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K 0–K̄ 0 system

K 0, K̄ 0: same quantum numbers except strangeness, S is not a conserved
quantity ⇒ K 0, K̄ 0 can mix

K 0, K̄ 0 → 2π ⇒ oscillation through virtual pion loop, K 0 → 2π → K̄ 0

In modern terms: second-order process via W -exchange
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K 0–K̄ 0 system (contd.)

K 0, K̄ 0: flavour eigenstates of the strong interactions, produced in the lab
by strong processes, but decays governed by weak interactions

Oscillations in K 0–K̄ 0 system ⇔ 〈K̄ 0|Hweak|K 0〉 6= 0

If kaons could mix but were stable, unitary temporal evolution of kaon
state |ψ(t)〉 limited to kaon subspace ⇒ unitary within this subspace

|ψ(t)〉 = U(t)|ψ(0)〉 = c1(t)|K 0〉+ c2(t)|K̄ 0〉

Kaons do decay, temporal evolution leads state outside of kaon subspace

|ψ(t)〉 = U(t)|ψ(0)〉 = c1(t)|K 0〉+ c2(t)|K̄ 0〉+ |R(t)〉

|R(t)〉 orthogonal to the kaon states

Projection of state at time t back on kaon subspace compared to state at
time 0 ⇒ evolution not unitary
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K 0–K̄ 0 system (contd.)

|ψK (t)〉 ≡ ΠK |ψ(t)〉 = ΠK U(t)|ψ(0)〉 = ΠK U(t)ΠK |ψ(0)〉
= c1(t)|K 0〉+ c2(t)|K̄ 0〉

ΠK : projector on kaon subspace

ΠK U(t)ΠK = ΠK e−iHtΠK not unitary, H = Hstrong + Hweak

Weisskopf-Wigner approximation:

ΠK e−iHtΠK ' e−iHeff t

Heff 6= H†eff : effective non-Hermitian Hamiltonian
non-Hermiticity reflects the fact that kaons can decay

Temporal evolution:

i ∂∂t |ψK (t)〉 = Heff |ψK (t)〉

Solved by finding eigenvalues/eigenvectors of Heff :

eigenvalues are generally complex
eigenvectors are generally non-orthogonal
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K 0–K̄ 0 system (contd.)

Heff |KS ,L〉 = λS ,L|KS ,L〉 = (mS ,L − i
ΓS,L

2 )|KS ,L〉
〈KS |KS 〉 = 〈KL|KL〉 = 1, but 〈KS |KL〉 6= 0 in general

mS,L, ΓS,L ∈ R, ΓS ≥ ΓL by convention

Let |ψ(0)〉 = |ψK (0)〉 = cS |KS〉+ cL|KL〉

|ψK (t)〉 = cS e
−i

(
mS−i

ΓS
2

)
t |KS〉+ cLe

−i
(

mL−i
ΓL
2

)
t |KL〉

mS,L = mass, ΓS,L = decay width

|〈ψK (t)|ψK (t)〉|2 = |cS |2e−ΓS t + |cL|2e−ΓLt

+ 2Re
{

c∗S cLe i(mS−mL)te−
ΓS +ΓL

2
t〈KS |KL〉

}
|KS〉: “K -short”, |KL〉: “K -long”: definite masses mS ,L and decay
times Γ−1

S ,L (|KS〉 shorter-lived than |KL〉) ⇒ definite decay properties

KS , KL 6= K 0, K̄ 0 ⇒ a K 0 beam develops a K̄ 0 component in time
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K 0–K̄ 0 system and CP symmetry

If CP is a symmetry of weak interactions ⇒ [CP,H] = [CP,ΠK ] = 0

CP is a symmetry of strong interactions, kaon subspace is a CP eigenspace ⇒ [CP,ΠK ] = 0

0 = [CP,ΠK e−iHtΠK ] = [CP, e−iHeff t ]⇒ [CP,Heff ] = 0

Common basis exists, Heff non degenerate

⇒ CP|KS ,L〉 = ηS,L|KS,L〉 |ηS ,L| = 1

K 0, K̄ 0 pseudoscalars, choosing phases C |K 0〉 = |K̄ 0〉 ⇒ CP eigenstates

QFT requires C 2 = 1

|K1〉 = 1√
2

(
|K 0〉 − |K̄ 0〉

)
|K2〉 = 1√

2

(
|K 0〉+ |K̄ 0〉

)
CP|K1〉 = |K1〉 CP|K2〉 = −|K2〉

KS ,L can be identified with K1,2 ⇒ ηS ,L = ±1, 〈KS |KL〉 = 0
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K 0–K̄ 0 system and CP symmetry (contd.)

