, or more precisely if the evolution of the system that we prepare in the distant past looks
for all practical purposes as e−iH0t|φi〉, then the state vector that describes the exact temporal
evolution of the system with the full Hamiltonian will be

|ψ+〉 = lim
t→−∞

eiHte−iH0t|φi〉 . (2.22)

Similarly, if the state we observe in the distant future evolves for all practical purposes like
e−iH0t|φf 〉, then its exact temporal evolution is described by the state vector27

|ψ−〉 = lim
t→+∞

eiHte−iH0t|φf 〉 . (2.23)

The states |ψ+〉 and |ψ−〉 are respectively the in and out states corresponding to |φi〉 and |φf 〉,
which we call instead the asymptotic states of the system.

Møller operators Equations (2.22) and (2.23) define two operators, the scattering or Møller
operators,

Ω± = lim
t→∓∞

eiHte−iH0t . (2.24)

Being the limit of unitary operators, one can show that these operators conserve the norm,
i.e., ‖Ω±|φ〉‖ = ‖|φ〉‖. Since the initial state can be prepared as we please, and anything that
we want can be measured in the final state, |φi〉 and |φf 〉 range over a complete set of states
describing our system. From this and norm conservation one can conclude immediately that
Ω†
±Ω± = 1. In principle there might be states of the system that do not look like freely-evolving

states as t → ∓∞, and which would therefore not be accessible in a scattering experiment: we
will assume that this is not the case.28 If so, then for all states |ψ〉 there are asymptotic initial
and final states, i.e., the operators Ω± map the whole Hilbert space into the whole Hilbert space,
and are therefore unitary (see the discussion on page 26). This implies in particular that also

Ω±Ω
†
± = 1 holds.

S-matrix What we measure in experiments is not the exact temporal evolution of the system,
which is inaccessible, but rather the transition probability for the initial state to be observed
in some prescribed final state. If we have an initial state described by |ψ+(t)〉 = e−iHt|ψ+〉 →
e−iH0t|φi〉 as t → −∞, and at time Tf we project on the final state |ψ−(t)〉 = e−iHt|ψ−〉 which
is such that |ψ−(t)〉 → e−iH0t|φf 〉 as t→ +∞, the relevant transition amplitude is given by

〈ψ−(Tf )|ψ(Tf )〉 = 〈ψ−|eiHTf e−iHTf |ψ+〉 = 〈ψ−|ψ+〉 , (2.25)

27An alternative viewpoint is that when me make a measurement on the system at time t we are projecting its
state on some definite vector e−iH0t|φf 〉 corresponding to our experimental apparatus, which is then associated
with a freely-evolving projector e−iH0t|φf 〉〈φf |e+iH0t. Its exactly-evolving counterpart is eiHt|ψ+〉〈ψ+|eiHt, and
the two projectors are the same in the limit t→ +∞.

28In the non-relativistic case these would be the bound states of the system, like, e.g., a hydrogen atom state
in ep scattering. In the relativistic setting the hydrogen atom counts as a particle, although not an elementary
one, that can be used as an initial state or can be seen as a final state in a scattering process, so this does not
constitute a problem.
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which is time-independent. We can then compute it as follows:

〈ψ−|ψ+〉 = lim
Tf→+∞

〈ψ−|eiHTf e−iHTf |ψ+〉

= lim
Tf→+∞,Ti→−∞

〈ψ−|eiHTf e−iHTf eiHTie−iHTi |ψ+〉

= lim
Tf→+∞,Ti→−∞

〈φf |eiH0Tf e−iHTf eiHTie−iH0Ti |φi〉

= 〈φf |Ω†
−Ω+|φi〉 ≡ 〈φf |S|φi〉 = Sfi ,

(2.26)

where we have defined the S-operator, S = Ω†
−Ω+, whose matrix elements Sfi constitute the

S-matrix. More directly,

〈ψ−|ψ+〉 = 〈φf |Ω†
−Ω+|φi〉 = 〈φf |S|φi〉 . (2.27)

The S-matrix encodes all the relevant information about scattering processes: from the transition
amplitudes Sfi one can get the transition probabilities Pfi = |Sfi|2, which can be (indirectly)
measured in experiments.

Properties of the S-matrix Let us discuss a few important properties of S. The operator
S is unitary, being the product of unitary operators, so S†S = SS† = 1, respectively.29 The
physical meaning of unitarity is that probability is conserved: from an initial state we will
certainly get to some final state, and a final state has certainly come from an initial state. These
physically obvious statements correspond mathematically to S†S = 1 and SS† = 1. In fact,
using the completeness relations

∑

f |φf 〉〈φf | =
∑

i |φi〉〈φi| = 1, we find

∑

f

Pfi =
∑

f

|Sfi|2 =
∑

f

〈φi|S†|φf 〉〈φf |S|φi〉 = 〈φi|S†S|φi〉 ,

∑

i

Pfi =
∑

i

|Sfi|2 =
∑

i

〈φf |S|φi〉〈φi|S†|φf 〉 = 〈φf |SS†|φf 〉 .
(2.28)

Next, notice that ∀s

eiHsΩ±e
−iH0s = lim

t→∓∞
eiHseiHte−iH0te−iH0s = lim

t→∓∞
eiH(t+s)e−iH0(t+s)

= lim
t→∓∞

eiHte−iH0t = Ω± .
(2.29)

Taking the derivative with respect to s of this relation and then setting s to zero we find the
intertwining relations

HΩ± = Ω±H0 , H0Ω
†
± = Ω†

±H . (2.30)

29Unitarity of S actually holds even if Ω± are not unitary, but have as image only a subspace Λ of the whole
Hilbert space, the same for both operators, corresponding to scattering states. In this case Ω±Ω

†
± = ΠΛ equals

the projector on this subspace. Nonetheless, since ΠΛΩ± = Ω± as ΠΛ acts like the identity on Λ, one has

S†S = Ω†+Ω−Ω
†
−Ω+ = Ω†+ΠΛΩ+ = Ω†+Ω+ = 1 ,

SS† = Ω†−Ω+Ω
†
+Ω− = Ω†−ΠΛΩ− = Ω†−Ω− = 1 .
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It then follows that

H0S = H0Ω
†
−Ω+ = Ω†

−HΩ+ = Ω†
−Ω+H0 ⇒ [H0, S] = 0 . (2.31)

If we now take the matrix element of this relation between initial and final states that are energy
eigenstates we find

0 = 〈φf |[H0, S]|φi〉 = (Ef − Ei)〈φf |S|φi〉 = (Ef − Ei)Sfi , (2.32)

which implies that Sfi can be nonzero only for initial and final states with the same energy.
In other words, energy is conserved in a scattering process – as it should. Finally, if there
is some symmetry generator G that commutes with both the free and the full Hamiltonians,
[G,H0] = [G,H] = 0, then it will commute with the scattering operators, [G,Ω±] = 0. In
particular, interactions V = H − H0 are usually translationally and rotationally invariant, so
for the momentum ~P and the angular momentum ~J we have

[~P ,Ω±] = [ ~J,Ω±] = 0 . (2.33)

From this it follows immediately that

[~P , S] = [ ~J, S] = 0 , (2.34)

i.e., momentum and angular momentum are conserved in scattering processes – again, as it
should be. Lorentz invariance is somewhat trickier to achieve, but it is certainly desired. If
we build V properly, then we will have U0(Λ)

†SU0(Λ) = S, with U0(Λ) the unitary operator
implementing the Lorentz transformation Λ on free particle states (see below Section 4).

Non-relativistic case For non-relativistic two-particle elastic scattering, factoring out the
trivial behaviour of the centre-of-mass (CM) of the system, one is reduced to studying the
relative motion in the CM system, which is equivalent to studying the scattering of one particle
in a potential. Let the state of the system in the CM be described by the state vector |φ〉. It is
useful for certain applications to recast Eq. (2.24) as

Ω± = 1+

∫ ∓∞

0
dt

d

dt
eiHte−iH0t = 1+ i

∫ ∓∞

0
dt eiHtV e−iH0t , (2.35)

where H0, V , and H all involve only the relative coordinates and momenta of the system.
Applied on |φ〉, using the decomposition over momentum (improper) eigenstates |~p 〉, one finds

Ω±|φ〉 =
∫

d3p

(2π)3
〈~p |φ〉

(

|~p 〉+ i

∫ ∓∞

0
dt eiHtV e−iH0t|~p 〉

)

. (2.36)

Here the normalisation is chosen to be 〈~p ′|~p〉 = (2π)3δ(~p ′−~p ). Including a damping factor e−ǫ|t|

that will be eventually removed, and that should not change anything for well-defined states
with a convergent integration over ~p, one finds

Ω±|φ〉 = lim
ǫ→0

∫
d3p

(2π)3
〈~p |φ〉

(

|~p 〉+ i

∫ ∓∞

0
dt ei(H−E~p ∓iǫ)tV |~p 〉

)

=

∫
d3p

(2π)3
〈~p |φ〉 lim

ǫ→0

{

1+
1

E~p −H ± iǫ
V

}

|~p 〉

=

∫
d3p

(2π)3
〈~p |φ〉 lim

ǫ→0

±iǫ
E~p −H ± iǫ

|~p 〉 ≡
∫

d3p

(2π)3
|~p±〉〈~p |φ〉 .

(2.37)
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The in and out state states |~p±〉 are eigenstates of momentum and of the (relative part of the)
full Hamiltonian, H|~p±〉 = E~p|~p±〉 with the same momentum and the same energy E~p as |~p 〉,
although in that case this is the eigenvalue of the free Hamiltonian, H0|~p 〉 = E~p|~p 〉. We write
also

|~p±〉 = lim
ǫ→0

±iǫ
E~p −H ± iǫ

|~p 〉 = Ω±(E~p)|~p 〉 , (2.38)

which provides the definition of the energy-dependent scattering operators Ω±(E~p). notice that

(E~p −H)|~p±〉 = lim
ǫ→0

±iǫ(E~p −H)

E~p −H ± iǫ
|~p 〉 = 0 , (2.39)

i.e., |~p±〉 are eigenstates of H of energy E~p ≥ 0. Elastic scattering leads from a momentum
eigenstate to another momentum eigenstate, so the relevant S-matrix elements read

〈~p ′− |~p+〉 = 〈~p ′|S|~p 〉 = 〈~p ′|Ω−(E~p ′)
†Ω+(E~p)|~p 〉

= 〈~p ′|~p 〉+ 〈~p ′|
[
Ω−(E~p ′)− Ω+(E~p ′)

]†
Ω+(E~p)|~p 〉

= 〈~p ′|~p 〉 − 〈~p ′|V 2iǫ

(H − E~p ′)2 + ǫ2
Ω+(E~p)|~p 〉

= 〈~p ′|~p 〉 − 〈~p ′|V Ω+(E~p)
2iǫ

(H0 − E~p ′)2 + ǫ2
|~p 〉

= 〈~p ′|~p 〉 − 2πiδ(E~p − E~p ′)〈~p ′|V Ω+(E~p)|~p 〉

= 〈~p ′|~p 〉 − 2πiδ(E~p − E~p ′)〈~p ′|V |~p+ 〉 ≡ 〈~p ′|~p 〉2πiδ(E~p − E~p ′)
2π

m
f(p, θ, ϕ) .

(2.40)

The first term corresponds to no scattering, while the second one contains all the effects of the
interaction.

One can connect the scattering amplitude f to the large-distance behaviour of scattering
solutions of the Schrödinger equation. To see this, notice first the identity

1

E~p −H0 ± iǫ
V

1

E~p −H ± iǫ
=

1

E~p −H0 ± iǫ
[(E~p −H0 ± iǫ)− (E~p −H ± iǫ)]

1

E~p −H ± iǫ

=
1

E~p −H ± iǫ
− 1

E~p −H0 ± iǫ
,

(2.41)
from which follows
(

1− 1

E~p −H0 ± iǫ
V

)

|~p±〉 =
(

1− 1

E~p −H0 ± iǫ
V

)(

1+
1

E~p −H ± iǫ
V

)

|~p 〉 = |~p 〉 , (2.42)

or equivalently

|~p±〉 = |~p 〉+ 1

E~p −H0 ± iǫ
V |~p±〉 . (2.43)

In the coordinate representation one finds

ψp±(~x) = 〈~x|~p±〉 = ei~p·~x +
∫

d3x′ 〈~x| 1

E~p −H0 ± iǫ
|~x ′〉V (~x ′)〈~x ′|~p±〉 . (2.44)
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Going over to polar coordinates and integrating over the angular variables we find

〈~x | 1

Ep −H0 ± iǫ
|~x ′〉 = 2m

(2π)2i

1

|~x− ~x ′|

∫ ∞

0
dp ′
(

eip
′|~x−~x ′| − e−ip

′|~x−~x ′|
) p ′

p2 − p′ 2 ± iǫ

=
m

2π2i

1

|~x− ~x ′|

∫ +∞

−∞
dp ′ eip

′|~x−~x ′| p ′

(p− p′ ± iǫ)(p + p′ ± iǫ)
.

(2.45)

This integral can be computed using the residue theorem. Since |~x−~x ′| is positive, we can close
the contour of integration in the upper half plane, thus picking the pole with positive imaginary
part, i.e., p′ = ±p+ iǫ. This finally yields

〈~x | 1

Ep −H0 ± iǫ
|~x ′〉 = m

2π2i

1

|~x− ~x ′|2πie
±ip|~x−~x ′|∓p

2p
= ∓m

2π

1

|~x− ~x ′|e
±ip|~x−~x ′| . (2.46)

Plugging this into Eq. (2.44) we find

ψp±(~x) = ei~p·~x ∓ m

2π

∫

d3x′
1

|~x− ~x ′|e
±ip|~x−~x ′|V (~x ′)ψp±(~x

′) . (2.47)

Let us focus now on ψp+(~x), and consider the limit of large r ≡ |~x|. For potentials with finite
range (compact support, exponentials,. . . ) this amounts to consider r much larger than such a
range. Using

|~x− ~x ′| ≃ r − x̂ · ~x ′ , (2.48)

where x̂ = ~x/r, we obtain from Eq. (2.47)

ψp+(~x) = ei~p·~x − m

2π

eipr

r

∫

d3x′ e−i~p
′x̂·~x ′V (~x ′)ψp+(~x

′) , (2.49)

where we have set ~p ′ = px̂. But then

2π

m
f(p, θ, ϕ) = −〈~p ′|V |~p+〉 = −

∫

d3x′ 〈~p ′|~x ′〉V (~x ′)〈~x ′|~p+〉

= −
∫

d3x′ e−i~p
′·~x ′V (~x ′)ψp+(~x

′) ,
(2.50)

and so comparing the two equations we see that

ψp+(~x) = ei~p·~x +
eipr

r
f(p, θ, ϕ) . (2.51)

The main conclusion is that the scattering amplitude (and therefore, as we will see, the differ-
ential cross section measured in experiments) is determined by the asymptotic, large-distance
behaviour of the positive-energy solutions of the Schrödinger equation satisfying the following
boundary condition: at large distances it looks like the sum of a plane wave, corresponding to
the incoming particle, and an outgoing spherical wave. The relative weight of the two terms
determines the probability of detecting the particle scattered in a given direction.
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Dyson’s formula The calculation above applies to the NR case, and can be used directly in a
limited amount of cases where the exact solution of the time-independent Schrödinger equation
can be obtained analytically. For more general cases one needs a way to obtain approximate
results for the S-matrix elements that do not require the exact solution of the eigenvalue problem.
To this end, we now work out a useful formula for the S operator.

Starting from its definition, we can write

S = Ω†
−Ω+ = lim

t2→+∞
lim

t1→−∞
eiH0t2e−iHt2eiHt1e−iH0t1 = lim

t2→+∞
lim

t1→−∞
U(t2, t1) , (2.52)

where U(t2, t1) is a unitary operator. To obtain an explicit expression for it, we will write down
the differential equation that it obeys, and solve it subject to the initial condition U(t, t) = 1.
Taking the derivative with respect to t2

∂

∂t2
U(t2, t1) = eiH0t2i(H0 −H)e−iH0t2U(t2, t1) = −ieiH0t2V e−iH0t2U(t2, t1)

= −iVI(t2)U(t2, t1) ,
(2.53)

where
VI(t) ≡ eiH0tV e−iH0t . (2.54)

Notice that the temporal evolution is governed by the free Hamiltonian rather than the full one:
this means that VI(t) is the interaction part of the Hamiltonian in the interaction picture (see
discussion on page 28), which differs from the interaction Hamiltonian in the Heisenberg picture,
V (t) = eiHtV e−iHt. Since U(t2, t1)† = U(t1, t2), taking the derivative with respect to t1 will not
teach us anything new. For completeness, we report the result:

∂

∂t1
U(t2, t1) = U(t2, t1)iVI(t1) . (2.55)

The solution of Eqs. (2.53) and (2.55) with the prescribed initial condition is

U(t2, t1) = Texp

{

−i
∫ t2

t1

dt VI(t)

}

=

∞∑

n=0

(−i)n
n!

∫ t2

t1

dτ1 . . .

∫ t2

t1

dτn T {VI(τ1) . . . VI(τn)} ,
(2.56)

where the time-ordering symbol T places the operators in descending order with respect to time
starting from the left:30

T{A1(t1)A2(t2)} = θ(t1 − t2)A1(t1)A2(t2) + θ(t2 − t1)A2(t2)A1(t1) ,

T{A1(t1) . . . An(tn)} =
∑

P

θ(tP (1) − tP (2)) . . . θ(tP (n−1) − tP (n))AP (1)(tP (1)) . . . AP (n)(tP (n)) ,

(2.57)
where the sum is over all the distinct permutations P of {1, . . . , n}. To see that the expression
in Eq. (2.56) is indeed the solution of our equation, we rewrite it identically as follows,

U(t2, t1) =
∞∑

n=0

(−i)n
∫ t2

t1

dτ1

∫ τ1

t1

dτ2 . . .

∫ τn−1

t1

dτn VI(τ1) . . . VI(τn) , (2.58)

30The term with n = 0 is simply the identity operator.
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where we have used the fact that for a given n all the n! permutations of the times τj give the
same contribution. We then see that t2 appears only as the integration limit of the leftmost
integral, and we then find straightforwardly that

∂

∂t2
U(t2, t1) = −iVI(t2)

∞∑

n=1

(−i)n−1

∫ t2

t1

dτ2 . . .

∫ τn−1

t1

dτn VI(τ2) . . . VI(τn)

= −iVI(t2)
∞∑

n=0

(−i)n
∫ t2

t1

dτ1 . . .

∫ τn−1

t1

dτn VI(τ1) . . . VI(τn)

= −iVI(t2)U(t2, t1) .

(2.59)

Since it is obvious that U in Eq. (2.58) satisfies the initial condition, it is the unique solution of
our problem (as per the uniqueness of the solution to a Cauchy problem). In terms of U we can
then write Dyson’s formula for the S-operator:

S = U(+∞,−∞) = Texp

{

−i
∫ +∞

−∞
dt VI(t)

}

. (2.60)

This expression does not lead us any closer to solving exactly the scattering problem, but
allows for a straightforward approximation scheme. If V is a small perturbation, then it makes
sense to expand the time-ordered exponential in powers of the interaction, and compute the
contribution of the first few terms: this should provide a reasonable approximation of the S-
matrix elements. One then only needs to supply a suitable interaction term V in order to obtain
physical predictions. In order to connect these to experiments, though, we still need to connect
the S-matrix with quantities that can actually be measured, like the cross section of a process.

2.4 Cross sections from the S-matrix

The cross section of a process is directly related to the transition probability Pfi from an initial
state |φi〉 to a final state |φf 〉, and in fact it is the closest thing to Pfi that we can measure.
There are in fact practical limitations to measure Pfi directly, most prominently the fact that
the initial state in one single given scattering process is not known with arbitrary accuracy:
the particle states used in scattering experiments are obtained through practical processes (e.g.,
acceleration of particles, preparation of beams) that are affected by inherent uncertainties, which
do not allow for an exceedingly accurate determination of the actual wave function of the state.
From a practical point of view, what can be measured is the transition probability averaged
over many experiments, corresponding to many slightly different initial states. Luckily enough,
if the experiment is designed with sufficient care and the initial states are sufficiently peaked
around definite momenta of the particles, then the variation over the initial state turns out to
have no effect, and what gets actually measured is the transition probability between idealised
initial and final momentum eigenstates. We will not discuss the details here, which requires a
detailed calculation using a wave-packet description of the initial and final states and a careful
consideration of how scattering experiments are carried out. We simply reassure the reader that
this can be done, reaching the same conclusions that will be obtained below with a simpler
method. The upshot is that if we have a theory from which we can compute S-matrix elements,
then these can be used to predict the outcome of scattering experiments, so allowing one to test
the theory.
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Recall that differential cross sections are operatively defined through the formula

∆σα(ξ) =
1

NtΦ

∆Nevents(α, ξ)

∆t∆ξ
∆ξ , (2.61)

which directly applies to fixed-target experiments. Here ∆Nevents(ξ) is the number of scattering
events taking place in the time interval ∆t and characterised by specific values of certain discrete
quantum numbers, collectively denoted by α (particle type, charge, spin component), and by
continuous quantum numbers ξj , collectively denoted by ξ, lying within the intervals [ξj, ξj+∆ξj],
with ∆ξ =

∏

j ∆ξj. Together, α and ξ characterise the final state of the system. Moreover, Nt

is the number of scatterers in that part of the target where the beam impinges, and Φ is the
beam flux. Together with the type of particles involved, these characterise the initial state of
the system. In the following we will simplyfy the notation and indicate the specific combination
of initial and final state by the subscript fi.

Consider now an idealised process in which a single particle from the beam (particle 1)
possibly interacts with a single particle in the target (particle 2), corresponding to Nt = Nb = 1.
For sufficiently diluted beams and targets, this is an accurate description of the experimental
situation. Then, over the time ∆t that it takes for the collision to complete, in a volume ∆Vb
around the beam particle one will find only particles 1 and 2. This volume is just the inverse of
the beam spatial density ρb = Nb/Vb (where Vb is the total volume occupied by the beam), since
ρb∆Vb = 1 means that a single particle is typically found in ∆Vb. Therefore, if particle 1 has
velocity v then the beam flux equals Φ = ρbv = (1/∆Vb)v. The average number of scattering
events ∆Nevents in this case is the probability that an interaction actually takes place leading
form the initial state i to the specified final state f , i.e., the transition probability Pfi,

Pfi =
Sfi

〈φf |φf 〉〈φi|φi〉
=

|〈φf |S|φi〉|2
〈φf |φf 〉〈φi|φi〉

. (2.62)

While very small on the macroscopic scales experienced by the experimenters, the time ∆t and
the volume ∆Vb are very large on the microscopic scale experienced by the particles, determined
by the typical length and time scale of the collision process. One can then eventually take the
limits ∆t,∆Vb → ∞ without any appreciable loss of precision.

The next step in our idealisation is to consider particles with sharply defined momenta in the
initial state, and to measure with infinite precision the momenta of the final state, so studying
the transition from a momentum eigenstate to another momentum eigenstate. However, here
we have to pause and consider carefully what we are doing. If we take the infinite-time and
infinite-volume limit too soon, in fact, we run into problems. In an infinite spatial volume the
momentum eigenstates are improper, non-normalisable eigenstates, for which Eq. (2.62) makes
no sense. Furthermore, since S commutes with energy and momentum, its matrix elements
between momentum eigenstates can certainly be written as

Sfi = δfi + i(2π)4δ(4)(Pf − Pi)Mfi , (2.63)

where the term δfi = 〈φf |φi〉, corresponding to no scattering actually taking place, has been
singled out, and Pi,f are the total initial and final momentum. In the case of different initial
and final states (f 6= i) that we will be considering here, only the second term matters. One
sees immediately that the numerator in Eq. (2.62) contains the square of a Dirac delta, which
again makes no sense. On the other hand, there was no reason to take the infinite-volume limit

36



immediately: that is certainly a sensible thing to do, as explained above, but one should do it
with care.

Let us take advantage of the existence of a finite spacetime box in which the scattering
process is essentially taking place. Consider a T × V = T × L3 box of temporal extension T ,
which will be identified with ∆t, and of spatial extension L and volume V = L3, which will
be identified with ∆Vb. The use of capital letters is to remind ourselves that these microscopic
scales are actually huge scale for the particles, and will eventually be sent to infinity. For this
reason, it should make no difference if we artificially impose periodic boundary conditions on our
box, which will play no role in the infinite-box limit, but guarantee us translational invariance.
In this setup, momentum eigenvalues are quantised, ~p = 2π

L ~n with nj ∈ Z, and one finds a single

mode in a small momentum-space box of volume ∆3p = (2π)3

V . In a finite volume momentum

eigenmodes are normalisble, and we choose the normalisation V 〈~p ′|~p 〉V = 2p0V δ
(3)
~p ′,~p , where the

delta is here a Kronecker delta. The reason for doing this is that in the infinite-volume limit
one finds

1 =
∑

~p

1

2p0V
V 〈~p ′|~p〉V →

V→∞

∫
d3p

(2π)32p0

(

lim
V→∞ V 〈~p ′|~p〉V

)

=

∫
d3p

(2π)32p0
〈~p ′|~p 〉 , (2.64)

meaning that
lim
L→∞

Lδp ′j ,pj = 2πδ(p ′
j − pj) , (2.65)

and that
〈~p ′|~p 〉 = (2π)32p0δ(3)(~p ′ − ~p ) . (2.66)

One then finds an acceptable normalisation for the infinite-volume momentum eigenstates, which
is furthermore Lorentz-invariant (this can be seen directly, or simply noticing that since the in-
tegration measure is invariant, so is the normalisation – see Section A.5). Equation (2.66) is
known as the relativistic invariant normalisation of momentum eigenstates. Translation invari-
ance imposes now that the finite-box version of the S-operator reads

S
(T,V )
fi = δ

(T,V )
fi + iTV δ

(4)
Pf ,Pi

M(T,V )
fi , (2.67)

having factored out TV so that TV δ
(4)
Pf ,Pi

→ (2π)4δ(4)(Pf −Pi), and so M(T,V )
fi → Mfi becomes

its infinite-volume counterpart appearing in Eq. (2.63) in the infinite-box limit.
We are now ready to derive the relation between the S-matrix and the cross section. We

consider a generic final state (as long as f 6= i), with n particles of momenta ~p ′
j . As explained

above, in the setting considered here Eq. (2.61) becomes

∆σ =
Pfi
T
V v

, (2.68)

having set ∆Nevents = Pfi, Nt = Nb = 1, ∆t = T , and ∆Vb = V . Here ∆σ indicates that we are
computing a (discretised) differential cross section. Using Eq. (2.67), we find

∆σ =
V

Tv

(TV )2δ
(4)
Pf ,Pi

|M(T,V )
fi |2

4p01V p
0
2V

n∏

j=1

1

2p′0j V
=
TV δ

(4)
Pf ,Pi

|M(T,V )
fi |2

4p01p
0
2v

n∏

j=1

∆3p′j
(2π)32p′0j

, (2.69)
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where again ∆3p′j = (2π)3/V is the size of the bin in which the momentum of final particle j

falls, that will eventually become the infinitesimal momentum-space element d3p′j in the infinite-
volume limit. Squaring the Kronecker delta causes no problems, and the factors of T and V
cancel out to leave just what is required for a single regularised Dirac delta. We can now take
T, V → ∞ and find ∆σ → dσ with

dσ =
|Mfi|2
4p01p

0
2v

(2π)4δ(4)(Pf − Pi)

n∏

j=1

d3p′j
(2π)32p′0j

=
|Mfi|2
4p01p

0
2v
dΦ(n) , (2.70)

where dΦ(n) is the infinitesimal invariant element of the n-particle phase space dΦ(n) (see Section
A.5). This formula relates theory and experiment in the case of fixed-target experiments, with
all quantities measured in the laboratory frame. On the other hand, dσ is a Lorentz-invariant
concept, expressing the “effective area” surrounding a target particle, as seen by a beam particle
that impinges on it perpendicularly: being transverse to the motion of the beam particle, it
is left invariant by a boost in the longitudinal direction of the beam.31 Moreover, dΦ(n) is
Lorentz-invariant, and so is Mfi if we obtain it from a Lorentz-invariant theory and use a
relativistic-invariant normalisation for the momentum eigenstates, as we are doing here. The
only non-invariant piece in Eq. (2.70) is the denominator, which is specific to the fixed-target
setup, and reads more explicitly p01p

0
2v = E1m2v = |~p1|m2. This equals a suitable Lorentz-

invariant quantity evaluated in the lab frame, namely

|~p1|m2 =
√

~p 2
1m

2
2 =

√

(E 2
1 −m2

1)m
2
2 =

√

(p1 · p2)2 − p21p
2
2 ≡ I . (2.71)

We can then write the formula for the differential cross section in a manifestly Lorentz-invariant
way as follows,

dσ =
|Mfi|2
4I

dΦ(n) . (2.72)

This is the formula we were after.
To make further progress, a detailed theory to compute Mfi is needed. This requires con-

structing an interaction Hamiltonian compatible with Lorentz invariance and the other symme-
tries of nature. In the next Section we will briefly describe how this can be done.

3 From Relativistic Quantum Mechanics to Quantum Field The-

ory

3.1 Relativistic quantum mechanics

3.1.1 Klein-Gordon-Schrödinger equation

In the nonrelativistic, free-particle case the fundamental dynamical equation, i.e., the Schrödinger
equation,

i∂tψ(t, ~x) = −
~∇ 2

2m
ψ(t, ~x) , (3.1)

31Defining the flux using the projection of the beam velocity on the perpendicular of the target surface, dσ
remains invariant also under general Lorentz transformations.
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obeyed by the particle wave function ψ(t, ~x), can be derived from the relation between energy
and momentum by upgrading the classical variables E and ~p to differential operators acting
on the particle’s wave function. In fact, starting from the non-relativistic energy-momentum
relation

E =
~p 2

2m
, (3.2)

if one replaces E → i∂t and ~p → −i~∇, and requires that Eq. (3.2) holds as a relation between
differential operators acting on ψ, one recovers Eq. (3.1). It is interesting to notice that the
differential operators associated with energy and momentum generate translations in time and
space, respectively.32

The next thing to do to is to make the dynamics compatible with special relativity. In
the relativistic case the energy-momentum relation is E2 − ~p 2 = m2 which after the same
substitutions for E and ~p as above leads to the Klein-Gordon equation,

(✷+m2)ψ(t, ~x) = (∂2t − ~∇2 +m2)ψ(t, ~x) = 0 . (3.3)

Schrödinger did not live under a stone and was perfectly aware that physics had to comply
with special relativity, and this was in fact the first equation he wrote, before Klein and Gordon.
However, he was forced to content himself with its non-relativistic limit, Eq. (3.1), which provides
a consistent description of a particle in terms of a wave function ψ encoding the probability to
find it somewhere in space at a given time, while one faces a number of technical difficulties in
attempting a similar interpretation for the solutions of the fully relativistic equation, Eq. (3.3).

Negative probabilities and negative energy states The first difficulty is the lack of a
covariant probability current giving a positive-definite probability density. From the Klein-
Gordon equation and its complex conjugate one finds

0 = φ∗(✷+m2)φ− φ(✷+m2)φ∗ = φ∗∂µ∂
µφ− φ∂µ∂

µφ∗ = ∂µ[φ
∗∂µφ− (∂µφ∗)φ] , (3.4)

and so the current
Jµ = iφ∗

↔
∂µφ , f

↔
∂µg ≡ f∂µg − (∂µf)g , (3.5)

is conserved, i.e., ∂µJ
µ = 0. This is therefore a good candidate for a probability current, since

it is a four-vector (so correct transformation properties under Lorentz transformations) and it is
conserved (so obeying a continuity equation, i.e., “probability is conserved”), but unfortunately
its µ = 0 component, i.e., the probability density, is not positive-definite.

The second difficulty is the existence of negative-energy solutions. It is not hard to see
that the general solution of Eq. (3.3) is a superposition of plane waves, φp(x) = e−ip·x, with pµ

an arbitrary four-vector satisfying the mass-shell condition (p0)2 − ~p 2 = m2, corresponding to
the four-momentum of the solution. In particular, the energy of the solution is read off from

32Derivatives “generating translations” can be understood as follows. The translated function fa(s) ≡ f(s+ a)
is obtained from the function f(s) by adding up (infinitely many) translations by an infinitesimal amount ǫ, until
the desired finite amount a is reached. For infinitesimal ǫ one has fǫ(s) = f(s) + ǫ∂sf(s) +O(ǫ2), and it is clear
that the effect of such a translation is entirely encoded in ∂sf(s), i.e., in the effect of the derivative operator. To
all orders,

f(s+ a) =

∞
∑

n=0

an

n!
∂ns f(0) = ea∂sf(s) = eia(−i∂s)f(s) .
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Eφp(x) = i∂0φp(x) = p0φp(x), and since only |p0| is determined by the mass-shell condition,
states with unbounded negative energy are present. This is in contradiction with the observed
stability of matter: if such negative-energy states existed in nature, then nothing would prevent
matter from decaying into states of more and more negative energy.

General solution of the Klein-Gordon equation Despite these difficulties, let us write
the most general solution of the Klein-Gordon equation. The simplest way to do so is by going
over to momentum space by a Fourier transform,

φ(x) =

∫
d4p

(2π)4
e−ip·xφ̃(p) , (3.6)

and observe that φ̃(p) obeys an algebraic equation,

0 = (✷+m2)φ(x) =

∫
d4p

(2π)4
[(✷+m2)e−ip·x]φ̃(p) =

∫
d4p

(2π)4
e−ip·x(−p2 +m2)φ̃(p)

⇒ (p2 −m2)φ̃(p) = 0 .

(3.7)

This restricts φ̃(p) to be non-vanishing only on the mass shell p2 = (p0)2 − ~p 2 = m2, which can
be implemented by setting φ̃(p) = 2πδ(p2−m2)ϕ̃(p0, ~p ). Using the properties of the Dirac delta
this implies [see Eq. (A.79)]

φ(x) =

∫
d4p

(2π)4
e−ip·x

2π

2
√

~p 2 +m2

(

δ(p0 −
√

~p 2 +m2) + δ(p0 +
√

~p 2 +m2)
)

ϕ̃(p0, ~p )

=

∫
d3p

(2π)32p0

(

ϕ̃(p0, ~p )e−i(p
0x0−~p·~x) + ϕ̃(−p0, ~p )e−i(−p0x0−~p·~x)

)
∣
∣
∣
∣
p0=

√
~p 2+m2

=

∫
d3p

(2π)32p0
{
a(~p )e−ip·x + b(~p )∗eip·x

}
=

∫

dΩp
{
a(~p )e−ip·x + b(~p )∗eip·x

}
,

(3.8)

where p0 is now fixed by the mass-shell condition and restricted for convenience to take positive
values only, p0 =

√

~p 2 +m2, we set a(~p ) = ϕ̃(p0, ~p ) and b(~p )∗ = ϕ̃(−p0,−~p ), and dΩp denotes
the invariant one-particle phase-space element [see Eq. (A.82)]. The first and second term in
braces correspond respectively to positive- and negative-energy solutions of spatial momentum
~p and −~p, multiplied by (generally complex) amplitudes a(~p ) and b(~p )∗. With the chosen
normalisation of the coefficients, the spacetime integral of J0 reads

Q =

∫

d3xJ0(x) =

∫

dΩp [a(~p )
∗a(~p )− b(~p )b(~p )∗] . (3.9)

It is clear that Q can take negative values, but it is interesting to notice that negative contribu-
tions come only from the negative-energy normal modes.

3.1.2 Dirac equation

Being the transposition into quantum-mechanical language of the relativistic energy-momentum
relation E2 = ~p 2 +m2, the Klein-Gordon equation should be obeyed independently of the type
of particle, in particular of its spin. On the other hand, there is nothing in it that specifies the
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number of possible spin states, and so one should look for more restrictive equations if one wants
to include spin in the description.

The appropriate equation for spin-12 fermions was found by Dirac, in an attempt to solve the
problems of the Klein-Gordon equation mentioned above, i.e., negative energy states, and lack
of a covariant probability current giving a positive-definite probability density. Negative-energy
states appear because the equation is second-order in time and so, Dirac reasoned, a way to get
rid of them would be to find a relativistic equation for the fermions that is first order in the time
derivative. Lorentz invariance then requires that it be first order also in the spatial derivatives.
Moreover, this equation should imply the Klein-Gordon equation. Dirac’s idea was then to look
for the “square root” of the Klein-Gordon equation, i.e., for an equation of the form

ibµ∂µψ = aψ , (3.10)

satisfied by the wave function ψ, which implies automatically

− bµ∂µb
ν∂νψ = a2ψ =⇒ (bµ∂µb

ν∂ν + a2)ψ = 0 , (3.11)

and to impose that this reproduces the Klein-Gordon equation. This requirement is satisfied if

✷ = bµbν∂µ∂ν = 1
2{bµ, bν}∂µ∂ν ,

m2 = a2 ,
(3.12)

which in turn will be satisfied if

{bµ, bν} = 2ηµν , a2 = m2 . (3.13)

These equations cannot be solved by means of complex constants: while the second equation is
easily solved by setting a = ±m, the first one in the case µ = ν would imply that (bµ)2 = ±1,
which is incompatible with bµbν = 0 for µ 6= ν. The simplest way to solve Eq. (3.13) is by means
of 4× 4 matrices, bµ = γµ, a = m14, with

γ0 =

(
12 02
02 −12

)

, γj =

(
02 σj
−σj 02

)

. (3.14)

One can verify explicitly that the γµ satisfy the relation33

{γµ, γν} = 2ηµν . (3.15)

This means that ψ is upgraded to a four-component object, called bispinor,

ψ =

(
ψ1

ψ2

)

, (3.16)

where ψ1,2 are two-component objects called spinors. The resulting equation,

(i/∂ −m)ψ = 0 , (3.17)

33The matrices in Eq. (3.14) are not the only ones satisfying this relation, e.g., any set γµU = U†γµU obtained
by a unitary transformation still does. A set of matrices satisfying Eq. (3.15) is said to generate a representation
of the Clifford algebra associated with the metric defined by the Minkowski tensor ηµν .
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where /∂ ≡ γµ∂µ, is the Dirac equation. This equation solved the problem of the non-positive
probability density, but as we will see below it did not solve the problem of negative energies.
In fact, taking the Hermitean conjugate of Eq. (3.17) and multiplying on the right by γ0 one
finds

0 = ψ†(−i
←
∂µγ

µ† −m)γ0 = −ψ†γ0(i
←
/∂ +m)(γ0)2 = −ψ̄(i

←
/∂ +m) , (3.18)

where ψ̄ = ψ†γ0 denotes the Dirac adjoint. Then, for Jµ ≡ ψ̄γµψ one finds

∂µJ
µ = (∂µψ̄)γ

µψ + ψ̄γµ∂µψ = −iψ̄(i
←
/∂ +m)ψ − iψ̄(i/∂ −m)ψ = 0 , (3.19)

so Jµ is a conserved four-vector current and as such a good probability four-current, with a
manifestly positive zero component J0 = ψ̄γ0ψ = ψ†ψ which can be interpreted as a probability
density.

Dirac Hamiltonian and energy eigenfunctions From Eq. (3.17) one obtains the Dirac
Hamiltonian as follows,

i∂0ψ = (mγ0 − i~∇ · γ0~γ)ψ ≡ HDiracψ . (3.20)

Plane wave solutions of the Dirac equations of the form ψ = ψ0e
−ip·x are easily seen to correspond

to time-independent eigenfunctions ψ0e
i~p·~x of the Dirac Hamiltonian of energy p0 and vice versa,

since in both cases ψ0 must satisfy

(i/∂ −m)ψ0e
−ip·x = e−ip·x(p0γ0 − ~p · ~γ −m)ψ0 ≡ e−ip·x(/p −m)ψ0 = 0 ,

γ0(m+ ~p · ~γ)ψ0 = p0ψ0 −→ (p0γ0 − ~p · ~γ −m)ψ0 = (/p−m)ψ0 = 0 .
(3.21)

There are four solutions to Eq. (3.21), two with positive energy p0 =
√

~p 2 +m2 and two with
negative energy p0 = −

√

~p 2 +m2. It is customary to fix p0 ≡ +
√

~p 2 +m2 and look for
positive-energy E = p0 solutions with momentum ~p of the form ψ+ = u(~p )e−ip·x, and for
negative-energy solutions E = −p0 with momentum −~p of the form ψ− = v(~p )eip·x, with u and
v suitable bispinors satisfying the equations

(/p−m)u(~p ) = 0 , (/p+m)v(~p ) = 0 . (3.22)

Setting

u =

(
ξ1
ξ2

)

, v =

(
η1
η2

)

(3.23)

with two-component ξ1,2 and η1,2, we find

0 = (/p −m)u =

(
(p0 −m)ξ1 − ~p · ~σξ2
−(p0 +m)ξ2 + ~p · ~σξ1

)

,

0 = (/p+m)v =

(
(p0 +m)η1 − ~p · ~ση2
−(p0 −m)η2 + ~p · ~ση1

)

.

(3.24)

These are solved imposing that

ξ2 =
~p · ~σ
p0 +m

ξ1 , η1 =
~p · ~σ
p0 +m

η2 . (3.25)
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Choosing pairs of orthonormal spinors χs and χ̃s, s = 1, 2, χ†
s′χs = χ̃†

s′χ̃s = δs′s, we can then
write

us(~p ) =
√

p0 +m

(

χs
~p·~σ
p0+m

χs

)

, vs(~p ) =
√

p0 +m

(
~p·~σ
p0+m

χ̃s
χ̃s

)

, (3.26)

where the factor
√

p0 +m is chosen for normalisation purposes, so that

ūs′(~p )us(~p ) = 2mδs′s , v̄s′(~p )vs(~p ) = −2mδs′s ,

ūs′(~p )vs(~p ) = 0 , v̄s′(~p )us(~p ) = 0 ,
(3.27)

where ūs(~p ) = us(~p )
†γ0 and v̄s(~p ) = vs(~p )

†γ0. Completeness of the solutions entails the
relations ∑

s

us(~p )ūs(~p ) = /p+m,
∑

s

vs(~p )v̄s(~p ) = /p−m. (3.28)

Spin of the electron The double degeneracy of each energy level explains the two spin states
of an electron. In fact, taking the low-energy limit ~p→ 0 in the positive-energy solution we find

us(~p ) →
√
2m

(
χs
0

)

, (3.29)

so only two components survive, which can be interpreted as the two components of the electron
wave function. One usually takes

χ1 =

(
1
0

)

χ2 =

(
0
1

)

, (3.30)

so that the s = 1 solution corresponds to sz =
1
2 and the s = 2 solution corresponds to sz = −1

2 .

Antiparticles The need to interpret somehow the negative-energy solutions led to the predic-
tion of the positron, i.e., the antielectron: a negative-energy solution of momentum −~p for the
electron is reintepreted as a positive-energy solution of momentum ~p for the positron. To see
how this is possible, notice that we can write a negative-energy plane wave as follows,

eip·x = e−i[p
0(−x0)−(−~p )·~x] , (3.31)

which shows that we can reinterpret the negative-energy solution as a positive-energy solution
travelling backwards in time. If we reverse the direction of time, consistency demands that we
also flip the momentum and the spin of the particle, so a negative-energy solution of momentum
−~p and spin component −sz is reinterpreted as a positive-energy solution of momentum ~p and
spin component sz for a particle travelling backwards in time. In the low-energy limit we find
for the negative-energy solution bispinor

vs(~p ) →
√
2m

(
0
χ̃s

)

, (3.32)

and so we have to swap the roles of χ1,2 in Eq. (3.30) and set34

χ̃1 =

(
0
1

)

χ̃2 = −
(
1
0

)

, (3.33)

34The reason for the appearance of a minus sign is technical, and related to the usual conventions for the
implementation of rotations on the states of a physical system. For more details see Section 4.2.4, in particular
p. 94.
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so that the s = 1 solution corresponds to sz =
1
2 and the s = 2 solution corresponds to sz = −1

2 .
A positive-energy particle travelling backwards in time can be further reinterpreted as a

different type of particle travelling forwards in time, one that carries the exact opposite of every
conserved charge (e.g., electric charge, baryon number,. . . ) of the original particle. This is
what we call an antiparticle: same mass and spin as the corresponding particle, but opposite
charges. To make matter stable, one has to assume that the vacuum is actually a state where all
the negative-energy states are occupied (Dirac sea), so preventing decays by Pauli’s principle.
An unoccupied negative-energy state gives then a net positive contribution to the energy of the
system, and a net contribution to its charges opposite to that of a particle, so that it corresponds
to a positive-energy antiparticle state.

