Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest

ELTE

08/09/2020

Composition of irreps

I_{3}, Y additive \rightarrow draw triangles on triangles

Similarly, composition of lowest-dim irreps:

$$
\begin{array}{rlrl}
6 \otimes 3 & =10 \oplus 8 & 3 \otimes 3 & =6 \oplus \overline{3} \\
\overline{3} \otimes 3 & =8 \oplus 1 & 3 \otimes 3 \otimes 3 & =(6 \oplus \overline{3}) \otimes 3=10 \oplus 8 \oplus 8 \oplus 1
\end{array}
$$

Composition of irreps

I_{3}, Y additive \rightarrow draw triangles on triangles

$$
3 \otimes 3=6 \oplus \overline{3}
$$

Similarly, composition of lowest-dim irreps:

$$
\begin{array}{rlrl}
6 \otimes 3 & =10 \oplus 8 & 3 \otimes 3 & =6 \oplus \overline{3} \\
\overline{3} \otimes 3 & =8 \oplus 1 & 3 \otimes 3 \otimes 3 & =(6 \oplus \overline{3}) \otimes 3=10 \oplus 8 \oplus 8 \oplus 1
\end{array}
$$

Quark content of hadrons

Quark content of hadrons follows from corresponding values of I_{3} and Y (independently of how irreps are obtained from $3 \otimes 3 \otimes 3$ or $3 \otimes \overline{3}$)

$$
n_{u}+n_{d}+n_{s}=3 B \quad I_{3}=\frac{1}{2}\left(n_{u}-n_{d}\right) \quad Y=\frac{1}{3}\left(n_{u}+n_{d}-2 n_{s}\right)
$$

Baryons $B=1$:

$$
n_{u}=I_{3}+\frac{1}{2} Y+1 \quad n_{d}=-l_{3}+\frac{1}{2} Y+1 \quad n_{s}=1-Y
$$

Quark content of hadrons

Quark content of hadrons follows from corresponding values of I_{3} and Y (independently of how irreps are obtained from $3 \otimes 3 \otimes 3$ or $3 \otimes \overline{3}$)

$$
n_{u}+n_{d}+n_{s}=3 B \quad l_{3}=\frac{1}{2}\left(n_{u}-n_{d}\right) \quad Y=\frac{1}{3}\left(n_{u}+n_{d}-2 n_{s}\right)
$$

Mesons $B=0$:

$$
n_{u}=l_{3}+\frac{1}{2} Y \quad n_{d}=-l_{3}+\frac{1}{2} Y \quad n_{s}=-Y
$$

Quark masses: qualitative treatement

Assume baryon masses come mostly from constituents' masses (here $n_{u, d, s} \geq 0$)

$$
m_{B}=n_{u} m_{u}+n_{d} m_{d}+n_{s} m_{s}
$$

Mass splitting within isomultiplets: since S constant

$$
\Delta m_{B}=m_{1}-m_{2}=\left(n_{u 1}-n_{u 2}\right) m_{u}+\left(n_{d 1}-n_{d 2}\right) m_{d}=\left(n_{u 1}-n_{u 2}\right)\left(m_{u}-m_{d}\right)
$$

Small, in a first approximation $m_{u}=m_{d}$

$$
m_{B}=m_{u}\left(n_{u}+n_{d}\right)+m_{s} n_{s}=3 m_{u}+\left(m_{s}-m_{u}\right)|S|
$$

- Nucleon mass $m_{p, n} \approx 3 m_{u} \approx 940 \mathrm{MeV}$
- Baryon masses linear in $|S|$, splittings $\approx m_{s}-m_{u} \approx 150 \mathrm{MeV}$

$$
m_{u} \simeq m_{d} \approx 300 \mathrm{MeV} \quad m_{s} \approx 450 \mathrm{MeV}
$$

Constituent masses very different from current masses discussed before: in fact, most of a hadron mass not from quark masses but from interaction

Estimate would not work with light pseudoscalar mesons: linearity of masses in $|S|$ does not hold there
Basics of quark model (Gell-Mann, Zweig, 1964) completed. . .
. . . but there are serious problems