Before 1956: K 0 → 2π in τS ' 0.89 · 10−10s

final state has P = 1: since ` = 0 ⇒ (−1)`η2
π = 1

Notice Pi 6= Pf

if 2π = π0π0: automatically C = 1 state (ξπ0 = 1) ⇒ CP = 1

if 2π = π+π−: C |π+π−〉 = |π−π+〉 = (−1)`|π+π−〉 ⇒ CP = 1

CP = −1 state cannot decay into 2π, but can decay into 3π
`, L: relative angular momentum of first pair, and of third particle
wrt CM of the pair; J = 0⇒ ` = L
Under P: 3π state gets phase ηP = (−1)3+`+L = −1;
under C : 3π0 gets ηC = 13 = 1; π+π−π0 gets (−1)` · 1
CP = (−1)`+1 for π+π−π0, CP = −1 for π0π0π0

Identification:

CP = 1 state K1 identified with KS

CP = −1 state K2 identified with KL

1956: Lederman and collaborators observed K 0 → 3π further down the
beam = “long” component of K 0, τL = 5.2 · 10−8s
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K 0–K̄ 0 system and CP symmetry (contd.)

Summary (so far):

neutral K produced via strong interactions as strangeness eigenstates,
K 0, K̄ 0

in terms of CP eigenstates, K1,2

|K 0〉 = 1√
2

(|K1〉+ |K2〉) |K̄ 0〉 = − 1√
2

(|K1〉 − |K2〉)

K decay process governed by weak interactions, S not conserved

if CP conserved K1, K2 are states with definite lifetime, and a beam
of kaons will see
I K1 =KS component (CP = 1) decay first mostly into 2π

K1 → π+π−π0 is possible if final angular momentum chosen properly

I K2 =KL component (CP =−1) decay later mostly into 3π, never into 2π

in passing: tiny mass difference mL −mS ' 3.5 · 10−6 eV
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K 0–K̄ 0 system and CP symmetry (contd.)

But what if CP is not a symmetry of weak interactions?

no reason for the physical state KL to be a pure CP = −1 state

|KL〉 = 1√
1+|ε|2

(|K2〉+ ε|K1〉)

down the beam where KS has already decayed, some CP-forbidden
decays in 2π should be observed

1964: Cronin, Fitch and collaborators, using a very long kaon beam,
observed 2π decays of KL ⇒ CP violated by weak interactions

rather small violation: exp. |ε| = 2.2 · 10−3

indirect CP violation, due to physical states not being CP eigenstates

possible to have direct CP violation: CP is not anymore a symmetry
⇒ CP =−1 eigenstate (e.g., K2) can decay in 2π (observed expt.lly)
for explicit CP breaking in the SM least 3× 3 CKM matrix:

I need at least three families of quarks
I CP-violating phase remains in CKM matrix after all irrelevant phases

are reabsorbed in a redefinition of fermion states
I suggested by Kobayashi and Maskawa before 2nd family complete
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Scattering theory

Scattering experiment:

throw bunch of particles against fixed target/other bunch of particles

study what comes out of the collision

Empirical fact #1: particles far enough from each other do not interact
appreciably, travelling essentially undisturbed on straight-line trajectories

A posteriori explanation: interactions are typically short-ranged (even long-ranged
EM interactions are effectively short-ranged in most cases due to screening effects)

Experimenters can prepare states of spatially separated, non-interacting,
freely evolving particles, used as initial states of scattering experiments

Empirical fact #2: after a sufficiently long time has elapsed after the
collision, the state of the system looks again like a state of freely-evolving,
spatially well-separated particles

“Sufficiently long” depends on the type of interaction, but anyway
a very short time on human scales: upper bound estimated as 10−10s

Experimenters, by making measurements, can characterise these states –
final states of scattering experiments
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Scattering theory (contd.)

For all practical purposes we can treat the system as follows:

system prepared in initial state in distant past (formally: t = −∞),
with particles far away (formally: infinitely far away) from each other

observations on the system made in distant future (formally:
t = +∞), with particles again far away (formally: infinitely far away)
from each other, after interaction is over

measuring energy, momentum, electric charge, etc., of the final
particles projects the state of the system on a particle state with
definite particle content and particle momenta

In summary: in the far past and far future the state of the system looks
like a freely-evolving particle state

Free particles = localised objects travelling on straight lines

Matteo Giordano (ELTE) Particle physics Budapest, 08/09/2020 10 / 16



Formal theory of scattering

Mathematically: as t → −∞, t → +∞, exact temporal evolution e−iHt |ψ〉
of the system state (H: full Hamiltonian) practically indistinguishable from
freely evolving states e−iH0t |φi 〉, e−iH0t |φf 〉 (H0: free Hamiltonian)

Formally: given |ψ〉, ∃|φi ,f 〉

lim
t→−∞

∥∥e−iHt |ψ〉 − e−iH0t |φi 〉
∥∥ = 0 lim

t→+∞

∥∥e−iHt |ψ〉 − e−iH0t |φf 〉
∥∥ = 0
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Formal theory of scattering (contd.)