This old-fashioned interpretation of negative-energy states, while working in practice, is
quite unsatisfactory: what does it mean that a particle travels backwards in time? Where
do the occupied negative-energy states come from? Moreover, the interpretation of negative-
energy states as positive-energy states of an antiparticle would work also for the negative-energy
solutions of the Klein-Gordon equation, but in that case one could not invoke Pauli’s principle to
ensure the stability of matter. We will see how to overcome these issues in the next Subsection,
after completing the discussion of the solutions of the Dirac equation.

Chirality For future utility, notice that one can combine the four matrices in Eq. (3.14) into
a fifth one,

γ5 ≡ iγ0γ1γ2γ3 =

(
0 1
1 0

)

. (3.34)

This anticommutes with all the others, {γ5, γµ} = 0. Since (γ5)2 = 1, one can decompose any
solution of the Dirac equation into two components, ψR,L,

ψ =
1 + γ5

2
ψ +

1− γ5

2
ψ = ψR + ψL , (3.35)

with definite chirality,
γ5ψR = ψR , γ5ψL = −ψL , (3.36)

called the right-handed and the left-handed components. These are exchanged under a parity
transformation, i.e., an inversion of the spatial coordinates, and so should appear symmetrically
in a parity-conserving theory.

General solution of the Dirac equation A momentum-space argument like the one we
used for the Klein-Gordon equation shows that the plane wave solutions discussed above form a
complete set of solutions of the Dirac equation. The most general solution is then obtained by
taking a linear combination of these with generally complex coefficients, that reads

ψ(x) =

∫

dΩp

2∑

s=1

{
bs(~p )us(~p )e

−ip·x + ds(~p )
∗vs(~p )e

ip·x} , (3.37)

where again bs(~p ) and ds(~p )
∗ are the amplitudes of the normal modes, i.e., of the solutions with

definite energy and spin component, corresponding respectively to positive- and negative-energy
states, or to an electron and a positron according to our particle/antiparticle interpretation.
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3.2 A sketch of Quantum Field Theory

As we have seen above, relativistic quantum mechanics has serious flaws: negative probabilities
from the wave function of scalar particles, and negative energy states that we have to reinterpret
as antiparticles in a not fully satisfactory way, invoking travelling backwards in time, and an
infinite amount of occupied states to stabilise mattter (which moreover does not work for scalar
particles). If one takes a step back (and perhaps with the benefit of hindsight) one sees that
actually the whole premise of relativistic quantum mechanics is faulty. The wave function is in
a sense a probability field - a field is something defined at all points in spacetime - telling us how
likely it is to find a particle at a certain point at a certain time. In a relativistic process, though,
particles can be created and annihilated: you make an electron and a positron collide and you
obtain a proton and an antiproton - where have all the leptons gone? At some instant in time
the electron and positron disappear everywhere in space, and from then on their wave function
simply vanishes. This instant must be the same for the electron and positron if lepton number
is to be conserved. But simultaneity is a frame-dependent property (unless the two events under
consideration are also taking place at the same point in space - but the wave function must
become zero everywhere), and in certain frames lepton number would not be conserved. Those
frames would then be inequivalent, and Lorentz invariance would be lost. This should make
clear that a description of relativistic processes based on one-particle wave functions will be
inconsistent.

Another difficulty appears when introducing interactions. Finiteness of the speed of light
tells us that interactions propagate at a finite speed and cannot act instantaneously at a finite
distance. This prevents us from describing interactions via a potential in a relativistic setting.
One way to comply with this is to make interactions local. For two pointlike objects, this
means that they interact only if they are at the same place at the same time: this appears too
limited. The next thing is to have the pointlike objects to interact locally with a field, which is
defined everywhere in space and time, and to endow the field with dynamics that respect Lorentz
invariance and the finiteness of the speed of light. In this way, it is the field that communicates
the interaction from one object to another.

At this point, why not getting rid of the pointlike objects and describe everything with
fields? After all, in quantum mechanics a “pointlike” particle is described by a wave function,
and so it has an associated probability field. It is now easy to comply with the requirements
of relativity if the equations of motion of the various fields are local, i.e., if the evolution of a
field at a spacetime point x depends only on its own and other fields’ value in the immediate
vicinity of x – in other words, on fields and their derivatives at x. But where have the particles
gone? These appear at a second stage, and correspond to localised excitations of these fields.
Moreover, we can recover our “interaction by particle exchange” if we look at their interactions
as “ripples” propagating between them through a suitable mediator field, which correspond to
the exchange of a mediator particle. On the other, particles come in integer numbers only, unlike
the amplitudes of field excitations: how can we deal with that?

Quantised fields The way out of these issues is to promote the probability field of the wave
function to a different type of field, one which acts as an operator on the (Hilbert) space of
states and can create or annihilate particles. This procedure is known as second quantisation.
In practice (the theory is much more complicated) this amounts to upgrade the amplitudes of the
field normal modes to operators that excite particles and add them to the state of the system,
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starting out from the vacuum state (the state with no particles whatsoever); or erase them and
remove them from the state.

For the case of a scalar particle, described by the Klein-Gordon equation, one has [see
Eq. (3.8)]

φ(x) =

∫

dΩp

{

a(~p )e−ip·x + b(~p )†eip·x
}

, (3.38)

where now a(~p ) and b(~p )† are operators, obeying the commutation relations

[a(~p ), a(~q )†] = (2π)32p0δ(3)(~p− ~q ) , [b(~p ), b(~q )†] = (2π)32p0δ(3)(~p− ~q ) , (3.39)

all other commutators vanishing. These are the commutation relations of the annihilation and
creation operators of two infinite sets of harmonic oscillators, with elements of each set labelled
by the momentum ~p. Exactly as a creation operator raises the energy level of a harmonic
oscillator, a(~p )† and b(~p )† create respectively a particle and an antiparticle of momentum ~p out
of the vacuum state; their Hermitian conjugate a(~p ) and b(~p ) destroy respectively a particle and
an antiparticle. Applied to the state vector of the system, these operators increase or decrease
the number of particles and antiparticles of momentum ~p by one unit. The Hamiltonian of the
system is

H =

∫

dΩp p
0
[

a(~p )†a(~p ) + b(~p )†b(~p )
]

, (3.40)

which can be expressed in terms of the scalar field φ(x) and its spatial derivatives. In this
context, the meaning of Q defined in Eq. (3.9) becomes clear. After quantisation one has

Q =

∫

dΩp

[

a(~p )†a(~p )− b(~p )†b(~p )
]

, (3.41)

and since a(~p )†a(~p ) and b(~p )†b(~p ) count respectively the number of particles and antiparticles
of momentum ~p, if one assigns electric charge 1 to particles and −1 to antiparticles then Q is
the operator corresponding to electric charge. This should also make clear why a(~p ) and b(~p )†

appear in φ(x), instead of a(~p ) and b(~p ): since a(~p ) annihilates a particle of charge 1 and b(~p )†

creates a particle of charge −1, by applying φ(x) to a state of definite charge q one obtains a
new state of definite charge q − 1. This is made explicit by the commutation relation

[Q,φ(x)] = −φ(x) , (3.42)

obeyed by the scalar field.
A similar procedure applies to the spin-12 particles described by the Dirac equation, leading

to

ψ(x) =

∫

dΩp

2∑

s=1

{

bs(~p )us(~p )e
−ip·x + ds(~p )

†vs(~p )e
ip·x
}

, (3.43)

with bs(~p ) and ds(~p )
† the annihilation and creation operators of the fermion and antifermion,

respectively. For completeness, we report also the Dirac adjoint of this field,

ψ̄(x) =

∫

dΩp

2∑

s=1

{

ds(~p )v̄s(~p )e
−ip·x + bs(~p )

†ūs(~p )e
ip·x
}

. (3.44)
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Analogously to the scalar case, one has for the Hamiltonian and the charge operator

H =

∫

dΩp p
0

2∑

s=1

[

bs(~p )
†bs(~p ) + ds(~p )

†ds(~p)
]

,

Q =

∫

dΩp

2∑

s=1

[

bs(~p )
†bs(~p )− ds(~p )

†ds(~p )
]

,

(3.45)

which can be expressed in terms of ψ, ψ̄, and their spatial derivatives. In this case, the fermionic
nature of the system requires that the creation and annihilation operators obey anticommutation
relations,

{bs(~p ), bs′(~q )†} = (2π)32p0δss′δ
(3)(~p − ~q ) , {ds(~p ), ds′(~q )†} = (2π)32p0δss′δ

(3)(~p− ~q ) ,
(3.46)

all other anticommutators vanishing. In this way, particles created by bs(~p )
† and ds(~p )

† obey
Pauli’s principle, since 2 bs(~p )

† 2 = {bs(~p )†, bs(~p )†} = 0.35 This approach can be extended also
to the electromagnetic field, i.e., the photon field, which reads

Aµ(x) =

∫

dΩp

2∑

λ=1

{

aλ(~p )ǫ
(λ)
µ (~p )e−ip·x + aλ(~p )

†ǫ(λ)∗µ (~p )eip·x
}

, (3.47)

where the four-vectors ǫ
(1,2)
µ (~p ) correspond to the two physical polarisations of a photon, and

aλ(~p ) and aλ(~p )
† again obey commutation relations, since the photon is a spin-1 boson. The

same type of creation and annihilation operators appear in Aµ, corresponding to the fact that
the photon is its own antiparticle.

The formalism discussed above adequately describes free particles. Incidentally, it also justi-
fies why particles are indistinguishable: they all equally are excitations of the same field. Finally,
it naturally leads (essentially forces us) to introduce antiparticles: if one is to assign some con-
served charge to a quantum field, then its positive- and negative-energy components better be
assigned the same charge. However, the positive-energy part annihilates a particle, removing
some amount of charge from the state, and the negative-energy part creates a particle, adding
some amount of charge to the state. In order to assign the same charge to the two components
one then needs the creation operator appearing in the negative-energy part to create a particle
with opposite charge to that associated with the other creation operator.36 The quantum field
language also dispenses us from the tricky intepretation of negative-energy states involving par-
ticles travelling backwards in time and the Dirac sea, treating particles and antiparticles in a
more symmetric way.

Interactions While the formalism discussed above is adequate for free particles, what we
really want is to describe interacting systems. A “simple” way to do so in this language is to
include in the Hamiltonian certain combinations of (at least three) creation and annihilation

35As a matter of fact, the need to impose commutation relations when describing particles of integer spin, and
anticommutation relations when describing particles of half-integer spin, originates in the requirements of Lorentz
and translation invariance, and of positivity of the Hamiltonian. In other words, the bosonic or fermionic nature
of particles and their connection with spin is a theorem in QFT (spin-statistics connection).

36This argument is made precise by the physical requirement of locality and the associated microcausality
condition on quantum fields. For details, see Ref. [7].
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operators that change the state and number of particles in the system, corresponding in practice
to the emission or absorption processes mentioned in Section 1.3. This is done more easily by
using fields rather than creation and annihilation operators directly, that, in a sense, create or
annihilate (at least three) particles at the same point in spacetime. The advantage of using fields
is that locality and symmetries of the interactions are manifestly under control, while achieving
the same result using creation and annihilation operators is more cumbersome.

Consider for example the elastic interaction of two particles via electromagnetic forces. One
can imagine that one of them emits a photon at some point (three subprocesses: the original
particle is annihilated; a new particle of the same type and a photon are created), which is
absorbed by the other (again three subprocesses: the original particle and the photon are anni-
hilated; a new particle of the same type is created). As already mentioned in Section 1.3, each
half of this process is called an interaction vertex. For an electron or a positron, in terms of
the fermion field ψ, Eq. (3.43), its Dirac adjoint ψ̄, and the photon field Aµ, the interaction
Hamiltonian that allows us to describe this process reads

VI(t) = e

∫

d3xJµ(x)Aµ(x) = e

∫

d3x ψ̄(x)γµψ(x)Aµ(x) , (3.48)

that can expressed explicitly in terms of eight different combinations of creation and annihilation
operators for the electron, positron, and photon. Among these there are two that realise precisely
the elementary processes of emission and absorption of a photon by an electron. If we do not
see the photon being exchanged between the electrons, the net effect is the interaction between
the original two particles, whose state is changed by the electromagnetic force mediated by the
photon. Notice that the use of fields and the constraints of locality and Lorentz invariance force
us to introduce more elementary processes than the one we originally intended, corresponding
to the other combinations of creation and annihilation operators appearing in the expansion of
Eq. (3.48) that we mentioned above. We will discuss these in detail later in Section 3.3.

As a matter of fact, we had better not see the photon. In fact, energy and momentum cannot
be conserved in a process where one particle comes in and two come out, or vice versa two come
in and one comes out.37 Violations of energy and/or momentum conservation are somehow
acceptable if they take place on time and length scales smaller than what one can access according
to the uncertainty principle, as we cannot experimentally observe such violations. If we insist
on giving an interpretation in terms of real particles, we can invoke the uncertainty relation
∆x∆p ∼ 1, and translate it as follows as a relation between time and energy uncertainties:

1 ∼ ∆x∆p =
∆x

∆t

∆p

∆E
∆E∆t = v

1

v
∆E∆t = ∆E∆t , (3.49)

where ∆x = v∆t relates the uncertainty ∆t on when something happens to a particle to the
position where it happens, assuming we know the speed v of the particle; ∆p/∆E = E/p follows
instead from the relativistic energy-momentum relation E =

√

~p 2 +m2. The relation above tells
us that the exchanged photon can violate energy conservation by ∆E over a time ∆t ∼ 1/∆E,
so that it can be emitted and absorbed. As we cannot resolve the process on a time scale shorter
than what it takes for the (classically forbidden) emission and absorption processes to take place,
we cannot say which electron emits and which one absorbs the photon.

37We could content ourselved with interactions where the same number of particles of each type come in and
go out, but how could we describe creation and annihilation processes that way?
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However, energy-momentum conservation is something we certainly do not want to abandon
- at least not so easily,38 not even for an intrinsically unobservable process. To reconcile it with
our “particle-exchange picture” we have to posit that the exchanged photon is not on its mass
shell p2γ = 0: as it could not be observed anyway, this is not a big loss. In general, particles
exchanged between other particles are only virtual particles, unobservable in any experiment,
and not required to be on-shell – as opposed to real particle, that can be observed and must
obey the mass-shell relation p2 = m2.

If we can now engineer the interactions, i.e., the combinations of fields mentioned above,
in such a way that all the desired conservation laws are respected, then we have a candidate
framework for the description of relativistic processes that avoids the conceptual difficulties of
relativistic quantum mechanics (if one accepts virtual particles - but we will shortly see that
one does not even have to do that). The way to enforce conservation laws is through their
close connection with symmetry: the symmetries of a system in fact imply the existence of
conserved quantities – build interactions that respect the desired symmetries, and you have
your conservation laws. The key point is to put the fields at the centre of the description, and
obtain particles as excitations of the fields upon their quantisation. As we already remarked
above, working with fields one can build interactions with the desired locality and symmetry
properties much more easily than working directly with creation and annihilation operators.

In this framework, the picture of “interaction through particle exchange” depicted above
emerges naturally when treating the interaction Hamiltonian as a perturbation added to the
free Hamiltonian, describing non-interacting particles. Terms in the perturbative expansion of
the S-matrix [see comment after Eq. (2.60) on page 35] are built by joining two or more basic
interaction vertices, with the particles defining the particular process one is looking at being the
real particles that enter and exit the scene; and the particles being exchanged being the virtual
particles that never make it to the detectors. Virtual particles are so virtual that are in effect
just a computational device in a specific approximation scheme - but nonetheless allow for an
intuitively clear picture of particle interactions, one to which we will stick from now on.39

The derivation of the particle-exchange picture in quantum field theory gives it also a quan-
titative meaning. One can in fact associate a complex number with each and all of the infinitely
many possible ways that a specific physical process (one with prescribed sets of particles in the
initial and final states) can take place. For the elastic process mentioned above, exchange of
one, two, n photons; which in turn may split into a particle-antiparticle pair, that goes on with
its business until eventually annihilating into a photon again; and so on. Each of these ways
is called a Feynman diagram. The sum of all these complex numbers provides the scattering
amplitude, from which the scattering probability and eventually the scattering cross section are
obtained. Computing the complex number associated with a specific Feynman diagram is made
easy by a set of rules (the Feynman rules) that translate each part of the diagram in a well
defined mathematical quantity, and tell us how to combine them together. A proper derivation
of these rules requires first a proper development of quantum field theory, which is outside of

38Any fundamental assumption may have to be abandoned at some point, and survive only as an approximate
assumption valid in certain length/energy regimes.

39One may wonder what happens if the perturbative approach is not allowed by the strength of the interaction
Hamiltonian, which may radically change the scene compared to the free one. This is the case for strong interac-
tions, where the free quark Hamiltonian turns into an interacting Hamiltonian that asymptotically describes free
hadrons. In this case one cannot generally use perturbation theory to describe interactions as small modifications
of the state of affairs. Surprisingly, one is allowed to use use perturbation theory to describe strong interactions
very accurately at high energy.
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the scope of this course. We will be content with listing them, and using them for a quantitative
or semi-quantitative understanding of particle physics.40

3.3 Feynman diagrams

We now discuss the program outlined above in some detail. The way this works in practice is
that one computes the matrix elements of the S operator between initial and final multiparticle
states by expanding Dyson’s formula for the S-matrix, Eq. (2.60), and computing term by term
the various contributions, i.e.,

〈f |S−1|i〉 = (−i)
∫

dt 〈f |VI(t)|i〉+
(−i)2
2

∫

dt1

∫

dt2 θ(t1− t2)〈f |VI(t1)VI(t2)|i〉+ . . . . (3.50)

The interacting Hamiltonian in the interaction picture is built out of the same creation and
annihilation operators that create and destroy free particles out of the vacuum. For each term in
Eq. (3.50) one has to evaluate the matrix element of a linear combination of products of creation
and annihilation operators between particle states, which can then be obtained explicitly. In
doing so, one needs to take into account that such operators can affect any of the particles of
the corresponding type present in the initial and final states.

This calculation can be efficiently carried out with the aid of a graphical device. With each
factor of VI(t) in Eq. (3.50) we associate a graph with as many lines as fields (and so creation and
annihilation operators) in the interacting Hamiltonian, with a different type of line for each type
of field (and so type of particle). All these lines meet at a point, which we also call interaction
vertex. As an example, in Fig. 8 (left) we show the electromagnetic interaction vertex involving
two fermionic fields and one photon field, describing the creation/annihilation of a fermion or an
antifermion and a photon. The fermion field is associated with a solid line, and the photon field
with a wavy line. The term of order n in Eq. (3.50) then contains n interaction vertices. The
lines attached to the various vertices are then paired with the incoming and outgoing particles
of the same type in all possible ways, resulting in an external line for the graph; the remaining
lines of each type are further paired with each other in all possible ways, resulting in an internal
line for the graph. If there are still initial and final particles not paired with a line, we pair them
with each other compatibly with their type, and add a line running across the graph, which can
be thought of as a pair of external lines. This corresponds to one or more of the initial particles
going through the scattering process not interacting with the rest and remaining unaffected.

The meaning of these pairings is intuitively clear: each time we join a line with an incoming
or outgoing particle or with another line, we are essentially pairing one creation and one anni-
hilation operator among those appearing in the fields and in the initial and final state vectors,
so describing the propagation of the corresponding particle from one point of the graph to an-
other. Each combination of pairings corresponds then to a process in which virtual particles are
exchanged in an arbitrarily complex way between the incoming and outgoing particles. As an
example, in Fig. 8 (right) we show a possible virtual process with two interaction vertices for the
elastic scattering of two electrons, involving the exchange of a virtual photon. It is mandatory
that no line or particle remain unpaired: this would mean that there is a mismatch between the
particles in the initial state, those in the final state, and the net amount of particles created or
annihilated by the interaction, meaning that no virtual exchange process with the given amount
of interaction vertices exists for the physical scattering process under consideration.

40Paraphrasing J. Schwinger, Feynman rules brought quantum field theory to the masses.
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Figure 8: Left: the electromagnetic interaction vertex. Right: exchange of a photon between
two electrons.

Each of the resulting distinct graphs is a Feynman diagram. To each of its elements is
associated a mathematical counterpart according to well defined rules, which are of the following
schematic form:

• each external line contributes a wave function (this is only a name, not to be confused
with the particle wave function in quantum mechanics), depending on the type and on
the quantum numbers (momentum, spin component) of the corresponding real (on-shell)
particle;

• each internal line, representing a virtual (off-shell) particle, contributes what is called
a propagator, again depending on the type of particles, and carrying similar quantum
numbers; in general, a propagator contains a factor 1

p2−m2 , with p the four-momentum

carried by the virtual particle and m its (true) mass;

• each vertex contributes a coupling constant factor, and typically some matrix-type object
that combines together wave functions and propagators, determining how quantum num-
bers are carried from one external line to another by the internal lines – i.e., how quantum
numbers are exchanged through the virtual particles;

• in particular, conserved quantities (E, ~p, angular momentum, electric charge,. . . ) are con-
served at each vertex, and so everywhere – ensuring their conservation from the initial to
the final state.

Further, more technical rules are also needed, but do not change the general picture.
Let us return to the electromagnetic vertex of Fig. 8 (left). This describes the emission or

absorption of a photon, corresponding to the wavy line, by an electron, corresponding to the
oriented solid line. By convention, we choose time to flow upwards, so that the orientation of
the electron line is the same as that of the time arrow. The addition of an orientation to the
fermion line is done to distinguish between electrons and positrons, which are described by the
same field but are different particles. In Eq. (3.48), there are four possible combinations of
fermionic annihilation and creation operators, that we can write schematically as b†b, dd†, db,
and b†d†. The first combination is the one represented in Fig. 8 (left), reproduced also in Fig. 8
(top left), with an electron first annihilated and subsequently created. The other combinations
are depicted in Fig. 9, by representing a positron by a line oriented in the direction opposite
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Figure 9: The interaction vertex of QED in its various guises.

to that of time: annihilation and subsequent creation of a positron (top right), annihilation of
an electron and a positron (bottom left), and creation of an electron and a positron (bottom
right). When joining lines from different vertices, only those parts containing the same type
of creation/annihilation operator can be paired, and so a definite orientation can be associated
with each fermion line. This is intuitively clear, as each line in a Feynman diagram corresponds
essentially to the propagation of particle (either real of virtual) of a definite type, annihilated
or created at some point, and created or annihilated at another point. Since the photon is its
own antiparticle, an orientation is not needed for a photon line.

Let us return now to the photon exchange diagram of Fig. 8 (right). The relevant combination
of fermionic operators b†b in each vertex appears multiplied by either a or a†, i.e., the annihilation
and creation operators of the photon. The exchange of a photon means that this is created
at one vertex and annihilated at the other - but what happens at which vertex? Is there a
difference between the two possibilities? A detailed analysis shows that both equally contribute
to the scattering amplitude. This fits in with our qualitative considerations about the particle-
exchange picture: since the photon is virtual, we do not and cannot know what happens at what
vertex, and so we have to consider both possibilities on the same footing.

3.4 Interaction vertices of the fundamental interactions

Before discussing how to combine them into Feynman diagrams representing physical processes,
we present the various interaction vertices characterising the various fundamental interactions.
We will freely say that particles are emitted/absorbed at a vertex, as the problems of the classical
interpretation of such a process are of no concern, as already discussed in detail.
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Figure 10: Interaction vertices of QCD.

Electromagnetic interactions There is only one interaction vertex in QED, that of Fig. 8
(left), up to rotations and reflections. This is reproduced in Fig. 9 (top left), and describes
emission/absorption of a photon by an electron. Flipping it along the time direction, one
describes emission/absorption of a photon by an antielectron (positron), Fig. 9 (top right).
Rotating it with the photon line up, it describes electron-positron annihilation into a photon,
Fig. 9 (bottom left); flipping it so that the photon line is down, it describes electron-positron
pair creation from a photon, Fig. 9 (bottom right). As already discussed at length, these
are not physically admissible processes if considered in isolation. For each vertex there is a
factor e in the corresponding contribution to the transition amplitude. Energy, momentum,
angular momentum, electric charge, as well as the particle number (number of particles minus
antiparticles) of each type are conserved at a vertex. All electrically charged particles interact
through this type of vertex, requiring only the modification e → Q of the coupling constant,
where Q is the electric charge of the type of particle involved.

Strong interactions In QCD there is a vertex similar to the QED one, with a quark emit-
ting or absorbing a gluon, without changing its type, or flavour, see Fig. 10 (top). The main
difference is that quarks and gluons carry an extra degree of freedom, called colour. The emis-
sion/absorption of a gluon can change the colour of the quark, but this quantity is overall
conserved at the vertex, together with energy, momentum, angular momentum, electric charge,
and flavour. Quarks come in three colours, and there are eight types of gluons corresponding
to the various colour-changing possibilities (of the nine possible colour combinations, the one
corresponding to gluons that leave all the colours unchanged does not appear). Each such ver-
tex has an associated factor gs – the strong coupling constant. Similarly to the electromagnetic
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Figure 11: Interaction vertices of the weak interactions: charged (left and centre) and neutral
current (right).

case, the interaction vertex can be flipped upside down to describe an antiquark emitting or
absorbing a gluon, or turned around to describe quark-antiquark annihilation into a gluon or
quark-antiquark pair production from a gluon. Differently from photons, gluons self-interact
through the three- and four-gluon vertices of Fig. 10 (bottom), with associated factors gs and
g2s , respectively: this makes QCD a very different theory from QED. Only quarks, antiquarks
and gluons are affected by strong interactions.

It is worth mentioning that, since quarks and gluons are permanently bound into hadrons
due to confinement, what is effectively exchanged to mediate the strong interactions are hadrons
instead of individual quarks and gluons. In particular, the lightest mediator is therefore not the
massless gluon, but the massive (although relatively light) pion. This affects certain macroscopic
properties of the interaction (see p. 11 in Section 1.3, and Section 3.5 below).

Weak interactions Weak interaction vertices involving leptons are of two types: the charged
current vertex, with a negatively charged lepton ℓ− = e−, µ−, τ− emitting a W−-boson (or
absorbing a W+-boson) and turning into a neutrino of the same family, νℓ = νe, νµ, ντ , Fig. 11
(left); or a neutrino absorbing a W−-boson (or emitting a W+-boson) and turning into the
corresponding negatively charged lepton, Fig. 11 (centre); and the neutral current vertex, with
the lepton emitting a Z boson, Fig. 11 (right). The vertically flipped version of the charged-
current vertex in Fig. 11 (left) describes a positively charged lepton ℓ+ = e+, µ+, τ+ turning
into the corresponding antineutrino ν̄ℓ = ν̄e, ν̄µ, ν̄τ , through emission/absorption of a W+/−-
boson; similarly, the flipped version of Fig. 11 (centre) describes and antineutrino turning into
the corresponding positively charged lepton. The various rotated versions of these vertices
describe annihilation and pair production of ℓ−ν̄ℓ or ℓ+νℓ pairs. Flipping and rotating the
neutral-current vertex yields results entirely analogous to the electromagnetic case. The two
couplings gw and g0w, associated respectively with the charged and neutral interaction vertices,
are actually proportional to the electromagnetic coupling e via two functions of one parameter,
the weak (or Weinberg) angle θW ,41 i.e., gw = e/ sin θW and g0w = g/ cos θW = 2e/ sin 2θW .
While energy, momentum, angular momentum, and electric charge are conserved, the particle
type is conserved by neutral-current interactions but is changed in charged-current interactions,
and only the lepton family number (i.e., number of electrons/muons/tau and corresponding

41Introduced by Glashow.
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Figure 12: Interaction vertices of the weak interactions involving only intermediate vector bosons
and photons.

neutrinos minus number of antielectrons/antimuons/antitau and corresponding antineutrinos)
remains conserved.

The same two types of vertices described above also affect quarks, but while the weak neutral
current works exactly in the same way as with leptons, there is a twist in the case of the charged
current. The exact analogue of the leptonic process involving the weak charged current would
be that only quarks in the same family are coupled: for example, a u quark emitting a W+ and
turning into a d. This interaction would change the flavour of quarks but only within a family,
and it would therefore be possible to define a conserved “quark family number” in analogy with
what we discussed above for leptons. It turns out, however, that after emitting a W+ the up
quark does not turn simply into a down quark, but into a linear combination of down, strange
and bottom, d′ = αd + βs + γb. In other words, the quark strong (mass) eigenstates do not
coincide with their weak eigenstates. If this did not happen, it would be impossible to explain
the hadronic decays of the kaons, where a strange (anti)quark turns into an up (anti)quark.
The unitary matrix that determines how flavours mix is called the Cabibbo-Kobayashi-Maskawa
(CKM) matrix.

Finally, there are also vertices not involving matter particles, but only intermediate vector
bosons and photons (Fig. 12). This means that every elementary particle is affected by weak
interactions, except for gluons.

55



3.5 Range and strength of the interactions

The general idea of associating fields with the elementary particles and the schematic descrip-
tion of Feynman rules given above already suffice to put on more solid ground our qualitative
discussion of the range and strength of the interactions in Section 1.3.

Range of interactions (reprise) Consider the very non-relativistic, static (time-independent)
limit of motionless matter interacting electromagnetically. Differently from the case of high-
energy particles, passing fast next to each other and having the chance to exchange just a few
photons, static charges can exchange a very large number of photons. In this limit the quan-
tised nature of the photon field gets blurred and becomes practically undetectable, so that this
field reduces to the familiar, classical electromagnetic field. In this case the interaction between
electrically charged static particles is described in terms of the electric potential V (~x ). The
potential generated by a static particle of charge Q obeys the well-known equation

−∆V (~x ) = Qδ(~x ) , (3.51)

solved by the familiar Coulomb potential V = Q
4πr , describing the interaction between a charged

probe and our static charge. This equation is the static limit of the relativistic Maxwell equation
in Coulomb gauge,

✷V (t, ~x ) = ρ(t, ~x) , (3.52)

valid for a time-independent and point-like charge distribution ρ, for which a time-independent
potential provides the solution.

Play now the same game starting from the relativistic Klein-Gordon equation for a massive
scalar field, known also as Yukawa field, describing particles of mass M . In the same static
limit described above, the Yukawa field becomes a classical field describing the instantaneous
interaction of matter particles that are coupled to it. In the presence of a static source of charge
g, the static limit of the Klein-Gordon equation is

(−∆+M2)u(~x ) = gδ(~x ) , (3.53)

which is the analogue of Eq. (3.51) but for a massive interaction field. The solution u(~x ) provides
the potential associated with a massive scalar field in the non-relativistic limit. The solution of
Eq. (3.53) is obtained most easily after making a Fourier transform to momentum space,

u(~x) =

∫
d3p

(2π)3
ei~p·~xũ(~p ) , (3.54)

where the equation reads
(~p 2 +M2)ũ(~p ) = g . (3.55)

This is an algebraic equation that is easily solved,

ũ(~p ) =
g

~p 2 +M2
. (3.56)
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Going now back to coordinate space we get (r = |~x|)

u(~x) =

∫
d3p

(2π)3
ei~p·~x

g

~p 2 +M2
=

g

(2π)2

∫ ∞

0
dp p2

∫ +1

−1
dz eiprz

1

p2 +M2

=
g

(2π)2ir

∫ ∞

0
dp p (eipr − e−ipr)

1

p2 +M2
=

g

(2π)2ir

∫ ∞

−∞
dp p eipr

1

p2 +M2

=
g

(2π)2ir
(2πi)e−Mr iM

2iM
=

g

4πr
e−Mr ,

(3.57)

where we have made use of the residue theorem to compute the last integral. The resulting
central potential u(~x) = g

4πr e
−Mr ≡ VYukawa(r) is the Yukawa potential, and it clearly has range

1/M . This shows that the inverse of the mediator mass is indeed determining the range of the
corresponding interaction. Putting back the appropriate factors of ~ and c we get Eq. (1.1), and
substituting the W and pion masses we get Eqs. (1.2) and (1.3).

The factor corresponding to an internal line in a Feynman diagram is in a sense the relativistic
analogue of the interaction potential discussed above, as it represents the interaction as the
exchange of a particle. It is not by chance then that this is proportional to (p2 − m2)−1 =
(p20 − ~p 2 −m2)−1, with p the momentum flowing through the internal line, which up to factors
reduces to (3.56) in limit p0 → 0 in which the exchanged particle has very low energy (or,
correspondingly, very long wavelength). In fact, one could compute the relativistic scattering
amplitude corresponding to the exchange of one scalar particle, where the propagator appears,
take the low-energy limit, and compare it with the lowest-order (Born) approximation for non-
relativistic quantum-mechanical scattering, where the interaction potential appears. Matching
the two one finds that the resulting non-relativistic potential is precisely the Yukawa potential.

Strength of interactions (reprise) We now turn to the strength of the various interactions.
A simple way to estimate the relative strength of forces is to compare the lifetimes of unstable
particles whose decayes are governed by different interactions. As we have said above, each
Feynman diagram related to a certain physical process gives a contribution to the corresponding
transition amplitude, whose absolute value square transition probability of the process. This
in turn is proportional to the cross section of a scattering process, or to the decay width of a
decay process.42 In particular, the lifetime τ = Γ−1 of an unstable particle is then obtained
qualitatively as τ ∝ |amplitude|−2. The simplest diagrams for decay processes typically involve
two vertices: for example, a muon emits a W− turning into a muonic neutrino through the
muonic analogue of the vertex in Fig. 11 (left), and the W -boson subsequently produces an
electron-electronic antineutrino pair through the “rotated” version of this vertex. When the
coupling is small, these diagrams give the leading contribution to the decay width, and so Γ is
typically proportional to the fourth power of the coupling constant. One has then

τ2
τ1

∼ g41
g42

=⇒ g21
g22

∼
√
τ2
τ1
, (3.58)

which allows us to compare the strength of the various interactions by comparing the typical
lifetimes of the decay processes they cause.

42Recall that for fixed-target experiments the probability that a scattering event takes place is determined
empirically as Nevents/(NbNt) = σ/Ab. For a decay process, the probability of a decay is obtained empirically as
Nevents/Nparticles = ΓT where Nparticles is the sample size and T the observation time.
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As we have already said, typical decay times for processes governed by strong interactions
are in the range 10−23 ÷ 10−20s, while for weak interactions they are in the range 10−13 ÷ 103s,
and for electromagnetic interactions they are around 10−16s. This already tells us the ranking
in strength of the various interactions. For a more detailed comparison, for strong and weak
interactions we can for example compare the decay of the ∆0, which takes place through strong
interactions (mainly ∆0 → p π−, n π0) with τ∆ = 5.6 ·10−24s, to that of the neutron, which takes
place through weak interactions (mainly n→ p e− ν̄e) with τn = 880 s:

g2w
g2s

∼
√
τ∆
τn

∼ 10−13 . (3.59)

To compare electromagnetic and weak interactions we can for example compare the decay of
the neutral pion, which is governed by electromagnetic interactions (mainly π0 → γγ) with
τπ0 = 8.4·10−17s, with the decay of the charged pion, which is governed by the weak interactions
(mainly π+ → µ+νµ) with τπ+ = 2.6 · 10−8s. We find

g2w
g2em

∼
√
τπ0

τπ+

∼ 10−4 ÷ 10−3 . (3.60)

The estimates Eqs. (3.59) and (3.60) will change if one uses different pairs of processes, but the
bottom line is that the strong force is stronger than the electromagnetic one which is stronger
than the weak one, with a clear hierarchy.

A similar kind of estimate can be done looking at scattering processes. The cross section σ of
a process is in fact proportional to the absolute value squared of the amplitude, and computing
this using the simplest Feynman diagrams one typically finds that σ is proportional to the fourth
power of the coupling constant. We then find that the stronger the interaction, the larger the
typical cross section for processes mediated by it, as we had anticipated.

It is worth mentioning at this point that the reason why weak interactions are much weaker
than the electromagnetic ones is not really due to a weaker coupling constant, and that the es-
timate given above is a bit misleading. In fact, in the Glashow-Weinberg-Salam theory that de-
scribes weak and electromagnetic interactions in a unified fashion, the weak and electromagnetic
coupling constants gw and gem = e are related, and actually e2 ∼ 0.2g2w! The main difference
between the two interactions is that while the photon is massless, the intermediate vector bosons
are very massive. As we have mentioned above, the factor corresponding to an internal line in
a Feynman diagram is proportional to (p2 −m2)−1, with p and m the four-momentum and the
mass of the virtual particle, respectively. For processes at energies much lower than m, one can
neglect p2, and the propagator reduces to a p-independent factor. Effectively, the exchange of
a W boson between a pair of particles with energies much lower than the W mass comes with
a factor g2w/M

2
W ∝ GF =∼ 1.1 · 10−5 GeV−2, known as Fermi constant: this is the coupling

constant actually estimated above. More precisely, the dimensionless quantity “g2w” appearing
in Eqs. (3.59) and (3.60) is effectively GF times some mass-squared scale M2, that depends on
the details of the process and can vary over a large range. This explains the very wide range
of lifetimes found for unstable particles decaying through weak interactions. Weak interactions
at low energies are therefore weak not because of a small coupling constant gw, but because of
the large mass of the mediators that lead to a small effective coupling “g2w” = g2w(M/MW )2.
This applies as long as we work at energies well below the W± mass, when the p2 term can be
neglected compared to the mass in the internal boson lines. When the two terms are comparable
the weak interaction is actually much stronger than the electromagnetic one.
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3.6 Basic physical processes and Feynman rules

The translation of Feynman diagrams into expressions contributing to S-matrix elements follows
from the application of a set of rules, that can be derived in detail within the formalism of QFT.
Here we describe them with the aid of the simplest physical processes.

The diagrams of Figs. 9 to 12 describe how the interaction works at the most fundamental
level. However, matter particles appear only in three-particle vertices which, as discussed above,
cannot represent true physical processes due to energy-momentum conservation: to describe an
actual physical process one has to properly combine two or more of them.

3.6.1 Electromagnetic interactions

Let us begin with electromagnetic interactions. As we already saw above, if we combine two
electromagnetic vertices together like in the left panel of Fig. 8, then we are representing the
scattering process of two electrons (Møller scattering). This is reproduced in the left panel of
Fig. 13, together with another way to realise the same process in the right panel: since electrons
are indistinguishable, we cannot possibly know which one is coming out of the process going
(say) left, and so we have to take into account both possibilities. These are all the diagrams
with two interaction vertices. Each contains four external electron legs, and one internal photon
line. The electron lines appear in two pairs forming an uninterrupted oriented line connecting
the initial and final state of the process.

As we explained above, each Feynman diagram corresponds to a way of choosing creation
and annihilation operators out of the field operators appearing in the interaction Hamiltonian
in the interaction picture, Eq. (3.48). From the explicit expression of the fermion fields ψ and
ψ̄, Eqs. (3.43) and (3.44), we see that there is only one annihilation and one creation operator
both for electrons and positron at each vertex. This means that there is only one way to pair a
line coming out of an electromagnetic vertex with an initial electron: one has to choose the line
corresponding to ψ, so that it contains the appropriate annihilation operator. Similarly, there
is only one way to choose the line so that it contains the appropriate annihilation or creation
operator to take care of the other possibilities: for an electron in the final state we need the
line corresponding to ψ̄; for a positron in the initial state we need again the line corresponding
to ψ̄; and for a positron in the final state we need the line corresponding to ψ. The counting
of the possible equivalent ways to pair vertices and external lines is then straightforward. It
should be clear also that if we have n interaction vertices, once we have made a pairing of lines
and particles, one can always relabel the vertices and obtain the exact same contribution. This
yields a factor n! that compensates the 1/n! appearing in Dyson’s formula.

Pairing lines with initial and final particles means essentially that we choose which annhi-
hilation or creation operator does the job of removing a particle from the initial or final state.
This leaves behind the scalar product 〈0|0〉 = 1, and the product of the coefficient multiplying
said operators. Looking again at Eqs. (3.43) and (3.44), we see that when a vertex at x is paired
with an initial particle of momentum p one gets a factor e−ip·x, while when paired with a final
particle of momentum p′ one gets a factor eip

′·x. Since we are integrating both over time [see
Eq. (2.60)] and space [see Eq. (3.48)], the net effect is

∫

d4x ei(
∑

final p
′−

∑

initial p)·x = (2π)4δ(4)

(
∑

final

p′ −
∑

initial

p

)

, (3.61)
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Figure 13: Møller scattering.

where the sums are over the final and initial particles directly connected to the vertex at x by
an external line. What we get is then momentum conservation at each vertex. Moreover, these
phase factors are accompanied by the appropriate solution of the Dirac equation, Eq. (3.26).
Finally, since fields are multiplied at a vertex according to Eq. (3.48), one has that these solutions
will appear multiplied on the left or on the right by a factor γµ.

To obtain the corresponding contribution to the amplitude one then proceeds as follows.

• Consider first the left diagram. Start from the end of a fermionic line. In this case these
correspond to the electron legs in the final state. Start from, say, the leftmost one, and
write down the wave function ūs′1(~p

′
1) corresponding to the quantum numbers of the final

electron on the left.

• Follow the line backwards. When encountering a vertex, include a vertex factor

−ieγµ .

The coupling constant e determines the strength of the interaction. The gamma matrix
index µ correspond to the polarisation of the exchanged (virtual) photon.

• Continue following the fermion line backward. In this case, one immediately encounters
another external leg, corresponding to the intial state of electron 1. Include then the
corresponding wave function us1(~p1). The result so far is

ūs′1(~p
′
1)(−ie)γµus1(~p1) ,

where all the matrix indices are contracted in the usual way.

• Move on to the end of another fermion line, which in this case is the other electron leg in
the final state. Again, write down the wave function ūs′2(~p

′
2) corresponding to the state of

the second electron in the final state, then follow back until the second interaction vertex,
and include a vertex factor

−ieγν ,
where the index ν correspond to the (possibly different) polarisation of the (virtual) photon
after the exchange. As before, proceed along the fermion line, encountering the second
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initial electron leg, and include the corresponding wave function us2(~p2). The resulting
factor is

ūs′2(~p
′
2)(−ie)γνus2(~p2) ,

that multiplies the one found above.

• The last step is to include the factor corresponding to the internal photon line, i.e., the
photon propagator. This reads

Dµν(q) = −i ηµν
q2 + iǫ

.

Here q is the momentum carried by the virtual photon (so that q2 6= 0 in general). Con-
servation of four-momentum at each vertex implies q = p′1 − p1 = p2 − p′2 (the direction of
the momentum, and so the sign of q, is irrelevant, as it should be). The quantity ǫ is an
infinitesimal positive number which will be set to zero at the end of the calculation.

• Putting everything together, one finds

ie2

q2 + iǫ
[ūs′1(~p

′
1)γ

µus1(~p1)][ūs′2(~p
′
2)γµus2(~p2)] .