Wave functions and the problem with statistics

Quarks could explain why only certain representations appear in nature, but can baryon wave functions be built consistently with Fermi statistics?
Different quark flavours \sim different states of the same spin- $\frac{1}{2}$ particle Baryons=fermions, wave functions antisymmetric under quark exchange

$$
\psi=\psi_{\text {space }} \psi_{\text {spin }} \psi_{\text {flavour }}
$$

- lowest-lying states have usually $\ell_{1,2}=0 \Rightarrow \psi_{\text {space }}$ symmetric
- antisymmetry from spin-flavour part

Decuplet:

- $s=\frac{3}{2} \Rightarrow$ symmetric spin wf
- flavour content: $\Delta^{++}=(u u u)$, ladder operators do not change symmetry properties \Rightarrow symmetric flavour wf
- not acceptable for fermions

$$
\begin{aligned}
\Delta^{++} & =|u u u\rangle \\
\Delta^{+} & \propto I_{-} \Delta^{++} \\
& \propto|u u d\rangle+|u d u\rangle+|d u u\rangle \\
\Sigma^{*+} & \propto V_{-} \Delta^{++} \\
& \propto|u u s\rangle+|u s u\rangle+|s u u\rangle \\
\bar{E}^{* 0} & \propto V_{-}^{2} \Delta^{++} \\
& \propto|u s s\rangle+|s u s\rangle+|s s u\rangle \\
\Omega^{-} & \propto V_{-}^{3} \Delta^{++} \propto|s s s\rangle
\end{aligned}
$$

Meson wave functions

No restriction on the symmetry of the wave function $(q \neq \bar{q})$

- total $q \bar{q}$ spin $\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1$, ground states $(\ell=0)$ are $J=0$ or $J=1$
- intrinsic parity $\eta_{q} \eta_{\bar{q}}=-1 \Rightarrow$ lightest mesons: pseudoscalars or vectors
- flavour $\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1} \Rightarrow$ an octet and a singlet
- for exact $\operatorname{SU}(3)$ pseudoscalars and vectors have identical $q \bar{q}$ content
- $\mathrm{SU}(3)$ broken to $\mathrm{SU}(2)_{I} \times \mathrm{U}(1)_{Y}, I=0$ states from $\mathrm{SU}(3)$ octet and $\mathrm{SU}(3)$ singlet can mix \Rightarrow meson nonets
- mixing small for pseudoscalars but almost maximal for vectors

Colour

How can the antisymmetrisation problem be fixed? Greenberg, 1964:

- add extra degree of freedom (colour) $q, \bar{q} \rightarrow q_{i}, \bar{q}_{i}, i=1, \ldots, N_{c}$
- require $\psi_{\text {colour }}$ antisymmetric
- associated internal $\operatorname{SU}\left(N_{c}\right)$ symmetry, but no further degeneracies among hadrons masses \Rightarrow hadrons must be $\operatorname{SU}\left(N_{c}\right)$ singlets

Lowest-dimensional singlets:

- $\delta_{i_{1} i_{2}}$: symmetric, singlet in $N_{c} \otimes \bar{N}_{c} \Rightarrow q \bar{q}$ pair \Rightarrow mesons
- $\epsilon_{i_{1} \ldots i_{c}}$: antisymmetric, singlet in $\underbrace{N_{c} \otimes \ldots \otimes N_{c}}_{N_{c} \text { times }} \Rightarrow$ baryons if $N_{c}=3$

Solves two problems with baryons at once. . .

- explain why it takes three quarks to make a baryon
- solves representation puzzle:
- combine with symmetric flavour/spin wf to get antisymmetric total wf both for octet and decuplet
- since \nexists totally antisymmetric spin wf out of $q q q \Rightarrow$ cannot use flavour singlet wf for baryons

Colour (contd.)

... and if colour is made a dynamical degree of freedom
\Rightarrow QCD (Gell-Mann, Leutwyler, Fritsch, 1972), fundamental dynamical theory of strong interactions

Is really $N_{c}=3$? Experimental confirmation from:

- Drell-Yan process $\pi N \rightarrow \mu^{+} \mu^{-} X(X=$ anything $)$
- q_{i} from nucleon and \bar{q}_{i} from pion with the same colour undergo

$$
q_{i} \bar{q}_{i} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

- same annihilation probability for any colour \rightarrow cross section $\propto N_{c}$
- neutral pion decay $\pi^{0} \rightarrow \gamma \gamma$
- $q_{i} \bar{q}_{i} \rightarrow \gamma \gamma$, scattering amplitude colour-independent
- wave function $\propto \frac{\delta_{i j}}{\sqrt{N_{c}}} \rightarrow \Gamma \propto\left(N_{c} / \sqrt{N_{c}}\right)^{2}=N_{c}$

Hadron masses: the Gell-Mann-Okubo formula

How to break SU(3) symmetry to reproduce experimental results?