Turn the argument around:

if system prepared in the distant past looking like e−iH0t |φi 〉, then state
vector describing exact temporal evolution of the system with the full
Hamiltonian is

|ψ+〉 = lim
t→−∞

e iHte−iH0t |φi 〉

|φi 〉 encodes particle type, momenta, spin,. . . , of the experimental setup

if the state observed in the distant future looks like e−iH0t |φf 〉, then state
vector describing exact temporal evolution is

|ψ−〉 = lim
t→+∞

e iHte−iH0t |φf 〉

|φf 〉 encodes particle type, momenta, spin,. . . , seen by the detectors

States |ψ+〉 and |ψ−〉 are the in and out states corresponding to the
asymptotic states |φi 〉 (initial) and |φf 〉 (final)
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Formal theory of scattering (contd.)

|ψ±〉 = limt→∓∞ e iHte−iH0t |φi ,f 〉 define scattering (or Møller) operators

Ω± ≡ lim
t→∓∞

e iHte−iH0t

Ω± limit of unitary operators, conserve the norm ‖Ω±|φ〉‖ = ‖|φ〉‖
Initial/final state arbitrary (prepare/detect what we want)
⇒ |φi ,f 〉 range over a complete set of states

⇒ Ω†±Ω± = 1
Assume all states of the system accessible in a scattering experiment
⇔ all states look like freely-evolving states as t → ∓∞

Not always true, e.g., bound states in non-relativistic QM

⇒ ∀|ψ〉 ∃|φ±〉 s.t. |ψ〉 = Ω±|φ±〉 ⇒ ∃ limt→∓∞ e iH0te−iHt = Ω†±

|φ±〉 = Ω†±Ω±|φ±〉 = Ω†±|ψ〉 ⇒ Ω±Ω†±|ψ〉 = Ω±|φ±〉 = |ψ〉

⇒ Ω±Ω†± = 1

Ω± are unitary operators
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The S-matrix

Exact temporal evolution of the system is experimentally inaccessible
What is measured are transition probabilities for a system in the given
initial state to be observed in some prescribed final state
Initial state: |ψ+(t)〉 = e−iHt |ψ+〉 →

t→−∞
e−iH0t |φi 〉

Final state: |ψ−(t)〉 = e−iHt |ψ−〉 →
t→+∞

e−iH0t |φf 〉
Project on (= detect) final state at t = Tf is t-indep.):

〈ψ−(Tf )|ψ+(Tf )〉 = 〈ψ−|e iHTf e−iHTf |ψ+〉 = 〈ψ−|ψ+〉 (t-indepedent)

〈ψ−|ψ+〉 = lim
Tf→+∞

〈ψ−|e iHTf e−iHTf |ψ+〉

= lim
Tf→+∞,Ti→−∞

〈ψ−|e iHTf e−iHTf e iHTi e−iHTi |ψ+〉

= lim
Tf→+∞,Ti→−∞

〈φf |e iH0Tf e−iHTf e iHTi e−iH0Ti |φi 〉

= 〈φf |Ω†−Ω+|φi 〉 ≡ 〈φf |S |φi 〉 = Sfi

S = Ω†−Ω+: S-operator, matrix elements Sfi : S-matrix
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The S-matrix (contd.)

S-matrix encodes all relevant information about scattering processes:
from transition amplitudes Sfi one gets transition probabilities Pfi = |Sfi |2
measured (up to factors) in experiments

1. S is unitary: S†S = SS† = 1

Also when Ω±Ω†± 6= 1

Expresses conservation of probabilities:
∑

f Pfi =
∑

f |Sfi |2 = 1

P(i → anything) =
∑

f P(i → f ) = 1∑
f

|Sfi |2 =
∑
φf

〈φi |S†|φf 〉〈φf |S |φi 〉 = 〈φi |S†S |φi 〉 = 〈φi |φi 〉 = 1

P(f ← something) =
∑

i P(i → f ) = 1∑
i

|Sfi |2 =
∑
φi

〈φf |S |φi 〉〈φi |S†|φf 〉 = 〈φf |SS†|φf 〉 = 〈φf |φf 〉 = 1
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The S-matrix (contd.)

2. Since ∀s

e iHsΩ±e−iH0s = lim
t→∓∞

e iHse iHte−iH0te−iH0s = lim
t→∓∞

e iH(t+s)e−iH0(t+s)

= lim
t→∓∞

e iHte−iH0t = Ω±

Taking ∂/∂s|s=0 ⇒ intertwining relations

HΩ± = Ω±H0 H0Ω†± = Ω†±H

Energy conservation in a scattering process:

H0S = H0Ω†−Ω+ = Ω†−HΩ+ = Ω†−Ω+H0 = SH0 ⇒ [H0,S ] = 0

3. If symmetry generator G commutes with both free and full Hamiltonians

[G ,H0] = [G ,H] = 0⇒ [G ,Ω±] = 0⇒ [G ,S ] = 0

Interactions V = H − H0 usually translationally and rotationally invariant
⇒ generators ~P (momentum) and ~J (angular momentum)
Conservation of momentum and angular momentum in scattering processes

[~P,S ] = [~J, S ] = 0
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