• The contribution of the second diagram is obtained exactly in the same way. The only
difference with the first diagram is that the leg of electron 1 (resp. 2) in the final state is
connected to the same vertex as the leg of electron 2 (resp. 1) in the initial state. It is
easy to take this into account, obtaining

ie2

q′ 2 + iǫ
[ūs′2(~p

′
2)γ

µus1(~p1)][ūs′1(~p
′
1)γµus2(~p2)] ,

where now q′ = p′2 − p1 = p2 − p′1. Since the two diagrams differ by the exchange of
an electron, which obeys Fermi-Dirac statistics, the two contributions must be subtracted
from each other. More explicitly, one has that while for the first diagram one chooses the
creation and annihilation operators at vertices 1 and 2 as follows,

(ψ̄γµψAµ)1 (ψ̄γµψAµ)2

�

b(~p ′
1)

†b(~p1) × �

b(~p ′
2)

†b(~p2) = +b(~p ′
2)

†b(~p ′
1)

†b(~p1)b(~p2) ,

for the second diagram one has instead

(ψ̄γµψAµ)1 (ψ̄γµψAµ)2

�

b(~p ′
2)

†b(~p1) × �

b(~p ′
1)

†b(~p2) = −b(~p ′
2)

†b(~p ′
1)

†b(~p1)b(~p2) .

• The final result for Mfi to order O(e2) is then

iMfi = ie2
{

1

(p′1 − p1)2
[ūs′1(~p

′
1)γ

µus1(~p1)][ūs′2(~p
′
2)γµus2(~p2)]

− 1

(p′2 − p1)2
[ūs′2(~p

′
2)γ

µus1(~p1)][ūs′1(~p
′
1)γµus2(~p2)]

}

.

(3.62)

One easily recognises that (p′1 − p1)
2 = t and (p′2 − p1)

2 = u are the usual Mandelstam
variables.
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Cross section for Møller scattering The scattering amplitude Eq. (3.62) is the starting
point to obtain the electron-electron cross section to lowest order in the coupling e. This involves
|Mfi|2, and to obtain it notice that

[ūs′(~p
′)γµus(~p)]

∗ = us(~p)
†(γµ)†(γ0)†us′(~p

′) = ūs(~p)γ
0(γµ)†(γ0)†us′(~p

′) , (3.63)

but since γ0γµγ0 = (γµ)† [check Eq. (3.14)], we have

[ūs′(~p
′)γµus(~p)]

∗ = ūs(~p)γ
µus′(~p

′) . (3.64)

Using this result, we find for |Mfi|2

|Mfi|2 = e4
{

1

t2
[ūs′1(~p

′
1)γ

µus1(~p1)][ūs1(~p1)γ
νus′1(~p

′
1)][ūs′2(~p

′
2)γµus2(~p2)][ūs2(~p2)γνus′2(~p

′
2)]

+
1

u2
[ūs′2(~p

′
2)γ

µus1(~p1)][ūs2(~p2)γ
νus′1(~p

′
1)][ūs′1(~p

′
1)γµus2(~p2)][ūs1(~p1)γνus′2(~p

′
2)]

− 2

tu
Re [ūs′2(~p

′
2)γ

µus1(~p1)][ūs1(~p1)γ
νus′1(~p

′
1)][ūs′1(~p

′
1)γµus2(~p2)][ūs2(~p2)γνus′2(~p

′
2)]

}

.

(3.65)
This transition probability enters the cross section for a process in which the initial electron
have a definite spin component, and the spin component of the final electrons is measured. It is
more frequent in experiments to deal with initial beams of electrons whose spin is up or down
with equal probability, and to not measure the spin of the final particles. The corresponding
cross section involves then the average over s1,2 and the same over s′1,2. The relevant transition
probability is then

〈|Mfi|2〉 ≡
1

22

∑

s1,s2,s′1,s
′
2

|Mfi|2 . (3.66)

To compute the sum in Eq. (3.66), we notice first that

[ūs′1(~p
′
1)γ

µus1(~p1)][ūs1(~p1)γ
νus′1(~p

′
1)] = tr

(

γµus1(~p1)ūs1(~p1)γ
νus′1(~p

′
1)ūs′1(~p

′
1)
)

, (3.67)

and similarly for the other factors in the first two terms, and that

[ūs′2(~p
′
2)γ

µus1(~p1)][ūs1(~p1)γ
νus′1(~p

′
1)][ūs′1(~p

′
1)γµus2(~p2)][ūs2(~p2)γνus′2(~p

′
2)]

= tr
(

γµus1(~p1)ūs1(~p1)γ
νus′1(~p

′
1)ūs′1(~p

′
1)γµus2(~p2)ūs2(~p2)γνus′2(~p

′
2)ūs′2(~p

′
2)
)

.
(3.68)

We then use the identities Eq. (3.28) to write

〈|Mfi|2〉 =
e4

4

{
1

t2
tr
(

γµ(/p1 +m)γν(/p
′
1
+m)

)

tr
(

γµ(/p2 +m)γν(/p
′
2
+m)

)

+
1

u2
tr
(

γµ(/p1 +m)γν(/p
′
2
+m)

)

tr
(

γµ(/p2 +m)γν(/p
′
1
+m)

)

− 2

tu
Re tr

(

γµ(/p1 +m)γν(/p
′
1
+m)γµ(/p2 +m)γν(/p

′
2
+m)

)}

.

(3.69)
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To compute the traces we need the following results, that follow from the basic relation Eq. (3.15):

tr γµ1 . . . γµ2n+1 = 0 ,

tr γµγν = 4ηµν ,

tr γµγργνγσ = 4 (ηµρηνσ − ηµνηρσ + ηµσηνρ) ,

γµ/aγµ = −2/a , γµ/a/bγµ = 4a · b ,
γµ/a/b/cγµ = −2/c/b/a .

(3.70)

The first relation tells us that in the traces appearing in the first two terms, the only nonzero
contributions come from terms where both momenta appear, or neither. For the first factor of
the first term we find

tr
(

γµ(/p1 +m)γν(/p
′
1
+m)

)

= tr
(

γµ/p1γ
ν
/p
′
1

)

+m2tr (γµγν)

= 4
(
pµ1p

′ν
1 + pν1p

′µ
1 − ηµν

(
p1 · p′1 −m2

))
,

(3.71)

and similarly for the second factor. Contracting the two we find

tr
(

γµ(/p1 +m)γν(/p
′
1
+m)

)

tr
(

γµ(/p2 +m)γν(/p
′
2
+m)

)

= 16
(
pµ1p

′ν
1 + pν1p

′µ
1 − ηµν

(
p1 · p′1 −m2

)) (
p2µp

′
2ν + p2νp

′
2µ − ηµν

(
p2 · p′2 −m2

))

= 32
(
p1 · p2 p′1 · p′2 + p1 · p′2 p′1 · p2 +m2(2m2 − p1 · p′1 − p2 · p′2)

)

= 8
(
(s− 2m2)2 + (u− 2m2)2 + 4m2t

)
,

(3.72)

where we used
p1 · p2 = 1

2 [(p1 + p2)
2 − 2m2] = 1

2 [s− 2m2] = p′1 · p′2 ,
p1 · p′1 = −1

2 [(p1 − p′1)
2 − 2m2] = −1

2 [t− 2m2] = p2 · p′2 ,
p1 · p′2 = −1

2 [(p1 − p′2)
2 − 2m2] = −1

2 [u− 2m2] = p2 · p′1 .
(3.73)

The second term is found simply by exchanging p′1 and p′2, and so u and t. For the last term we
find

tr
(

γµ(/p1 +m)γν(/p
′
1
+m)γµ(/p2 +m)γν(/p

′
2
+m)

)

= tr
(

γµ
(

/p1γ
ν
/p
′
1
+m(/p1γ

ν + γν/p
′
1
) +m2γν

)

γµ(/p2 +m)γν(/p
′
2
+m)

)

= tr
((

−2/p
′
1
γν/p1 + 4m(p1 + p′1)

ν − 2m2γν
)

(/p2 +m)γν(/p
′
2
+m)

)

= −2 tr
((

/p
′
1
γν/p1 +m2γν

)(

/p2γν/p
′
2
+m2γν

))

+ 4m2(p1 + p′1)
ν tr

(

/p2γν + γν/p
′
2

)

= −8
(
4p1 · p2 p1 · p′2 − 2m2(p2 · p′2 + p1 · p′1) + 4m4

)
+ 16m2(p1 + p′1) · (p2 + p′2)

= −32
(
p1 · p2 p1 · p′2 − 1

2m
2(p1 · p2 + p1 · p′2 + p′1 · p2 + p′1 · p′2 + p2 · p′2 + p1 · p′1) +m4

)

= −8
(
(s− 2m2)2 + 2m2(t+ u− s)

)
.

(3.74)

Plugging everything in Eq. (3.69) we find

〈|Mfi|2〉 = 2e4
{

1

t2
(
(s− 2m2)2 + (u− 2m2)2 + 4m2t

)

+
1

u2
(
(s− 2m2)2 + (t− 2m2)2 + 4m2u

)

+
2

tu

(
(s− 2m2)2 + 2m2(t+ u− s)

)
}

.

(3.75)
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To obtain the cross section we need the formula

dσ =
〈|Mfi|2〉

4
√

(p1 · p2)2 −m4
dΦ(2) =

〈|Mfi|2〉
2
√

s(s− 4m2)

dΩCM

32π2

√

1− 4m2

s
=

〈|Mfi|2〉
64π2s

dΩCM . (3.76)

We find
dσ

dΩCM
=

e4

32π2s

{
1

t2
(
(s− 2m2)2 + (u− 2m2)2 + 4m2t

)

+
1

u2
(
(s− 2m2)2 + (t− 2m2)2 + 4m2u

)

+
2

tu

(
(s − 2m2)2 + 2m2(t+ u− s)

)
}

.

(3.77)

This expression simplifies considerably in the ultrarelativistic limit where momenta are much
larger than masses of the particles. In this limit we can neglect higher orders in m, and get

dσ

dΩCM

∣
∣
∣
∣
ultrarel

=
e4

32π2s

{
s2 + u2

t2
+
s2 + t2

u2
+

2s2

tu

}

=
e4

32π2s

{
(s2 + u2)u2 + (s2 + t2)t2 + 2s2tu

t2u2

}

=
e4

32π2s

{
s2(u+ t)2 + t4 + u4

t2u2

}

=
e4

32π2s

s4 + t4 + u4

t2u2
,

(3.78)

since s+ t+ u = 4m2 ≃ 0. In the centre of mass

t = −s
2
(1− cos θ) , u = −s

2
(1 + cos θ) , (3.79)

and so

dσ

dΩCM

∣
∣
∣
∣
ultrarel

=
α2

2s

16 + (1− cos θ)4 + (1− cos θ)4

(1− cos2 θ)2
=
α2

2s

18 + 12 cos2 θ + 2cos4 θ

sin4 θ2

=
α2

s

(3 + cos2 θ)2

sin4 θ2
,

(3.80)

where α = e2/(4π) is the fine structure constant.

Bhabha scattering We then proceed to discuss electron-positron scattering (Bhabha scatter-
ing), see Fig. 14. The left panel of Fig. 14 corresponds to electron-positron interaction mediated
by the exchange of a photon. This diagram is identical to the left diagram in Fig. 13 after
reflecting the rightmost fermion line upside down. This is the graphical device employed to
represent an antifermion. The right panel instead corresponds to a different way of interacting,
with the electron and positron annihilating into a photon, which subsequently undergoes pair
production. Let us evaluate these diagrams.

• The first diagram is evaluated exactly as above. The leftmost fermion line corresponding
to the electron reads as before,

ūs′1(~p
′
1)(−ie)γµus1(~p1) .
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Figure 14: Bhabha scattering.

• For the rightmost line, following our prescription of starting from the end of a fermion line
requires that we begin with the wave function of the positron in the initial state. This is

v̄s2(~p2) .

Following the line backwards we encounter the second interaction vertex, and so we include
a factor

−ieγν .
We finally meet the external leg of the positron in the final state, and so include the
corresponding wave function,

vs′2(~p
′
2) .

• The internal photon lines contributes again a factor

Dµν(q) = −i ηµν
q2 + iǫ

,

with q = p′1 − p1 = p2 − p′2. Putting everything together we find

ie2

q2 + iǫ
[ūs′1(~p

′
1)γ

µus1(~p1)][v̄s2(~p2)γµvs′2(~p
′
2)] .

• Since an antifermion line crosses the diagram all the way from the final to the initial state,
an extra minus sign is required. This is understood again in terms of pairing vertices
with incoming and outgoing particles: since ψ̄ (resp. ψ) annihilates (resp. creates) an
antifermion, we have

(ψ̄γµψAµ)1 (ψ̄γµψAµ)2

�

b(~p ′
1)

†b(~p1) × �

d(~p2)d(~p
′
2)

† = −d(~p ′
2)

†b(~p ′
1)

†b(~p1)d(~p2) ,

• The second diagram is evaluated again according to the same prescriptions, only this time
the fermion lines both begin and end in the initial or final state. No extra sign is required
since

(ψ̄γµψAµ)1 (ψ̄γµψAµ)2

�

d(~p2)b(~p1) × �

b(~p ′
1)

†d(~p ′
2)

† = +d(~p ′
2)

†b(~p ′
1)

†b(~p1)d(~p2) .
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• Start from the line in the final state, following it backwards. According to the rules that
we have already formulated, one requires to include a final-state electron wave function,

ūs′1(~p
′
1) ,

a vertex factor,
−ieγµ ,

and a final-state positron wave function,

vs′2(~p
′
2) ,

resulting into
ūs′1(~p

′
1)(−ie)γµvs′2(~p

′
2) .

• For the line in the initial state, we write down the factors as follows: an initial-state
positron wave function,

v̄s2(~p2) ,

a vertex factor,
−ieγν ,

and an initial-state electron wave function,

us1(~p1) ,

resulting into
v̄s2(~p2)(−ie)γνus1(~p1) .

• We include now the familiar factor for an internal photon line,

Dµν(q
′) = −i ηµν

q′ 2 + iǫ
,

where now q′ = p1 + p2 = p′1 + p′2 is the total four-momentum of the system. The final
expression is

ie2

q′ 2 + iǫ
[ūs′1(~p

′
1)γ

µvs′2(~p
′
2)][v̄s2(~p2)γµus1(~p1)] .

• The full result for O(e2) Bhabha scattering is

iMfi = −ie2
{

1

(p′1 − p1)2
[ūs′1(~p

′
1)γ

µus1(~p1)][v̄s2(~p2)γµvs′2(~p
′
2)]

− 1

(p1 + p2)2
[ūs′1(~p

′
1)γ

µvs′2(~p
′
2)v̄s2(~p2)γµus1(~p1)]

}

.

This can now be used to obtain the scattering cross section exactly as we did above for Møller
scattering. We report here only the final result for the differential criss section summed over
final spins and averged over initial spins in the ultrarelativistic limit,

dσ

dΩCM

∣
∣
∣
∣
ultrarel

=
α2

s

(3 + cos2 θ)2

(1− cos θ)2
=
α2

s

(3 + cos2 θ)2

4 sin4 θ2
. (3.81)
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Figure 15: Left: e−- e+ annihilation. Centre: pair production. Right: Compton scattering.

There are five more processes described by combining two electromagnetic vertices. Diagrams
for positron-positron scattering are obtained from Fig. 13 by flipping both fermion lines, and
the corresponding scattering amplitude can be obtained using only the rules already discussed
above. In practice, the wave functions us(~p ) and ūs′(~p

′) for initial and final fermions are replaced
by vs′(~p

′) and v̄s(~p ) for final and initial antifermions. Diagrams for other three processes are
shown in Fig. 15, and correspond (from left to right) to electron-positron annihilation, electron-
positron pair creation, and Compton scattering of photons on electrons. Notice that the internal
line corresponds now to a virtual fermion, and is oriented consistently with the external lines.
(For each of these processes there is a second diagram: can you draw it?) Notice also that two
photons appear in the physical annihilation and pair-creation processes, as necessary for energy-
momentum conservation. Finally, Compton scattering of photons on positrons can also take
place, and the relevant diagrams are obtained straighforwardly from those for photon-electron
scattering. (Can you draw them?)

These diagrams require two further Feynman rules, to deal with external photon lines and in-
ternal fermion lines. Let us discuss the rightmost diagram in Fig. 15, corresponding to Compton
scattering.

• Start again from the end of the fermion line and proceed backwards. Using the known
rules, we write a final-state electron wave function and a vertex factor, getting

ūs′1(~p
′
1)(−ie)γµ .

• We now need the appropriate factor for an internal fermion line. This is

S(q) = i
/q +m

q2 −m2 + iǫ
,

where /q = qµγ
µ with q the momentum carried by the virtual internal fermion, flowing in

the same direction as the arrow. By energy-momentum conservation, q = ~p ′
1 − k1. This

should be appended to the expression above, followed by the other vertex factor and by
initial-state electron wave function. This results in

ūs′1(~p
′
1)(−ie)γµi

/q +m

q2 −m2 + iǫ
(−ie)γνus1(~p1) .

• The external photon legs require only the inclusion of suitable photon wave functions. For
circularly polarised photons, these are

ǫλµ(k1) , ǫλ
′
ν (k

′
1)

∗
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for the initial and final leg, respectively. Here λ = ± is the helicity of the photon, k =
(|~k|, ~k), and setting ~k = |~k|n̂ for the photon momentum, we have

ǫλµ(k) =
1√
2
R(n̂)(0, 1, iλ, 0) ,

where R(n̂) is the rotation that bring the third axis to the direction n̂.

• The final result is

−ie2ūs′1(~p
′
1)/ǫ

λ(k1)
/q +m

q2 −m2 + iǫ
/ǫλ
′
(k′1)

∗us1(~p1) .

A few more comments.

• The only relevant aspect distinguishing two diagrams contributing to the same process
is their topology. Consider then the diagram of Fig. 16: does it represent a different
microscopic process for elastic electron-positron scattering than the one in the right panel
of Fig. 14, and so should one include also its contribution in the scattering amplitude? The
answer is no: all that matters is the topology of the diagram, and of course the content of
the initial and final states as encoded in the external lines, i.e., the “before” and “after” of
the process, which determine what kind of reaction we are considering. When exactly the
annihilation of the first pair happens, and when the creation of the second pair happens,
are actually meaningless questions, and should not (and do not) matter when listing all
the different ways in which a given process is realised at the microscopic level.

• Certain diagrams require the inclusion of suitable symmetry factors, whise origin can be
understood as follows. The diagrams depicted above originate from the contraction of the
lines stemming out of the various vertices, among themselves and with the external lines
corresponding to the incoming and outgoing particles. One should count in how many
ways these contractions can be made for a given diagram topology, and include the factor
1/n! from the expansion of Dyson’s formula, to obtain the correct factor.

• In higher perturbative orders, internal lines may form loops, see Fig. 17. In this case
the four-momentum of the internal lines is not entirely fixed by conservation at each
vertex. One deal with this by assigning a momentum to each internal line and including
a momentum-conserving delta function for each vertex; after using one of them to express
overall conservation of energy and momentum, and integrating over the momenta of the
internal lines, some internal momenta will be fixed by the delta functions, while for the
others one needs to perform the remaining integrations.43 In addition, each fermion loop
requires the inclusion of an extra minus sign.

• Diagrams differing by the exchange of external boson lines should be added to each other;
those differing by the exchange of external fermion lines, as already pointed out above,
should be subtracted from each other.

The left panel in Fig. 17 shows the simplest contribution to light-by-light (Delbrück) scat-
tering, while the right panel corresponds to a more complicated way in which electron-electron

43This is much less straightforward than it seems, leads to one of the most disturbing aspects of QFT - that of
ultraviolet divergences. We will not get any closer to this problem than this brief remark.
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Figure 17: More complicated diagrams.

scattering can take place, with the exchanged photon turning temporarily into an electron-
positron pair. As already mentioned above, the contribution of a Feynman diagram to the
transition amplitude contains a coupling constant factor for each vertex, so a factor of e for each
electromagnetic vertex. The diagrams of Figs. 13, 14, and 15 are all proportional to e2 = 4πα
(in natural units), with α ≃ 1/137 the fine structure constant. The diagrams of Fig. 17 are
proportional instead to α2, and so the contribution to elastic electron-electron scattering of the
diagram in the right panel is relatively suppressed with respect to those in Fig. 13. In general,
to describe a given process to a given precision we will then need only a limited number of
diagrams, as the introduction of more interaction vertices will further suppress the contribution
of the diagram. Moreover, a process like light-by-light scattering has overall a smaller transition
amplitude than any of the processes depicted in Figs. 13, 14, and 15. This is consistent with
the fact that this kind of process is not expected at the level of classical electrodynamics.

Strong interactions Feynman rules for processes involving quarks and gluons differ from
those found for electromagnetic interactions for the appearance of colour, and for the presence
of further vertices coupling the gluons to themselves. For instance, the quark-quark-gluon vertex
reads

−igγµtaij ,
where ta, a = 1, . . . , 8, is one of the eight linearly independent 3×3 complex Hermitian traceless
matrices, with indices i, j corresponding to the colour states of the quarks, and the index a
corresponding to the colour states of the gluon. The matrices ta are usually chosen with nor-
malisation tr tatb = 1

2δ
ab. Similarly, the gluon propagator differs from the photon propagator

for the presence of an extra factor δab, basically carrying colour from one vertex to the other,

Dab
g µν(q) = −i ηµνδ

ab

q2 + iǫ
.
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The lowest-order amplitude for quark-quark scattering is obtained by the analogues of the di-
agrams in Fig. 13 obtained replacing the electron lines by quark lines, and the photon lines by
gluon lines. The result is

iMfi = ig2
{

1

(p′1 − p1)2
[ū
c′1
s′1
(~p ′

1)γ
µtauc1s1(~p1)][ū

c′2
s′2
(~p ′

2)γµt
au

c′2
s2(~p2)]

− 1

(p′2 − p1)2
[ū
c′2
s′2
(~p ′

2)γ
µtauc1s1(~p1)][ū

c′1
s′1
(~p ′

1)γµt
auc2s2(~p2)]

}

,

(3.82)

where c1,2 and c′1,2 are the colours of the initial and final quarks, and summation over the
repeated index a is understood. The calculation of cross section summed over final colours and
averaged over initial colours is simplified by the following identities,

∑

s,c

[ucs(~p )]i[ū
c
s(~p )]j = (/p+m)δij ,

∑

a

taijt
a
kl =

1

2

(

δilδjk −
1

3
δijδkl

)

, (3.83)

where i, j are the colour indices of the quark wave functions. While this looks quite similar to
the electromagnetic case (up to the extra colour degree of freedom), the gluon self-interaction
vertices lead to a completely different physics, with quarks and gluons not even appearing as
physical states in scattering experiments. Nonetheless, the use of perturbation theory and of
the particle-exchange description can be used reliably at high energies.

Weak interactions Let us consider now processes mediated by the weak interactions. The
simplest such process is the main decay mode of a muon (Fig. 18, left), µ− → e− νµ ν̄e (notice
the separate conservation of the electronic and the muonic lepton numbers). Except for the
presence of spectator quarks that do not take part in the decay process, the same type of
diagram describes the beta decay of the neutron, n → p e− ν̄e (Fig. 18, centre). The diagram
for the process of antineutrino capture, ν̄e p→ e+ n, is obtained from this one by switching the
interacting u and d quarks, replacing the electron with a positron, and moving the antineutrino
to the initial state. Finally, again essentially the same diagram, except with electron and electron
antineutrino replaced by antimuon and muonic neutrino, describes also the main decay mode of
the positively charged pion (Fig. 18, right).

The new rules required here are those for the interaction vertex and for the propagator of
the W boson. These read respectively

−igW√
2
γµ

1− γ5

2
,

times the appropriate CKM matrix element if quarks are involved and

DW µν(q) = −i
ηµν − qµqν

m2
W

q2 −m2
W + iǫ

.

Rules for the other interaction vertices will not be discussed. The propagator of the Z boson is
identical to DW except for replacing mW with mZ .

The interaction vertex is similar to the one found in the electromagnetic case, with two
important differences:
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Figure 18: Left: muon decay. Centre: Beta decay of the neutron. Right: Charged pion decay.

• it changes the type of fermion (lepton or quark);

• it includes a projector 1−γ5
2 that selects only one of the chiralities of the fermions.

The second point is the reason behind parity violations in weak interactions (more below).
While the individual leptonic numbers are not conserved anymore, it is clear that lepton family
number still are. On the other hand, since quark flavours are mixed by the CKM matrix in
weak processes, the analogous “quark family” number is not conserved. Still, the identification
of quark families makes sense since the diagonal elements of the CKM matrix are the largest
ones, meaning that u, c, t are more strongly coupled respectively to d, s, b by weak interactions.

As we have already discussed, for processes like those in Fig. 18, where the momentum
flowing in the internal line is much smaller than the W mass, one can approximate

DW µν(q) →
q2≪m2

W

i
ηµν
m2
W

.

The practical effect of this is that the two vertices connected by the propagator join together,
leading to a point-like four-fermion interaction vertex, with effective coupling given by the

Fermi constant GF = 1√
2

(
gw

2MW

)2
≃ 1.1 · 10−5 GeV−2. In this approximation, evaluating the

relevant Feynman diagrams requires only to pair properly the wave functions of the incoming
and outgoing fermions (including the gamma matrices attached to the vertices).

The description of weak interactions in terms of a four-fermion vertex appeared in the first
theory of β decays proposed by Fermi in 1933. In this theory proton, neutron, electron and
neutrino interacted directly via a four-fermion vertex, with coupling constant GF . The fact
that GF has dimensions of some inverse power of mass indicated (for reasons that we will not
discuss here) that the four-fermion interaction could not be the final word, and that a “more
fundamental” theory of weak interactions had to exist (although it took forty years to find
it). Notice that combining the measurement of GF and assuming that the weak coupling is
comparable to the electromagnetic one (as one would expect assuming unification) one finds
mW ∼

√

4πα/GF ∼ 90GeV, which is correct to within 10%.
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4 Symmetries

In this section we discuss in some detail the concept of symmetry in a physical theory and
its consequences. Quoting S. Weinberg almost verbatim [7], a symmetry is a change in the
experimenter’s point of view that does not change the results of possible experiments. This
statement seems quite cryptic at a first reading, so let us explain it in more detail. Consider two
experimenters O and O′ making measurements on the same physical system. Although they
subscribe to the same operative rules concerning the measurement of the various observables,
they use in general different reference objects to perform these measurements. For example, to
measure the Cartesian coordinates of an object one needs a reference point (i.e., the origin of the
coordinate system) and three orthogonal reference directions (i.e., the axes). The set of reference
objects constitutes the reference frame of an observer. The use of different reference frames by O
and O′ generally leads to obtaining different values for the various physical quantities that they
measure, and so to two different descriptions of the same system. However, if these descriptions
lead to the same physical picture of the world, then the distinction is unimportant and the two
descriptions are equivalent. In order for this to happen, the full set of outcomes that O and O′

can obtain by carrying out any conceivable experiments must be the same: this is a first level
of reading of Weinberg’s definition of symmetry, taking “the results of possible experiments” to
mean the full set of possible experimental results obtained by an experimenter. Also, a somewhat
technical, “zeroth-level” reading is that if O sees two experimental outcomes as different, then
so must do O′, for otherwise a change in “point of view” would radically change the conclusions
of the two experimenters. A second level of reading is that if two experimenters using different
reference frames (and so a different “point of view”) carry out the same experiment, with the
same initial conditions, then they must obtain the same results. This requires that the dynamical
laws governing the evolution of physical systems (that the experiments aim to unveil) must be
the same in the two reference frames.

Summarising, the descriptions provided by O and O′ using their respective reference frames
are equivalent if (1) the set of all possible experimental outcomes, and (2) the dynamical laws
governing the temporal evolution of physical systems are the same for the two experimenters.
We add to this list the somewhat implicit request that (0) if O sees two states of the system
as different, then so must do O′. Identifying the observers O to O′ with their reference frames,
one then says that O and O′ are equivalent, and that the change from O to O′ is a symmetry,
that leaves the physics unchanged. Another way to state the equivalence of two reference frames
is two take one experimenter, place them in either of the reference frames O or O′, and let
them carry out whatever experiment they want. If the two frames are equivalent, then the
experimenter will not be able to tell, neither by the mere results of the experiments nor by the
physical laws that they can infer, in which of the two frames they have been placed.44

Let us now formalise the discussion above in mathematical terms. According to quantum
mechanics, an experimenter can fully characterise the state of a physical system by carrying out
measurements of a complete set of compatible observables. For example, in the case of a set of
free particles these are the three components ~p of their momenta and one component of their spin,
usually taken to be sz. With the information collected in the experiments, an experimenter then
assigns a suitable representative vector in the Hilbert space of the system, in correspondence with
the values obtained for the various observables. Technically, this means that the expectation
values of the operators corresponding to the various observables, computed on this vector, are

44Sometimes they can tell by the quality of the coffee.
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equal to the values obtained experimentally. Now, two experimenters in reference frames O
and O′ generally find different experimental values; since the operators corresponding to the
physical observables are the same for both observers (reflecting the fact that they operatively
define an observable in the same way), the vectors that they assign to the same system are
different. More precisely, since the overall phase and the norm of the representative vectors are
unobservable, O and O′ assign respectively the rays45 R and R′ to the state of the system, and
these are generally different, and possibly belonging to different spaces of rays. However, if O
and O′ are equivalent, then the set of possible physical states that they can observe must be the
same. Mathematically, this means that the Hilbert space H and the associated space of rays H,
corresponding to the possible states that they can assign to the system, must be the same for
O and O′.

Establishing a relation between the two descriptions corresponds to defining a mapping M
from the space of rays H = {R} to itself. To each ray observed by O there corresponds one and
only one ray observed by O′. Moreover, every ray corresponds to a possible observation of O′,
so the mapping must be surjective (onto). Finally, diffent rays must be mapped into different
rays, since observing that two states of the system are different does not depend on the observer.
These mathematical properties follow from the physical properties (0) and (1). We then have a
mapping M,

M : H → H
R 7→ R′ = MR ,

(4.1)

which is injective (one-to-one) and surjective, and therefore an invertible mapping. In a more
direct way: if the two observers are equivalent, and there is a map from O to O′, then there must
also be an inverse mapping from O′ to O, for otherwise the two frames would be distinguishable
and therefore not equivalent.

Representation of symmetries and Wigner’s theorem Suppose that we now perform
experiments on the system, and we see it transition from a state to another. Collecting the
results of their experiments, the two observers will see that the transition between a given initial
state, corresponding respectively to rays Ri and R′

i, to a prescribed final state, corresponding
respectively to rays Rf and R′

f ,

O : Ri −→ Rf , O′ : R′
i −→ R′

f , (4.2)

occurs with probabilities P and P ′,

P = (Ri · Rf )
2 , P ′ = (R′

i · R′
f )

2 , (4.3)

where46

R1 · R2 = |(ψ1, ψ2)| , (4.4)

45A ray is an equivalence class of vectors in a Hilbert space H with respect to the equivalence relation “differing
by a complex factor”. Formally, given a vector ψ ∈ H, the corresponding ray Rψ ≡ [ψ]∼ ∈ H/∼ ≡ H is the
equivalence class of ψ with respect to the equivalence relation: ψ ∼ φ if ψ = cφ, c ∈ C. Since transition probability
between states represented by ψ1,2 is P12 = |(ψ2, ψ1)|2[(ψ2, ψ2)(ψ1, ψ1)]

−1, any choice of vectors in [ψ1,2]∼ gives
the same result.

46We use the convention that the scalar product (ψ,φ) is linear in φ and antilinear in ψ, i.e., (ψ,αφ + βφ′) =
α(ψ, φ) + β(ψ, φ′) and (αψ + βψ′, φ) = α∗(ψ, φ) + β∗(ψ′, φ).
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with ψ1,2 any normalised vector belonging to R1,2. Since O and O′ are looking at the same
physical processes, the transition probabilities they observe must be the same, P = P ′, and so

Ri · Rf = R′
i · R′

f . (4.5)

Since R′
i,f = MRi,f , we have that

Ri · Rf = (MRi) · (MRf ) . (4.6)

A theorem due to Wigner guarantees that any invertible transformation M on the space of rays
H, M : H → H that conserves probabilities (in the sense of Eq. (4.6)) can be implemented
as a transformation M on the space of vectors H, M : H → H, that is either linear and
unitary or antilinear and antiunitary. In other words, any such M can be obtained as the
natural mapping between rays following from a unitary or antiunitary mapping M between
vectors. Wigner’s theorem implies that, without loss of generality, we can restrict our search
for symmetry transformations, relating two equivalent observers, looking only at the set of
unitary and antiunitary mappings of the Hilbert space of the system onto itself. More generally,
Wigner’s theorem applies when the two observers see the same space of possible states for the
system under consideration, even if the dynamical laws they use to predict its temporal evolution
are different. For a proof of the theorem, see Ref. [7].

We have already discussed linear unitary operators above (see p. 26). Antilinear antiunitary
operators T have analogous properties: antilinearity means that for arbitrary ψ, φ ∈ H and
α, β ∈ C,

T (αψ + βφ) = α∗Tψ + β∗Tφ . (4.7)

An antiunitary operator is an antilinear operator that is norm-preserving, ‖Tψ‖ = ‖ψ‖, and
onto, i.e., having the whole of H as its image. Introducing the adjoint of an antilinear operator
thourgh the definition

(ψ, Tφ) = (T †ψ, φ)∗ , (4.8)

the two properties above are expressed respectively as T †T = 1 and TT † = 1. An antiunitary
operator is then equivalently characterised as an antilinear operator satisfying T †T = TT † = 1.

Symmetries and temporal evolution What we discussed so far were the kinematical as-
pects of a symmetry, but we demand more from it: we want the physics to be the same for both
observers. We then need that the dynamical evolution of a physical system be governed by the
same laws for both observers, or stated differently we want that the equations of motion have
the same form for both observers, i.e., they are invariant in form. If the dynamical evolution
of the system is the same for both observers, it follows that the transformed of the evolved is
equal to the evolved of the transformed: this entails that the Hamiltonian of the system is the
same for both observers, and so is the physics.

In general, once we have established that the descriptions of the same physical system given
by two observers are connected by a unitary or antiunitary transformation M , then we can
relate also the dynamical laws that they use to predict the temporal evolution of the system.
Let us assume for simplicity that the transformation does not involve time in any way, being
time-independent and leaving untouched the time coordinate, and moreover let H and H ′ be
the Hamiltonians used by observer O and O′, respectively, which we again assume to be time-
independent. If ψ(0) is the state vector at t = 0 for the observer O, at time t they will find

ψ(t) = U(t)ψ(0) = e−iHtψ(0) , (4.9)
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where U(t) = e−iHt is the (unitary) time-evolution operator. Similarly, for the observer O′ at
time t = 0 the state vector of the system is ψ′(0), related to ψ(0) by ψ′(0) = Mψ(0), while at
time t they see

ψ′(t) = U ′(t)ψ′(0) = e−iH
′tψ′(0) = e−iH

′tMψ(0) . (4.10)

On the other hand, connecting the descriptions of the two observers directly at time t one finds

ψ′(t) =Mψ(t) =Me−iHtψ(0) . (4.11)

Since the two relations must hold for every initial state ψ(0), we find the oeperator relation

e−iH
′tM =Me−iHt . (4.12)

Using the (anti)unitarity of M , this can be written also as

e(−iH
′)t = eM(−iH)M†t . (4.13)

Since this must be true at all times, we conclude47

− iH ′ =M(−iH)M † H ′ = (iM)H(iM)† (4.14)

If the two observer are equivalent, then they must see the same dynamical laws and so the same
Hamiltonian. In other words, for M to be a symmetry we require

H = (iM)H(iM)† . (4.15)

For the most common case of unitary M , this means that

H =MHM † =⇒ [M,H] = 0 , (4.16)

i.e., M commutes with the Hamiltonian. Conversely, an (anti)unitary M satisfying Eq. (4.15)
leads to identical temporal evolutions for the two observers, and so to the same physics in the
two corresponding reference frames.

Summarising, the dynamical requirement for a symmetry, i.e., that the transformed of the
evolved is equal to the evolved of the transformed, reads then for a time-independent transfor-
mation

MU(t)ψ(0) = U(t)Mψ(0) . (4.17)

The left-hand side can always be recast as

MU(t)ψ(0) =MU(t)M †Mψ(0) = U ′(t)Mψ(0) , (4.18)

which defines the temporal-evolution operator U ′(t). Imposing Eq. (4.17) implies that U ′(t) =
U(t), and so that the corresponding Hamiltonians are identical (up to a sign in case of antiunitary
M). Moreover, while the state observed at time t by O′ differs in general from that observed by
O, the difference is due entirely to the fact that they observe a different initial state. If O and
O′ were to do separately the same experiment, i.e., each starting from the state corresponding
for to the same vector ψ(0) according to their own description, then they would observe the
same vector ψ(t) at later times, therefore seeing the same temporal evolution, and infering the
same laws of physics.

47Notice that this implies that if H is time-independent, then so will be H ′ = iM(−iH)M†.
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Group structure There is an important structure underlying the set of symmetry transfor-
mations of a physical system. IfM1 andM2 are time-independent symmetry transformations, so
is their composition M = M2M1. Indeed, the product of unitary and/or antiunitary operators
is still either unitary or antiunitary, and moreover

(iM)H(iM)† = (iM2M1)H(iM2M1)
† = [−i(iM2iM1)]H[−i(iM2iM1)]

†

= −i(iM2)(iM1)H(iM1)
†(iM2)

†i = −i(iM2)H(iM2)
†i = −iHi = H .

(4.19)

Such a composition is associative, i.e., if M3 is another symmetry transformation then one has
M3M2M1 = M3(M2M1) = (M3M2)M1. The identity transformation is obviously a symmetry,
and symmetry transformations are invertible (they are unitary or antiunitary transformations
in the Hilbert space, but they were already invertible at the level of rays). The symmetry
transformations of a physical system form therefore a group.

Time-dependent transformations The discussion above can be extended to time-dependent trans-
formations M(t) that do not alter time with a little effort. The request of invariance reads now

M(t)U(t)ψ(0) = U(t)M(0)ψ(0) , (4.20)

expressing again that the transformed of the evolved is equal to the evolved of the transformed. Since
this has to hold for any initial state, it follows that

M(t)U(t) = U(t)M(0) ⇒M(t) = U(t)M(0)U(t)† . (4.21)

Why is Eq. (4.20) the correct request? In general we can write

M(t)U(t)ψ(0) =M(t)U(t)M(0)†M(0)ψ(0) = U(t)M(0)ψ(0) , (4.22)

where U(t) provides the unitary temporal evolution of the system as seen by the observer O′. We
can obtain U(t) explicitly by writing down the differential equation it obeys, and imposing the initial
condition U(0) = 1. We have

dU(t)
dt

=
dM(t)

dt
U(t)M(0)† +M(t)(−iHU(t))M(0)†

= −i
(

M(t)HM(t)† + i
dM(t)

dt
M(t)†

)

U(t) ≡ −iHM(t)U(t) ,
(4.23)

where the time-dependent Hermitian operator HM (t) is the Hamiltonian for O′ (given that H is the
Hamiltonian for O). Hermiticity of HM (t) follows from the fact that M(t) is norm-preserving and
onto:

0 =
d

dt
1 =

d

dt
[M(t)M(t)†] =

d

dt
[M(t)]M(t)† +M(t)

d

dt
[M(t)]† , (4.24)

so that [i(dM(t)/dt)M(t)†]† = −iM(t)(dM(t)†/dt) = i(dM(t)/dt)M(t)†. The solution of Eq. (4.23)
is the time-ordered exponential of HM (t),

U(t) = Texp

{

−i
∫ t

0

dt′ HM (t′)

}

≡
∞∑

n=0

(−i)n
∫ t

0

dt′1

∫ t′1

0

dt′2 . . .

∫ t′n−1

0

dt′nHM (t′1)HM (t′2) . . .HM (t′n)

=

∞∑

n=0

(−i)n
n!

∫ t

0

dt′1

∫ t

0

dt′2 . . .

∫ t

0

dt′nT (HM (t′1)HM (t′2) . . .HM (t′n)) ,

(4.25)
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where the time-ordered product of operators is defined by ordering the operators according to de-
creasing time from left to right,

T (A(t1) . . . A(tn)) = θ(t1 − t2) . . . θ(tn−1 − tn)A(t1) . . . A(tn) + permutations . (4.26)

Clearly, if HM (t) = H then U(t) = U(t), as they solve the same ordinary differential equation with
the same initial condition; conversely, if U(t) = U(t) for all times then also their derivatives are equal,
and so HM (t) = H . The two temporal evolutions will be the same if and only if the Hamiltonians
HM (t) and H are the same. If this is the case, then

H =M(t)HM(t)† + i
dM(t)

dt
M(t)† ⇒ −i[H,M(t)] =

dM(t)

dt
, (4.27)

and this is solved by

M(t) = e−iHtM(0)eiHt = U(t)M(0)U(t)† ⇒M(t)U(t) = U(t)M(0) . (4.28)

Therefore, saying that the temporal evolution is the same for both observers is equivalent to saying
that they use the same Hamiltonian to describe the system, and in turn this is equivalent to state
that the evolved of the transformed is the transformed of the evolved. Eq. (4.28) also tells us that the
dependence of the transformation M(t) on time has to be entirely determined by the Hamiltonian of
the system, with no room for some extra explicit dependence.

The group structure of symmetries stll holds if these time-dependent transformations are included.
If M1 and M2 are two (now possibly time dependent) symmetry transformations, the product M =
M2M1 is still unitary or antiunitary, and still satisfies Eq. (4.28),

M(t) =M2(t)M1(t) = U(t)M2(0)M1(0)U(t)† = U(t)M(0)U(t)† . (4.29)

The other properties of a group are trivially verified.

Continuous and discrete symmetries In general, symmetries are classified in two big
classes, namely continuous and discrete symmetries. A symmetry is continuous if it consists
of a family of symmetry transformations parameterised by a set of continuous variables; it
is discrete if there is no such family, i.e., if the transformations are “isolated”. For continu-
ous symmetries the representatives of the transformations on the Hilbert space of the system,
M = M(α), depend on continuous parameters α. If they are connected to the identity, i.e.,
M(α0) = 1 for some α0, then one can show that M(α) must be unitary [8]. Instead, discrete
symmetries have to be discussed on a case-by-case basis.

One-parameter families of continuous transformations Let us focus on a continuous
family of symmetry transformations M(α) characterised by a single real parameter α, choosing
the parameterisation so that M(0) = 1. As we said above, M(α) are unitary operators, and
being symmetries means that

[M(α),H] = 0 . (4.30)

Taking the derivative with respect to α and then setting α = 0 we find

[Q,H] = 0 , Q ≡ −idM
dα

∣
∣
∣
∣
α=0

. (4.31)

The operator Q commutes with the Hamiltonian, and moreover it is Hermitean,

Q† = i
dM †

dα

∣
∣
∣
∣
α=0

= −i
(

M †dM
dα

M †
) ∣
∣
∣
∣
α=0

= −idM
dα

∣
∣
∣
∣
α=0

= Q , (4.32)
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having used the fact that dU † = −U †dUU † for unitary operators. The operator Q then cor-
responds to an observable that is conserved in physical processes. To see this explicitly, re-
call that in the Heisenberg picture the observables are given a time dependence according to
O(t) = eiHtOe−iHt. Then

Q̇(t) =
d

dt
eiHtQe−iHt = ieiHt[H,Q]e−iHt = i[H,Q(t)] = 0 . (4.33)

Any matrix element of Q(t) is then clearly time-independent in the Heisenberg picture, and so
in any picture.

There is actually more that we can do for one-parameter groups. For these groups one can
choose the parameterisation so that,48

M(α1)M(α2) =M(α1 + α2) , (4.34)

again with M(0) = 1. Setting α2 = α and making α1 → dα infinitesimal, and expanding in dα,
we find to lowest order

M(dα)M(α) =M(α+ dα) ,
(

M(0) + dα
dM

dα
(0)

)

M(α) =M(α) + dα
dM

dα
(α) ,

dM

dα
(0)M(α) =

dM

dα
(α) .

(4.35)

We recognise iQ on the left hand side of this differential equation,49 which is easily solved to
give

M(α) = exp

{

α
dM

dα
(0)

}

= exp {iαQ} . (4.36)

As we showed above, since M(α) is a unitary symmetry one finds that Q is a self-adjoint
operator commuting with H, and so a conserved physical quantity that can be diagonalised
simultaneously with the Hamiltonian. Examples are energy and momentum, associated with
the symmetry under temporal and spatial translations, and angular momentum, associated
with the symmetry under rotations.

The construction above obviously does not apply to discrete symmetries, but there are
nevertheless conservation laws associated with them. Discrete symmetries include most notably
parity (P ), charge conjugation (C), and time reversal (T ). In the following subsection we discuss
them in some detail.

48For a one-parameter group we require in general that M(α1)M(α2) = M(f(α1, α2)) for some function f .
Under reasonable smoothness conditions, one can always choose the parameterisation so that Eq. (4.34) holds,
and that α = 0 corresponds to the identity. See, e.g., Ref. [9].

49The definitions of Q with the current parameterisation can at most differ from the previous one by an irrelevant
constant factor,

Qold =
dM(αold)

dαold

∣

∣

∣

αold=0
=
dM(αnew)

dαnew

∣

∣

∣

αnew(0)=0

dαnew(αold)

dαold

∣

∣

∣

αold=0
= Qnew

dαnew(αold)

dαold

∣

∣

∣

αold=0
.
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4.1 Discrete symmetries

We have discussed above the issue of symmetry on general grounds, without specifying a physical
system. We now specialise to the case of free particles, i.e., localised objects travelling on
straight lines at constant speed. This choice is made both because of its simplicity, and because
of its practical relevance: the typical high-energy experiment consists in taking two bunches of
particles and shooting them at each other. In the initial stages of the experiments these particles
are far away from each other, so not interacting yet, and when measurements are done on the
final products of the process these are again far away from each other, so not interacting any
more. As we have already discussed, to a very good approximations these experiments involve
then free particles both in the initial and in the final state.

Free particle states A free particle is characterised by its type, as defined by its mass m,
spin s, electric charge q and possibly other conserved (and compatible) charges, like, e.g., baryon
number and lepton family number, plus its energy E, momenta ~p and the component of the
spin in some prescribed direction, conventionally taken to be the third, or z, component, i.e.,
sz. Once that the particle type is specified, ~p and sz constitute a complete set of compatible
observables, with energy determined from the momenta (and the mass) through the dispersion
relation E2 = ~p 2+m2. When writing the state vector of a free particle, we usually put mass and
the other defining observables under the label of the particle type; if the state is an eigenstate
of momenta and sz, we further specify their values. In Dirac notation, we would write, e.g., for
a momentum eigenstate of a neutral pion |~p;π0〉 (there is no spin here); for a proton, |~p, sz; p〉;
and so on. Other notations might be used, depending on what one wants to emphasise. One
may choose to use a different complete set of observable, e.g., replacing ~p → E, ℓ, ℓz , where ℓ is
the total orbital angular momentum and ℓz its component in the z-direction; in this case one
would write for a pion |E, ℓ, ℓz ;π0〉. Of course, any superposition of these basis states is allowed.

We now discuss the effect of the discrete symmetries P , C, and T on the free particle states.

4.1.1 Parity

Parity (P ) consists in the change of the sign of all the spatial coordinates of our reference
frame. In non-relativistic quantum mechanics, the effect of this transformation on the state of a
particle is simply to change its wave function to Pψsz(~x) = ψsz(−~x), with spin being unaffected.
In the relativistic case, however, we cannot use wave functions in coordinate space to describe
our system. Nonetheless, we can define the parity transformation on states by observing that
under the required change of coordinates, all the components of the momentum of a particle
will change sign, while angular momenta (and spin in particular) will remain unchanged. We
must then have for the state of a particle of type α with momentum ~p and z-component of the
spin sz,

P |~p, sz;α〉 = ηα| − ~p, sz;α〉 , (4.37)

where P denotes the unitary or antiunitary operator implementing the parity transformation on
the Hilbert space of the particle. The quantity ηα is a phase factor named intrinsic parity, which
does not change the physical content of a parity transformation, but that has to be included for
generality:50 if P is a symmetry, then a consistent assignment of phases in Eq. (4.37) can be

50Dependence of the intrinsic parity on anything other than the particle type α is excluded by symmetry under
rotations, that commute with P .
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made.
One can equivalently discuss parity in a Heisenberg-type picture, in which the quantum states

are given once and for all, and for all observers, with the effect of symmetry transformations
shifted on the operators. In this picture one finds for the momentum and angular momentum
operators

P †~pP = −~p , P † ~JP = ~J , (4.38)

which since the spin of a particle is its angular momentum in its rest frame, is equivalent to the
transformation rule Eq. (4.37).

Unitarity of P We have not decided yet if parity has to be realised in the Hilbert space
of particles as a unitary or an antiunitary transformation. We now argue that the unitary
option must be chosen. The reason for this is physical, and comes from the requirement of
invariance that, since P does not affect time, reads PU(t) = U(t)P . For infinitesimal t we
then find PiH = iHP . For linear unitary P we find [P,H] = 0, but for antilinear antiunitary
we would have instead PH + HP = {P,H} = 0, so that to every state ψE with energy E it

would correspond a state ψ
(P )
E = PψE with energy Hψ

(P )
E = HPψE = −PHψE = −Eψ(P )

E .
Since negative energy particle states are not found in nature, we are forced to choose P to
be unitary and commuting with the Hamiltonian. This means in particular that H and P
can be diagonalised simultaneously. In this case, instead of momentum eigenstates one would
use energy and orbital angular momentum eigenstates |E, ℓ, ℓz ;α〉, that obey P |E, ℓ, ℓz ;α〉 =
(−1)ℓ|E, ℓ, ℓz ;α〉, in full analogy with the non-relativistic result ψℓℓz(−~x) = (−1)ℓψℓℓz(~x).

Non-uniqueness of intrinsic parities The assignment of intrinsic parities is in general not
unique: if there is a continuous group of phase transformations generated by some operator Φ
that is a symmetry of the system, then we can redefine parity to be P ′ = PeiΦ: this is still a
symmetry which does what parity has to do on physical states. If we limit ourselves to a world
in which only strong and electromagnetic interactions are present, and the only matter particles
are the up quark, the down quark, the electron, and their antiparticles, then there are three
such generators, namely the electric charge Q, the baryon number B and the lepton number L,
so that we can fix the phases of, say, the proton, the neutron and the electron to 1. If P (0) is the

initial definition of the parity operator, with corresponding intrinsic parities η
(0)
α , then setting

P = P (0)ei(αB+βL+γQ) we can choose α, β and γ such that

proton: ηp = η(0)p ei(α+γ) = 1 ,

neutron: ηn = η(0)n eiα = 1 ,

electron: ηe = η(0)e ei(β−γ) = 1 .

(4.39)

All the other intrinsic parities are now fixed by consistency. In general, we can choose arbitrarily
one intrinsic parity for each conserved quantity: if we add, say, the muon to our particle zoo, then
we can fix its intrinsic parity to 1 using the muonic lepton number. Instead, for truly neutral
particles like, e.g., the photon or the neutral pion, the intrinsic parity cannot be redefined
through a phase transformation, and therefore carries a genuine intrinsic meaning.

Intrinsic parities of antiparticles From its definition, the parity operator is such that P 2

is just a phase transformation of each state. If this transformation belongs to a continuous set

80



of phase transformation symmetries like the ones described above, then it is possible to redefine
it such that P 2 = 1. This is the case in the Standard Model, and so we can take without loss of
generality η2α = 1, i.e., ηα = ±1. The reason is the existence of a sufficient number of conserved
charges, and the absence of self-conjugate fermions. In fact, quantum field theory imposes that
the intrinsic parities of a particle α and its antiparticle ᾱ be related as

ηαηᾱ =

{

+ 1 if they are bosons,

− 1 if they are fermions.
(4.40)

For self-conjugate bosons, whose intrinsic phase cannot be redefined by a phase transformation,
this does not contradict P 2 = 1. For a self-conjugate fermion (a Majorana fermion), one would
find instead ηα = ±i, so that P 2 6= 1. However, such particles have never been observed so far.

Determination of intrinsic parities It is possible to assign intrinsic parities to particles
empirically, using conservation of parity in a physical process, i.e., that parity is a symmetry (of
course, when this applies) and the conventionally chosen values. Consider scattering or decay
processes of the form

a b→ c d , a→ b c . (4.41)

We know that the transition probability for scattering processes are obtained from the matrix
elements of the S operator [see Eqs. (2.26) and (2.52)]. For decay processes a similar operator,
the decay operator Γ, is used instead. We have

transition probability ∝ |〈c d|S|a b〉|2 , |〈b c|Γ|a〉|2 . (4.42)

The very fact that a process happens implies that these matrix elements are nonzero. Con-
sider now states with well-defined energy and orbital angular momentum, instead of momentum
eigenstates, that as we said above obey P |ℓℓz〉 = (−1)ℓ|ℓℓz〉. If P is a symmetry of H, then
since it is a symmetry of H0 we also have that [P, S] = [P,Γ] = 0, and so (omitting all irrelevant
quantities from the notation)

0 = 〈ℓ′, ℓ′z; c d|[P, S]|ℓ, ℓz ; a b〉 = [(−1)ℓ
′
ηcηd − (−1)ℓηaηb]〈ℓ′, ℓ′z; c d|S|ℓ, ℓz ; a b〉 ,

0 = 〈ℓ, ℓz ; b c|[P,Γ]|a〉 = [(−1)ℓηbηc − ηa]〈ℓ, ℓz; b c|Γ|a〉 ,
(4.43)

where in the case of a decay process we work in the rest frame of the decaying particles, so that
there is no orbital angular momentum. Since the matrix elements of S and Γ are nonvanishing,
Eq. (4.43) yields the relations

(−1)ℓ
′
ηcηd = (−1)ℓηaηb , (−1)ℓηbηc = ηa . (4.44)

Using the conventional intrinsic parities and those that have already been determined, we can
go on and assign an intrinsic parity to one of the particles involved in the process.

To see how things work in practice, let us consider an example, that of the parity of the
charged pion. The relevant physical process is that of pion capture by a deuteron (d), which is a
bound state of a proton and a neutron, d = (pn), with orbital angular momentum ℓd = 0. The
intrinsic parity of the deuteron is easily determined as ηd = ηpηn(−1)0 = 1. Finally, the spin of
the deuteron is sd = 1. The relevant physical process is

π− d→ n n , (4.45)
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ℓ S J (−1)S+ℓ+1

0 1 1 1
1 0 1 1
1 1 0⊕ 1⊕ 2 -1
2 1 1⊕ 2⊕ 3 1

Table 7: Combinations of S and ℓ allowed by the conservation of angular momentum in the π−d
capture process.

which proceeds through the formation of a π−d atom and its subsequent decay into a pair of
neutrons. This decay takes place from the ground state of the pion-deuteron atom, which has
ℓ = 0 (with a small admixture of ℓ = 2): its phase under a parity transformations is (−1)0 = 1.
Conservation of angular momentum implies, since ℓ = 0 and the pion is spinless, that J = 1
both in the initial and in the final state. The final state is nonrelativistic, and can therefore be
described in the framework of quantum mechanics as ψ(~x)|S, Sz〉, with ψ(~x) = Rℓ(r)Y

m
ℓ (θ, ϕ)

the spatial wave function and |S, Sz〉 the spin wave function. Overall the wave function has to be
antisymmetric under exchange of the neutrons since these are fermions. The spin wave function
is constructed starting from two spin-12 states, and since 1

2 ⊗ 1
2 = 0 ⊕ 1, we have S = 0, 1. It is

easy to write down explicitly the states corresponding to the two cases,

|12 1
2〉 ⊗ |12 1

2〉 = |11〉
1√
2

(
|12 − 1

2〉 ⊗ |12 1
2〉+ |12 1

2〉 ⊗ |12 − 1
2〉
)
= |10〉

|12 − 1
2 〉 ⊗ |12 − 1

2〉 = |1− 1〉
1√
2

(
|12 − 1

2〉 ⊗ |12 1
2〉 − |12 1

2〉 ⊗ |12 − 1
2〉
)
= |00〉 ,

(4.46)

and in turn to determine the sign acquired under exchange of the two neutrons as (−1)S+1. As for
the spatial part, exchanging the neutrons corresponds to sending ~x→ −~x, so the corresponding
sign is (−1)ℓ. All in all we must have (−1)S+ℓ+1 = −1. Conservation of angular momentum
limits the possible combinations of S and ℓ in the final state to those listed in Table 7, since
those are the only ones containing 1. Among these, the only one allowed by the Fermi-Dirac
statistics of neutrons is ℓ = S = 1. Since ηn = 1, this implies for the parity of the final state
η2n(−1)ℓ = −1. This must be equal to that in the initial state, which is ηπηd(−1)0 = ηπηd = ηπ.
In conclusion then ηπ = −1.

Another example is the intrinsic parity of the ∆++, determined from the decay ∆++ → p π+.
Since s∆++ = 3

2 , sp = 1
2 and sπ+ = 0, the final state must have either ℓ = 1 or ℓ = 2. This

can be determined from the angular distribution of the decay products. From the relation
η∆++ = ηpηπ+(−1)ℓ = (−1)ℓ+1, and the experimental determination that ℓ = 1, one finds
η∆++ = 1.

In other cases, the intrinsic parity can be assigned on the basis of theoretical considerations.
This is the case of the photon: classically the electric field ~E transforms like a vector, and
since ~E = −~∇φ − ∂

∂t
~A, so has to transform the vector potential ~A. Vectors change sign under

parity. Upon quantisation the physical modes of the photon are encoded in ~A, and for the
intrinsic parity this leads to ηγ = −1. Another way to see this is that in the quantum theory
of electrodynamics (QED), the coupling of photons to electrons is described by means of the
photon field Aµ and of the electric current Jµ. The electric current is a Lorentz vector, and so
has to be the photon, hence ηγ = −1.
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4.1.2 Charge conjugation

We now turn to charge conjugation (C), which consists in exchanging particles with the corre-
sponding antiparticles, keeping momenta and spin unchanged. Denoting with ᾱ the antiparticle
corresponding to particle α, the action of C on particle states is defined by

C|~p, sz;α〉 = ξα|~p, sz; ᾱ〉 , (4.47)

where again a phase ξα has to be included for generality.51 An argument identical to that used
above for parity requires that C be a unitary operator and [C,H] = 0.

As we have already said, changing from particle to antiparticle leads to changing sign of
to all the charges, like, e.g., electric charge (q), baryon (B), lepton (L) and lepton family (Lℓ)
numbers. Moreover, since the magnetic moment of a particle, ~µ, is proportional to the product
of charge and spin, ~µ ∝ q~s, it also changes sign under C. For all these quantities we have that
{C,O} = 0. If we reversed the discussion and started from asking that an operator C exists
obeying this anticommutation relation, then we would find that for each particle state with
given values of these observables there is a corresponding state for which the observables have
the same magnitude but opposite sign: indeed, these are the antiparticles.

Intrinsic charge-conjugation phase of antiparticles Applying C twice we find

C2|~p, sz;α〉 = ξαξᾱ|~p, sz;α〉 , (4.48)

i.e., C2 is just a phase transformation. Quantum field theory requires that ξαξᾱ = 1, both for
bosons and fermions, and so we can write C2 = 1. In general, however, the value of ξα = ±1
is relevant only for neutral particles that are self-conjugate, like γ and π0 (but not n), while it
can be adjusted freely for non-self-conjugate particles.

Determination of intrinsic charge-conjugation phases In order to assign the intrinsic
charge conjugation phase ξα to a self-conjugate particle we can either rely on theoretical ar-
guments or on the selection rule implied by charge conjugation invariance of a theory. As an
example of the first method, consider the photon. Recall the classical Maxwell equations with
sources, and the relations between the electric and magnetic fields and the potential,

~∇ · ~E ∝ ρ , ~E = −~∇φ− ∂ ~A

∂t
,

~∇∧ ~B ∝ ~J , ~B = ~∇∧ ~A .

(4.49)

Exchanging negative and positive charges corresponds to ρ → −ρ and ~J → − ~J , which in turn
changes the signs of ~E and ~B. At the level of the potential Aµ = (φ, ~A), this is obtained by
changing Aµ → −Aµ. Carrying this over to the quantum case we then have for the quantum
photon field C†AµC = −Aµ, and so ξγ = −1.

This result can then be employed to establish the charge conjugation phase of the neutral
pion by means of the second method. Since the π0 decays into two photons, we must have
ξπ0 = ξ2γ = 1. The same value of ξ can be assigned to the charged pions if we wish, but this is

51Like with parity, ξα depends only on α due to symmetry under rotations, since these commute with C.
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just a matter of convention: since they are not self-conjugate, there is no selection rule for them
associated with charge conjugation, and we cannot fix ξπ± in this way.

If charge conjugation were an exact symmetry of nature, then the decay process π0 → γγγ
would be strictly forbidden. Violations of charge conjugation symmetry come only from the
weak interactions, which have very little to do with this process, so we expect that this process
is strongly suppressed. Experimental results give for the relative probability of π0 → 3γ with
respect to π0 → 2γ the upper bound Γπ0→3γ/Γπ0→2γ < 3.1 · 10−8.

4.1.3 Time reversal and CPT

We conclude with a brief discussion of time reversal (T ), i.e., the inversion of the arrow of
time. Under such a transformation, the signs of both the momentum components and the spin
components change sign. The effect of T on particle states reads

T |~p, sz;α〉 = ζα,sz | − ~p,−sz;α〉 , (4.50)

where the extra phase factor this time depends on sz as well as on the particle species, and reads
ζα,sz = (−1)s−szζα.

Antiunitarity of T Contrary to P and C, T is an antiunitary symmetry. In fact, in contrast
with Eq. (4.17), the requirement of invariance reads here TU(t)ψ(0) = U(−t)Tψ(0): in fact,
assuming the same time origin for both observers, the times at which the system is observed are
0 and t in the first frame, and 0 and −t in the second frame, since in the latter time flows in
the opposite direction. Since ψ(0) and t are arbitrary, one finds

TU(t) = U(−t)T ⇒ T iH = −iHT . (4.51)

There are two alternatives: if T is antilinear and antiunitary, then T i = −iT and we need
[T,H] = 0, while if T is linear and unitary then we need {T,H} = 0. The second case is
excluded again by the experimental absence of negative energy particle states, which forces us
to have T antiunitary and commuting with the Hamiltonian. As a consequence of antiunitarity,
the residual phase ζα has no physical meaning, since it can be reabsorbed in a redefinition of
the particle states: in fact, if we redefine |~p, sz;α〉 → eiφ|~p, sz;α〉, then

Teiφ|~p, sz;α〉 = e−iφT |~p, sz;α〉 = e−iφζα(−1)s−sz | − ~p,−sz;α〉 , (4.52)

and we are free to choose e−iφζα = 1.

The CPT theorem It is a general theorem of quantum field theory, the CPT theorem, that for
any Lorentz-invariant theory of local quantum fields, the antiunitary transformation Θ = CPT
is a symmetry. On a particle state Θ acts as follows:

Θ|~p, sz;α〉 = CPT |~p, sz;α〉 = CPζα,sz | − ~p,−sz;α〉 = Cηαζα,sz |~p,−sz;α〉
= ξαηαζα,sz |~p,−sz; ᾱ〉 = θα,sz |~p,−sz; ᾱ〉 ,

(4.53)

Despite the nonconservation of P and C (and also CP ) in weak interactions, the product CPT
is a good symmetry also in that case. If we were to find violations of this symmetry, this would
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have the deeply troubling consequence that quantum field theory could not be employed to
explain them, and should be replaced as the framework of our fundamental theories of pyhsics.

The CPT theorem has interesting consequences. As an example, it implies that particles
and antiparticles must have the same mass. For unstable particles, it implies that the lifetime
is the same as that of the corresponding antiparticle. The proof of these statements is rather
straightforward. For the equality of masses we have

Θp2|~p, sz;α〉 = m2
αθα,sz |~p,−sz; ᾱ〉

= Θp2Θ†Θ|~p, sz;α〉 = p2θα,sz |~p,−sz; ᾱ〉 = m2
ᾱθα,sz |~p,−sz; ᾱ〉 ,

(4.54)

since the four-momentum operator p = (p0 = H, ~p) transforms as TpT † = PpP † = (p0,−~p),
and CpC† = p. It then follows mα = mᾱ. One can similarly prove that for the spin one has
sα = sᾱ. For the lifetimes of unstable particles, working in the Born approximation for decay
probabilities, we have τ−1

α = Γα =
∑

f cf |〈f |HI |α〉|2, where cf are kinematical factors that
depend on the mass and spin of the final state particles (as well as their momenta, which are
however summed over). We find

Γα =
∑

f

cf |〈f |HI |α〉|2 =
∑

f

cf |〈f |Θ†HIΘ|α〉|2

=
∑

f

cf |〈f̄ |HI |ᾱ〉|2 =
∑

f

cf̄ |〈f̄ |HI |ᾱ〉|2 = Γᾱ .
(4.55)

4.2 Continuous symmetries: rotations

It is an experimental fact that a massive particle in its rest frame can be in more than one
physical state, i.e., the “particle is at rest” state characterised by vanishing spatial momentum
~p = ~0. In general, the states of a particle at rest form a finite-dimensional Hilbert space. We
denote such states as |~0, ψ〉 ∈ Hrest, with Hrest finite dimensional, and decompose them on an
orthonormal basis as |~0, ψ〉 =

∑

n ψn|~0, n〉. For example, an electron at rest can be found in
any superposition of the “spin-up” and “spin-down” states – whatever those are. A particle in
motion with momentum ~p is related to a particle at rest by a suitable Lorentz boost Λ~p, with

Λ(m,~0) = (E(~p), ~p). This transformation belongs to a continuous group of symmetries (the
Lorentz group), and as such it is realised on the Hilbert space of states by a unitary operator
U(Λ~p). The most general state of particle will then be expressible as a linear superposition of

states |~p, n〉 ≡ U(Λ~p)|~0, n〉. We are left with the task of characterising the states |~0, n〉. In this
section we discuss what these states are, so explaining what “spin-up” and “spin-down” electron
states are; and show that this states are related to the rotational properties of particles. These
are encoded in a new quantum number called spin.

We notice first that the rest frame of a particle is not unique: any rotation of the coordinate
system still yields a frame where the particle is at rest. Since rotations are symmetries, two
observers whose coordinate systems are related by a rotation will assign vectors out of the
same (finite-dimensional) Hilbert space to the states of a particle at rest. The two observers
will in general assign different vectors to a given state of the particle; since rotations form a
continuous group of symmetries, by Wigner’s and Bargmann’s theorems we can relate the vectors
assigned to the states by the two observers by means of a unitary operator. If the “unrotated”
observer describes the state of the particle with the vector |ψ〉, and the “rotated” observer whose
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coordinate system is obtained with a rotation R from that of the unrotated observer describes
it with the vector |ψR〉, then

|ψR〉 = U(R)|ψ〉 , (4.56)

with U(R) an R-dependent unitary operator. If |n〉 ≡ |~0, n〉 are the basis states for our particle
at rest, then ψ〉 =∑n ψn|n〉 and

|ψR〉 = U(R)|ψ〉 =
∑

n

ψnU(R)|n〉 =
∑

n,n′

ψnDn′n(R)|n′〉 , (4.57)

where U(R)|n〉 = Dn′n(R)|n′〉 is the transformed of |n〉, and Dn′n(R) are the components of a
square matrix D(R),

Dn′n(R) = 〈n′|U(R)|n〉 . (4.58)

Since U(R) is unitary,

δn′n = 〈n′|n〉 = 〈n′|U(R)†U(R)|n〉 =
∑

ñ′,ñ

〈ñ′|ñ〉Dñ′n′(R)
∗Dñn(R)

=
∑

ñ′,ñ

Dñ′n′(R)
∗Dñn(R)δñ′ñ = [D(R)†D(R)]n′n ,

(4.59)

i.e., D(R) are unitary matrices.

4.2.1 Group representations

Consistency of the description requires that if we change coordinates by a composite rotation
R2R1, the resulting state should be the same independently of whether we treat R2R1 as a
single rotation, or as the composition of R1 followed by R2. The mathematical translation of
this statement is

U(R2R1)|ψ〉 = U(R2)U(R1)|ψ〉 , (4.60)

that should hold for any vector, and so

U(R2R1) = U(R2)U(R1) , (4.61)

or in terms of D(R)
D(R2R1) = D(R2)D(R1) . (4.62)

As is well known, rotations form a group, namely the group SO(3) of 3×3 orthogonal unimodular
matrices, obeying OTO = 1 and detO = 1. A mapping from a group G to the space of invertible
n× n complex matrices GL(C, n), associating a matrix D(g) to each element of G,

D : G→ GL(C, n)

g → D(g) ,
(4.63)

and obeying the relation Eq. (4.62), i.e.,

D(g1g2) = D(g1)D(g2) , (4.64)

is said to provide a representation of the group. In practice, a representation associates a
matrix to each group element, and the composition law of the group is reproduced by the

86



composition law of these matrices. A representation in terms of unitary matrices is called
a unitary representation. The acceptable ways to implement the effect of rotations on the
state vectors of a physical system are then restricted to the unitary representations of the
rotation group. Strictly speaking, physical equivalence requires only that Eq. (4.62) holds up to
a physically irrelevant phase (which is experimentally unobservable). A mapping from a group
to a space of invertible matrices obeying D(g1g2) = eiφ(g1,g2)D(g1)D(g2) is said to provide a
projective representation of the group. More precisely, then, rotations must be implemented
through a projective representation of the rotation group.

The basic relation Eq. (4.64) automatically implies the following results. For the neutral
element e,

D(g) = D(eg) = D(e)D(g) =⇒ D(e) = 1 , (4.65)

i.e., e is mapped to the identity matrix. Moreover, for the inverse element g−1 we find

1 = D(e) = D(gg−1) = D(g)D(g−1) =⇒ D(g−1) = [D(g)]−1 . (4.66)

It is possible that all the matrices D(g) leave some subspace S ⊆ C
n invariant, i.e., for every

vector s ∈ S one has that sg = D(g)s ∈ S is still in S. More compactly, we write D(g)S ⊆ S
∀g ∈ G. Such a subspace is called and invariant subspace, and if there is at least one nontrivial
such subspace (i.e., S 6= C

n and S 6= {0}, where 0 is the zero vector in C
n), then we say that

the representation is reducible. The corresponding matrices can then all be put in the form

D(g) =







D11 D12 . . . D1M

0 D22 . . . D1M

. . . . . . . . . . . .
0 0 . . . DMM







(4.67)

by a suitable change of basis, with the block Djj corresponding to the mapping of the invariant
subspaces into themselves. If the basis can be chosen so that Dij = 0 for i 6= j for all g, then
the whole of Cn splits up in several invariant subspaces, and the representation is said to be
completely reducible. If instead no nontrivial invariant subspace exists, then the representation is
irreducible. A completeley reducible representation can then be brought to block diagonal form,
with each block corresponding to an invariant subspace not containing any smaller (nontrivial)
invariant subspace, and providing an irreducible representation of the group,

D(g) =







D11 0 . . . 0
0 D22 . . . 0
. . . . . . . . . . . .
0 0 . . . DMM






. (4.68)

For unitary representations, D(g)†D(g) = 1, and so D(g−1) = D(g)−1 = D(g)†. Such rep-
resentations are always completely reducible. In fact, if S is an invariant subspace, then its
orthogonal complement S⊥ is also invariant. By definition, S⊥ = {w | (v,w) = 0, ∀v ∈ S}, and
so for every v ∈ S and w ∈ S⊥,

(v,D(g)w) = (D(g)†v,D(g)†D(g)w) = (D(g−1)v,w) = 0 , (4.69)

since D(g−1)v ∈ S by definition of invariant subspace, and therefore D(g)w ∈ S⊥. Repeating
the argument until no more invariant subspaces are found one ends up with all the D(g) in
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the block-diagonal form of Eq. (4.68), with each block providing an irreducible representation
of the group. Since we are interested in finding unitary representations of SO(3), our task
is completed if we can find all the irreducible representations of SO(3), or more precisely its
irreducible projective representations.

4.2.2 Lie groups and Lie algebras

The group of rotations, SO(3), belongs to a special type of groups known as (matrix) Lie groups.
Lie groups are at the same time groups and smooth manifolds, i.e., their elements g = g(α) can
be parameterised in terms of a set of continuous real variables α = (α1, α2, . . . , αd), and form
a continuous space that is locally similar to the Euclidean space R

d.52 The integer d is the
called the dimension of the group. Groups that are (simply) connected as a manifold are called
(simply) connected Lie groups. The component of a Lie group connected to the identity element
can essentially be entirely reconstructed starting from the elements near the identity, usually
associated with α = 0 by a convenient choice of parameterisation. Near α = 0,

g(α) = g(0) + αa
∂g

∂αa

∣
∣
∣
∣
α=0

+ . . . = 1+ iαaLa + . . . , La ≡ −i ∂g
∂αa

∣
∣
∣
∣
α=0

. (4.70)

The matrices La, a = 1, . . . , d, are the generators of the group. One can prove the following
results:

• the matrices g0(α) = eiα·L obtained as the matrix exponential of iα · L, are elements of a
neighbourhood of 1;

• the most general g in the Lie group component connected to the identity is obtained as a
finite product of such g0s.

Moreover, the generators obey closed commutation relations,

[La, Lb] = iC c
ab Lc , (4.71)

with real coefficients C c
ab called structure constants. The real linear space spanned by {La},

together with the commutation relations Eq. (4.71), define the Lie algebra associated with the
Lie group. In general, different Lie groups can have the same Lie algebra.

The reason for this detour on Lie groups and Lie algebra is that representations of a Lie group
can be reconstructed from those of its Lie algebra, which are easier to construct. A representation
of a Lie algebra is a linear mapping d(X) = Xad(La) of its elements X = XaLa, X

a ∈ R into a
space of matrices (non necessarily invertible this time), that respects the commutation relations
Eq. (4.71), i.e.,

[d(La), d(Lb)] = iC c
ab d(Lc) = d([La, Lb]) . (4.72)

Irreducible representations are again defined as those that do not leave any subspace invariant.
Given a representation D(g) = D(g(α)) of the group, a representation of its algebra can always
be obtained by differentiation through d(La) = −i ∂

∂αa
D(g(α))|α=0. Conversely, a representation

of the group is obtained by exponentiating the representation of the algebra, D(g(α)) = eiα·d(L).
More precisely, this provides a representation of that Lie group with the given Lie algebra which

52To fix your ideas, think of a d-dimensional hypersurface living in R
d+1, e.g., a (hyper)sphere Sd ⊂ R

d+1

defined by the condition
∑d+1
a=1 x

2
a = 1 on the coordinates xa of its points.
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is also simply connected (such a group always exists). For irreducible representations, this in
turn provides representations for the other groups sharing the same algebra, which is generally
a projective representation.

To see this more directly, notice that any element of a connected Lie group can be obtained
by composing many “small” elements close to the identity, g =

∏N
n=1 gn, and making these closer

and closer to the identity one obtains the composition of infinitely many infinitesimal elements.
For example, any finite rotation can be obtained as a sequence of infinitesimal rotations. Then
for the representative matrices we have

D(g) =
N∏

n=1

D(gn) =
N∏

n=1

D(eiǫα
(n)
a La) , (4.73)

with small ǫ and arbitrary α
(n)
a . Let us now tentatively define

D(eiǫαaLa) ≡ eiǫαad(La) , (4.74)

with a yet to be determined linear mapping d(La), i.e., αad(La) = d(αaLa), obeying Eq. (4.71).
The d(La) will be the representatives of the group generators if D is indeed a representation

of the group. For the product of two representative matrices D(eiǫα
(1,2)
a La) we must have (here

A1,2 = α
(1,2)
a La)

D(eiǫA
(1)
)D(eiǫA

(2)
) = D(eiǫA

(1)
eiǫA

(2)
)

= D
(

1+ iǫ(A(1) +A(2))− 1
2ǫ

2(A(1) 2 +A(2) 2)− ǫ2A(1)A(2)
)

= D
(

1+ iǫ(A(1) +A(2))− 1
2ǫ

2(A(1) +A(2))2 − 1
2ǫ

2[A(1), A(2)]
)

= e
iǫd

(

A(1)+A(2)+
i
2 ǫ[A

(1),A(2)]
)

= e
iǫ
(

d(A(1))+d(A(2))+
i
2 ǫd([A

(1),A(2)])
)

= e
iǫ
(

d(A(1))+d(A(2))+
i
2 ǫ[d(A

(1)),d(A(2))])
)

(4.75)

where in the last three passages we used the definition Eq. (4.74), linearity of d, and the second
part of Eq. (4.71). On the other hand

D(eiǫA
(1)
)D(eiǫA

(2)
) = eiǫd(A

(1))eiǫd(A
(2))

=
(

1+ iǫd(A(1))− 1
2ǫ

2d(A(1))2
)(

1+ iǫd(A(2))− 1
2ǫ

2d(A(2))2
)

=
(

1+ iǫ
(

d(A(1)) + d(A(2))
)

− 1
2ǫ

2
(

d(A(1))2 + d(A(2))2
)

− ǫ2d(A(1))d(A(2))
)

=

(

1+ iǫ
(

d(A(1)) + d(A(2))
)

− 1
2ǫ

2
(

d(A(1)) + d(A(2))
)2

− 1
2ǫ

2[d(A(1)), d(A(2))]

)

= e
iǫ
(

d(A(1))+d(A(2))+
i
2 ǫ[d(A

(1)),d(A(2))]
)

,

(4.76)

so indeed D is a representation. In order to make sure that it is a regular, non-projective
representation, one should show that the same D(g) is obtained for a finite transformation g
independently of how one builds it out of infinitesimal transformations. This is the case for
simply connected groups, while for the non-simply connected ones one can get results differing
by a phase, and so D(g) obtained in this way is a projective representation.
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It is clear that an irreducible unitary representation of the group yields an irreducible rep-
resentation of the algebra in terms of Hermitean matrices, and vice versa. Using the notation
of Eq. (4.58), we can write the entries of a unitary matrix D(g)n′n as the matrix elements of
a unitary operator U(g), i.e., D(g)n′n = 〈n′|U(g)|n〉 with {|n〉} a basis of orthonormal vectors,
and for infinitesimal g we find

D(g)n′n = δn′n + iαad(La)n′n + . . . = 〈n′|U(g)|n〉 = δn′n + iαa〈n′|H(La)|n〉+ . . . (4.77)

with H(La) Hermitean operators with matrix elements d(La)n′n between basis vectors, so obey-
ing the same commutation relations as the group generators. If all the D(g) leave a subspace
invariant, so will the H(La) = −i∂D(g)/∂αa|α=0; conversely, if the H(La) leave a subspace in-
variant then so do the small transformations D(g0) = eiα·H(La), and so all the transformations.

4.2.3 SO(3) and SU(2)

We now return to our problem, namely finding the unitary (possibly projective) representations
of SO(3). Since these are always completely reducible, we just need to find the irreducible
(possibly projective) (possibly projective) unitary representations of SO(3).53 As a manifold,
SO(3) is connected but not simply connected, but shares the same Lie algebra with the simply
connected group SU(2), i.e., the group of unitary 2 × 2 complex matrices. The problem of
classifying the physically relevant representations of SO(3) then boils down to classifying the
irreducible unitary representations of SU(2), and so the irreducible Hermitean representations
of the corresponding algebra,54 which give us projective representations of SO(3). A result of
Bargmann [8] tells us that all these are all the projective representations of SO(3).

The fact that SO(3) and SU(2) have the same Lie algebra can be shown explicitly as follows.
For SO(3), one looks at the infinitesimal rotations around one of the three coordinate axis.
These are of the form R = 1+ i~θ · ~L, with ~θ · ~L =

∑3
a=1 θa · La and

L1 = −i





0 0 0
0 0 1
0 −1 0



 , L2 = −i





0 0 −1
0 0 0
1 0 0



 , L3 = −i





0 1 0
−1 0 0
0 0 0



 . (4.78)

An explicit calculations shows that

[La, Lb] = iεabcLc , (4.79)

with εabc the totally antisymmetric Levi-Civita symbol. On the other hand, the most general
SU(2) matrix is of the form

U = u01+ i~u · ~σ , u20 + ~u 2 = 1 , u0,1,2,3 ∈ R , (4.80)

where σ1,2,3 are the Pauli matrices,

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (4.81)

53One can actually show that for SO(3) all its finite-dimensional representations are equivalent to unitary
representations (i.e., they are given by unitary matrices if we choose properly the basis of the representation
space C

n).This is a consequence of SO(3) being a compact group, i.e., of being compact as a manifold: finite-
dimensional representations are always equivalent to a unitary representation.

54SU(2) is also a compact group, so classifying its irreducible unitary representations completely classifies all
the representations.
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Incidentally, this shows that SU(2) is exactly the same manifold as the four-dimensional sphere

S3. Since the Pauli matrices obey {σa, σb} = 2δab, by setting ~u = sin |α|
2 α̂ with α̂ a unit vector,

and ~α = |α|α̂, one finds

U(~α) = cos
|α|
2
1+ i sin

|α|
2
α̂ · ~σ = ei~α·

~σ
2 . (4.82)

The generators of SU(2) are then sa ≡ σa
2 , that obey

[sa, sb] =
1
4 [σa, σb] =

1
42iεabcσc = iεabcsc . (4.83)

4.2.4 Irreducible representations of SU(2)

Our task is now to find the irreducible Hermitean representations of the algebra Eq. (4.83). This
means that we look for a set of Hermitean matrices d(sa) that obey

[d(sa), d(sb)] = iεabcd(sc). (4.84)

The entries of these matrices are the matrix elements of Hermitean operators Sa = H(sa) [see
Eq. (4.77)], also obeying

[Sa, Sb] = iεabcSc, (4.85)

between suitable basis vectors |n〉 to be chosen below, d(sa)n′n = 〈n′|Sa|n〉. Notice the distinc-
tion: sa are the group generators; d(sa) are Hermitean matrices providing a representation of
the group algebra; Sa = H(sa) are Hermitean operators acting on a linear space having the
entries of d(sa) as their matrix elements between basis vectors, which we will then also call
representatives of the generators.

Our task is made easier by introducing the ladder operators s± = s1 ± is2, which obey the
commutation relations

[s3, s±] = ±s± , [s+, s−] = 2s3 , (4.86)

as one can verify explicitly.55 Instead of looking for the representative operators S1,2,3, we look
instead for representatives S±, S3 obeying

[S3, S±] = ±S± , [S+, S−] = 2S3 , (4.87)

from which the desired S1,2 are obtained via S1 = (S++S−)/2 and S2 = (S+−S−)/(2i). Notice
that S± obey the operator relation S†

± = S∓ [and similarly d(s±) obey the matrix relation
d(s±)† = d(s∓)].

Another useful object is
~s 2 = s21 + s22 + s23 , (4.88)

55A technical but important comment. The objects s± do not belong to the algebra of SU(2), since this only
involves linear combinations of generators with real coefficients. These objects belong instead to the complexi-

fication of the algebra, where one allows linear combinations of generators with complex coefficients. This can
be thought of as a real algebra with twice as many generators, i.e., {La, iLa}. If one obtains a representation of
the complexified algebra, then a representation of the (real) algebra is obtained by restricting it to the subspace
corresponding to {La} only.
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which commutes with all the generators:56

[~s 2, sa] =
∑

b

{sb, [sb, sa]} =
∑

b,c

iεbac{sb, sc} = 0 , (4.89)

since the Levi-Civita symbol is antisymmetric and the anticommutator is symmetric in b, c.
Such an object commuting with all the generators of a group is called a Casimir operator.
Correspondingly, we have

~S 2 = S2
1 + S2

2 + S2
3 , (4.90)

built out of the representatives that we are looking for, which is the representative of the Casimir
operator. Since by construction the Sa obey the same commutation relations as the sa, one has
that [~S 2, Sa] = 0. Using the commutation relations one finds

~s 2 = s−s+ + s23 + s3 = s+s− + s23 − s3 , (4.91)

and similarly for ~S 2,
~S 2 = S−S+ + S2

3 + S3 = S+S− + S2
3 − S3 . (4.92)

We now proceed with the construction. We are interested in finite-dimensional Hermitean
representations, i.e., in finding suitable Hermitean matrices acting on some finite-dimensional
complex space. Since Sa are Hermitean we can surely diagonalise one of them, say, S3 [we cannot
simultaneously diagonalise any other of the Sa due to the commutation relations Eq. (4.84)], and
use the corresponding eigenvectors as the basis of our representation space. Given an eigenvector
|m〉 of S3 of eigenvalue m, we have from Eq. (4.87)

S3S±|m〉 = ([S3, S±] + S±S3)|m〉 = (m± 1)S±|m〉 , (4.93)

i.e., S±|m〉 is another eigenvector of S3 (or zero). Similarly, any of the Sk±|m〉 is an eigenvector
of S3 (or zero). Since the dimension of our representation space is finite, there must be some
value of k for which Sk+|m〉 = 0 (we would have an infinite sequence of eigenvectors otherwise),

and so there is a vector |s, s〉 ≡ Sk−1
+ |m〉 obeying S3|s, s〉 = s|s, s〉 for some s, and moreover

S+|s, s〉 = 0. From Eq. (4.92) we also find ~S2|s, s〉 = s(s+ 1)|s, s〉. If we now apply S− to |s, s〉
we get an eigenvector of S3 of eigenvalues s−1, and of ~S2 with the same eigenvalue s(s+1), since
any linear combinations of generators and so in particular the ladder operators commute with it.
Iterating the procedure, we get eigenvectors of ever decreasing eigenvalue. This procedure must
again stop at some point. To see where, notice that if we normalise |s, s〉 to 1, 〈s, s|s, s〉 = 1,
then in general Sk−|s, s〉 ∝ |s, s−k〉, where |s,m〉 are normalised to 1 – but with a proportionality
factor diffent from 1. The scalar product here is the one naturally associated with C

n. Now,

〈s,m|S±S∓|s,m〉 = 〈s,m|~S 2 − S2
3 ± S3|s,m〉 = s(s+ 1)−m(m∓ 1) , (4.94)

and so the descent will stop when s(s + 1) −m(m− 1) = 0, since we are not generating a new
eigenvector. This is solved by m = s + 1, which cannot be;57 and by m = −s, meaning that

56Also ~s 2 does not belong to the Lie algebra, but rather to the universal enveloping algebra – whatever that
thing is. Similarly, the operator ~S 2 is not the mapping of ~s 2 via H , ~S 2 = [H(~s )] 2 6= H(~s 2), since H is defined
for real linear combinations Xasa by linear extension from H(sa).

57A vector |m〉 with S3|m〉 = m|ψ〉 necessarily obeys 〈m|~S 2|m〉 ≥ m(m+ 1), so if m = s+ 1 it cannot be also
an eigenvector of ~S 2 with eigenvalue s(s+ 1).
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S−|s,−s〉 = 0. There is then a total of 2s+1 basis eigenvectors, with corresponding eigenvalues
of S3 equal to s, s − 1, . . . ,−s + 1,−s, and since this number must be a non-negative integer
then s can be only a non-negative integer or half-integer. Equation (4.94) can be used also to
iteratively normalise the vectors obtained applying the ladder operator S−,

|s,m− 1〉 ≡ 1
√

s(s+ 1)−m(m− 1)
S−|s,m〉 . (4.95)

Here we have made a definite choice of phase, corresponding to the request that S− has positive-
definite matrix elements between basis vectors. This is known as the Condon-Shortley conven-
tion.

The representation we have just obtained is irreducible. In fact, if it were not then there
would be some invariant subspace, and since by repeatedly applying S+ to any of its vectors
we would obtain a new vector of the invariant subspace, then we must find some |ψ′〉 such that
S+|ψ′〉 = α|ψ′〉, i.e., an eigenvector of S+ (possibly with eigenvalue 0), so that the sequence
stops. But then

α〈s,−s|ψ′〉 = 〈s,−s|S+|ψ′〉 = 0 , (4.96)

so either α = 0 or 〈s,−s|ψ′〉 = 0. In the first case we find for any s < m that 0 = 〈s, s|Ss−m+ |ψ′〉 ∝
〈s,m|ψ′〉 so that |ψ′〉 must be orthogonal to all |s,m〉 except possibly |s, s〉, and so can only be
|s, s〉 itself – in which case the invariant subspace is the whole representation space; or the zero
vector. In the second case,

0 = 〈s,−s|~S 2|ψ′〉 = 〈s,−s|S−S+ + S2
3 + S3|ψ′〉 = 〈s,−s|S−S+|ψ′〉

= α〈s,−s|S−|ψ′〉 ∝ 〈s,−s+ 1|ψ′〉 .
(4.97)

Repeating the argument for 〈s,−s+1|, then 〈s,−s+2|, and so on, we find that |ψ′〉 is orthogonal
to all basis vectors, and so it must be the zero vector.

Summarising, we have found that the irreducible representations of SU(2) are labelled by an
integer or half-integer number s, that we will call the spin of the representation. The dimension
of the representation is 2s + 1, and the representatives S±,3 of s±,3 act on the basis elements
|s,m〉 to give

S3|s,m〉 = m|s,m〉 ,
S∓|s,m〉 =

√

s(s+ 1)−m(m∓ 1)|s,m∓ 1〉 .
(4.98)

Finally, the total spin operator ~s 2 is represented simply by a constant multiple of the identity,
~s 2 → ~S 2 = s(s+ 1)1,

~S 2|s,m〉 = s(s+ 1)|s,m〉 . (4.99)

The matrices providing the sought-after representations of SU(2) are then

d(s)(s3)m′m = 〈s,m′|S3|s,m〉 = mδm′m ,

d(s)(s∓)m′m = 〈s,m′|S3|s,m〉 = δm′,m∓1

√

s(s+ 1)−m(m∓ 1) ,

([d(s)(~s )] 2)m′m = s(s+ 1)δm′m .

(4.100)

The value of s, or equivalently the eigenvalue of ~S 2, entirely characterises the representation.
The representations of lowest dimension are listed in Table 8. Let us see what a few of these
representations look like explicitly (see Table 9).
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s 2s+ 1 s(s+ 1)

0 1 0
1
2 2 3

4
1 3 2
3
2 4 15

4

Table 8: Irreducible representations of SU(2) of lowest dimension.

The simplest representation is the 1-dimensional, s = 0 representation. This consists in
mapping every U ∈ SU(2) to D0(U) = 1, and is generated by d0(~s ) = 0. This is the trivial
representation; its single state is called a singlet.

The second simplest representation of SU(2) is the 2-dimensional representation provided by
the group elements themselves, since they are matrices, D 1

2
(U) = U , and has as representatives

of the generators the generators themselves, d 1
2
(~s ) = ~s = ~σ

2 . This is the defining of fundamental

representation. The vectors

(
1
0

)

= |12 ,+1
2 〉 ,

(
0
1

)

= |12 ,−1
2 〉 , (4.101)

are the eigenvectors of s3, with

s∓|12 ,±1
2 〉 = 1

2(σ1 ± iσ2)|12 ,±1
2〉 = |12 ,∓1

2〉 . (4.102)

The eigenvectors form a doublet. Another 2-dimensional representation is the complex-conjugate
representation, D 1̄

2

(U) = U∗, generated by d 1̄
2

(~s ) = −~σ∗
2 .58 Since ~σ∗ = −σ2~σ∗σ2, in the specific

case of SU(2) the complex-conjugate representation is equivalent to the fundamental; this is in
general not the case for other groups. Notice that since d 1̄

2

(s3) = −s3, the vectors in Eq. (4.101)

are still eigenvectors in the complex conjugate representation but with opposite eigenvalues,

d 1̄
2

(s3)

(
1
0

)

= −σ3
2

(
1
0

)

= −1

2

(
1
0

)

,

d 1̄
2

(s3)

(
0
1

)

= −σ3
2

(
0
1

)

=
1

2

(
0
1

)

.

(4.103)

On the other hand, d 1̄
2

(s±) = −1
2(σ

∗
1 ± iσ∗2) = −1

2(σ1 ∓ iσ2), and so

d 1̄
2

(s−)

(
0
1

)

= −1
2(σ1 + iσ2)

(
0
1

)

= −
(
1
0

)

. (4.104)

To satisfy the Condon-Shortley convention (S− has non-negative matrix elements), we need to
include a minus sign in the defintion of one of the two basis vectors, e.g.,

(
0
1

)

= −| 1̄2 ,+1
2〉 ,

(
1
0

)

= | 1̄2 ,−1
2〉 , (4.105)

where 1̄
2 denotes the fact that this is the complex-conjugate representation.

58This is a representation since D 1̄
2

(

U(~α)
)

D 1̄
2
(
(

U~β)
)

= U(~α)∗U(~β)∗ =
(

U(~α)U(~β)
)∗

= D 1̄
2
(
(

U(~α)U(~β)
)

.
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A Lie group can always be represented on its own Lie algebra. For matrix groups, this is
achieved by the following linear mappings of the vector space spanned by the generators ~s = ~σ

2
to itself,

D1(U) = AdUX ≡ UXU † , X = Xasa , Xa ∈ R . (4.106)

This is the adjoint representation. Since the algebra of SU(2) is a 3-dimensional space, the
adjoint is a 3-dimensional representation; in general it has the same dimension as the algebra of
the Lie group. For infinitesimal transformations U = 1+ iαasa,

D1(U)X = AdUX = X + iαa[sa,X] = X + iαaadsaX = X + iαad1(sa) . (4.107)

For any fixed element A of the algebra, adA is a linear operator acting on the algebra itself,

adAX ≡ [A,X] . (4.108)

One has in components

adsaX = (adsaX)csc = sc(adsa)cbX
b = Xb[sa, sb] = Xbiεabcsc = sc(−iεacb)Xb , (4.109)

i.e., (adsa)cb = −iεacb ≡ (T
(A)
a )cb. Using the Jacobi identity,

[A, [B,C]] + [C, [A,B]] + [B, [C,A] = 0 , (4.110)

valid for any three n× n matrices A,B,C, one shows that for every X,

[adsa, adsb ]X = [sa, [sb,X]] − [sb, [sa,X]] = [[sa, sb],X] + [sb, [sa,X]]− [sb, [sa,X]]

= iεabc[sc,X] = iεabcadscX ,
(4.111)

and so
[adsa , adsb ] = iεabcadsc , (4.112)

or in terms of its matrix components

[T (A)
a , T

(A)
b ] = iεabcT

(A)
c . (4.113)

From the definition of the T
(A)
a

T
(A)
1 = −i





0 0 0
0 0 1
0 −1 0



 , T
(A)
2 = −i





0 0 −1
0 0 0
1 0 0



 , T
(A)
3 = −i





0 1 0
−1 0 0
0 0 0



 , (4.114)

which are precisely the generators of SO(3), Eq. (4.78).59 The eigenvectors of s3 in this repre-

sentation, i.e., the eigenvectors of T
(A)
3 , are read off from the commutation relations Eq. (4.86):

since [s3, s±] = ±s±,

T
(A)
3 s± = ads3s± = [s3, s±] = ±s± , T

(A)
3 s3 = ads3s3 = [s3, s3] = 0 , (4.115)

so the eigenvectors are the algebra elements60 s+, s3, s−, with eigenvalues 1, 0,−1, respectively.
These form a triplet.

59These differ from the ones obtained with the construction described above, but are unitarily equivalent to
them, i.e., they are related by a unitary change of basis.

60The elements s± are actually part of the complexification of the group algebra, where linear combinations
of the generators with complex coefficients are allowed. Since here we are treating the algebra as a vector space
where the representation acts as a set of complex matrices, there is no problem in doing this.
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s dimension generators rep. group rep. representation

0 1 d0(~s ) = 0 D0(U) = 1 trivial

1
2 2 d 1

2
(~s ) = ~σ

2 D 1
2
(U) = U fundamental/defining

1
2 2 d 1̄

2

(~s ) = −~σ∗
2 D 1̄

2

(U) = U∗ complex conjugate

(equiv. to fundamental)

1 3 d1(~s ) = ad~s D1(U) = AdU adjoint

Table 9: Explicit form of the lowest-dimensional irreducible representations of SU(2).

To conclude this subsection, we go back to our original problem, which was to understand the
finite-dimensional Hilbert space of states of a massive particle at rest. We have shown that this
space supports a unitary representation of SU(2). This in general could be reducible, but there
would be no reason for all its irreducible components to carry exactly the same rotation-invariant
quantum numbers, like, e.g., the mass. We then expect one value of the mass to correspond
to a single irreducible representation. We are then led to characterise particles in terms of two
quantities: their mass m, and their spin s, characterising the irreducible representation of the
rotation group under which the states in the rest frame transform – i.e., the behaviour of the
particle under rotations.

4.2.5 Composition of representations

If we consider the states of two electron, the corresponding wave functions ψ1ψ2 have now
four components, coming from the direct product of the wave functions associated with each
electron. The representation under which such states transform results from the composition of
the individual s = 1

2 representations:

(ψ1)i(ψ2)j → [D(U)ψ1]i[D(U)ψ2]j = D(U)ii′D(U)jj′(ψ1)i′(ψ2)j′ . (4.116)

The matrices Dij;i′j′(U) = D(U)ii′D(U)jj′ combining the components (Ψ12)i′j′ = (ψ1)i′(ψ2)j′ of
the total wave function clearly still provide a representation of SU(2),

Dij;i′j′(U2U1) = D(U2U1)ii′D(U2U1)jj′ = D(U2)ii′′D(U1)i′′i′D(U2)jj′′D(U1)j′′j′

= D(U2)ii′′D(U2)jj′′D(U1)i′′i′D(U1)j′′j′ = Dij;i′′j′′(U2)Di′′j′′;i′j′(U1) ,
(4.117)

but not necessarily an irreducible one. However, since D is a unitary representation because
D(U) are unitary, one can decompose it into the direct sum of irreducible representations.61

Let us denote the basis vectors of the 2× 2 = 4 dimensional space of wave functions as

|12 ,m1〉 ⊗ |12 ,m2〉 , m1,2 = ±1
2 . (4.118)

Denote ~S (1) = ~S⊗1 and ~S (2) = 1⊗ ~S, with ~S the representatives of the group generators in the
s = 1

2 representation, corresponding to D(U) in Eq. (4.116). The action of ~S (1,2) on the factor

|12 ,m2,1〉 of the basis vectors is trivial. The combination ~S tot = ~S (1) + ~S (2) provides another

61More generally, since any finite-dimensional representation of SU(2) is equivalent to a unitary representation
which is completely reducible, any finite-dimensional representation of SU(2) is always completely reducible.
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representation on the space spanned by |12 ,m1,2〉, corresponding precisely to the representatives
of the group generators obtained from D(U). Clearly, S tot

3 is diagonal in the basis Eq. (4.118),
with eigenvalues equal to the sum m = m1 +m2 of the eigenvalues. The maximal value of m is

m = 1
2 + 1

2 = 1, obtained from the vector annihilated by both S
(1)
+ and S

(2)
+ , and so by S tot

+ .

This vector must then be an eigenvector of (~S tot)2, and the corresponding eigenvalue s(s + 1)
is found to be 2, i.e., the eigenvalue of

|~S tot| ≡
−1 +

√

1 + (~S tot)2

2
(4.119)

is s = 1. If we now apply the construction of the previous subsection, we will find an irreducible
representation with s = 1:

|~S tot| : S tot
3 :

|12 , 12 〉 ⊗ |12 , 12〉 s = 1 m = 1 ,

apply S tot
− ↓

|12 ,−1
2〉 ⊗ |12 , 12〉+ |12 , 12〉 ⊗ |12 ,−1

2 〉 s = 1 m = 0 ,

apply S tot
− ↓

| − 1
2 ,−1

2 〉 ⊗ |12 , 12〉+ | − 1
2 ,

1
2 〉 ⊗ |12 ,−1

2〉 s = 1 m = −1 .

(4.120)

Normalising each vector to 1 we find

|12 , 12 〉 ⊗ |12 , 12〉 = |1, 1〉 ,
1√
2

(
|12 ,−1

2〉 ⊗ |12 , 12 〉+ |12 , 12〉 ⊗ |12 ,−1
2 〉
)
= |1, 0〉 ,

|12 ,−1
2〉 ⊗ |12 ,−1

2〉 = |1,−1〉 .
(4.121)

The three-dimensional subspace spanned by these three vectors is left invariant by the ~S tot, but
contains no further invariant subspace. There is one more independent vector: if we look at
Eq. (4.120), we readily find that there is another combination of |12 ,−1

2〉 ⊗ |12 , 12〉 and |12 , 12〉 ⊗
|12 ,−1

2〉 orthogonal to |1, 0〉, namely

1√
2

(
|12 ,−1

2 〉 ⊗ |12 , 12〉 − |12 , 12 〉 ⊗ |12 ,−1
2〉
)
= |0, 0〉 , (4.122)

which gives an irreducible representation with s = 0. We have then showed that the direct
product of two s = 1

2 representations equals the direct sum of the s = 1 and the s = 0
representations, i.e., 1

2 ⊗ 1
2 = 0 ⊕ 1. This can be expressed in term of the dimensions of the

representations as 2⊗ 2 = 1⊕ 3.
The same game can be played composing more general representations. For example,

composing s = 1
2 and s = 1 we find, starting from the largest eigenvalue of S tot

3 , which is
m = 1

2 + 1 = 3
2 , and applying S tot

− repeatedly (normalising the vectors along the way)

|12 , 12〉 ⊗ |1, 1〉 = |32 , 32〉 ,
1√
3

(

|12 ,−1
2〉 ⊗ |1, 1〉 +

√
2|12 , 12〉 ⊗ |1, 0〉

)

= |32 , 12〉 ,
1√
3

(√
2|12 ,−1

2 〉 ⊗ |1, 0〉 + |12 , 12〉 ⊗ |1,−1〉
)

= |32 ,−1
2 〉 ,

|12 ,−1
2〉 ⊗ |1,−1〉 = |32 ,−3

2 〉 ,

(4.123)
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since |12 , 12〉⊗ |1, 1〉 is annihilated by S tot
+ and so must be an eigenvector of |~S tot| with eigenvalue

equal to s = m = 3
2 . There must be a second vector orthogonal to |32 , 12〉 built out of the same

basis vectors and so with eigenvalue of S tot
3 equal to 1

2 , and moreover annihilated by S tot
+ (there

is only one vector with eigenvalue of S tot
3 equal to 3

2). This must then be an eigenvector of |~S tot|
with eigenvalue s = 1

2 . Identifying this vector and using again S tot
− we find

1√
3

(√
2|12 ,−1

2〉 ⊗ |1, 1〉 − |12 , 12〉 ⊗ |1, 0〉
)

= |12 , 12〉 ,
1√
3

(

|12 ,−1
2〉 ⊗ |1, 0〉 −

√
2|12 , 12〉 ⊗ |1,−1〉

)

= |12 ,−1
2 〉 .

(4.124)

There are no more independent vectors, and we have shown that 1
2 ⊗ 1 = 1

2 ⊕ 3
2 , or in term of

the dimensions 2 ⊗ 3 = 2 ⊕ 4. In general, one finds for the composition of representations s1
and s2

s1 ⊗ s2 = |s1 − s2| ⊕ |s1 − s2|+ 1⊕ s1 + s2 − 1⊕ s1 + s2 , (4.125)

each appearing with multiplicity 1.

5 Strong interactions

In this Section we discuss the consequences of the approximate flavour symmetries of QCD for
strong interactions. These symmetries were known before the discovery of QCD, to which they
led.

5.1 Isospin symmetry of the strong interactions

In 1932 Chadwick discovered the neutron, thus solving the puzzle of the mismatch between the
mass and charge of the nuclei. In fact, it turned out that the neutron and the proton have very
similar masses: mn = 939.57 MeV and mp = 938.28 MeV, so that (mn − mp)/mp ≃ 0.0014.
While the nuclear charge is e times the number of protons in the nucleus, the nuclear mass is
very accurately mp times the number of protons and neutrons.

The smallness of the mass difference between proton and neutron led Heisenberg, in the
same year 1932, to propose that these particles are actually two different states of the same
particle, the nucleon, and that they are affected in the same way by the strong interactions.
More precisely, he assumed that strong interactions were exactly invariant under the exchange
of proton and neutron; the small mass difference he attributed to electromagnetic effects. We
know now that in fact this symmetry would be approximate even if electromagnetic interactions
were switched off, and that an important role in establishing the mass difference between proton
and neutron is played by the mass difference between the up and down quarks: in fact, if it were
only for electromagnetism we would have mp > mn – with catastrophic consequences.

The symmetry that Heisenberg assumed for strong interactions was in fact more than just
that under exchange of proton and neutron. If p and n are two states of the nucleon (N), the
possible state vectors of the latter are |~p, sz; p〉, |~p, sz;n〉, and due to the superposition principle
also any linear combination of these two. At fixed momentum and spin, the state space of the
nucleon is two-dimensional, and so we can assign to p and n the two-component basis vectors

p =

(
1
0

)

, n =

(
0
1

)

, (5.1)
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and represent the most general (normalised) nucleon state as

N(α, β) = αp+ βn =

(
α
β

)

, α, β ∈ C , |α|2 + |β|2 = 1 . (5.2)

This two-dimensional space corresponds to an internal quantum number, i.e., unrelated to space-
time. The assumption is now that any of these states looks the same to strong interactions, or,
in mathematical terms, that strong interactions are invariant under a general unitary transfor-
mation of the nucleon state. Except for irrelevant overall phase redefinitions, this means that
strong interactions are assumed to have a symmetry under SU(2) transformations of the nu-
cleon state. This is the isospin symmetry. Like any other symmetry that applies to an internal
quantum number, isospin symmetry is called an internal symmetry.

Isospin and SU(2) Although not exact,62 isospin symmetry turns out to be a very good
approximate symmetry of strong interactions (we will soon see why). While the origin of this
symmetry was unknown at the time, its consequences were clearly observed in experiments.
An immediate application was to the study of atomic nuclei with the same total number of
protons and neutrons, i.e., isotopic (or more precisely isobaric) nuclei, which are related by
SU(2) transformations. As more and more hadrons were discovered in the following years,
isospin symmetry was extended further by postulating that strong interactions possessed a more
general internal SU(2) symmetry, of which the symmetry between protons and neutrons was just
a manifestation.

Let us now assume that in an ideal world without electromagnetic and weak interactions,
and where protons and neutrons have exactly the same mass, the strong interactions possess
an exact SU(2) symmetry. Since any superposition of proton and neutron would look the same
to the strong interactions, calling one of them the proton and the orthogonal combination the
neutron is a matter of the observer’s conventions, and any choice would be equivalent to any
other. This means that an SU(2) transformation is just a change of conventions that does not
change the physics - i.e., it is a symmetry.

Since SU(2) is a continuous group, the SU(2) symmetry transformations mentioned above
are implemented by unitary operators U on the Hilbert space H of strongly interacting matter.
While entirely unrelated to spin in physical origin, isospin displays exactly the same mathe-
matical structure, which we can take wholesale from the previous section. In particular, the
operators U provide a representation of SU(2) on H, that will break up into the irreducible
representations discussed there. The effects of strong interactions being unchanged by SU(2)
transformations means that they leave the strong Hamiltonian Hstrong invariant, or equivalently
that they commute with it. Although the group is the same, we typically use a different notation
for spin and isospin. The SU(2) matrices corresponding to isospin transformations are written

as U(~α) = ei~α·
~I = ei~α·

~σ
2 , with σa the familiar Pauli matrices. In the literature one often finds

them denoted as τa in the context of isospin transformations. The generators are denoted as Ia,
a = 1, 2, 3 and obey the familiar commutation relations

[Ia, Ib] = iεabcIc . (5.3)

62In fact, if it were exact, we would not be able to distinguish protons and neutrons at all: it is precisely the
breaking, although small, of isospin symmetry that allows us to separate them.
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The corresponding unitary operators on H read U(~α) = ei~α·
~I , where ~I are now Hermitian opera-

tors and obey the commutation relations Eq. (5.3).63 Invariance ofHstrong under isospin rotations

amounts to asking [U(~α),Hstrong] = 0 for arbitrary ~α, which is equivalent to [~I,Hstrong] = 0.

In the Heisenberg picture, this corresponds to the operators ~I(t) = eiHt~I(0)e−iHt being time-
independent, d~I(t)/dt = i[Hstrong, ~I(t)] = 0, i.e., conservation of isospin in strong interactions.
The internal nature of isospin symmetry means that isospin transformations commute also with
translations and rotations, and so ~I commute with the energy, momentum and angular momen-
tum operators, so that ~I 2 and one of its components, say, I3, can be diagonalised together with
E2 − ~p 2 = m2, ~p, ~J 2, and J3.

There are two important consequences of isospin symmetry, that can be straighforwardly
tested in experiments:

• the spectrum of the theory is organised in degenerate isospin multiplets, which form the
bases of irreducible representations of SU(2);

• isospin is conserved in dynamical hadronic processes, i.e., in decay and scattering processes,
leading to relations among decay widths and cross sections.

Mass multiplets and group representations The most evident consequence of isospin
symmetry is the existence of multiplets of hadrons with nearly-degenerate masses. Degenerate
multiplets are in fact expected in the presence of an exact symmetry. As we recalled above,
the SU(2) representation on the whole of H breaks up into irreducible representations that
affect only subspaces of H that are left invariant by isospin transformations. The irreducible
representations are entirely characterised by the eigenvalue I(I + 1) of ~I 2, which is constant
in each invariant subspace, and determines the dimension 2I + 1 of the representation. Since
isospin commutes with energy, momentum and angular momentum, which in the rest frame of
a particle is just its spin, one has in particular

[~I, p2] = 0 , [~I,~s 2] = 0 , (5.4)

and so all these states have the same mass m and spin s. There are then 2I + 1 set of linearly
independent particle states |m, ~p; s, sz; I, I3〉 with the same mass and spin, as well as ~p and
s3, forming degenerate particle multiplets. As soon as isospin is broken, as it actually is in
nature, these states are expected to display slightly different masses as well as further quantum
numbers, which makes them different particles in all respects. One then expects to observe
nearly-degenerate multiplets of hadrons.64 Let us discuss a few examples (see Table 10).

We started from the proton and the neutron, which form a doublet (p, n) of nearly degenerate
particles. In the language of SU(2) representations, they are the basis of a two-dimensional, I = 1

2
representation. We choose protons and neutrons to be in the fundamental representation, and
their corresponding antiparticles p̄ and n̄ to be in the antifundamental representation; to keep
the charge-conjugation transformation simple we assign the same two-dimensional representative

63With a little abuse of notation we use the same symbol for the SU(2) matrices and generators, and their
representatives on H.

64The possible degeneracies are 2I + 1 with I integer or half-integer, so any number is possible in principle.
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I I3 Q B S Y mass

p 1
2

1
2 1 1 0 1 938.28 MeV

n 1
2 −1

2 0 1 0 1 939.57 MeV

π+ 1 1 1 0 0 0 139.57 MeV

π0 1 0 0 0 0 0 134.98 MeV

π− 1 -1 -1 0 0 0 139.57 MeV

Σ+ 1 1 1 1 -1 0 1.189 GeV

Σ0 1 0 0 1 -1 0 1.193 GeV

Σ− 1 -1 -1 1 -1 0 1.19 GeV

K+ 1
2

1
2 1 0 1 1 493.7 MeV

K0 1
2 −1

2 0 0 1 1 497.6 MeV

K̄0 1
2

1
2 0 0 -1 -1 497.6 MeV

K− 1
2 −1

2 -1 0 -1 -1 493.7 MeV

∆++ 3
2

3
2 2 1 0 1 1.232 GeV

∆+ 3
2

1
2 1 1 0 1 1.232 GeV

∆0 3
2 −1

2 0 1 0 1 1.232 GeV

∆− 3
2 −3

2 -1 1 0 1 1.232 GeV

Table 10: Isospin multiplets of hadrons.

in isospin space to particle and antiparticle.65 We then have for nucleon and antinucleon states

p =

(
1
0

)

= |N ; 12 ,
1
2〉 , n =

(
0
1

)

= |N ; 12 ,−1
2〉 ,

p̄ =

(
1
0

)

= |N̄ ; 1̄2 ,−1
2〉 , n̄ =

(
0
1

)

= −|N̄ ; 1̄2 ,
1
2〉 .

(5.5)

This can also be expressed as I3(p, n) = (+1
2 ,−1

2 ) and I3(n̄, p̄) = (+1
2 ,−1

2).
Consider next the three pions, (π+, π0, π−). These particles have very similar masses, with

mπ± = 139.57MeV and mπ0 = 134.98MeV, and are naturally classified as an isospin triplet,
I = 1. If we decide to assign increasing I3 to particles with increasing electric charge, as we
did for the nucleon, then I3(π

+, π0, π−) = (+1, 0,−1). Similarly, one finds three Σ baryons,
(Σ+,Σ0,Σ−, with mΣ+ = 1.189GeV, mΣ0 = 1.193GeV and mΣ− = 1.19GeV (Σ± are not each
other antiparticle!), naturally classified into an isotriplet, with I3(Σ

+,Σ0,Σ−) = (+1, 0,−1).
There are instead four kaons, the charged K±, and the neutral K0 and its antiparticle K̄0,

withmK± = 493.7MeV andmK0,K̄0 = 497.6MeV. One may think that they form a quartet, but

65Locality requirements in quantum field theory force us to impose that particles and antiparticles transform
in relatively complex-conjugate representations. This is consistent with the fact that particles and antiparticles
have opposite internal quantum numbers: in particular, I3 must anticommute with charge conjugation. More
explicitly, to a set of particles and antiparticles with creation operators b†i and d

†
i correspond the fields ψi ∼ bi+d

†
i

and their Hermitean conjugates. Under an isospin transformation b†i → Dijb
†
i and so bi → D∗ijbi, and for the

field to transform in a simple way we have to require d†i → D∗ijd
†
i , so that ψi → Dijψi. Collecting all the ψi

into a single multi-component field Ψ = (ψ1, . . . , ψn) we have Ψ =
∑

n ψiei with (ei)j = δij , and so the same
representative in isospin space is associated with a particle and its antiparticle.
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these states are further distinguished by another quantum number, their strangeness. Before
the discovery of quarks, this was just another good quantum number one could consistently
assign to particles, conserved in strong interaction processes, and compatible (commuting) with
isospin.66 For the kaons one has SK+,K0 = 1 and SK−,K̄0 = −1, and so they are classified

as two isodoublets, I3(K
+,K0) = (+1

2 ,−1
2 ) and I3(K̄

0,K−) = (+1
2 ,−1

2). This looks like a
case of accidental degeneracy, i.e., more degeneracy than one would expect based on symmetry
alone. We will see that this is not so accidental after all. Notice that strangeness conservation
is associated with a U(1)S symmetry, namely symmetry under the phase transformations eiφS .
More generally, for any conserved charge Q there is a U(1)Q (possibly internal) symmetry under
eiφQ, that leaves the Hamiltonian unchanged. While the representation of the SU(2) group of
isospin rotations SU(2)I corresponding to kaons is reducible, the representation of SU(2)I×U(1)S
is irreducible.

We can continue with the four ∆ resonances, (∆++,∆+,∆0,∆−), all with masses m∆ =
1.232GeV. These are classified into a quartet, I = 3

2 , with I3 assignment I3(∆
++,∆+,∆0,∆−) =

(+3
2 ,+

1
2 ,−1

2 ,−3
2 ). In this case there is in fact no other hadronic quantum number to distinguish

the four states (electric charge is unknown to the strong interactions).
Finally, isosinglets are also found in the hadron spectrum, e.g., the η meson and the Λ

baryon, with no partners with similar mass and the same strangeness.

Gell-Mann–Nishijima formula Two empirical facts were observed concerning multiplets.
The first is that no two states with the same electric charge belonged to the same multiplet.
This allows us to assign an increasing value of I3 to particles with increasing charge, as already
mentioned above. Moreover, no gaps in electric charge where observed in multiplets, with
particles showing charges from a minimal to a maximal value increasing in steps of 1. This
means that I3 and the electric charge Q are in a linear relation. As a matter of fact, the
following empirical relation was found between Q, I3 (assigned as explained above), baryon
number B, and strangeness S, known as the Gell-Mann–Nishijima formula:

Q = I3 +
1

2
(B + S) = I3 +

1

2
Y . (5.6)

For future utility, we have introduced the hypercharge Y = B + S. Since both B and S are
conserved, so is Y . The U(1) symmetries associated with baryon number and strangeness
conservation can then be traded for the U(1) symmetries associated with baryon number and
hypercharge conservation, U(1)S × U(1)B = U(1)Y × U(1)B .

Origin of isospin symmetry In hindsight, knowing of the existence of quarks and of QCD,
we can trace isospin symmetry back to the fact that strong interactions are blind to the flavour
of quarks, except for the difference in their masses. If quark masses were identical, then we
could “rotate” flavours into each other without any physical effect. The two lightest quarks,

66“Strangeness” was literally associated with the strange behaviour of certain particles. Strange particles were
produced on short time scales, typical of the strong interactions, but decayed on long time scales, typical of
the weak interactions. It was then natural to assume that strong and weak interactions were responsible for
their production and decay, respectively. In the production process only certain pairs of strange particles always
appeared, signaling the existence of a new quantum number conserved by the strong interactions: it was indeed
possible to consistently assign an integer number called strangeness to each particle, in such a way that it was
conserved in strong processes. On the other hand, strangeness was not conserved in weak processes.
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the up and the down, happen to have masses whose difference is much smaller than the typical
hadronic scale Λ ∼ 100 MeV ÷ 1 GeV, and so they effectively degenerate in mass to a good
extent. QCD has then an approximate but very accurate symmetry under SU(2) rotations in
the space of the up and down quarks, which (leaving aside electromagnetic and weak effects) is
broken only by the small difference between their masses. In modern terms, we treat u and d
and their antiparticles ū and d̄ as two isodoublets, assigning them representative vectors as we
did for the proton and neutron in Eq. (5.5), i.e.,

u =

(
1
0

)

= |q; 12 , 12〉 , d =

(
0
1

)

= |q; 12 ,−1
2 〉 ,

ū =

(
1
0

)

= |q̄; 1̄2 ,−1
2 〉 , d̄ =

(
0
1

)

= −|q̄; 1̄2 , 12 〉 ,
(5.7)

where q and q̄ denote the (fictitious) light-quark and light-antiquark particles, of which u, d
and ū, d̄ are just two of all the possible states. We then notice that the Hamiltonian of strong
interactions is invariant under unitary rotations in (u, d) space, up to a small symmetry break-
ing term proportional to (md − mu)/Λ. This explains the origin and the goodness of isospin
symmetry. The strange quark s can of course be included in the picture, although on a different
footing than u and d since it has a considerably different mass: one simply leaves it alone, as
it is trivially unaffected by isospin transformations. In mathematical terms this means that s
is an isosinglet, s = |s; 0, 0〉. The same is done with the heavier quarks as well; in general, all
elementary particles different from u and d are assigned I = 0.

Isospin multiplets from quarks Using the rules for the composition of SU(2) representa-
tions, and recalling that mesons are quark-antiquark states, one finds that mesons should come
in singlets and doublets, for states made only of u and d; and singlets and doublets for states
involving a strange quark or antiquark. Baryons instead are quark-quark-quark states, and so
the non-strange ones should come in doublets and quartets; the singly-strange in singlets and
triplets; the doubly-strange in doublets; and the triply-strange in singlets. This follows from the
rules

qq̄ :
1

2
⊗ 1

2
= 0⊕ 1 ,

sq̄ : 0⊗ 1

2
=

1

2
,

qs̄ :
1

2
⊗ 0 =

1

2
,

(5.8)

that apply to mesons, and

qqq :
1

2
⊗ 1

2
⊗ 1

2
= (0⊕ 1)⊗ 1

2
=

1

2
⊕ 1

2
⊕ 3

2

sqq : 0⊗ 1

2
⊗ 1

2
= 0⊗ (0⊕ 1) = 0⊕ 1 ,

ssq : 0⊗ 0⊗ 1

2
=

1

2
,

sss : 0⊗ 0⊗ 0 = 0 ,

(5.9)

that apply to baryons.
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To see in detail how this works, consider the mesons containing only u and d. From Eq. (5.8)
we see that we get an isosinglet and an isotriplet. An isosinglet can also be obtained as ss̄, and
the two states may mix; the resulting particles are the mesons η and η′. The isotriplet, on the
other hand, corresponds to the pions:

−ud̄ = |q; 12 1
2〉 ⊗ |q̄; 12 1

2〉 = |1 1〉 = π+ ,

1√
2
(uū− dd̄) = 1√

2

(
|q; 12 1

2 〉 ⊗ |q̄; 12 −1
2〉+ |q; 12 −1

2〉 ⊗ |q̄; 12 1
2〉
)

= |1 0〉 = π0 ,

dū = |q; 12 −1
2〉 ⊗ |q̄; 12 −1

2〉 = |1 −1〉 = π− .

(5.10)

Kaons are obtained even more simply, as it is clear from Eq. (5.8). One finds straightforwardly

us̄ = |q; 12 1
2〉 ⊗ |s̄〉 = |12 1

2〉 = K+ ,

ds̄ = |q; 12 −1
2〉 ⊗ |s̄〉 = |12 −1

2〉 = K0 ,

sū = |s〉 ⊗ |q̄; 12 −1
2〉 = |12 −1

2〉 = K− ,

−sd̄ = |s〉 ⊗ |q̄; 12 1
2 〉 = |12 1

2〉 = K̄0 .

(5.11)

with the two multiplets distinguished by strangeness.
Quarks also allow us to understand how the Gell-Mann–Nishijima formula comes along: if

the charges Q, B, and S of the three quarks u, d, s, satisfy it, then any of the plethora of
hadrons built out of them and their antiquarks will automatically satisfy it. Assigning charges
that fulfill the Gell-Mann–Nishijima formula is indeed possible: this will be discussed in detail
later [see Section 5.2.5, in particular Eq. (5.77)].

To see that such an assignment is possible, consider the proton and the neutron. The
relevant composition is in the first line of Eq. (5.9), and taking in particular the 1

2 appearing as
1
2 ⊗ 1

2 ⊗ 1
2 → 0⊗ 1

2 , we have

p ∼ ud− du√
2

u ∼ uud , n ∼ ud− du√
2

d ∼ udd . (5.12)

Proton and neutron have baryon number Bp = Bn = 1, strangeness Sp = Sn = 0, and electric
charge Qp = 1 and Qn = 0. Given the quark content of Eq. (5.12), one finds the equations

1 = 2qu + qd , 1 = 2bu + bd , 0 = 2su + sd ,

0 = qu + 2qd 1 = bu + 2bd , 0 = 2su + sd ,
(5.13)

that are solved by

qu =
2

3
, bu =

1

3
, su = 0 ,

qd = −1

3
, bd =

1

3
, sd = 0 .

(5.14)

To fix the charges of the strange quark, we use the K̄0, with vanishing electric charge and baryon
number and strangeness −1. Using Eq. (5.11) we find

qs = qd = −1

3
, bs = bd =

1

3
, ss = −1 . (5.15)
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Intermezzo: two-dimensional harmonic oscillator One might wonder how come that starting
from asking for invariance under exchange of proton and neutron we ended up with the bigger SU(2)
symmetry. To see that this is in fact a natural implementation of the initial requirement, we discuss
now a simple toy model, namely the two-dimensional harmonic oscillator. In terms of creation and
annihilation operators, and up to an irrelevant additive constant, the Hamiltonian of this system reads

Hho = ~ω(a†1a1 + a†2a2) . (5.16)

The creation and annihilation operators satisfy the commutation relations

[ai, aj ] = [a†i , a
†
j ] = 0 , [ai, a

†
j ] = δij . (5.17)

The creation and annihilation operators can be interpreted as follows: a†1 and a1 create and destroy a

static “bosonic proton”, while a†2 and a2 create and destroy a static “bosonic neutron”. No interaction
takes place between these particles. The general eigenstate of Hho reads

|n1, n2〉 =
1√
n1!

1√
n2!

(a†1)
n1(a†2)

n2 |0〉 , (5.18)

with |0〉 the ground state a1,2|0〉 = 0. The total energy of the system in a given eigenstate is then
obtained summing the number of protons, n1, to the number of neutrons, n2, times their (equal) mass
~ω: En1,n2 = En1+n2 = ~ω(n1 + n2). It is straightforward to establish that the degeneracy of the

energy level En is n + 1. If we apply the operators I− = a†2a1 and I+ = a†1a2 to a state |n1, n2〉 we
obtain

a†2a1|n1, n2〉 ∝ |n1 − 1, n2 + 1〉 , a†1a2|n1, n2〉 ∝ |n1 + 1, n2 − 1〉 , (5.19)

i.e., these operators respectively replace a proton with a neutron and a neutron with a proton. It

is evident that I+ = I†−, and one can verify explicitly that [I±, Hho] = 0. Moreover, defining I3 =
1
2 (a

†
1a1 − a†2a2), one finds that also [I3, Hho] = 0. This is an obvious consequence of the fact that

2I3 = [I+, I−], as can be directly verified. Notice now that the Hamiltonian is manifestly invariant

under unitary rotations of the creation and annihilation operators, i.e., ai → Uijaj with U ∈SU(2). It

can be verified explicitly that I3, I1 = (I++I−)/2 and I2 = (I+−I−)/(2i) are indeed the generators of

these transformations, and satisfy [Ii, Ij ] = iεijkIk. The proton-neutron exchange operators are then

naturally part of an SU(2) algebra. One can go on and show that I2 = I21 + I22 + I23 = Hho

2~ω (
Hho

2~ω + 1).

Eigenstates of energy En = ~ωn form therefore a multiplet of isospin I = n
2 , which leads to degeneracy

2I + 1 = n + 1. Incidentally, this explains the accidental degeneracy of the eigenstates of the two-

dimensional harmonic oscillator.

Dynamical consequences of isospin invariance Besides static properties, isospin invari-
ance has important consequences for dynamical processes as well. Consider for example the η
meson, mη = 547 MeV. This is a neutral pseudoscalar meson (Jη = 0, ηη = −1) like the π0,
but with I = 0. As such, it can decay electromagnetically in two photons. Its mass is sufficient
also for strong decays into two and three pions, but the two-pion decay process is forbidden
by parity: J = 0 in the final state requires ℓ = 0, so that it would have positive rather than
negative parity. The three-pion process is instead forbidden by isospin and charge-conjugation
symmetry. In fact, electric charge conservation restricts the possible three-pion final states to
π0π0π0 and π+π−π0. One can show that under the isospin rotation R2 = eiπI2 the following
relation holds,

R2|I I3〉 = (−1)I−I3 |I −I3〉 . (5.20)
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Moreover, both the eta and neutral pion have charge-conjugation parity ξη = ξπ0 = 1. Defining
the G-parity transformation as G ≡ CR2, one then finds

G|η〉 = C|η〉 = |η〉 ,
G|π+π−π0〉 = C(−1)1−1(−1)1+1(−1)1−0|π−π+π0〉 = −|π+π−π0〉 ,
G|π0π0π0〉 = C(−1)3|π0π0π0〉 = −|π0π0π0〉 ,

(5.21)

so that the G-parity of the eta and of the three-pion state differ.
Isospin conservation implies also quantitative relations between the probabilities of different

scattering processes taking place. As we will see later, the probability that two particles scatter
and produce some prescribed final state is given by the absolute value square |Mi→f | of the
scattering amplitude, which in turn is the matrix element of the scattering operator S (or S-
matrix) between the free-particle states |φi〉 and |φf 〉 corresponding to the initial and final states
of the process, Mi→f = 〈φf |S|φi〉. All that we need to know at this stage is that if both the free
and the interaction part of the Hamiltonian are invariant under a symmetry transformation, so
will be the S-matrix, i.e., if for some symmetry transformationM we have [M,H0] = [M,H] = 0
then [M,S] = 0. Let us consider the case of strong interactions and isospin invariance, and focus
on nucleon-pion scattering processes. To this end, it is convenient to decompose the nucleon-
pion states in pure isospin components. From the composition rule 1

2 ⊗ 1 = 1
2 ⊕ 3

2 we find that
this states contain a pure I = 1

2 and a pure I = 3
2 part. A simple calculation using the lowering

operators I− and the relation ~I 2 = I+I− + I3(I3 − 1) shows that

|32 3
2〉 = |12 1

2〉|1 1〉 = |pπ+〉 ,√
3|32 1

2〉 = |12 −1
2〉|1 1〉 +

√
2|12 1

2〉|1 0〉 = |nπ+〉+
√
2|pπ0〉 ,

√
3|32 −1

2〉 =
√
2|12 −1

2〉|1 0〉 + |12 1
2〉|1 −1〉 =

√
2|nπ0〉+ |pπ−〉 ,

|32 −3
2〉 = |12 −1

2〉|1 −1〉 = |nπ−〉 ,
√
3|12 1

2〉 =
√
2|12 −1

2〉|1 1〉 − |12 1
2〉|1 0〉 =

√
2|nπ+〉 − |pπ0〉 ,

√
3|12 −1

2〉 = |12 −1
2〉|1 0〉 −

√
2|12 1

2〉|1 −1〉 = |nπ0〉 −
√
2|pπ−〉 .

(5.22)

These relations can be inverted to achieve the desired decomposition. Here we will be concerned
with the processes

p π+ → p π+ , p π− → p π− , p π− → n π0 , (5.23)

so we will need the following results,

|pπ+〉 = |32 3
2 〉 ,

|pπ−〉 = 1√
3

(
|32 −1

2〉 −
√
2|12 −1

2〉
)
,

|nπ0〉 = 1√
3

(√
2|32 −1

2〉+ |12 −1
2〉
)
.

(5.24)

Exploiting invariance one can prove that

〈I ′I ′3|S|II3〉 = δI′IδI′3I3〈II3|S|II3〉 ,
〈II3|S|II3〉 = 〈II ′3|S|II ′3〉 ≡ MI .

(5.25)
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Figure 19: Total cross sections for π+p and π−p scattering.

Both these results follow from [~I, S] = 0: in particular, [~I 2, S] = 0 and [I3, S] = 0 imply that the
initial and final state must have the same eigenvalues of ~I 2 and I3 for the matrix element not to
vanish. The second result can be proved explicitly using [I±, S] = 0, but is in fact a particular
case of the more general Wigner-Eckart theorem. We then find for the nucleon-pion scattering
amplitudes

Mpπ+→pπ+ = 〈pπ+|S|pπ+〉 = 〈32 3
2 |S|32 3

2〉 = M 3
2
,

Mpπ−→pπ− = 〈pπ−|S|pπ−〉 = 1
3

(
〈32 −1

2 |S|32 −1
2〉+ 2〈12 −1

2 |S|12 −1
2〉
)
= 1

3

(

M 3
2
+ 2M 1

2

)

,

Mpπ−→nπ0 = 〈nπ0|S|pπ−〉 =
√
2
3

(
〈32 −1

2 |S|32 −1
2〉 − 〈12 −1

2 |S|12 −1
2〉
)
=

√
2
3

(

M 3
2
−M 1

2

)

.

(5.26)

Notice that one also has Mpπ+→nπ0 = Mnπ0→pπ+. Other relations between amplitudes can be
derived along the lines above. It is an experimentally known fact that at a centre-of-mass energy
of

√
s = 1.232 GeV = m∆ the pπ+ scattering process shows a peak in its cross section, which is

proportional to the probability of the process (see Section 2). This peak corresponds precisely to
the ∆++ resonance: at this energy the scattering process proceeds through the formation of this
unstable particle and its subsequent decay. Such a particle is a member of an isospin quartet,
with I = 3

2 , so it is expected that for energies near m∆ the amplitude M 3
2
will dominate over

M 1
2
: one can imagine the S-matrix element is approximately the product of the amplitude to

create the ∆ times the amplitude for its decay, which involve only the I = 3
2 components of the

scattering states. At
√
s ≈ m∆ we will then have that At those energies we will have that the

cross sections for the processes in Eq. (5.23) satisfy67

σpπ+→pπ+

σpπ−→pπ−
≃ 9 ,

σpπ+→pπ+

σpπ−→nπ0

≃ 9

2
. (5.27)

67The proportionality factors between cross section and |Mi→f |2 depend on the mass and spin of the particles
and on

√
s, so they are the same for all the processes and cancel out in ratios.
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Figure 20: Lightest spin 1
2 baryons (left) and lightest pseudoscalar mesons (right) known at

the end of the ’50s (black circles) organised in hexagonal patterns. Horizontal lines correspond
to constant strangeness, diagonal lines correspond to constant electric charge. The η meson is
shown as well with an empty circle.

At this energy, the elastic channel is essentially the only scattering channel available in a pπ+

scattering process (there is enough energy to produce an extra neutral pion, but the available
phase space is very small and the corresponding cross section is negligible), while for pπ− there
are the elastic channel and the inelastic process pπ− → nπ0 (and pπ− → pπ−π0, nπ0π0 as well,
but suppressed). We can then obtain the following relation for total cross sections,

σpπ+tot

σpπ−tot
=

σpπ+→pπ+

σpπ−→pπ− + σpπ−→nπ0

≃√
s=m∆

1
1
9 +

2
9

= 3 . (5.28)

This relation is well verified experimentally (see Fig. 19).
A similar but easier calculation can be done to relate the three inelastic processes

pp→ dπ+ , pn→ dπ0 , nn→ dπ− . (5.29)

The deuteron d has I = 0, so the final states are pure I = 1 states. The initial states have in
general both I = 0 and I = 1, since 1

2 ⊗ 1
2 = 0⊕1, but only the I = 1 component will contribute

to the scattering amplitude. More precisely, the pp and nn states are pure I = 1, while for the
pn state we have

|pn〉 = 1√
2
(|10〉 + |00〉) . (5.30)

One then concludes that Ppp→dπ+ = Pnn→dπ− = 2Ppn→dπ0 .

5.2 The quark model

Knowing as we do now the microscopic theory of strong interactions, i.e., QCD, it would be easy
to envisage larger approximate symmetry groups relating different flavours of quarks, broken
more and more badly by the increasing differences in their mass. Historically, things went the
opposite way, with a larger approximate symmetry discovered first, and its origin and the origin
of its breaking understood later in terms of fundamental constituents bound together to form
the hadrons observed in experiments.

By the end of the ’50s, the known hadrons had grown into a “zoo”, comprising the two
big families of baryons and mesons, which could be further classified in isospin multiplets (see
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Figure 21: Spin-32 baryon resonances known at the end of the ’50s (black circles) organised
in a triangular pattern. Horizontal lines correspond to constant strangeness, diagonal lines
correspond to constant electric charge. The Ω baryon is shown as well with an empty circle.

above) and according to their strangeness. In fact, the isospin quantum numbers I, I3, the
baryon number B, and the strangeness S allowed a full classification of the known hadrons,
entirely characterising their states together with four-momentum and spin (total and one of its
components). Baryon number and strangeness could be equivalently traded for baryon number
and hypercharge Y = B+S. The hadron “zoo” seemed to lack an organising principle, and some
thought that there was not any: this was the idea of “nuclear democracy”, in which hadrons
are thought to be somehow all elementary and composite at the same time.68 However, if one
looked carefully enough certain patterns could be found, hinting at the possible existence of an
organising principle in the form of an underlying approximate symmetry.

If one plotted the eight lightest, spin-12 baryons in the I3, S (isospin-strangeness) plane, they
would fit nicely in a hexagonal array (see Fig. 20). These baryons fit also into isospin multiplets,
with small (permille) mass splittings within each multiplet. Mass splittings between baryons
with different strangeness were larger, but showed an interesting regularity: a decrease of one
unit in strangeness corresponded to a change in mass of the order of 150 MeV.

If one plotted instead the nine known spin-32 baryon resonances, one would find an almost-
triangular array (see Fig. 21), with a single isospin multiplet for each value of S, and the same
regularity concerning the mass splittings: with a decrease in S comes an extra 150 MeV of mass.

If one plotted the seven lightest pseudoscalar mesons one would find a hexagonal array similar
to that of the light baryons, with a “missing meson” in the centre, and shifted by one unit in
the direction of strangeness (see Fig. 20). Using instead the hypercharge Y = B + S, the two
patterns would precisely overlap (see Fig. 22). Hypercharge seems therefore better suited than
strangeness for a general classification of hadrons. Concerning mass splittings, they are still
small within isospin multiplets, but they are rather pronounced between multiplets: being of
the order of a few hundreds MeV, they are comparable with the meson masses.

It is typical of the human mind to look for explanations whenever some regularity appears in
Nature. Here a simple explanation would be the existence of an approximate symmetry extend-
ing the SU(2)I isospin symmetry and the U(1)Y symmetry associated with hypercharge. The
existence of the symmetry would explain the patterns through its irreducible representations; its
breaking would explain the mass differences. More precisely, the approximate degeneracy could
be explained if the strong Hamiltonian Hstrong were the sum of some exactly symmetric Hamil-

68This was the principle behind the “bootstrap model” of G. Chew.
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Figure 22: Baryons and mesons as in Figs. 20 and 21 but in the (I3, Y ) plane. Total isospin
assignments are also shown.

tonian, with degenerate multiplets of eigenstates corresponding to irreducible representations of
some continuous internal symmetry group, and a symmetry-breaking term, Hstrong = H0 +HI .
The symmetric Hamiltonian H0 would commute with the symmetry generators Oa, [H0,Oa] = 0,
and so degenerate multiplets would emerge, exactly as in the case of isospin symmetry.

If symmetry is the reason behind the hadron multiplets, then the symmetry group should be
such that it admits irreducible representations able to accomodate the experimentally observed
hadronic multiplets. A reasonable set of assumptions reduces the quest to internal symmetry
groups (i.e., that commute with the Poincaré group of translations and Lorentz transformations)
that are compact Lie groups (see Ref. [10]). Being continuous groups, their representation on the
Hilbert space of hadrons must be unitary. Furthermore, we already know part of the sought-after
symmetry group: since we look for an extension of the isospin-hypercharge-baryon symmetry,
whatever the bigger symmetry group Gtot is, it must contain Gtot ⊃ SU(2)I × U(1)Y × U(1)B .
Since there is no (not even approximate) degeneracy observed between baryons and mesons, we
do not expect the group Gtot to mix states different baryon numbers, and so U(1)B should remain
as an extra factor, Gtot = G×U(1)B , and G ⊃ SU(2)I×U(1)Y . The representations of G should
also reproduce the observed isospin multiplets within the bigger hadronic multiplets, together
with the corresponding values of hypercharge. In particular, the baryon octet decomposes into
two isospin doublets, one with hypercharge 1 (the nucleons) and one with hypercharge -1 (the
Ξs), an isospin triplet with hypercharge 0 (the Σs), and an isospin singlet with hypercharge 0
(the Λ). Whatever G is, it should admit an eight dimensional representation made up of these
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isospin multiplets; hoepfully, it would also provide the seven-dimensional and nine-dimensional
multiplets of mesons and baryonic resonances.

The simplest group that satisfies the requirements above, leading to an eight-dimensional
representation with the desired decomposition into isospin-hypercharge multiplets (and that
does not contradict other experimental facts: see again Ref. [10]), is the group SU(3). We first
discuss this group and its representations in some detail, and then see how it can be applied to
the problem of the classification of hadrons.

5.2.1 The group SU(3) and its algebra

The group SU(3) is the group of unitary unimodular (i.e., with unit determinant) 3×3 complex
matrices, i.e., SU(3) = {U ∈ M3,3(C) | U †U = 1 , detU = 1}. In general, any n × n unitary

matrix can be written as U = eiA with A Hermitian, since 1 = eiAe−iA
† ⇒ A = A†. The

unimodularity condition detU = eitrA = 1 further requires trA = 0.69 The space of Hermitian
traceless matrices is an 8-dimensional real vector space, and any such matrix can be written as
a linear combination with real coefficients, A =

∑

a αat
a, of suitable linearly-independent basis

elements {ta}a=1,...,8.
Writing our matrices in the form U(α) = eiαat

a
shows us that SU(3) is an 8-dimensional Lie

group, with corresponding Lie algebra the space of Hermitian traceless matrices equipped with
the matrix commutator. In fact, since −i[A,B] is still a Hermitian traceless matrix, one can
write it as a linear combination with real coefficients of the basis matrices ta, i.e., the generators
of the group, which obey the commutation relations

[ta, tb] = ifabct
c , (5.31)

with real fabc called the structure constants of the group. These are obviously antisymmetric in
the first pair of indices, fbac = −fabc. The generators are usually chosen with the normalisation70

tr tatb = 1
2δ
ab . (5.32)

Using Eq. (5.32), one finds
fabc = −2i tr [ta, tb]tc , (5.33)

which shows that with this choice the structure constants are cyclic, fabc = fcab = fbca, and
so antisymmetric under exchange of any pair of indices. Since the commutators of any three
matrices A,B,C satisfy the Jacobi identity,

[[A,B], C] + [[C,A], B] + [[B,C], A] = 0 , (5.34)

69More precisely, since [U,U†] = 0, any U ∈ U(n) can be diagonalised by a unitary transformation, and it
is easy to see that its eigenvalues are phase factors eiφa , φa ∈ R. Denoting Φ = diag(φ1, . . . , φN ), one has

U = V †eiΦV = eiV
†ΦV = eiA, with A = V †ΦV = A†. Using the relation det eiA = eitrA, we find in general

trA = 2πk with k ∈ Z, so A = Atraceless +
2πk
N

. But

ei
2πk
N 1 = ei

2πk
N

diag(1,1,...,1,1) = ei
2πk
N

diag(1,1,...,1,1−N) = ei
2πk
N

z ,

with z = diag(1, 1, . . . , 1, 1 −N) a traceless matrix, and so we can always express U as U = ei(Atraceless+
2πk
N

z) =

eiA
′
traceless .

70It is always possible to choose the generators such that Eq. (5.32) is satisfied. Since the matrix tr tatb

is a positive-definite real symmetric matrix, it can always be diagonalised by an orthogonal change of basis
ta → t̃a = Oatb, and furthermore the resulting positive diagonal entries can be set to any other real value by a
rescaling of t̃a.
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one finds

[[ta, tb], tc] + [[tc, ta], tb] + [[tb, tc], ta] = 0 =⇒ fbcmfamn + fabmfcmn + fcamfbmn = 0 . (5.35)

Even after imposing the normalisation condition there is still a large freedom in choosing the
ta, as these are just basis elements of a vector space. A general change of basis of the algebra
leads to an equally good set of generators, but in general with different structure constants and
normalisation.

A convenient choice of generators is guided by our intention to eventually break the symmetry
to the smaller group SU(2)I × U(1)Y : we want then three of the generators to be isospin
generators, reproducing the algebra of SU(2), and a fourth one to be the hypercharge generator,
commuting with the isospin ones. We then take ta = 1

2λ
a, with λa the Gell-Mann matrices

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

(5.36)

One can verify explicitly that with this choice the structure constants satisfy the normalisation
condition71

fabcfabd = 3δcd . (5.37)

It is easy to identify t1,2,3 as the generators ~I of the SU(2)I isospin subgroup of SU(3), i.e., the
SU(2) subgroup embedded in the top left corner of the SU(3) matrices; and t8 as the generator
Y of the U(1)Y subgroup (up to a numerical factor). Indeed, we see without effort that

[ta, tb] = iǫabct
c , a, b, c = 1, 2, 3 , [t8, ta] = 0 , a = 1, 2, 3 , (5.38)

reproducing the commutation relations

[Ia, Ib] = iǫabcIc , a, b, c = 1, 2, 3 , [Y, Ia] = 0 , a = 1, 2, 3 . (5.39)

We then identify

ta = Ia , a = 1, 2, 3, t8 =
√
3
2 Y . (5.40)

The normalisation of Y will soon become clear, and has been chosen anticipating the result.

With the choice Eq. (5.36), the canonical basis vectors e(j) of C3, e
(j)
i = δij , j = 1, 2, 3, are

simultaneous eigenvectors of I3 and Y , which are the only two diagonal generators.

71The possibility to choose the generators such that the structure constants obey Eq. (5.37) (up to a positive
factor) and are cyclic is not generic, but related to specific properties of the group, namely semisimplicity and
compactness, which are features of SU(3) (and of any SU(n) in general).
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The matrices t4,5 and 1
2t

3 +
√
3
2 t

8 correspond to another SU(2) subgroup, the SU(2)V sub-

group, and t6,7 and −1
2t

3 +
√
3
2 t

8 correspond to a third SU(2) subgroup, the SU(2)W subgroup.
We then set

t4 = V1 , t5 = V2 ,
1
2t

3 +
√
3
2 t

8 = V3 =
1
2I3 +

3
4Y ,

t6 =W1 , t7 =W2 , −1
2t

3 +
√
3
2 t

8 =W3 = −1
2I3 +

3
4Y ,

(5.41)

and find immediately
[Vi, Vj ] = iǫijkVk , [Wi,Wj] = iǫijkWk . (5.42)

Notice that V3 and W3 are not new generators, but linear combinations of the existing ones.
They are related to I3 by the same permutation of the basis of C3 that relates ~V and ~W to ~I.
By the same reasoning, one sets

YV = I3 − 1
2Y , YW = −I3 − 1

2Y , (5.43)

and shows straightforwardly that

[YV , Vi] = [YW ,Wi] = 0 . (5.44)

In full analogy with the SU(2) case, we now define the ladder operators of our SU(2) subgroups,
i.e., I± = I1 ± iI2, V± = V1 ± iV2 and W± =W1 ± iW2, which read explicitly

I+ =
1

2
(λ1 + iλ2) =





0 1 0
0 0 0
0 0 0



 , I− =
1

2
(λ1 − iλ2) =





0 0 0
1 0 0
0 0 0



 ,

V+ =
1

2
(λ4 + iλ5) =





0 0 1
0 0 0
0 0 0



 , V− =
1

2
(λ4 − iλ5) =





0 0 0
0 0 0
1 0 0



 ,

W+ =
1

2
(λ6 + iλ7) =





0 0 0
0 0 1
0 0 0



 , W− =
1

2
(λ6 − iλ7) =





0 0 0
0 0 0
0 1 0



 .

(5.45)

It follows immediately that they satisfy the commutation relations

[I3, I±] = ±I± , [V3, V±] = ±V± , [W3,W±] = ±W± ,

[Y, I±] = 0 , [YV , V±] = 0 , [YW ,W±] = 0 .
(5.46)

Combining now Eqs. (5.46) and (5.44) one finds

[I3, I±] = ±I± , [Y, I±] = 0 ,

[I3, V±] = ±1
2V± , [Y, V±] = ±V± ,

[I3,W±] = ∓1
2W± , [Y,W±] = ±W± .

(5.47)

These relations are the SU(3) analogues of the commutation relations satisfied by the SU(2)
ladder operators (which are contained here: they are the ones for I±). Anticipating the discussion
of the representations of the group, these relations show that the effect of I±, V± and W± on a
simultaneous eigenvector of I3 and Y is to produce a new eigenvector with eigenvalues related in
a simple way with the old ones. This also explains the normalisation of Y [see Eq. (5.40)]: the
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hypercharges assigned to hadrons are integer numbers, so differing always by integer amounts.
The V± and W± are meant to connect hadron states with hypercharge differing by one in the
same multiplet, and so their effect on the simultaneous eigenvector of I3 and Y has to be an
increase or decrease of Y by one unit.

There are three more commutation relations that we can write down at once by simply
recalling the results of SU(2), namely

[I+, I−] = 2I3 , [V+, V−] = 2V3 = I3 +
3
2Y , [W+,W−] = 2W3 = −I3 + 3

2Y . (5.48)

From Eqs. (5.47) and (5.48) we can reconstruct part of the fabc appearing in the commutation
relations satisfied by the ta, Eq. (5.31), corresponding to the choice Eq. (5.36).

The commutator as a linear operator on the algebra It will be very useful in the
following to notice that Eq. (5.47) is nothing but a set of simultaneous eigenvalue equations for
certain linear operators acting on the algebra of the group, i.e., the linear space spanned by the
generators. While Y is most suited for our physical problem, from the mathematical point of

view it is more convenient instead to use Ȳ =
√
3
2 Y (which is nothing but t8) to express the

commutation relations Eq. (5.47). Introducing the notation

~H = (I3, Ȳ ) , E
(1)
± = I± , E

(2)
± = V± , E

(3)
± =W± , (5.49)

Eq. (5.47) can be expressed compactly as

[ ~H,E
(j)
± ] = ±~α (j)E

(j)
± , (5.50)

where the root vectors ~α (j),

~α (1) = (1, 0) , ~α (2) = (12 ,
√
3
2 ) , ~α (3) = (−1

2 ,
√
3
2 ) , (5.51)

satisfy (~α (j))2 = 1. The root system of SU(3) is shown in Fig. 23. As we already did for SU(2)
[see Eq. (4.108)], we can look at the commutator [A,X] for a fixed A as a linear function of X.
For each A in the group algebra, this linear operator acting on the algebra is denoted adA,

adAX ≡ [A,X] . (5.52)

Notice that on the right-hand sideX is treated as a matrix, whose commutator with A is obtained
by the usual matrix operations, while on the left-hand side it is treated as a vector. One now

sees that Eq. (5.50) is a simultaneous eigenvalue equation for adH1,2 , with E
(j)
± the eigenvectors

corresponding to the eigenvalues ±~α (j). One has two further eigenvectors, namely H1 = I3 and
H2 = Ȳ , both with both eigenvalues equal to zero since [ ~H,H i] = 0. The eight eigenvectors

E
(j)
± and ~H form a complete basis for the algebra,72 and the set {~α (0), ~α (1), ~α (2), ~α (3)}, with

~α (0) = (0, 0), gives all the pairs of simultaneous eigenvalues.
To complete our knowledge of the algebra, i.e., to complete the list of structure constants,

we still need the commutators of ladder operators, from which one can obtain the remaining
relations satisfied by the ta, Eq. (5.31). These can of course be computed explicitly, but it is

72More precisely, they form a complete basis of the complexified algebra, spanned by {ta} if we allow complex
coefficients. However, the key point here is completeness, and complexification is immaterial.
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Figure 23: Root system of SU(3).

more instructive to consider the following argument, which also provides a first application of
the idea discussed above. Consider the commutator of two ladder operators, and in turn the
commutator of this with I3 and Ȳ . In the notation of Eq. (5.50) we have, using Jacobi identity
Eq. (5.34),

[ ~H, [E(i)
s , E

(j)
t ]] = −[E

(j)
t , [ ~H,E(i)

s ]]− [E(i)
s , [E

(j)
t , ~H ]]

= −s~α (i)[E
(j)
t , E(i)

s ] + t~α (j)[E(i)
s , E

(j)
t ] = (s~α (i) + t~α (j))[E(i)

s , E
(j)
t ] ,

(5.53)

where s, t = ±1. This means that [E
(i)
s , E

(j)
t ] must be a simultaneous eigenvector of adH1 and

adH2 with eigenvalues given by the components of the vector (s~α (i) + t~α (j)). In general, this is
not a vector of eigenvalues, since only those appearing in Fig. (23) (including the zero vector) are.

One then concludes that [E
(i)
s , E

(j)
t ] must be zero unless s~α (i) + t~α (j) = u~α (k) for some u = ±1

and k. In case that such u and k exist, since eigenvalue pairs are non-degenerate, it follows

that [E
(i)
s , E

(j)
t ] ∝ E

(k)
u . The existence of nontrivial solutions, beside the case ~α (i) − ~α (i) = 0,

is guaranteed by the fact that ~α(1) + ~α(3) = ~α(2). Although this argument does not fix the
proportionality constant, it will be enough for our purposes.

Diagonal generators As we have already remarked, only two of the Gell-Mann matrices,
Eq. (5.36), are diagonal. One can show that for any choice of basis no more than two generators
commute and can be diagonalised simultaneously. One then says that the group SU(3) is of
rank 2. From the physical point of view, if SU(3) were an exact symmetry of nature, then only
two generators could be measured simultaneously, but there would be a large arbitrariness in
choosing them (e.g., any linear combination of I1 and Ȳ would do). This is analogous to the
possibility of measuring only one angular momentum component at a time – but any component
is allowed. In practice, however, a preferred choice exists for which generators of SU(3) to use
to label the physical states: indeed, we know that strong interactions break SU(3) down to
SU(2)I ×U(1)Y , so we choose I3 and Y . On top of these, ~I 2 can be also used to label particles,
since it commutes with I3 and, obviously, with Y .73

73Recall that the “total isospin” ~I 2 is not an element of the Lie algebra of the group, see footnote 56.
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5.2.2 Representations of SU(3)

We discuss now the representation of SU(3), first from a general perspective, and then focussing
on the representations of lowest dimension, looking for multiplets matching the baryon and
meson multiplets observed in nature.

As in the case of SU(2), it is easier to build representations of SU(3) by exponentiating
representations of its algebra. Since we are interested in unitary representations of the group,
we look for Hermitian representations of the algebra.74 These are obtained if we can find a set
of eight Hermitian matrices obeying the commutation relations Eq. (5.31), or equivalently a set

of matrices representing the ladder operators, obeying I†± = I∓ and similarly for the others, and
two Hermitian matrices representing I3, and Y , satisfying the commutation relations Eq. (5.47),
(5.48), as well as the remaining relations involving pairs of ladder operators. Since I3 and Y
are Hermitian and commute, we can always choose the basis of our representation so that they
are diagonal. In other words, we can take as a basis of our representation space a complete
set of simultaneous eigenvectors of the representatives of I3 and Y . Representations are then
characterised by the corresponding pairs of eigenvalues, called weights or weight vectors (which
in general do not coincide with the root vectors), and can be represented graphically as diagrams

in the (I3, Y ) plane (mathematicians would rather use the (I3, Ȳ ) = (I3,
√
3
2 Y ) plane), known as

weight diagrams. These completely and uniquely characterise the representation, if information
is included concerning the degeneracy of each weight. For practical purposes we would also like
to know how the eigenvectors are organised in isospin multiplets, i.e., multiplets with a constant
value of ~I 2.

As already pointed out above, the choice to diagonalise I3 and Y is motivated from the fact
that they correspond to the quantum numbers used to classify hadrons. Finding diagrams that
match the baryon octet or any other multiplet of hadrons would indicate that we are on the right
track and we have correctly identified the symmetry. We have already remarked that if SU(3)
were truly a symmetry, any basis would be equivalent, and no choice of states would be “more
physical” than any other. The reason why I3 and Y , and not any other pair of generators, is
the most convenient, and physical adequate, choice is that SU(3) is actually broken by sizeable
strong-interaction effects down to SU(2)I × U(1)Y , and furthermore that also the full SU(2)I
is broken by electromagnetic interactions, as well as by small strong-interaction effects, down
to U(1)I3 . This singles out the basis of physical particles with definite strangeness and electric
charge, or equivalently hypercharge and third isospin component, as well as baryon number,
since only U(1)B × U(1)S × U(1)em = U(1)B × U(1)Y × U(1)I3 is a true symmetry of Nature
(as long as weak interactions are ignored).

5.2.3 The simplest representations of SU(3)

While we could work out rather easily all the irreducible representations of SU(2), the case
of SU(3) is more intricate. In general, one starts from an eigenvector annihilated by the three
raising operators I+, V+,W+ (which must exist in a finite dimensional representation), and build
the rest using the descent operators I−, V−,W−. This requires care since the same eigenvalue
pair can be reached following different routes, and one must make sure that all and only the

74Since SU(3) is simply connected, the representations obtained by exponentiating its algebra are regular
representations, not projective. Moreover, since SU(3) is compact, all its finite-dimensional representations are
equivalent to unitary representations.
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Figure 24: Weight diagrams of the fundamental (3) and complex conjugate (3̄) representations
of SU(3).

linearly independent possibilities are taken into account. Instead of doing this, we will first follow
an easier (and in a sense reversed) procedure by looking at the easy-to-guess representations of
the group first, and obtaining the weight diagram afterwards.

Trivial representation For any group, the simplest representation is DT (g) = 1 for all g:
this is the trivial representation, which is one-dimensional, and therefore denoted by 1, and also
called the singlet representation. Correspondingly, all the elements of the Lie algebra of the
group are represented by zero. The weight diagram contains a single point at (I3, Y ) = (0, 0),
which obviously corresponds to an isospin singlet.

Fundamental representation For any matrix Lie group like SU(3), the second simplest rep-
resentation is that provided by the matrix group itself. This is the fundamental (or more precisely
defining) representation, DF (U) = U , to which corresponds the fundamental representation of

the algebra with generators T
(F )
a . Formally,

DF (U(α)) = U(α) = eiα·t =⇒ T (F )
a = ta . (5.54)

By construction, T
(F )
a obey the commutation relations Eq. (5.31) (as well as the normalisation

condition Eq. (5.32)). This representation is three-dimensional, so denoted by 3 and also called
the triplet representation. The algebra is conveniently represented in terms of the generators ta

obtained from the Gell-Mann matrices Eq. (5.36), which display diagonal I3 and Y . It is easy
to read off the weights: these are

(I3, Y ) = (12 ,
1
3), (−1

2 ,
1
3 ); (0,−2

3 ) , (5.55)

corresponding to the canonical basis vectors e(j), e
(j)
i = δij , j = 1, 2, 3. It is easy to see, looking

at the form of I1,2 = t1,2, that e(1,2) form an isodoublet, while e(3) is an isosinglet. The weight
diagram of the 3 representation is shown in Fig. 24.

Complex-conjugate representation Another representation that is easy to spot is the
complex-conjugate or antifundamental representation,

DC(U(α)) = U(α)∗ = eiα·(−t
∗) =⇒ T (C)

a = (−ta)∗ . (5.56)
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This is clearly a valid representation since DC(U1U2) = (U1U2)
∗ = U∗

1U
∗
2 = DC(U1)DC(U2).

This implies that the matrices T
(C)
a = −(ta)∗ = −(ta)T obey Eq. (5.31), as one can easily see

explicitly: taking the complex conjugate of this equation, we find

[T (C)
a , T

(C)
b ] = [(−ta)∗, (−tb)∗] = [ta, tb]∗ = −ifabc(tc)∗ = ifabc(−tc)∗ = ifabcT

(C)
c . (5.57)

These generators still obey the normalisation condition Eq. (5.32) since clearly trT
(C)
a T

(C)
b =

[tr T
(F )
a T

(F )
b ]∗ = 1

2δ
ab. Also in this case the representatives of I3 and Y are diagonal, so that

the canonical basis vectors e(j) are their eigenvectors, but since T
(C)
3,8 = −t3,8 this time the

corresponding weights are

(I3, Y ) = (−1
2 ,−1

3), (
1
2 ,−1

3 ); (0,
2
3) . (5.58)

This shows that, differently from the case of SU(2), for SU(3) the fundamental and the complex
conjugate representations are not equivalent. For this reason one uses the notation 3̄ for the
complex-conjugate representation. Finally, as in the fundamental representation, e(1,2) form an
isodoublet (although their eigenvalues have changed sign) and e(3) is an isosinglet. The weight
diagram of the 3̄ representation is shown in Fig. 24. In general, the complex conjugate R̄ of
a representation R, obtained by taking the complex conjugate of the representative matrices,
D

R̄
(U) = DR(U)∗, has a weight diagram obtained by reflecting that of R both horizontally and

vertically.

Adjoint representation As we saw already for SU(2), a Lie group can be represented on its
own algebra (seen as a linear space) via the adjoint representation (see Section 4.2.4, p. 94).
Recall that the algebra of SU(3) is the vector space of Hermitian 3 × 3 traceless matrices A
equipped with the commutator. For any given U ∈ SU(3) consider the mapping

AdUA ≡ UAU † . (5.59)

For any U , AdU is a linear operator from the algebra into itself, and moreover

AdU2AdU1A = AdU2U1AU
†
1 = U2U1AU

†
1U

†
2 = AdU2U1A , (5.60)

i.e., AdU provides a representation of the group, using the group algebra as the representa-
tion space. To find the associated representation of the algebra, one considers infinitesimal
transformations U ≃ 1 + iǫat

a, and using the definition Eq. (5.59) one finds

AdUA ≃ A+ iǫa[t
a, A] = A+ iǫa adtaA . (5.61)

where adX was defined in Eq. (5.52). Exactly as for SU(2) [see Eqs. (4.111) and (4.112)] the
operators adta automatically satisfy the commutation relations Eq. (5.31) as consequence of the
Jacobi identity Eq. (5.34),

[adta , adtb ]A = [ta, [tb, A]]− [tb, [ta, A]] = [[ta, tb], A] + [tb, [ta, A]]− [tb, [ta, A]]

= [[ta, tb], A] = ad[ta,tb]A = ifabc[t
c, A] = ifabcadtcA ,

(5.62)

holding for any A in the algebra, and so

[adta , adtb ] = ad[ta,tb] = ifabcadtcA . (5.63)
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It may perhaps be easier to work in components to see that the AdU and adta do provide us with
representative matrices for the elements of the group and of the algebra, respectively. Writing
an element A of the algebra in components, A = Aat

a, with Aa = 2 tr taA, one finds

(AdUA)a = 2 tr taUAU † =
(

2 tr taUtbU †
)

Ab ≡ U(U)abAb , (5.64)

where the matrices U satisfy

U(U2U1)abAb = (AdU2U1A)a = (AdU2AdU1A)a = U(U2)ab U(U1)bcAc , (5.65)

i.e., they give a representation of the group. In particular, U(U †) = U(U−1) = U(U)−1. Using
the explicit expression Eq. (5.64), we find that

(U(U)ab)
∗ = 2 trUtbU †ta = 2 tr taUtbU † = U(U)ab ,

U(U)Tab = U(U)ba = 2 tr tbUtaU † = 2 tr taU †tbU = U(U †)ab = U(U)−1
ab ,

(5.66)

so that the representation is orthogonal, i.e., unitary and real. For the representation of the
algebra, we find in components

(adtaA)b = 2 tr tb[ta, A] = 2 tr (tb[ta, tc])Ac = 2 tr (tbtd)ifacdAc = ifacbAc

= −ifabcAc ≡ (T (A)
a )bcAc ,

(5.67)

with the Hermitian matrices T
(A)
a (since antisymmetric and purely imaginary) providing the

adjoint representation of the algebra. To see explicitly that they obey the commutation relations
Eq. (5.31), one exploits the properties of the structure constants to recast Eq. (5.35), which
follows from the Jacobi identity, as

(−ifbam)(−ifcmn)− (−ifcam)(−ifbmn) = ifbcm(−ifman) ,
(T

(A)
b )am(T

(A)
c )mn − (T (A)

c )am(T
(A)
b )mn = ifbcm(T

(A)
m )an ,

([T
(A)
b , T (A)

c ])an = ifbcm(T
(A)
m )an .

(5.68)

The normalisation of the matrices T
(A)
a follows from Eq. (5.37):

trT (A)
a T

(A)
b = −famnfbnm = famnfbmn = 3δab . (5.69)

Our results concerning the adjoint representation are summarised as follows:

DA(U(α)) = AdU(α) = eiadα·t =⇒ T (A)
a = adta . (5.70)

The adjoint representation is eight-dimensional, since there are eight generators ta, and is de-
noted by 8. Since it is a real representation it equals its complex conjugate, so 8̄ = 8.

We now get to the point, which is the weight diagram of this representation. Recalling that
the weight diagram represents the pairs of simultaneous eigenvalues of the representatives of I3
and Y , it is enough to look back at Eqs. (5.47) and (5.50): the simultaneous eigenvectors of

I
(A)
3 = adt3 and Y (A) = ad 2√

3
t8 are just the ladder operators, whose eigenvalues can be read

off Eq. (5.47) (or suitably rescaling the root vectors, Eq. (5.51)), together with the diagonal
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Figure 25: Adjoint representation of SU(3).

generators which commute with each other: The weights and the corresponding eigenvectors are
then

(I3, Y ) = (12 , 1), (−1
2 , 1); (1, 0), (0, 0), (−1, 0); (0, 0); (12 ,−1), (−1

2 ,−1) ,

V+,W+; I+, I3, I−; Y ; W−, V− .
(5.71)

These form respectively an isodoublet, an isotriplet, an isosinglet, and another isodoublet. The
weight diagram of the adjoint representation is shown in Fig. 25, and a quick look shows that it
corresponds precisely to the baryon octet, Fig. 22 (top right). We have then shown that there
are irreducible representations of SU(3) that correspond to hadronic multiplets, and so SU(3)
can indeed be the bigger symmetry group we were looking for.

5.2.4 More general representations of SU(3): the “eightfold way”

To finally be satisfied with SU(3), the next task is to find a representation that accommodates
the baryonic resonances, see Fig. 22 (bottom). To do this, one has to go beyond the simple
representations discussed above and look a bit into how general representations are constructed.
The idea is similar to that employed for SU(2): since the ladder operators make new eigenvectors
out of the existing ones, if the representation has to be finite-dimensional then at some point
one has to stop, and one will find an eigenstate of I3 and Y that is annihilated by the three
raising operators I+, V+,W+. The other eigenvectors will then be obtained from this one by
applying the lowering operators I−, V−,W−. Since the same pair of eigenvalues can be obtained
in different ways, one has to make sure to count all the independent eigenvectors with the same
weight. The detailed implementation of this procedure is clearly more complicated than for
SU(2), but we will see that it can be worked out rather easily in the case we are interested in.

Decuplet representation Suppose that an eigenvector |D〉 exists with the isospin quantum
numbers of the ∆++, i.e., I = I3 = 3

2 , which is furthermore an eigenvector of Y . If it is part
of a representation that looks like Fig. 22 (bottom), then it must be annihilated by I+, V+,W+,
as well as by W−. Being an eigenvector of I3 and Y it is also an eigenvector of V3 and of W3;
in particular, it is an SU(2)W singlet, W = W3 = −1

2I3 +
3
4Y = 0. This tells us that Y = 1 for

|D〉. Since I = 3
2 , applying I− repeatedly we obtain three more states with I3 =

1
2 ,−1

2 ,−3
2 , the

last of which is annihilated by I−. All these states have the same hypercharge 1 as |D〉 since
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[Y, I−] = 0, so they are also W3 and YW eigenstates with W3 eigenvalues 3
4 − 1

4 = 1
2 ,

3
4 +

1
4 = 1,

and 3
4 + 3

4 = 3
2 , and YW eigenvalues −3

2 − 1
2 = −2, −3

2 + 1
2 = −1, and −3

2 + 3
2 = 0. Since

[W+, I−] = 0 (there is no root vector equal to −α(1) +α(3)), all these states are also annihilated
by W+; since [V+, I−] ∝ W+ (since −α(1) + α(2) = α(3)), these are also annihilated by V+, and
so there are no states with hypercharge larger than 1.

A representation of SU(3) must also provide a representation of any of its subgroups, in
particular SU(2)I,V,W . An SU(2)I rotation of π, eiπI1 , applied on an eigenvector of I3 and Y ,
gives a new eigenvector with opposite eigenvalue of I3 and the same eigenvalue of Y . This means
that the weight diagram of a representation should be symmetric under a reflection through the
axis I3 = 0. The same applies to an SU(2)W rotation of π, eiπW1 , that sends an eigenvector
of W3 = −1

2I3 +
3
4Y and YW = −I3 − 1

2Y to another eigenvector with opposite eigenvalue of
W3 and the same eigenvalue of YW . The weight diagram must then be symmetric under a
reflection through the axis W3 = 0, i.e., I3 = 3

2Y . There must therefore be three more states
with W3 eigenvalues −1

2 , −1, and −3
2 , and YW eigenvalues −2, −1, and 0, which translate into

eigenvalues of I3 and Y equal to (I3, Y ) = (1, 0); (12 ,−1); (0,−2). Using now the symmetry under
reflection through the axis I3 = 0, we find two more states with (I3, Y ) = (−1, 0); (−1

2 ,−1),
which completes the outline of an equilateral triangle of side length 3. Notice that this is
symmetric also under a reflection through the axis V3 =

1
2I3 +

3
4Y = 0, as it should be since the

weight diagram must be symmetric under an SU(2)V rotation of π.
Since the four weights (I3, Y ) = (32 , 1); (

1
2 , 1); (−1

2 , 1); (−3
2 , 1), from which we started, are

non-degenerate, all the weights on the perimeter of the triangle are non-degenerate. Using
repeatedly the descent operators I−, V−,W− on |D〉, one can build in several ways an eigenvector
with weight (I3, Y ) = (0, 0): I−V−|D〉, V−I−|D〉, and W−I2−|D〉. But [I−, V−] = 0 (there is no
root vector equal to −α(1) − α(2)), so the first two are the same vector, and [I−,W−] = −cV−
for some constant c (since −α(1) − α(3) = −α(2)), and so

W−I
2
−|D〉 = (I−W− + cV−)I−|D〉 = cV−I−|D〉+ I−(I−W− + cV−)|D〉 = 2cV−I−|D〉 (5.72)

is proportional to the same vector. The weight (I3, Y ) = (0, 0) is then non-degenerate as well.
Since the eigenvectors with weights (I3, Y ) = (32 ,

3
2 ); (1, 1); (

1
2 ,

1
2); (0, 0) are annihilated by I+

(there are no weights on their right), they are also eigenvectors of ~I 2 with I = 3
2 , 1,

1
2 , 0. These

vectors can be reached from |D〉 by repeatedly applying V−; in fact, since |D〉 is an eigenvector
of V3 and of ~V 2 with eigenvalues V3 = 1

2I3 +
3
4Y = 3

2 and V (V + 1), with V = V3
3
2 , they form

a quartet of SU(2)V . The eigenvectors on their left can be reached by repeatedly applying I−,
and so they complete the corresponding isospin multiplets.

Summarising, we have found an irreducible representation containing:

• four states I0,1,2,3− |D〉 forming an isoquartet, I = 3
2 , with Y = 1;

• three states I0,1,2− V−|D〉 forming an isotriplet, I = 1, with Y = 0;

• two states I0,1− V 2
−|D〉 forming an isodoublet, I = 1

2 , with Y = −1;

• one state V 3
−|D〉 forming an isosinglet, I = 0, with Y = −2.

This is a total of ten states, forming the decuplet, or 10, representation. These perfectly repro-
duced the quantum numbers of the known baryonic resonances, except for the last state which
did not have an experimental counterpart.

121



The “eightfold way” If SU(3) symmetry really is the explanation behind the observed
hadronic multiplets, then all the hadronic multiplets should fit into irreducible representations,
not just the lightest baryons. We have found an 8-dimensional representation (the adjoint rep-
resentation), but one can show that there are no 7-dimensional and 9-dimensional irreducible
representations – we only found a 10-dimensional one. At this point, one is faced with a choice:
either discard SU(3) as the correct symmetry, or make a bold move and predict the existence of
new hadrons that would fill the vacant places in the available representations. The new particles
needed to complete the multiplets were another light meson for the meson octet, and another
baryonic resonance for the baryon decuplet.

The missing meson needed to be a JP = 0− pseudoscalar meson, and have quantum numbers
I = Y = 0, and so an expected electric charge Q = 0 from the Gell-Mann–Nishijima formula.
This was found experimentally in 1961 [12], and is known as the η meson. The missing baryon
needed to have spin 3

2 , isospin I = 0 and strangeness S = Y −B = −3, and so Q = −1 from the
Gell-Mann–Nishijima formula. A look at the mass pattern of the resonances, m∆ = 1232 MeV,
mΣ∗ = 1384 MeV, mΞ∗ = 1533 MeV, and the corresponding mass splittings mΣ∗ − m∆ =
152 MeV and mΞ∗ −mΣ∗ = 149 MeV, leads to the empirical relation m(S) = m(∆)+150 MeV ·
|S|, and so to an educated guess of m ∼ 1682 MeV for the missing baryon.75 Notice that
a similar mass formula approximately works for the baryon octet as well. In 1964 a spin-32
baryon resonance with the predicted properties, named Ω−, was indeed observed at a mass
mΩ = 1672 MeV [13].

With the η and the Ω− completing the respective multiplets, the classification of hadron
multiplets in terms of irreducible representations of SU(3) was successfully achieved. This clas-
sification had been proposed by Murray Gell-Mann in 1961, under the rather bizarre name of
eightfold way, and independently by Yuval Ne’eman, also in 1961 [14]. An important role in
suggesting SU(3) as the relevant approximate symmetry of the strong interactions was played
by the model of composite hadrons of S. Sakata and its developments.

5.2.5 From SU(3) invariance to the quark model

Although the “eightfold way” allowed to nicely classify the existing hadrons, and even predict
correctly the existence of new ones, it had nonetheless a number of issues. The most evident
shortcoming was that, while from the group-theoretical point of view all representations are
good, Nature showed only a small subset of them. For baryons, only octets (like the lightest
spin-12 baryons) and decuplets (like the spin-32 baryonic resonances) were observed; for mesons,
only octets (like the lightest pseudoscalar mesons K, π and η) and singlets (like the pseudoscalar
meson η′). Representation theory alone could not explain why only certain irreducible represen-
tations appeared in nature, while other did not.

Quite surprisingly, the fundamental and complex conjugate representations (the next-to-
simplest representations) did not appear among the hadronic multiplets. On the other hand, it is
a well-known result in the theory of representations of SU(3) that all irreducible representations
can be obtained by reducing tensor products of fundamental (3) and complex conjugate (3̄)
representations.76 The easiest way to work out the composition of SU(3) representations is to
do it graphically by using the weight diagrams, taking into account that I3 and Y are additive

75This estimate was done actually through a more accurate formula, the Gell-Mann–Okubo formula, discussed
below in Section 5.2.7.

76Actually the fundamental representation suffices, as we will see below.
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quantities, and so the tensor product of two states |i(1)3 , y(1)〉 and |i(2)3 , y(2)〉 will have eigenvalues
of I3 and Y equal to the sum of the eigenvalues of those two states, i.e., i

(1)
3 + i

(2)
3 and y(1)+y(2).

Take two representations R1 and R2 with generators represented by Hermitian matrices T
(R1,2)
a , and

such that T
(R1,2)
3 and T

(R1,2)
8 are diagonal. The representation spaces are spanned by the simultaneous

eigenvectors |i(1)3 , y(1)〉 and |i(2)3 , y(2)〉 of I3 and Y , i.e., of T
(R1,2)
3 and T

(R1,2)
8 . The tensor product

representation has representation space spanned by |i(1)3 , y(1); i
(2)
3 , y(2)〉 = |i(1)3 , y(1)〉 ⊗ |i(2)3 , y(2)〉, and

generators represented by T
(R1⊗R2)
a = T

(R1)
a ⊗ 1(R2) + 1(R1) ⊗ T

(R2)
a . Clearly,

T
(R1⊗R2)
3 |i(1)3 , y(1); i

(2)
3 , y(2)〉 = (T

(R1)
3 ⊗ 1(R2) + 1(R1) ⊗ T

(R2)
3 )|i(1)3 , y(1)〉 ⊗ |i(2)3 , y(2)〉

= (T
(R1)
3 |i(1)3 , y(1)〉)⊗ (1(R2)|i(2)3 , y(2)〉)

+ (1(R1)|i(1)3 , y(1)〉)⊗ (T
(R2)
3 |i(2)3 , y(2)〉) = (i

(1)
3 + i

(2)
3 )|i(1)3 , y(1); i

(2)
3 , y(2)〉 ,

and similarly for T
(R1⊗R2)
8 .

This is depicted in Fig. 26 for the tensor product of a fundamental and an antifundamental
representation: we just draw a triangle corresponding to the first 3 in the (I3, Y )-plane, and
three more triangles corresponding to a 3̄ representation but centred on the vertices of the first
one. The coordinates of the vertices of the “outer” triangles correspond to the wieghts, i.e.,
the eigenvalue pairs of I3 and Y , appearing in the 3̄ ⊗ 3 representation, obtained by adding a
weight of the fundamental representation and a weight of the antifundamental representation.
We then decompose the result into irreducible representations: here the task is easy as one
easily identifies an octet, leaving a single state that can only be a singlet. One then concludes
that 3̄ ⊗ 3 = 8 ⊕ 1. Remarkably, these are precisely the representations appearing in mesonic
multiplets.

One proceeds similarly for the product of two fundamental representations, drawing now
a triangle corresponding to the first 3 representation and three more triangles centred on the
vertices of the first one corresponding to the second 3 representation (see Fig. 27). In this
case, in decomposing the result into irreducible representations we are helped by the fact that
there is an easily recognisable set of states corresponding to an antifundamental representation
3̄, and once that is removed one is left with six non-degenerate states. An argument similar
to the one used to build the decuplet shows that this is one of the irreducible representations
of SU(3), the 6. In assigning states in degenerate (I3, Y )-eigenspaces to different irreducible
representations one can also take advantage of symmetry considerations: in the case at hand,
the pair of eigenvalues corresponding to the weight in the top right corner of the diagram comes
from the symmetric state |12 , 13〉 ⊗ |12 , 13〉, and since the descent operators do not change the
symmetry properties under exchange of the two factors in the product states, one will obtain an
irreducible representation of symmetric states – the two-index symmetric representation, or 6.
For the degenerate weights there is a second combination of product states that is antisymmetric
under exchange, which forms a second irreducible representation – the two-index antisymmetric
representation, which coincides with the 3̄. In conclusion, we found 3 ⊗ 3 = 6 ⊕ 3̄. A similar
procedure shows that 6⊗3 = 10⊕8, where again one uses symmetry properties to assign states
corresponding to degenerate weight to one irreducible representation or the other. If we now
consider the tensor product of three fundamental representations, using the results collected so
far we find

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1 . (5.73)
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Interestingly, we obtain the representations appearing in baryonic multiplets, except for the
presence of a singlet representation that does not occur in nature.

A “natural” interpretation of the results discussed above is that hadrons are not elementary,
but rather composite particles, built out of constituents that transform in the fundamental or
antifundamental representation of SU(3): three fundamental constituents for a baryon (and three
antifundamental for an antibaryon), and a fundamental and an antifundamental constituent for
a meson.77 This interpretation had a number of upsides. First of all, it immediately reduces
the problem of the large zoo of supposedly elementary hadrons to a much more manageable
number of beasts. Secondly, it allows to explain the approximate mass relation m(S) = m(0) +
150 MeV · |S| valid within the octet and decuplet baryon multiplets in terms of the masses of
the constituents. Finally, the Gell-Mann–Nishijima formula Q = I3 +

1
2Y = I3 +

1
2 (B + S) for

the electric charge of hadrons, which is a relation between additive quantities, will automatically
hold for any hadron if it holds for the constituents.

This interpretation also had a considerable number of downsides. As we saw above, it almost
solves the riddle of the SU(3) representations appearing in nature, but the price to pay is to
introduce objects that transform according to representations that do not appear in nature.
As soon as the new constituents are introduced, one has to postulate that they have to stay
hidden away forever inside hadrons – a very suspicious move. Nonetheless, if one assumes that
quarks are the elementary constituents of hadrons, one can hope to fully solve the representation
puzzle using the constraints coming from the exchange symmetry of identical particles, which
might forbid the unobserved representations. However, as we will see below, this actually leads
to serious theoretical problems. As it turns out, these problems can be solved (essentially
by introducing again something that cannot be observed. . . ), and their solution led to the
modern theory of strong interactions, i.e., QCD. The elementary constituents became known as
quarks, another bizarre name courtesy of M. Gell-Mann, who at first used them only as fictitious
particles to explain the representations found in hadronic multiplets. The first one to believe in
the physical existence of the hadronic constituents was George Zweig, who called them “aces”
instead, and who developed a nice and correct but quickly dismissed model of hadrons based on
them.

Quark quantum numbers If the idea of quarks and antiquarks as elementary constituents of
hadrons is viable, one should be able to assign them appropriate values of the various quantum
numbers, that reproduce the observed phenomenology. By construction, quarks correspond to
the simultaneous eigenstates of I3 and Y in the fundamental representation.78 There are then
three types or flavours of quarks: these are denoted as u (“up”), d (“down”) and s (“strange”),
with isospin and hypercharge assigned according to Fig. 24, or Table 11. Quantum Field Theory
requires the existence of an antiparticle for each particle, so we have to introduce the antiquarks
ū, d̄, and s̄, to which we must assign the same spin and mass as the quarks, and minus all the

77This all looks natural from a modern perspective, but the first proposals in this direction either did not
work out properly, as in Fermi and Yang’s approach, or were initially not accepted, as was the case with Zweig’s
proposal which turned out to be correct after all.

78As already pointed out, if SU(3) were an exact symmetry, then any linear superposition of these eigenvectors
would look the same to strong interactions. SU(3) is instead broken down to (approximate) SU(2)I×U(1)Y , so that
only isospin and hypercharge eigenstates are “good” states, whose superposition is forbidden by superselection
rules.
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sū sd̄
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Figure 26: Composing representations of SU(3): 3⊗ 3̄ = 8⊕ 1.
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Figure 27: Composing representations of SU(3): 3⊗ 3 = 6⊕ 3̄.

charges, such as I3 and Y .79

Irrespectively of the precise form of the linear combinations of products of three quark
states (or of a quark and an antiquark state), corresponding to a member of an irreducible
representation, the quark content of each hadron automatically follows from the corresponding
values of I3 and Y . The values of these quantum numbers for the composite states are then fixed
entirely by the representation, and can be read off Figs. 26 and 27. For example, the proton is
a quark-quark-quark state in the top right corner of the octet. In Fig. 26 this corresponds to
a us̄ state in the 3 ⊗ 3̄ product;80 from Fig. 27 we see that the s̄ state has the same quantum
numbers of a particular combination of ud and du states, so that the proton has quark content
uud. The quark content of octet and decuplet baryons is shown in Fig. 28, while that of octet
and singlet mesons is shown in Fig. 29.

Conversely, one can extract the quark composition of a hadron from its quantum numbers I3

79More precisely, QFT demands that if a particle transforms in a certain representation of some symmetry group,
then its antiparticle must transform in the corresponding complex-conjugate representation, see footnote 65. One
can always associate particle and antiparticle with the same representative vector e(i), so that for each flavour
charge conjugation is implemented as Cf = f̄ – we could introduce a phase (or worse) between the representative
vectors for particle and antiparticle, which would result in a corresponding phase in the C transformation, but why
make our life more complicated, when we are free to choose the charge-conjugation phase for non-self-conjugate
particles?

80Notice that this is meant only for representation theoretic purposes, and does not mean that the proton is
quark-antiquark states.
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Figure 28: Quark content of octet (left) and decuplet (right) baryons.
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(uū− dd̄)

ω = 1√
2
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Figure 29: Quark content of octet and singlet pseudoscalar (left) and vector (right) mesons. The
singlet pseudoscalar is denoted with an empty dot; the physical states coming from the mixing
of the I = 0 octet and of the singlet states in the vector case are denoted with a half-filled dot.

and Y , together with its baryon number. Denoting with nu,d,s the number of times each flavour
appears (minus the number of times each antiflavour appears, as usual), we have

I3 =
1
2(nu − nd) , Y = 1

3(nu + nd − 2ns) . (5.74)

For one baryon we have nu+nd+ns = 3, and imposing this constraint Eq. (5.74) can be inverted
to give

nu = I3 +
1
2Y + 1 , nu = −I3 + 1

2Y + 1 , ns = 1− Y , (5.75)

that holds for baryons. We can similarly obtain the quark/antiquark composition of each meson,
solving Eq. (5.74) with the constraint nu + nd + ns = 0. This yields

nu = I3 +
1
2Y , nu = −I3 + 1

2Y , ns = −Y , (5.76)

that holds for mesons.
Baryon number and electric charge should be assigned to quarks so that they match the

experimentally observed values for the hadrons. We have already seen in Section 5.1 that this is
possible; let us repeat the argument here to keep the discussion self-contained. First of all, since
we know that baryon number must commute with all the SU(3) generators, we know that we can
assign a baryon number to quarks. For a baryon one must have B = Bunu +Bdnd + Bsns = 1
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I I3 Y Q S B

u 1
2

1
2

1
3

2
3 0 1

3
d 1

2 −1
2

1
3 −1

3 0 1
3

s 0 0 −2
3 −1

3 −1 1
3

Table 11: Quantum number assignment of quarks.

where Bu,d,s are the baryon numbers of the various flavours, on top of nu + nd + ns = 3, and so
0 = 3B−3 = (3Bu−1)nu+(3Bd−1)nd+(3Bs−1)ns. This must hold for all baryons, including
the decuplet states uuu, ddd, and sss, where only a single flavour appears. It follows that
Bu = Bd = Bs =

1
3 . More directly, since baryon number commutes with the SU(3) generators,

it also commutes with the ladder operators that change the quark flavour, and so Bu = Bd = Bs;
since three quarks appear in a baryon, the result above follows.

Next come electric charge and strangeness. A look at Fig. 28 shows that the proton is made
of two u and one d quarks, the neutron is made of two d and one u quarks, and the Λ is made
of one u, one d and one s quark. This, together with the experimental results for their charge
and strangeness, and additivity of these quantum numbers, allows us to determine the value of
electric charge and strangeness of each quark:

p : 2Qu +Qd = 1 , 2Su + Sd = 0 ,
n: Qu + 2Qd = 0 , Su + 2Sd = 0 ,
Λ: Qu +Qd +Qs = 0 , Su + Sd + Ss = −1 ,

(5.77)

from which follows Qu = 2
3 , Qd = Qs = −1

3 , and Su = Sd = 0 and Ss = −1. Since for each flavour
f = u, d, s one has Qf = I3f+

1
2Yf = I3f+

1
2(Bf+Sf ), and since these are all additive quantities,

the Gell-Mann–Nishijima relation and the relation between hypercharge, baryon number, and
strangeness will be automatically satisfied by each baryon. As already pointed out above,
antiquarks have minus the charges of quarks, so in particular baryon number, electric charge,
and strangeness. For a meson made of a quark and an antiquark one will automatically find
vanishing baryon number, and the Gell-Mann–Nishijima and hypercharge/strangeness relations
will be satisfied again.

Finally, since the light baryons and resonances are respectively s = 1
2 and s = 3

2 fermions,
quarks should be assigned half-integer spin s = 1

2 , so that only 1
2 and 3

2 are obtained out of the
composition 1

2 ⊗ 1
2 ⊗ 1

2 = 1
2 ⊕ 1

2 ⊕ 3
2 . In general, any baryon or antibaryon will be a fermion, since

its spin is determined by the composition of three half-integer quark or antiquark spins, and the
two integer relative orbital momenta, and any meson will be a boson, since its spin is determined
by the composition of two half-integer quark/antiquark spins, and the integer relative orbital
momentum.

Explicit breaking of SU(3) So far we have been essentially working under the assumption
of exact SU(3) symmetry, but we knew from the beginning that this symmetry had to be broken.
Postponing a more careful treatment, here we try to assign masses to the quarks assuming that
the binding energy is negligible compared to the quark masses, and based on the observation
that hadronic masses grow approximately linearly with the absolute value of strangeness. We
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then set for a baryon

mB = numu + ndmd + nsms =
mu +md

2
(nu + nd) + (mu −md)

nu − nd
2

+ nsms

=
mu +md

2
(3− ns) + (mu −md)I3 + nsms

=
3

2
(mu +md) + (−S)

(

ms −
mu +md

2

)

+ (mu −md)I3 .

(5.78)

Within an isospin multiplet the splittings are equal to ∆mB = (mu −md)∆I3. Since these are
known to be very small, we set in a first approximation mu = md ≡ mud, obtaining mB =
3mud + (ms −mud)|S|. From the mass splittings of particles with different strangeness we then
find ms −mud = 150 MeV, while from the mass of the nucleon we get 3mud ≈ 940 MeV. We
then find mu ≃ md ≈ 300 MeV and ms ≈ 450 MeV. These masses are very different from the
one discussed in the Introduction, and are referred to as constituent masses: the difference with
the current masses discussed in the Introduction (see Tab. 1) comes from the fact that actually,
contrary to our assumption, most of the mass of a hadron does not come from the quark masses,
but rather from the interaction energy between quarks, as mediated by gluons. Furthermore,
the same estimate would not work with the light pseudoscalar mesons, since linearity of masses
with strangeness is not true in that case. We will return briefly on this point later on.

Quark model What we have discussed above are the basics of the quark model (Gell-Mann,
1964; Zweig, 1964). A few comments are in order. The SU(3) symmetry rotates quark flavours
one into another, and is therefore also called flavour symmetry. It is quite far from being exact,
but still quite close to it to have useful consequences. To explain the differences in baryon
masses it is required to introduce an explicit breaking of the symmetry, which can be achieved
for example through a different assignment of masses to the various flavours, while keeping
the way they interact via strong interactions independent of the flavour. Since we know now
what the microscopic theory of strong interactions is (namely, QCD), we know that this is
exactly how SU(3) symmetry is broken, and so we know what kind of symmetry breaking term
will appear in the strong Hamiltonian. However, the form of this term was guessed correctly
before the discovery of QCD, and led to the Gell-Mann–Okubo formula to be discussed below
in Section 5.2.7. Before doing that, however, we have to fix first a serious problem of the quark
model.

5.2.6 Wave functions, the problem with statistics, and colour

If the quark model is to properly describe hadrons, it should be possible to assign a wave
function to each baryon consistently with the fact that quarks are fermions, i.e., consistently
with Fermi-Dirac statistics. More precisely, if different quark flavours are just different states of
the same spin-12 particle, then the baryon wave functions must be totally antisymmetric under
the exchange of quarks. Setting ψ = ψspaceψspinψflavour, and assuming naturally that the lowest-
lying states have vanishing orbital angular momenta so that the spatial wave function will be
symmetric under exchange of the quarks, we have to achieve antisymmetry from the spin and
flavour parts only. This can hopefully explain why only certain representations appear in nature.

Let us begin with the decuplet. Since s = 3
2 , the spin wave function must be symmetric. But

we have seen that the flavour content of the ∆++ is uuu, and since the ladder operators do not
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change the symmetry properties, we conclude that the flavour wave function is also symmetric
for the decuplet baryons:

∆++ = |uuu〉 ,
∆+ ∝ I−∆

++ ∝ |uud〉+ |udu〉 + |duu〉 ,
Σ∗+ ∝ V−∆

++ ∝ |uus〉+ |usu〉+ |suu〉 ,
Σ∗0 ∝ V 2

−∆
++ ∝ |uss〉+ |sus〉+ |ssu〉 ,

Ω− ∝ V 3
−∆

++ ∝ |sss〉 ,

(5.79)

and similarly for the other states obtained by applying powers of I−. This is not acceptable for
fermions: if anything, our attempt to solve the representation puzzle seems to go in the wrong
direction. On the other hand, everything else seems to work just fine: how can we solve this
contradiction?

Before trying to deal with this, let us note that in flavour space, from the composition
3⊗ 3⊗ 3, we also get, besides the decuplet, a fully antisymmetric singlet,

1

6
(|uds〉+ |dsu〉+ |sud〉 − |usd〉 − |sdu〉 − |dus〉) , (5.80)

and other 16 = 8+8 states with mixed symmetry. To build, e.g., nucleon states, with s = I = 1
2

and zero strangeness, we can start from two quarks in a s = I = 0 state and combine them with
the remaining quark to trivially obtain s = I = 1

2 . The wave function of the first two quarks is
then symmetric,

1√
2
(| ↑↓〉 − | ↓↑〉) 1√

2
(|ud〉 − |du〉) . (5.81)

In analogy to the decuplet states, let us build a wave function which is overall symmetric in
spin and flavour, and so, at first sight, unacceptable. Picking the neutron, the remaining d
quark can be chosen as the first, the second or the last of the three: denoting with ψij the
antisymmetric flavour wave function of Eq. (5.81) involving quarks i and j, and by φk the
flavour wave function of the k-th quark, and similarly denoting with ψ̃ij the antisymmetric spin
wave function of Eq. (5.81) involving quarks i and j, and by φ̃k the spin wave function of the
k-th quark, we can build

ψ12φ3ψ̃12φ̃3 + ψ23φ1ψ̃23φ̃1 + ψ13φ2ψ̃13φ̃2

= |udd; ↑↓↑〉 + |dud; ↓↑↑〉 + |ddu; ↑↓↑〉 + |udd; ↑↑↓〉 + |dud; ↑↑↓〉 + |ddu; ↓↑↑〉
− 2|udd; ↓↑↑〉 − 2|dud; ↑↓↑〉 − 2|ddu; ↑↑↓〉 ,

(5.82)

which is totally symmetric. Note that ψ12 + ψ23 = ψ13: the three flavour wave functions
appearing in Eq. (5.82) are not independent, and they should not be since we have only two
octets in 3 ⊗ 3 ⊗ 3. Similarly, ψ̃12 + ψ̃23 = ψ̃13, which again should be the case since we have
only two spin-12 representations in the decomposition of 1

2 ⊗ 1
2 ⊗ 1

2 . Contrary to the s = 3
2 case,

here it is possible to construct also a totally antisymmetric flavour-spin wave function. If one
were to stick to the requirements of Fermi-Dirac statistics, one would find an octet of s = 1

2
baryons, but a single s = 3

2 baryonic resonance, contrary to experimental evidence.
Let us now briefly turn to mesons, where we have no restriction on the symmetry of the wave

function since we are combining quarks and antiquarks. Meson states can have spin 1
2⊗ 1

2 = 0⊕1,

129



so the ground states with ℓ = 0 are either J = 0 or J = 1 particles. Quantum field theory tells
us that quarks and antiquarks have opposite intrinsic parity, so lowest-lying mesons are either
pseudoscalars or vectors. From 3 ⊗ 3̄ = 8 ⊕ 1 we obtain an octet and a singlet. As long
as we deal with an exact flavour symmetry, the quark content of the pseudoscalar and vector
mesons is identical. However, if we look at the quark content of physical particles, we must take
into account that SU(3) is broken down to SU(2)I × U(1)Y , and so the I = 0 states from the
SU(3) octet and the SU(3) singlet can mix. For this reason, mesons are sometimes classified
into nonets, although there is no nine-dimensional irreducible representation of SU(3). It turns
out that while this mixing is small for the pseudoscalars, it is almost maximal for the vectors,
leading to the combinations shown in Fig. 29.

We can now go back to our antisymmetrisation problem, and discuss how that can be solved.
The way out was suggested by Greenberg in 1964: add a further degree of freedom, and ask for
the corresponding part of the wave function to be antisymmetric under quark exchange. To this
extra degree of freedom, called colour, is naturally associated an extra SU(Nc) symmetry. Since
there are no further degeneracies among hadrons masses, neither exact nor approximate, then
not only the colour wave function for baryons must be antisymmetric under exchange, but in
general it should also be a singlet of SU(Nc), for all hadrons. For Nc colours, the simplest singlet
wave functions are obtained using the SU(Nc)-invariant tensors δi1i2 or ǫi1...iNc , where each index
runs over the values 1, . . . , Nc.

81 The tensor δi1i2 allows one to build a singlet out of the wave
functions of a fundamental/complex conjugate pair, and so is appropriate for a quark/antiquark
pair and so for mesons:

δi1i2ψ
(1)
i1
ψ
(2) ∗
i2

, (5.83)

where 1, 2 denote collectively the flavour and spin degrees of freedom of the quark and antiquark.
The Levi-Civita tensor is instead totally antisymmetric, and allows one to build a singlet out of
the wave functions of Nc fundamental objects,

ǫi1...iNcψ
(1)
i1
. . . ψ

(Nc)
iNc

, (5.84)

where similarly 1, . . . , Nc denote collectively the flavour and spin degrees of freedom of the Nc

quarks. If one assumes that there are Nc = 3 colours one then achieves two results at once: one
obtains an “explanation” of why it takes three quarks to make a baryon; and one can combine the
antisymmetric colour wave function Eq. (5.84) with a symmetric flavour/spin wave function to
obtain acceptable wave functions both for the octet and the decuplet baryonic states. Moreover,
since one cannot make a totally antisymmetric spin wave function out of three quarks, then one
cannot use the flavour singlet wave function for baryons: the representation puzzle is then fully
solved.

Although the introduction of colour was meant initially to fix the problem of the quark
model with statistics, it later became the basis for the fundamental dynamical theory of strong
interactions, i.e., QCD (Fritzsch, Gell-Mann, and Leutwyler, 1973). Besides using theoretical
considerations to fix it, the number of colours can also be determined experimentally.

• The process e+e− → hadrons proceeds through annihilation of the electron-positron pair
into a photon, which subsequently decays into a quark-antiquark pair. The quark and
antiquark must be of the same colour type since the photon is colourless, but any colour

81More complicated tensors can be used as well, but let us stick to the simplest ones.
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type is fine, and so the total cross section is proportional to Nc. Furthermore, if a quark-
antiquark pair of flavour f is produced, then a factor Q2

f appears in the cross section,

with Qf the electric charge of the quark. The ratio R = σ(e+e−→hadrons)
σ(e+e−→µ+µ−) is then equal

to R(s) = Nc
∑N̄f (s)

f Q2
f , with the sum running over the kinematically accessible flavours

N̄f (s).

• Further experimental evidence is provided by the so-called Drell-Yan process πN →
µ+µ−X, where X stands for any other possible final product besides the muon pair. This
process takes place through annihilation of one of the quarks from the baryon with the
antiquark in the pion into a virtual photon, which subsequently decays into a muon pair.
The photon is a colour singlet, and so it can only be created if the quark and the antiquark
are of the same colour type, leading to zero net colour. It there are Nc colours, only Nc

out of the N2
c possible combinations can lead to photon production, and so the total cross

section is proportional to 1/Nc. Comparison with the cross section for e+e− → µ+µ−

shows that Nc = 3.

• Another experimental confirmation comes from the neutral pion decay process π0 → γγ.
Here the uū or the dd̄ component of π0 annihilates into two photons, and each colour
contributes equally to the amplitude, leading to an enhancement factor proportional to
N2
c in the decay width, compared to the decay width for the charged-pion decay process

π+ → µ+νµ.

5.2.7 The Gell-Mann–Okubo formula

As the last topic in the quark model, we discuss now how one determines the mass splittings
in hadronic multiplets, i.e., how one breaks the SU(3) symmetry in order to reproduce the
experimental results. With our modern knowledge of QCD and of the fact that ms ≫ md ≃ mu,
we can write down the strong interaction Hamiltonian in the quark rest frame as

〈qi|H|qj〉 =Mij = miδij = diag(mud,mud,ms)

=
2mud +ms

3
1+

mud −ms

3
diag(1, 1,−2) =

2mud +ms

3
1+

mud −ms√
3

λ8 .
(5.85)

At the static level, and at the level of quarks, we then have H = H0 + H8, where H0 is an
SU(3) singlet and H8 transforms as the eighth component in the adjoint representation.82 How-
ever, this kind of symmetry-breaking term had been proposed before the discovery of QCD,
motivated by the fact that the breaking had to preserve both isospin and strangeness (or hyper-
charge, equivalently), and so had to be an isosinglet with vanishing hypercharge. The smallest
representation with an element having I = Y = 0 is precisely the adjoint (i.e., the 8).

In order to obtain a quantitative estimate, we now assume that H8 is a small perturbation
compared to H0, and use the machinery of first-order perturbation theory. The ground-state
baryons consist of an octet of spin-12 states and a decuplet of spin-32 states, so they cannot be
mixed by a rotation-invariant perturbation, and we need worry only about the matrix elements
of H8 between members of a single irreducible representation. For each of these multiplets of

82This actually remains true in the full dynamical case of QCD, where the symmetry-breaking term is a mass
term proportional to

∫

d3xψ̄λ8ψ; notice that this is not the eighth generator of the SU(3) symmetry, which is
instead

∫

d3xψ†λ8ψ.
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baryons, that in the SU(3) symmetric case are exactly degenerate, i.e., H0|B(0)〉 = m(0)|B(0)〉
for each unperturbed state B(0) in the representation, what we have to do is to diagonalise
the perturbation within the degenerate subspace, i.e., diagonalise 〈B(0)′|H8|B(0)〉. As we will
now show using representation theory, the perturbation is diagonal in the basis of isospin and
hypercharge eigenstates, so the masses of physical baryons are given by mB = m(0)+∆mB with
∆mB = 〈B(0)|H8|B(0)〉. Moreover, representation theory allows us to determine all the ∆mB in
a multiplet up to two unknown coefficients, which depend on the multiplet and on the details
of the interaction.

Decomposition of an operator in irreducible components In order to see this, we will
need a few pieces of information about representations in general, and about SU(3) in particular.

First of all consider the matrix having as entries the matrix elements O
(R′,R)
B′B = 〈B′(R′)|O|B(R)〉

of some operator O between states B and B′ transforming in the representations R and R′,
respectively. This matrix is an object that transforms according to the representation R ⊗ R̄′,
since under an SU(3) transformation

O
(R′,R)′
B′B = 〈B′(R′)|Û †OÛ |B(R)〉 =

∑

B̃,B̃′

(UR′)
∗
B̃′B′

(UR)B̃B〈B̃′(R′)|O|B̃(R)〉 =

=
∑

B̃,B̃′

(UR′)
∗
B̃′B′

(UR)B̃BO
(R′,R)

B̃′B̃
,

(5.86)

where Û is the unitary operator representing the flavour transformation on the Hilbert space of
states. In matrix notation

O(R′,R)′ = U †
R′O

(R′,R)UR . (5.87)

As an element of the linear space of matrices, the matrix O(R′,R) can be written as a linear

combination of basis elements, for example the matrices e(R
′,R)B′B with entries e

(R′,R)B′B

B̃′B̃
=

δB′B̃′δBB̃ . One has simply

O(R′,R) =
∑

B′,B

e(R
′,R)B′B O

(R′,R)
B′B . (5.88)

The matrices e(R
′,R)B′B = e(R

′)B′ ⊗ e(R)B correspond also to the tensor product of the basis
vectors e(R

′)B′ and e(R)B , that correspond in turn to the states B′ and B in representations
R′ and R of SU(3), respectively. This shows again that O(R′,R) transforms in the R ⊗ R̄′

representation. We know that such a direct product of representations can be decomposed in
a direct sum of irreducible representations, R ⊗ R̄′ =

⊕

R̃ R̃: in practice, this means that the

basis {e(R′,R)B′B} can be traded for a new basis obtained putting together the bases of the
invariant subspaces, which support the various irreducible components of R ⊗ R̄′. This can be
done choosing eigenvectors of I3 and Y , as usual, so we trade

{e(R′ ,R)B′B} → {T (R̃,n)
(R′,R)j} , (5.89)

with R̃ running over the irreducible representations appearing in R ⊗ R̄′ and n running over
their multiplicity (a given irreducible representation may appear more than once), and j running
over the weights of R̃ or, in other words, over the eigenvalues of I3 and Y , as well as ~I 2. The
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matrices T (R̃,n)
(R′,R)j obey by construction

U †
R′T

(R̃,n)
(R′,R)jUR =

∑

j′

(UR̃)j′jT
(R̃,n)
(R′,R)j′ . (5.90)

After the change of basis Eq. (5.89) we then write

O(R′,R) =
∑

R̃,n,j

C
(R̃,n)
j (R,R′;O)T (R̃,n)

(R′,R)j , (5.91)

with suitable coefficients C
(R̃,n)
i (R,R′;O); in components,

〈B′(R′)|O|B(R)〉 = O
(R′,R)
B′B =

∑

R̃,j

C
(R̃,n)
i (R,R′;O)(T (R̃,n)

(R′,R)j)B′B . (5.92)

We can now state precisely what we mean for an operator to carry quantum numbers I = Y = 0:

for such an operator, the only basis elements T (R̃,n)
(R′,R)j appearing in the decomposition Eq. (5.92)

are those corresponding to an isosinglet with Y = 0. As such, they are invariant under
SU(2)I ×U(1)Y transformations, and so are suitable for breaking the SU(3) symmetry down to
the symmetry actually observed in nature. Infinitely many representations contain such an ele-
ment, the smallest one being the adjoint (8) representation. Stating that an operator transforms

like the eight component of an octet means that in Eq. (5.92) only terms T (8,n)
(R′,R)I=0,Y=0 appear.

One could similarly consider operators transforming like any element of any representation.
The discussion above generalises without much effort to any symmetry group. To see how

it works in practice, consider the composition of an s = 1̄
2 and a s = 1

2 representation of SU(2).
The most general element of the tensor product of the two representation spaces is a linear
superposition of | 1̄2 , s̄3〉 ⊗ |12 , s3〉 states, which can be conveniently written as a matrix,

M =

(
a b
c d

)

= a

(
1 0
0 0

)

︸ ︷︷ ︸

| 1̄
2
,− 1

2
〉⊗| 1

2
, 1
2
〉

+b

(
0 1
0 0

)

︸ ︷︷ ︸

−| 1̄
2
, 1
2
〉⊗| 1

2
, 1
2
〉

+c

(
0 0
1 0

)

︸ ︷︷ ︸

| 1̄
2
,− 1

2
〉⊗| 1

2
,− 1

2
〉

+d

(
0 0
0 1

)

︸ ︷︷ ︸

−| 1̄
2
, 1
2
〉⊗| 1

2
,− 1

2
〉

. (5.93)

Under an SU(2) transformation, M → U †MU with U ∈ SU(2). This matrix can also be
decomposed as follows,83

M =
a+ d

2
1+ b

σ1 + iσ2
2

+ c
σ1 − iσ2

2
+
a− d

2
σ3

=
a+ d

2
T (0)
0 + bT (1)

+1 +
a− d

2
T (1)
0 + cT (1)

−1 .

(5.94)

The first term is clearly invariant under an SU(2) transformation, and corresponds to an S =
0 state. The combination of the other three terms is a traceless matrix; since the trace is
invariant under SU(2) transformation, the transformed of this quantity will still be a traceless
matrix, which therefore belong to an invariant subspace of dimension 3 (without further invariant

83For notational simplicity we drop the subscript ( 1̄
2
, 1
2
) in T (S)

(
1̄
2
,
1
2
)S3

.
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subspaces). The matrices T (1)
1,0,−1 form a basis of this space, and are easily seen to be invariant

up to a factor under the particular transformations U = eiα
σ3
2 , i.e.,

U †T (1)
S3
U = S3T (1)

S3
. (5.95)

This means that they form a triplet of S = 1 states with definite S3 = s̄3 + s3.

SU(3) breaking We can now focus on the case of interest. We want to break the SU(3) sym-
metry of the unperturbed Hamiltonian H0 with a term that transforms like the eighth element
of an octet. We write for the full strong Hamiltonian Hstrong = H0 +H8. Working in first order
perturbation theory, as explained above, we need to diagonalise the matrix 〈B′(R)|H8|B(R)〉
within the octet and the decuplet, i.e., for R = 8,10. The transformation properties ofH8 means
that only R̃ = 8 and j corresponding to I = Y = 0 appear in the decomposition Eq. (5.92) for
O = H8. It is a result in representation theory that for SU(3) and for R′ = R, the 8 represen-
tation appears at most twice in the decomposition in irreducible representations of R̄⊗R. We
can therefore write

〈B′(R)|H8|B(R)〉 = δm1(R)(T (8,1)
(R)8 )B′B + δm2(R)(T (8,2)

(R)8 )B′B , (5.96)

where T (8,i)
(R)8 are suitable matrices,84 and δmi(R) = C

(8,i)
I=Y=0(R,R;H8) are the corresponding

coefficients in the decomposition Eq. (5.92). These multiplet-dependent coefficients cannot be
determined by symmetry requirements, but they paramterise the symmetry breaking patterns

within each irreducible multiplet once that we have found two suitable structures T (8,i)
(R)8 with

the desired transformation properties.
The first structure is easy to find. By construction, the representatives of the generators T aR

in representation R obey
[T aR, T

b
R] = ifabcT

c
R , (5.97)

from which follows
U †
RT

a
RUR = (U8)abT

b
R . (5.98)

In fact, Eq. (5.97) is essentially the infinitesimal for of Eq. (5.98); the latter then follows from
the former by exponentiation.85 This means that the T aR transform in a 8 component within

R⊗ R̄, and so T (8,1)
(R)8 = T 8

R is the first matrix we are after.
To find the second structure we go back to the Gell-Mann matrices, and notice that the

product of any two of them is necessarily of the form

λaλb =
1

2
{λa, λb}+ 1

2
[λa, λb] =

2

3
δab + (dabc + ifabc)λ

c . (5.99)

84We dropped one of the R in the subscript for notational simplicity.
85Setting T bR(x) ≡ e−ixαaT

a
RT bRe

ixαa′T
a′

R , one finds

d

dx
T bR(x) = −ie−ixαaT

a
R [αaT

a
R, T

b
R]e

ixαa′T
a′

R = iαa(−ifabc)e−ixαaT
a
RT cRe

ixαa′T
a′

R = i(αaT
a
8 )bcT

c
R(x)

which for boundary condition T bR(0) = T bR has the solution

T bR(x) = (eixαaT
a
8 )bcT

c
R .

It follows that T bR(1) = U†RT
b
RUR = (eiαaT

a
8 )bcT

c
R = (U8)bcT

c
R.
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This follows from the fact that λaλb is still a 3 × 3 complex matrix, which can be written as a
linear combination with complex coefficients of the identity matrix and of Hermitian traceless
matrices, which in turn decomposes into a Hermitian part, symmetric under exchange of a and
b, and an anti-Hermitian part, antisymmetric under exchange of a and b. The coefficient of the
identity matrix is fixed by the normalisation of the Gell-Mann matrices, the fabc are just the
structure constants of the group, and the symbols

dabc =
1
4tr {λa, λb}λc = 2tr {ta, tb}tc (5.100)

are totally symmetric since they are invariant under cyclic permutations of the indices. An
important property that follows directly form Eq. (5.100) is that dabc is invariant under the
transformation of all the indices via the adjoint representation,86

(U8)a′a(U8)b′b(U8)c′cda′b′c′ = dabc . (5.101)

In turn this entails that Da
R ≡ dabcT

b
RT

c
R transforms in the adjoint representation,

U †
RD

a
RUR = U †

RdabcT
b
RT

c
RUR = dabc(U

†
RT

b
RUR)(U

†
RT

c
RUR)

= dabc(U8)bb′(U8)cc′T
b′
RT

c′
R = da′′bc(U8)a′′a′(U8)aa′(U8)bb′(U8)cc′T

b′
RT

c′
R

= (U8)aa′da′bcT
b
RT

c
R = (U8)aa′D

a′
R ,

(5.102)

having used U−1
8

= UT
8
. In conclusion, we have for the most general symmetry breaking term

with the desired transformation properties

〈B′(R)|H8|B(R)〉 = δm1(R)(T
8
R)B′B + δm2(R)(D

8
R)B′B . (5.103)

The values of d8bc are explicitly known, and using them one finds

D8
R = d8bcT

b
RT

c
R = − 1

2
√
3

∑

a

(T aR)
2 +

√
3

2
[(T 1

R)
2 + (T 2

R)
2 + (T 3

R)
2]− 1

2
√
3
(T 8
R)

2

= − 1

2
√
3
CR +

√
3

2

(

~I 2 − 1

4
Y 2

)

.

(5.104)

Here CR =
∑

a(T
a
R)

2 is the quadratic Casimir operator, which commutes with all the generators
of the group and therefore with all the elements of the irreducible representation of the group.
By Schur’s lemma, it must be proportional to the identity within the multiplet. More directly,
since it commutes with the ladder operators and the irreducible representations are built through
them starting from the highest-weight state |ψ, I+|ψ〉 = V+|ψ〉 = W+|ψ〉 = 0, the value of CR
is the same for all the states in the representation.87 The remaining terms depend only on ~I 2

86From the invariance of the trace and the transformation properties of ta

dabc = 2tr {U3t
aU†

3
, U3t

bU3}†U3t
cU†

3
= (U8)a′a(U8)b′b(U8)c′c2tr {ta

′

, tb
′

}tc
′

= (U8)a′a(U8)b′b(U8)c′cda′b′c′ .

87One can then evaluate CR on |ψ〉, using

CR = ~I 2 + ~V 2 − V 2
3 + ~W 2 −W 2

3 +
(√

3
2
Y
)2

= I3(I3 + 1) + V3 +W3 +
(√

3
2
Y
)2

+ I−I+ + V−V+ +W−W+ ,

(5.105)
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and Y , and so the perturbation is diagonal in the basis of I, I3, Y states, as it should be since
we asked for [~I,H8] = [Y,H8] = 0. The diagonal terms read

∆mB = 〈B(0)|H8|B(0)〉 =
√
3

2

[

δm1(R)YB + δm2(R)

(

−CR
3

+ IB(IB + 1)− 1

4
Y 2
B

)]

, (5.107)

with IB and YB the total isospin and the hypercharge of baryon B. Putting everything together
and redefining appropriately the unknown constants, we obtain

mB = m(0)(R) + 〈B(0)|H8|B(0)〉

= m̃(0)(R) + δm̃1(R)YB + δm̃2(R)

[

IB (IB + 1)− 1

4
Y 2
B

]

.
(5.108)

This is the Gell-Mann–Okubo mass formula. Let us check how well it works in practice.

Baryon octet For the baryon octet we have (the notation XI,Y is used for particle X):

Λ0,0 : mΛ = m̃(0)

N 1
2
,1 : mN = m̃(0) + δm̃1 +

1

2
δm̃2

Σ1,0 : mΣ = m̃(0) + 2δm̃2

Ξ 1
2
,−1 : mΞ = m̃(0) − δm̃1 +

1

2
δm̃2 ,

(5.109)

Since there are four equations with three unknowns, one can extract one relation among masses.
This can be taken to be for example

mN +mΞ = 3
2mΛ + 1

2mΣ . (5.110)

Plugging in the experimental values one finds for the LHS the value 2257 MeV, and for the RHS
2270.5 MeV, i.e., the formula is accurate to the percent level.

Baryon decuplet For the decuplet I and Y are linearly related: one immediately sees that
2I − Y is constant, and using, e.g., the Ω− one finds 2I − Y = 2. This implies

I(I + 1)− 1

4
Y 2 = 2 +

3

2
Y , (5.111)

and so the mass formula boils down to

mB = m̃(0) + δmY . (5.112)

and since I+|ψ〉 = V+|ψ〉 =W+|ψ〉 = 0 one finds

CR = i0(i0 + 1) + 3
2
y0

(

1 + 1
2
y0
)

= 4
3
(i20 + w2

0 + i0w0) + 2(i0 +w0) , (5.106)

where w0 = − 1
2
i0 +

3
4
y0.
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This explains the very accurate linear dependence of decuplet masses on strangeness. In this
case one finds

∆ 3
2
,1 : m∆ = m̃(0) + δm ,

Σ∗
1,0 : mΣ∗ = m̃(0) ,

Ξ∗
1
2
,−1

: mΞ∗ = m̃(0) − δm ,

Ω0,−2 : mΩ = m̃(0) − 2δm ,

(5.113)

from which one can extract two mass relations, e.g.,

m∆ +mΞ∗ = 2mΣ∗ ,

2m∆ +mΩ = 3mΣ∗ ,
(5.114)

which yield LHS=2765 MeV, RHS=2768 MeV and LHS=4136 MeV, RHS=4152 MeV, respec-
tively, i.e., an accuracy of the order of the permille. The mass of the Ω− was initially predicted
by means of this formula.

Meson octet For the pseudoscalar meson octet the Gell-Mann–Okubo formula fails disas-
trously. One thing we did not take into account is mixing of the flavour singlet and the flavour
octet, but while this is important for the vector mesons, mixing is quite small for the pseu-
doscalars. However, if one uses the square of the masses, then the analogue of Eq. (5.110),

4m2
K = 3m2

η +m2
π (5.115)

gives on the LHS 0.98 GeV2 and on the RHS 0.92 GeV2, so again a percent level of accuracy.
The reason why the original formula fails can be traced back to the fact that the effect of the
perturbation is not small here, but rather of the same order of the unperturbed masses: in
this cases there is no reason to expect perturbation theory to work well. The reasons why the
formula with the squared masses works well, instead, is hidden in the phenomenon of spontaneous
breaking of chiral symmetry in QCD, a topic beyond the scope of these notes.

For completeness, we give here the derivation of the relevant coefficients dabc. From Eq. (5.100) we
have d8bc =

1
4 tr {λ8, λb}λc. Notice that

λ8 = 1√
3
(1I − 20I) =

1√
3

(
−λ3 + 2λ3V

)
= 1√

3

(
λ3 + 2λ3W

)
, (5.116)

where

1I =

(
12

~0
~0† 0

)

, 0I =

(
02

~0
~0† 1

)

, λ3V =





1 0 0
0 0 0
0 0 −1



 , λ3W =





0 0 0
0 1 0
0 0 −1



 . (5.117)

The matrices λ3V,W are the counterpart of λ3 in the su(2) subalgebras involving λ4,5 and λ6,7, and as
such they anticommute with these matrices. One has then

{λ8, λ1,2,3} = 2√
3
λ1,2,3 , {λ8, λ4,5} = − 1√

3
{λ3, λ4,5} , {λ8, λ6,7} = 1√

3
{λ3, λ6,7} . (5.118)

Notice furthermore that

λ4 =

(
02 ~n+

~n†
+ 0

)

, λ5 =

(
02 −i~n+

i~n†
+ 0

)

, λ6 =

(
02 ~n−
~n†
− 0

)

, λ7 =

(
02 −i~n−
i~n†

− 0

)

, (5.119)
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where σ3~n± = ±~n±, and so

{

λ3,

(
02 α~n±
β~n†

± 0

)}

=

(
02 ασ3~n±

β~n†
±σ

3 0

)

= ±
(

02 α~n±
β~n†

± 0

)

. (5.120)

It follows that
{λ8, λ4,5,6,7} = − 1√

3
λ4,5,6,7 . (5.121)

Finally,
{λ8, λ8} = 2(λ8)2 = 2

313 − 1√
3
λ8 . (5.122)

Since 1
4 tr λ

aλb = 1
2δ

ab, we have in summary,

d8bc = Kbδbc , K1,2,3 = 1√
3
, K4,5,6,7 = − 1

2
√
3
, K8 = − 1√

3
. (5.123)

Colour conservation and confinement The way out of the antisymmetrisation problem
for the hadronic wave functions was the introduction of the colour quantum number for quarks,
with an associated colour symmetry SU(3). Colour is then a conserved quantity; one can check
that it is indeed so at every vertex in QCD. On the other hand, we also required for physical
states to be singlets under colour transformations, i.e., to have net colour zero. The conservation
law for colour in physical processes then boils down to zero colour in, zero colour out.

The requirement for quarks and gluons is actually stronger than just being bound in colour-
less states: it is required of them to be permanently bound within hadrons, without the possi-
bility of being liberated by pulling them sufficiently far apart from each other.88 This is what
is called confinement of quarks and gluons.

Although confinement is not (yet) proved within QCD, and the detailed mechanism through
which it works has not yet been unveiled, nevertheless there is an argument that helps in
explaining it. The (spin-independent part of the) potential between a quark and an antiquark
turns out to be of the form

Vs = −4

3

αs
r

+ σr , (5.124)

in the static limit of infinite quark masses. Here αs =
g2s
4π with gs the strong coupling constant,

and σ is the string tension. As the quark and the antiquark are pulled apart, the energy stored
in the system keeps increasing linearly with the distance, and to separate them to an infinite
distance (therefore liberating them) would require an infinite amount of energy. This would
be strictly true if the quarks were static, i.e., with infinite mass. Since their mass is finite, for
some distance R the energy stored in the system becomes sufficient to create a qq̄ pair out of
the vacuum (for σR = 2mq), with the new particles binding to the old ones and so preventing
quark liberation. This process is called string breaking, and makes the potential Vs actually flat
at large distances.

A Relativistic kinematics

The appropriate setting for relativistic theories is Minkowski space, in which time and space are
put together in a four-dimensional entity. A point, or event, in Minkowski space is identified by

88This can change in a hot and dense environment: for sufficiently large temeperatures and/or densities, quarks
and gluons get liberated from hadrons and form the so-called quark-gluon plasma.
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four coordinates, and is denoted as Xµ with µ = 0, 1, 2, 3, with X0 the temporal coordinate and
the Xj , j = 1, 2, 3 the spatial coordinates. In formulas,

Xµ = (ct, ~x) = (t, ~x) , (A.1)

having set the speed of light to c = 1. Usually, Greek indices run over 0, . . . , 3 and Latin indices
over 1, . . . , 3.

Putting time and space together does not, by itself, add much to our understanding of
Nature. What does, then? Let us consider first three-dimensional Euclidean space. Points in
this space are identified by three coordinates as ~x, but what makes this space the Euclidean
space and not just R

3 is how we measure distances, i.e., the choice of a metric. In Euclidean
space distances are defined as

d(~x, ~y) = (~x− ~y )2 = (~x− ~y )i(~x− ~y )jδij , (A.2)

and are clearly left invariant by translations ~x→ ~x+~a and rotations ~x→ R~x. Here we adopt the
convention that a sum over repeated indices is understood, unless explicitly stated otherwise.

In Minkowski space, distances are replaced with the so-called interval,

∆s2 ≡ (X−Y )2 ≡ (X−Y )µ(X−Y )νgµν ≡ (X−Y )µ(X−Y )µ = (X0−Y 0)2−( ~X− ~Y )2 , (A.3)

where gµν is the Minkowski metric tensor,

gµν = diag(1,−1,−1,−1) . (A.4)

In Eq. (A.3) we have defined the covariant vector Xµ = gµνX
ν , which differs from the con-

travariant vector Xµ in the sign of the spatial components,

Xµ = (X0, ~X) , Xµ = (X0,− ~X) . (A.5)

In general, indices are lowered by gµν , and raised by gµν defined by the relation gµρgρν = δµν .
In the case at hand, gµν = diag(1,−1,−1,−1), so as a matrix it is identical to gµν . For future
utility, we introduce the scalar product

X · Y ≡ XµY νgµν = XµYµ = X0Y 0 − ~X · ~Y , (A.6)

where ~X · ~Y denotes the usual three-dimensional Euclidean scalar product. The interval is not
really a distance, because it is not a positive-definite quantity. For ∆s2 > 0, we speak of a
timelike interval; for ∆s2 < 0 of a spacelike interval; for ∆s2 = 0 of a lightlike or null interval.
In general, for X2 > 0 we speak of a timelike vector, for X2 < 0 of a spacelike vector, and for
X2 = 0 of a lightlike or null vector.

Points Y lightlike-separated from X and such that Y 0 −X0 > 0 form the forward or future
lightcone of X, while those with Y 0 − X0 < 0 form its backward (past) lightcone. Points Y
timelike-separated from X and such that Y 0 − X0 > 0 are inside the forward lightcone and
constitute the future of event X; similarly, points Y timelike-separated from X and such that
Y 0 − X0 < 0 are inside the backward lightcone and constitute the past of event X. Set for
simplicity X = 0, and consider the future of this event. An important fact is that given X1 and
X2 inside the forward light cone, their sum X1 + X2 will still be inside the forward lightcone.
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The proof is simple: first of all, notice that since X1,2 are inside the forward lightcone, one has

(X)21,2 > 0 and X0
1,2 > 0, which imply X0

1,2 > | ~X1,2|. We then have

(X1 +X2)
2 = (X1)

2 + (X2)
2 + 2X1 ·X2 = (X1)

2 + (X2)
2 + 2(X0

1X
0
2 − ~X1 · ~X2)

> 2(X0
1X

0
2 − ~X1 · ~X2) ≥ 2(X0

1X
0
2 − | ~X1|| ~X2|) ,

(A.7)

where we made use of Schwartz inequality. Next, we use X0
1,2 > | ~X1,2| to show that X0

1X
0
2 −

| ~X1|| ~X2| ≥ 0, and conclude

(X1 +X2)
2 > 2(X0

1X
0
2 −X0

1X
0
2 ) ≥ 0 , (A.8)

i.e., (X1 +X2)
2 > 0, and obviously X0

1 +X0
2 > 0.

A.1 Lorentz transformations

In three-dimensional Euclidean space, the distance between points is invariant under rotations.
The analogue in four-dimensional Minkowski space is the invariance of the interval under Lorentz
transformations. These are precisely defined as the linear transformations X ′ = ΛX that leave
every interval invariant. The motivation behind this definition is that we want to find which
transformations connecting different reference frames are consistent with Einstein’s postulate
that light travels at the same speed in each frame.89 Our request is therefore

(X ′ − Y ′)2 = (X − Y )2 ⇒ X ′ 2 + Y ′ 2 − 2X ′ · Y ′ = X2 + Y 2 − 2X · Y ⇒ X ′ · Y ′ = X · Y . (A.9)

In components, X ′µ = ΛµαXα,

gαβX
αY β = gµνX

′µY ′ν = gµνΛ
µ
αΛ

ν
βX

αY β , (A.10)

and since this must hold for all X and Y ,

gαβ = gµνΛ
µ
αΛ

ν
β . (A.11)

Using the matrix notation Λµα = Λµα, gµν = gµν , Eq. (A.11) is recast as

g = ΛTgΛ . (A.12)

From this it follow immediately that (detΛ)2 = 1, i.e., detΛ = ±1, so that Λ is invertible.
Transformations with detΛ = 1 are called proper, and leave unchanged the orientation of space
(i.e., they transform a right-handed spatial coordinate system into another right-handed spatial
coordinate system); improper transformations instead invert the orientation of space. Since
clearly g−1 = g is invertible,

Λ−1 = g−1ΛTg . (A.13)

It is easy to see that Λ−1 is still a Lorentz transformation:

g = [ΛΛ−1]Tg[ΛΛ−1] = Λ−1T [ΛTgΛ]Λ−1 = Λ−1 TgΛ−1 . (A.14)

89This request imposes Eq. (A.9) only for light-like vectors. One has to further impose the principle of relativity,
i.e., equivalence of observers, to arrive at Eq. (A.10).
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Let us see how this reads in component notation. From the definition of gµν , we see that
gµν = g−1

µν . Then

Λ−1
αβ = gαµΛνµgνβ = Λ α

β . (A.15)

Consider now the α = 0, β = 0 component of Eq. (A.11). We have

1 = Λ0
0Λ

0
0 − Λi0Λ

i
0 , (A.16)

where sum over i = 1, 2, 3 is understood. Since Λi0Λ
i
0 ≥ 0, we find (Λ0

0)
2 ≥ 1, and so either

Λ0
0 ≥ 1 or Λ0

0 ≤ −1. Transformations with Λ0
0 ≥ 1 are called orthocronous. An orthocronous

transformation does not change the sign of the time coordinate. In fact, consider a vector X
inside the forward lightcone, and X ′ = ΛX. Notice first of all that from Eq. (A.11) one finds

gαβ = gµνΛ α
µ Λ β

ν . (A.17)

Using this relation for the inverse transformation Λ−1α
β = Λ α

β , i.e.,

gαβ = gµνΛαµΛ
β
ν , (A.18)

a relation analogous to Eq. (A.16) follows,

1 = Λ0
0Λ

0
0 − Λ0

iΛ
0
i . (A.19)

We now have for X ′0

X ′0 = Λ0
0X

0 + Λ0
iX

i . (A.20)

The second term is the three-dimensional scalar product ~Λ · ~X ≡ Λ0
iX

i, so bounded from below

by −|~Λ|| ~X |. But | ~X | < X0, and from Eq. (A.19) |~Λ| < Λ0
0, so that

X ′0 > Λ0
0X

0 − Λ0
0X

0 = 0 . (A.21)

A proper orthocronous Lorentz transformation therefore does not change neither the direction
of time nor the orientation of space.

The proper orthocronous Lorentz transformations consist of three-dimensional rotations (the
SO(3) group) and boosts. More precisely, the most general such transformation can be written
as the product of a rotation times a boost in the x direction,

Λµν =







γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1







(A.22)

where β = v
c < 1 (we work in natural units where c = 1), and γ = 1/

√

1− β2. A boost in
a general direction can obviously be obtained by first rotating x to the desired direction. The
effect of the transformation Eq. (A.22) is to transform time and space coordinates t, x, y, z to
new time and space coordinates t′, x′, y′, z′ according to

ct′ = γ(ct+ βx) , x′ = γ(x+ βct) ,

y′ = y , z′ = z ,
(A.23)
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where we have reinstated the appropriate factors of c. This is recognised as the transforma-
tion relating the reference frame R, where t, x, y, z are used, to the reference frame R′ (where
(t′, x′, y′, z′ are used) moving with speed β in the negative x direction. In fact, in the nonrel-
ativistic limit β = v/c ≪ 1 one recovers the Galilei transformations. All the other Lorentz
transformations are obtained from the proper orthocronous ones by means of a parity transfor-
mation P or a time reversal transformation T ,

Pµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






, T µν =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, (A.24)

or by their combined action.

A.2 Point particles

Consider a point particle travelling in space. Its trajectory is described by the four-vector

Xµ(t) = (ct, ~x(t)) = (t, ~x(t)) , (A.25)

where ~x(t) is the point in space where the particle is at time X0 = t, and we have set c = 1.
Over an infinitesimal amount of time dt, Xµ changes by dXµ,

dXµ(t) = (dt, d~x(t)) = dt(1, d~xdt (t)) = dt(1, ~v(t)) , (A.26)

where ~v is the particle velocity. It is an empirical fact that particles in Nature have ~v 2 < 1,
unless they are massless, in which case ~v 2 = 1. The infinitesimal interval (dX)2 is

(dX)2 = dXµdXµ = dt2(1− ~v 2) ≥ 0 , (A.27)

where the inequality follows from ~v 2 ≤ 1. Dividing out by dt in Eq. (A.26) one gets

dXµ

dt
(t) = (1, ~v(t)) . (A.28)

Despite the appearances, this quantity does not transform like Xµ under Lorentz transforma-
tions, i.e. Xµ → ΛµνXν , and so it is not a Lorentz vector: in fact, while dXµ is a vector, dt
is not a scalar, and so dXµ/dt obeys a complicated transformation law, which makes it unsuit-
able for a Lorentz-covariant treatment. Let us focus on the case of massive particles, for which
~v 2 < 1 strictly. In this case it is possible to define a true vector encoding information about the
particle’s velocity. In this case it is in fact possible to make a Lorentz transformation to a frame
in which ~v = 0, called the rest frame of the particle. In this frame the spacetime trajectory
reads trivially

Xµ
rest = (τ,~0) , (A.29)

where the time τ , measured in the particle’s rest frame, is called proper time. We are taking
time to flow in the same direction in the two frames, i.e., they are connected by an orthocronous
Lorentz transformation. Since the interval is a relativistic invariant, we have

(dXrest)
2 = dτ2 = (dX)2 = dt2(1− ~v 2) . (A.30)
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Since dXµ
rest is a true vector, dτ is a true scalar, independent of the reference frame. More

generally, X2 = τ2 is a Lorentz-invariant notion of time, measuring how it flows in the rest
frame of a particle. Recalling that γ = 1

1−~v 2 , we find that

dτ2 =
dt2

γ2
. (A.31)

Since γ ≥ 1, we get the well-known time-dilation effect, i.e., |dt| > |dτ | in a frame where the
particle is moving. At each instant of time, going over to the instantaneous rest frame of the
particle, we can determine the amount of proper time that has elapsed for the particle between
two times t0 and t in the lab frame, where the particle moves with time-dependent speed ~v 2:

τ =

∫

dτ =

∫ t

t0

dt′
√

1− ~v 2(t′) . (A.32)

This is the origin of the twins’ paradox.
Under orthocronous Lorentz transformations, τ is an invariant, while Xµ, and similarly

its differential dXµ, transform like four-vectors, i.e. Xµ → ΛµνXν . It then follows that the
derivatives of Xµ with respect to proper time transform again like four-vectors, i.e., in the same
way as Xµ does.

Using the Lorentz-invariant proper time, we can now define the four-velocity

uµ ≡ dXµ

dτ
= ( dtdτ ,

d~x
dτ ) = (γ, γ d~xdt ) = (γ, γ~v) = (γ, γ~β) , (A.33)

where ~β = ~v/c = ~v (in natural units), which is by construction a Lorentz vector, as it is a
vector divided by a scalar. Multiplying the four-velocity by the particle mass m, which is also
an invariant, one obtains the four-momentum pµ, which is again a four-vector,

pµ ≡ muµ = (γm, γm~β) . (A.34)

Component-wise,

p0 = mγ =
m√

1− ~v 2
= E ,

pi = mγ~β i =
m~v i√
1− ~v 2

= ~p i ,
(A.35)

where we have identified p0 with the energy E and the spatial components with those of the
spatial momentum ~p. Let us check that these identifications are correct, in the sense that
they reduce to the usual quantities in the non-relativistic limit. To do this, we reinstate the
explicit dependence on c and take the limit c → ∞, i.e., the limit of |~v|/c ≪ 1. We have that
uµ = (cγ, cγ~β) (check the dimensions!), and so

p0 = mc
1

√

1−
(
~v
c

)2
= mc

(

1 +
1

2

(
~v

c

)2

+O((v/c)4)

)

,

~p = mc
~v

c

1
√

1−
(
~v
c

)2
= m~v

(
1 +O((v/c)2)

)
.

(A.36)
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The second line is, to leading order, the familiar expression for the spatial momentum of a
particle. Multiplying the first line by c, we obtain

p0c = mc2 +
1

2
m~v2 , (A.37)

which is the familiar expression for the kinetic energy of a particle, plus the rest energy E0 = mc2.
With all the units of c in their place, then,

pµ = m
dXµ

dτ
= (Ec , ~p ) . (A.38)

As we have already remarked above, pµ is a four-vector, so p2 = pµpµ is invariant, and it is
nothing but the squared mass of the particle:

p2 = m2γ2(1− ~β 2) = m2 . (A.39)

The four-velocity square is instead simply

u2 = γ2(1− ~β 2) = 1 . (A.40)

(Perhaps a more logical approach is to first introduce the four-momentum as a constant times the
four-velocity, pµ = muµ, then identify this constant as the particle mass using the non-relativistic
limit Eq. (A.36), and conclude that m is a relativistic invariant since p2 = m2 is.) Both are
timelike vectors; since u0 ≥ 1, both uµ and pµ are inside the forward lightcone. Parameterising
the trajectory in terms of proper time, this means in particular that the tangent to the trajectory
at X(τ) has to be within the forwards lightcone at X(τ); integrating over τ , the trajectory at
times after τ has to lie within the forward lightcone at X(τ). Finally, from p2 = m2 one obtains
the dispersion relation between energy and spatial momentum,

E2 = ~p 2 +m2 . (A.41)

We conclude this subsection with a brief discussion of massless particles. These are particles for
which the four-momentum pµ = (ω,~k) satisfies p2 = 0, i.e.,

ω2 − ~k 2 = 0 ⇒ ω = |~k| ≥ 0 . (A.42)

The trajectory of these particles lies always on the lightcone.

A.3 Two-particle scattering

Consider a scattering process with two particles, a and b, in the initial state, and two particles,
c and d (possibly equal to a and b), in the final state,

a b→ c d . (A.43)

Let us discuss the kinematics of the final state both in the lab frame, in which particle b is at
rest, and in the centre of mass frame, in which the total spatial momentum vanishes.
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Lab frame In the lab frame the four-momenta of a and b read

pa = (EL, ~pL) , pb = (mb, 0) . (A.44)

From now on we drop the coordinate index from the four-vectors. For the particles in the final
state we have in general

pc = (Ec, ~pc) , pd = (Ed, ~pd) . (A.45)

We define the angle θL as the angle between the trajectory of c and that of a, from the equation

cos θL =
~pL · ~pc
|~pL||~pc|

. (A.46)

CM frame The CM frame is by definition the frame in which the total spatial momentum
vanishes. Therefore, the four-momenta of the various particles read

pa = (E∗
a, ~p

∗) , pb = (E∗
b ,−~p ∗) ,

pc = (E∗
c , ~p

′∗) , pd = (E∗
d ,−~p ′∗) .

(A.47)

Also in this case we define the angle θ∗ as the one formed by the trajectories of a and c,

cos θ∗ =
~p ∗ · ~p ′∗

|~p ∗||~p ′∗| . (A.48)

We also denote the total centre of mass energy as

√
s = E∗

a + E∗
b = E∗

c + E∗
d . (A.49)

We show now, using four-momentum conservation, that the energy and the magnitude of the
momenta of c and d are determined uniquely in the CM, and are independent of θ∗. The values
of the energies, magnitude of the momenta, and θL in the lab can then be obtained by means
of a Lorentz transformation, and depend on the angle θ∗ in the CM.

The proof reduces entirely to finding a relation between s and the individual energies of the
particles. The simplest way to achieve this is to proceed as follows:

pa + pb = pc + pd

pb = pc + pd − pa

p2b = (pc + pd)
2 + p2a − 2pa · (pc + pd)

m2
b = s+m2

a − 2E∗
a

√
s

E∗
a =

s+m2
a −m2

b

2
√
s

.

(A.50)

Notice that since s is a relativistic invariant, through this relation we can determine E∗
a from

knowledge of EL in the lab:

s = (pa + pb)
2 = m2

a +m2
b + 2pa · pb = m2

a +m2
b + 2ELmb . (A.51)

On the other hand, a derivation entirely analogous to that in Eq. (A.50) with a and b exchanged
allows one to derive E∗

b ,

E∗
b =

s+m2
b −m2

a

2
√
s

, (A.52)
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and more importantly exchanging a with c and b with d we obtain the energies of the final
products,

E∗
c =

s+m2
c −m2

d

2
√
s

, E∗
d =

s+m2
d −m2

c

2
√
s

. (A.53)

From the dispersion relation we can then derive the magnitude of the momenta:

|~p ∗|2 = E∗2
a −m2

a =
(s+m2

a −m2
b)

2 − 4sm2
a

4s
=
s2 + (m2

a −m2
b)

2 − 2s(m2
a +m2

b)

4s

=
(s−m2

a −m2
b)

2 − 4m2
am

2
b

4s
=

[s− (ma +mb)
2][s− (ma −mb)

2]

4s

=
λ(s,ma,mb)

4s
,

|~p ′∗|2 = E∗2
c −m2

c =
(s +m2

c −m2
d)

2 − 4sm2
c

4s
=
s2 + (m2

c −m2
d)

2 − 2s(m2
c +m2

d)

4s

=
(s−m2

c −m2
d)

2 − 4m2
cm

2
d

4s
=

[s − (mc +md)
2][s− (mc −md)

2]

4s

=
λ(s,mc,md)

4s
,

(A.54)

where we introduced the notation

λ(s,m1,m2) ≡ (s−m2
1 −m2

2)
2 − 4m2

1m
2
2 = [s− (m1 +m2)

2][s− (m1 −m2)
2] . (A.55)

The magnitudes of the initial and final momenta are symmetric functions of the masses, as they
should be. For completeness we briefly discuss how to recover the kinematics in the lab from
that in the CM. First of all, by definition of CM, we have that

0 = γCM(|~plab| − βCMElab) , (A.56)

where ~plab and Elab are the total spatial momentum and total energy in the lab, and so the
velocity of the CM in the lab is

βCM =
|~pL|

EL +mb
. (A.57)

Writing the inverse Lorentz transformation from the CM to the lab we then find

Ec,lab = γCM(E∗
c + βCM|~p ′∗| cos θ∗) ,

|~pc,lab| cos θL = γCM(|~p ′∗| cos θ∗ + βCME
∗
c ) ,

|~pc,lab| sin θL = |~p ′∗| sin θ∗ ,
(A.58)

where we have made use of the fact that the transverse directions are left unaffected by a Lorentz
transformation. From this and the previous relations we can obtain the kinematics of particles
in the lab (the azimuthal angle transforms trivially, as it involves only transverse directions).

Example Consider a proton-antiproton (pp̄) collision in a collider, with Ep = Ep̄ = 270 GeV.
Clearly,

√
s = 540 GeV. Suppose now to perform an experiment with p at rest in the lab. What

energy should the p̄ have in the lab in order to obtain the same s? Since s is a relativistic
invariant, we can evaluate it in the reference frame we prefer. In the lab

s = (pp + pp̄)
2 = 2(m2

p + ELmp) = 2mp(mp + EL) , (A.59)
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where EL is the energy of the p̄ in the lab. Solving for EL and imposing
√
s = 540 GeV,

EL =
s− 2m2

p

2mp
≃ s

2mp
≃ (540)2

2
GeV ≃ 30

2
· 104 GeV = 150 TeV , (A.60)

which is a huge energy. In general, the total CM energy scales like ECM ≃
√

2mpEL.

A.4 Mandelstam variables

A convenient set of variables to describe the kinematics of 2 → 2 scattering processes are the
so-called Mandelstam variables,

s ≡ (pa + pb)
2 = (pc + pd)

2 ,

t ≡ (pa − pc)
2 = (pb − pd)

2 ,

u ≡ (pa − pd)
2 = (pb − pc)

2 .

(A.61)

The main advantage of these variables is that they are Lorentz-invariant by construction. We
have already seen that s is the total centre of mass energy squared. The variable t is instead
the square of the four-momentum transfer from a to c, and reads explicitly

t = p2a + p2c − 2pa · pc = m2
a +m2

c − 2(E∗
aE

∗
c − |~p ∗||~p ′∗| cos θ∗) . (A.62)

Since energies and magnitudes of momenta are entirely determined by s and by the particle
masses, we can write t = t(s, θ∗), or we can trade the variables s and θ∗ used in the previous
subsection with s and t, reading off cos θ∗ from Eq. (A.62). The expression for u is obtained
replacing pc with pd, which amounts to mc → md and cos θ∗ → − cos θ∗. It is then clear that
only two of the three Mandelstam variables can be independent. In fact, one can show that

s+ t+ u = (pa + pb)
2 + (pa − pc)

2 + (pa − pd)
2

= m2
a +m2

b +m2
c +m2

d + 2pa · (pa + pb − pc − pd) = m2
a +m2

b +m2
c +m2

d .
(A.63)

The Mandelstam variables satisfy various bounds that determine the physical region in which
s, t, u can take values for a physical process. It is straightforward to see that

s ≥ max((ma +mb)
2, (mc +md)

2) . (A.64)

To get bounds on t and u, notice that

t = (pa − pc)
2 = m2

a +m2
c − 2pa · pc = 2(m2

a +m2
c)− (m2

a +m2
c + 2pa · pc)

= 2(m2
a +m2

c)− (pa + pc)
2 ≤ 2(m2

a +m2
c)− (ma +mc)

2 = (ma −mc)
2 ,

(A.65)

and similarly using pb and pd. The same approach can be used to put an upper bound on u.
We then get

t ≤ min((ma −mc)
2, (mb −md)

2) , u ≤ min((ma −md)
2, (mb −mc)

2) . (A.66)

A lower bound is obtained combining this result and Eq. (A.63),

t ≥ max(m2
b +m2

c + 2mamd,m
2
a +m2

d + 2mbmc)− s ,

u ≥ max(m2
a +m2

c + 2mbmd,m
2
b +m2

d + 2mamc)− s .
(A.67)
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Things simplify if ma = mb and mc = md, in which case E∗
a = E∗

b = E∗
c = E∗

d =
√
s
2 , and so

t = m2
a +m2

c −
s

2

(

1− cos θ∗
√

1− 4m2
a

s

√

1− 4m2
c

s

)

. (A.68)

Moreover, if one also has ma = mc ≡ m, then things become quite transparent, with

t = 2m2 − s

2

(

1− cos θ∗
(

1− 4m2

s

))

= −
(
s− 4m2

)
sin2

θ∗

2
, (A.69)

which, since s ≥ 4m2, shows that

−
(
s− 4m2

)
≤ t ≤ 0 . (A.70)

The upper limit is attained at threshold s = 4m2 or when θ∗ = 0, i.e., forward scattering, while
the lower limit is attained for θ∗ = π, i.e., for backscattering. This result is useful in the case of
elastic processes involving only one type of particles and/or antiparticles, but also in the limit
of very high energy in which we can neglect the mass in the dispersion relation and treat all
particles as massless. Since in this case one simply has that u(s, θ∗) = t(s, π − θ∗), the same
bound applies to u; the situation at θ∗ = 0 and θ∗ = π is of course the opposite of the one found
for t.

Example Consider elastic pp scattering at
√
s = 53 GeV. The differential cross section dσ

dt (t)
has a peak at −t = t0 = 1.34 GeV2. What is the corresponding scattering angle in the CM?

For the elastic scattering of identical particles, −t = (s − 4m2
p) sin

2 θ∗
2 ≃ s sin2 θ

∗
2 , since

s/m2
p ≫ 1. We have

sin2
θ∗

2
= − t

s− 4m2
p

=
1.34

532 − 4 · 0.9382 =
1.34

2805
= 4.78 · 10−4 . (A.71)

To leading order, sin2 θ
∗
2 ≃ (θ∗)2

4 , and

θ∗ ≃ 2
√
5 · 10−2 ≃ 4 · 10−2 . (A.72)

A convenient graphical representation of the kinematically allowed range of values of the
Mandelstam variables is provided by the Mandelstam plane. Since the sum of the distances
from the sides of an equilateral triangle is constant, we can take the (prolongation of the) sides
of such a triangle as the s = 0, t = 0 and u = 0 axes, and with the right choice of size of the
sides each point in the plane will be characterised by s + t + u = m2

a +m2
b +m2

c +m2
d. In the

case of equal masses, the wedge defined by the prolongation of the u and t axes identifies the
physical region for the a+ b→ c+ d process.

An important result in quantum field theory is that the scattering amplitude for the processes
a + b → c + d, a + c̄ → b̄ + d, and a + d̄ → c + b̄, where an overbar denotes the antiparticle,
are part of a single analytic function extending beyond the physical domain of the Mandelstam
variables. This property is known as crossing symmetry, and relates processes in which one of
the particles in the initial state is replaced with the antiparticle corresponding to one of the
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Figure 30: Mandelstam plane.

particles in the final state, and viceversa. Denoting with Aab→cd the scattering amplitude for
the process a+ b→ c+ d, and similarly for the other processes, one has

Aab→cd(pa, pb; pc, pd) = Aac̄→b̄d(pa,−pc;−pb, pd) = Aad̄→cb̄(pa,−pd; pc,−pb) . (A.73)

Denoting with
As(s, t, u) = Aab→cd(pa, pb; pc, pd) ,

At(st, tt, ut) = Aac̄→b̄d(pa, pc̄; pb̄, pd) ,

Au(su, tu, uu) = Aad̄→cb̄(pa, pd̄; pc, pb̄) ,

(A.74)

where
st = (pa + pc̄)

2 , tt = (pa − pb̄)
2 , ut = (pa − pd)

2 ,

su = (pa + pd̄)
2 , tu = (pa − pc)

2 , uu = (pa − pb̄)
2 ,

(A.75)

the crossing-symmetry relations Eq. (A.73) read

As(s, t, u) = At(t, s, u) = Au(u, t, s) . (A.76)

Notice that if we work with physical values of s, t and u these relations involve At and Au at
unphysical values of s, t, and u. In fact, working for simplicity in the case of equal masses,
the physical regions of these functions are defined by st ≥ 4m2, tt ≤ 0 and su ≥ 4m2, tu ≤ 0,
while in Eq. (A.75) the role of st and tt is played by t ≤ 0 and s ≥ 4m2, and similarly for su
and tu. These relations become fully meaningful if As can be analytically continued outside
the physical domain, allowing to obtain, e.g., At in the corresponding physical domain from As

outside the corresponding physical domain. The process a + b → c + d is called the s-channel,
a+ c̄ → b̄+d is called the t-channel, and a+ d̄→ c+ b̄ is called the u-channel. The corresponding
physical domains in terms of s, t and u (defined in the s-channel) are the three wedges outside
the Mandelstam triangle (see Fig. 30).

A.5 Invariant phase space

The possible states of a spinless particle of mass m are characterised by the four-momenta pµ

that satisfy p2 = m2 with positive energy, p0 ≥ m > 0. The corresponding domain in R
4,

Φ = {p ∈ R
4|p2 −m2 = 0 , p0 > 0} , (A.77)
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is called the phase space of the particle. The infinitesimal element of phase space has measure

dΩp =
d4p

2π4
2πδ(p2 −m2)θ(p0) . (A.78)

This measure is manifestly invariant under orthocronous Lorentz transformations.90 In fact, p2

is invariant under generic Lorentz transformations, while the sign of the temporal component is
invariant under the orthocronous ones.

The element of invariant one-particle phase space dΦ can be recast in a more convenient
form if we make use of the general formula

δ(f(x)) =
∑

xn,f(xn)=0

1

|f ′(xn)|
δ(x− xn) , (A.79)

valid for f with simple zeros. To prove that this formula is correct, we multiply both sides by
some function h(x) and integrate over the real line, and show that the two sides give the same
result. First, divide the real line (−∞,+∞) into intervals Ik in which f(x) is monotonic, and in
each of them change variables to y = f(x). Since f is monotonic in Ik it can be locally inverted,
so that x = f−1(y) there. We get

∫ +∞

−∞
dx δ(f(x))h(x) =

∑

k

∫

Ik

dx δ(f(x))h(x) =
∑

k

∫

f(Ik)
dy

1

|f ′(f−1(y))|δ(y)h(f
−1(y)) .

(A.80)
Since f is monotonic in each Ik and has simple zeros, it can at most vanish once there with
nonzero |f ′|. Then only those intervals will contribute to Eq. (A.80) that contain a zero xn, and

∫ +∞

−∞
dx δ(f(x))h(x) =

∑

k

∫

f(Ik)
dy

1

|f ′(f−1(0))|δ(y)h(f
−1(0)) =

∑

n

1

|f ′(xn)|
h(xn) . (A.81)

This is precisely what one obtains straightforwardly by repeating the procedure using the right-
hand side of Eq. (A.79).

Using the result above, we find

dΩp =
d4p

(2π)3
δ(p2 −m2)θ(p0) =

d4p

(2π)3
δ(p0 2 − ~p 2 −m2)

=
d4p

(2π)3
1

2|p0|
[
δ(p0 − ε(~p )) + δ(p0 + ε(~p ))

]
θ(p0) =

d4p

(2π)3
1

2ε(~p )
δ(p0 − ε(~p ))θ(p0)

=
d3p

(2π)32ε(~p )
,

(A.82)

where
ε(~p ) ≡

√

~p 2 +m2 . (A.83)

90This remains true if we multiply dΩp by an arbitary numerical factor. Since the domain of integration is
noncompact, the integral of dΦ is divergent, and there is no preferred choice. The one used here matches the
relativistic normalisation of one-particle states, 〈~p ′|~p 〉 = (2π)32p0δ(3)(~p ′ − ~p ).
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The n-particle phase space is the phase space of n particles subjected to a constraint on the
total four-momentum:

dΦ(n) =

n∏

j=1

dΩpj(2π)
4δ(4)



ptot −
n∑

j=1

pj



 . (A.84)

This is also a Lorentz invariant measure, since each dΦj is, and δ
(4)(ΛP ) = |det Λ|−1δ(4)(P ) =

δ(4)(P ).

Two-body phase space Let us work out explicitly the two-particle phase space element,
which reads

dΦ(2) =
d3p1

(2π)32ε1(~p1 )

d3p2
(2π)32ε2(~p2 )

(2π)4δ(4)(ptot − p1 − p2)

=
1

(2π)2
d3p1

2ε1(~p1 )

d3p2
2ε2(~p2 )

δ(3)(~ptot − ~p1 − ~p2)δ(Etot − ε1(~p1 )− ε2(~p2 )) ,

(A.85)

where εi(~p ) =
√

~p 2 +m2
i . We can trivially integrate over ~p2, setting it equal to ~p2 = ~ptot − ~p1,

obtaining

dΦ(2) =
1

(2π)2
d3p1

2ε1(~p1 )

1

2ε2(~ptot − ~p1 )
δ(Etot − ε1(~p1 )− ε2(~ptot − ~p1 )) . (A.86)

We can further integrate over |~p1|, so eliminating the last delta function, if we replace this by
a delta function in |~p1|, which requires the introduction of the appropriate Jacobian factor, as
discussed above. This is most easily done using centre of mass variables, for which ~ptot,CM = 0,
and so ~p1CM = −~p2CM. Let p = |~p1CM| = |~p2CM|. The argument of the delta function reads
(with a little abuse of notation)

Etot − ε1(p)− ε2(p) , (A.87)

and

∣
∣
∣
∂

∂p
[Etot − ε1(p)− ε2(p)]

∣
∣
∣ =

[
p

ε1(p)
+

p

ε2(p)

]

=
p

ε1(p)ε2(p)
[ε1(p) + ε2(p)] . (A.88)

Using this in Eq. (A.86), changing variables to d3p1 = dpp2dΩCM = dpp2d cos θCMdφCM, and
integrating over p we find

dΦ(2) =
1

(2π)2
dpp2dΩ

2ε1(p)

1

2ε2(p)

ε1(p)ε2(p)

p
[ε1(p) + ε2(p)]

−1 δ(p − pCM)

=
dΩCM

(2π)2
pCM

4(ε1(pCM) + ε2(pCM))
=
dΩCM

(2π)2
pCM

4ECM,tot
=
dΩCM

16π2
pCM√
s
,

(A.89)

with pCM the magnitude of the spatial momentum in the CM frame, given by Eq. (A.54). We
find explicitly

dΦ(2) =
dΩCM

32π2

√

λ(s,m1,m2)

s
=
dΩCM

32π2

√
(

1− (m1 +m2)2

s

)(

1− (m1 −m2)2

s

)

(A.90)
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Three-body phase space Consider now the invariant phase-space element for a three-body
process,

dΦ(3) = (2π)4δ(4)(P − p1 − p2 − p3)dΩp1dΩp2dΩp3 . (A.91)

Since each dΩpi is separately invariant, we have the freedom to choose different reference frames
to evaluate different parts of dΦ(3), as long as the four-momenta entering the delta function are
taken in the same frame. It is convenient to proceed as follows.

• We look at dΦ(3) = dΦ(3)(P ) as the product of the two-body phase space element dΦ(2)(P−
p3) = (2π)4δ(4)((P − p3)− p1 − p2)dΩp1dΩp2 and dΩp3 .

• For particle 3 we evaluate dΩp3 in the CM of the whole system.

• For particles 1 and 2 we evaluate dΦ(2)(P − p3) in the CM of the subsystem of particles 1
and 2.

In polar coordinates we write d3p3 = dp3p
2
3d cos θdφ. We can choose θ as the angle formed by

the trajectory of particle 3 and the line of flight of the initial decaying particle or of the initial
colliding particles - we will not need it for the main result. For the remaining factor we use the
expression found above, Eq. (A.90), adapted to the case at hand. The total CM energy square,
or invariant mass square, of the subsystem of particles 1 and 2 is s12 = (p1+p2)

2, and the spatial
momentum in the corresponding CM frame has magnitude p′ 2CM = λ(s12,m1,m2) (we will not
need the detailed expression). Here and below the prime is used to distinguish quantities in
this frame from the unprimed ones evaluated in the CM of the whole system. For the angular
variable θ′ we choose the angle between the trajectory of particles 1 and 3 in the CM frame of
particles 1 and 2. Putting everything together we find

dΦ(3) =
dp3p

2
3

E3

dcos θdϕ

2(2π)3
dcos θ′dϕ′

16π2
p′√
s12

, (A.92)

with E3 the energy of particle 3 in the CM frame, and p′ = |~p ′
1| = |~p ′

2| the magnitude of the
momenta of particles 1 and 2 in the corresponding CM frame. This can be expressed in a much
more useful form if we trade p3 for s12, and cos θ′ for s13 = (p1 + p3)

2, i.e., the total CM energy
square of the subsystem of particles 1 and 3. For the first step we change variables from p3 to
E3, which since E3dE3 = p3dp3 leads to

dp3p
2
3

E3
=
dE3E3p3

E3
= dE3p3 , (A.93)

and use the relations

E3 =
s+m2

3 − s12
2
√
s

,

p23 =
λ(s,m3,

√
s12)

4s
=

(s−m2
3 − s12)

2 − 4m2
3s12

4s
,

(A.94)

that follow from Eqs. (A.50) and (A.54) if we treat the 1-2 subsystem as a single particle. For
the second step we evaluate s and s13 in the CM of the 1-2 subsystem,

s = (p1 + p2)
2 +m2

3 + 2(p1 + p2) · p3 = s12 +m2
3 + 2

√
s12E

′
3 ,

s13 = m2
1 +m2

3 + 2(E′
1E

′
3 − |~p ′

1||~p ′
3| cos θ′) = m2

1 +m2
3 + 2(E′

1E
′
3 − p′p′3 cos θ

′) ,
(A.95)
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From the first relation and the mass-shell condition we obtain

E′
3 =

s−m2
3 − s12

2
√
s12

,

p′ 23 =
(s −m2

3 − s12)
2 − 4s12m

2
3

4s12
=

s

s12
p23 .

(A.96)

Taking the differential of the first relation in Eq. (A.94) and of the second relation in Eq. (A.95)
we find

dE3 = −ds12
2
√
s
,

ds13 = −2p′p′3dcos θ
′ .

(A.97)

Plugging Eqs. (A.93), (A.94), (A.96) and (A.97) into (A.92) we finally obtain

dΦ(3) =
ds12 p3
2
√
s

ds13
2p′p′3

p′√
s12

dcos θdϕdϕ′

2(2π)316π2
=
ds12 p3√

s

ds13
√
s12

p3
√
s

1√
s12

dcos θdϕdϕ′

8(2π)316π2

=
ds12 ds13dcos θdϕdϕ

′

(4π)5s
.

(A.98)

The most important aspect of this formula is that the three-body phase-space element is in-
dependent of the invariant masses squared of the 1-2 and 1-3 subsystems, as well as of the
remaining angular variables. This means that if we measure s12 and s13 in a process with three
particles in the final state, and for each event we put a dot in the (s12, s13) plane, then the
density of dots is not affected by any kinematical factor, and reflects dynamical features only.
A plot of this type is known as Dalitz plot. In other words, if the probability of obtaining any
pair of possible values (s12, s13) is flat, i.e., independent of s12 and s13, then the Dalitz plot
would show a uniform density of dots within the boundaries of the allowed region.91 If, on the
other hand, certain values are preferred, e.g., because the process takes place mostly through
an intermediate two-body state with a subsequent two-body decay of an unstable particle, then
there would be regions of the Dalitz plot where dots are denser, and one could identify the
masses of the resonant intermediate state.

91These boundaries are determined by the maximal and minimal possible values of s13 as a function of s12,
obtained by setting cos θ′ = ∓1 in Eq. (A.95), and using Eq. (A.96) to express E′3 and p′3 as functions of s12.

153



References

[1] David J. Griffiths, Introduction to elementary particles, 2nd edition (Wiley, New York,
2008).

[2] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and
2021 update

[3] J. R. Taylor, Scattering theory: the quantum theory of nonrelativistic collisions, (Wiley,
New York, 1972).

[4] T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956), 254-258

[5] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, Phys. Rev. 105
(1957), 1413-1414

[6] R. L. Garwin, L. M. Lederman and M. Weinrich, Phys. Rev. 105 (1957), 1415-1417

[7] Steven Weinberg, The quantum theory of fields. Vol. 1: Foundations (Cambridge University
Press, Cambridge, 1995).

[8] Valentine Bargmann, Ann. Math. 59 (1954), 1-46.

[9] Morton Hamermesh, Group theory and its application to physical problems, (Addinson-
Wesley, Reading, 1962).

[10] Sidney Coleman, Aspects of Symmetry: Selected Erice Lectures, (Cambridge University
Press, Cambridge, 1985).

[11] Otto Nachtmann, Elementary Particle Physics: Concepts and Phenomena, (Springer,
Berlin, Heidelberg, 1990).

[12] A. Pevsner et al., Phys. Rev. Lett. 7 (1961), 421-423.

[13] V. E. Barnes et al., Phys. Rev. Lett. 12 (1964), 204-206.

[14] M. Gell-Mann, “The Eightfold Way: A theory of strong interaction symmetry”, Califor-
nia Institute of Technology Synchroton Laboratory Report CTSL-20 (1961) (unpublished);
Y. Ne’eman, Nucl. Phys. 26 (1961), 222

154


	Introduction
	Brief history of particle physics
	The elementary particles
	Matter particles
	Interaction particles

	Interactions as particle exchange
	Natural units
	Building up matter
	Unstable particles and decays
	How to tell the nature of a process: decays and conservation laws

	Scattering processes
	Scattering experiments
	Brief review of Quantum Mechanics
	Formal theory of scattering
	Cross sections from the S-matrix

	From Relativistic Quantum Mechanics to Quantum Field Theory
	Relativistic quantum mechanics
	Klein-Gordon-Schrödinger equation
	Dirac equation

	A sketch of Quantum Field Theory
	Feynman diagrams
	Interaction vertices of the fundamental interactions
	Range and strength of the interactions
	Basic physical processes and Feynman rules
	Electromagnetic interactions


	Symmetries
	Discrete symmetries
	Parity
	Charge conjugation
	Time reversal and CPT

	Continuous symmetries: rotations
	Group representations
	Lie groups and Lie algebras
	SO(3) and SU(2)
	Irreducible representations of SU(2)
	Composition of representations


	Strong interactions
	Isospin symmetry of the strong interactions
	The quark model
	The group SU(3) and its algebra
	Representations of SU(3)
	The simplest representations of SU(3)
	More general representations of SU(3): the ``eightfold way''
	From SU(3) invariance to the quark model
	Wave functions, the problem with statistics, and colour
	The Gell-Mann–Okubo formula


	Relativistic kinematics
	Lorentz transformations
	Point particles
	Two-particle scattering
	Mandelstam variables
	Invariant phase space

	References