- Pre-QCD: breaking has to preserve isospin and strangeness, smallest representation with $I=Y=0$ state is the adjoint 8
- QCD: $m_{s} \gg m_{u} \simeq m_{d} \Rightarrow$ strong Hamiltonian in quark rest frame

$$
\begin{aligned}
\left\langle q_{i}\right| H\left|q_{j}\right\rangle & =m_{i} \delta_{i j}=\operatorname{diag}\left(m_{u d}, m_{u d}, m_{s}\right) \\
& =\frac{2 m_{u d}+m_{s}}{3} \mathbf{1}+\frac{m_{u d}-m_{s}}{3} \operatorname{diag}(1,1,-2) \\
& =\frac{2 m_{u d}+m_{s}}{3} \mathbf{1}+\frac{m_{u d}-m_{s}}{\sqrt{3}} \lambda_{8}
\end{aligned}
$$

Pre-QCD suggests, and QCD predicts:

$$
H=H_{0}+H_{8}
$$

H_{0} : $\mathrm{SU}(3)$ singlet, symmetric
H_{8} : transforms as the eighth component in the adjoint representation

Hadron masses: the Gell-Mann-Okubo formula (contd.)

For quantitative estimate: assume H_{8} small perturbation, use 1st-order PT

- Oth-order: degenerate multiplets of baryons

$$
H_{0}\left|B^{(0)} ; a\right\rangle=m_{a}^{(0)}\left|B^{(0)} ; a\right\rangle
$$

- 1st order: diagonalise

$$
\left\langle B^{(0) \prime} ; b\right| H_{8}\left|B^{(0)} ; a\right\rangle
$$

- ground-state baryons (octet/decuplet) not mixed by perturbation
- ignore contributions from higher states
- \Rightarrow diagonalise $\left\langle B^{(0)} ; a\right| H_{8}\left|B^{(0)} ; a\right\rangle$ within each multiplet
- perturbation diagonal in isospin-hypercharge basis, baryon masses

$$
m_{a}(B)=m_{a}^{(0)}+\Delta m_{a}(B) \quad \Delta m_{a}(B)=\left\langle B^{(0)} ; a\right| H_{8}\left|B^{(0)} ; a\right\rangle
$$

- representation theory determines $\Delta m_{a}(B)$ in a multiplet up to two unknown, a-dependent coefficients (depend on details of interaction)

Hadron masses: the Gell-Mann-Okubo formula (contd.)

$\left\langle B^{\prime}(R)\right| H_{a}|B(R)\rangle$: matrix elements transforming in

$$
\begin{aligned}
R \otimes \bar{R}: & =\left\langle\tilde{B}^{\prime}(R)\right| H_{a}|\tilde{B}(R)\rangle \mathcal{U}_{\tilde{B} B}^{R} \mathcal{U}_{\tilde{B}^{\prime} B^{\prime}}^{R *} \\
8: & =\left\langle B^{\prime}(R)\right| U^{\dagger} H_{a} U|B(R)\rangle=\mathcal{U}_{b a}^{8}\left\langle B^{\prime}(R)\right| H_{b}|B(R)\rangle
\end{aligned}
$$

Decompose $R \otimes \bar{R}=\bigoplus_{\tilde{R}} \tilde{R}$, find how many $\tilde{R}=8$
From representation theory: for $\operatorname{SU}(3), 8$ found at most twice \Rightarrow only two possible independent tensorial structures

Most general form:

$$
\left\langle B^{\prime}(R)\right| H_{a}|B(R)\rangle=\delta m_{1}(R)\left(\mathcal{T}_{a}^{(8,1)}\right)_{B^{\prime} B}+\delta m_{2}(R)\left(\mathcal{T}_{a}^{(8,2)}\right)_{B^{\prime} B}
$$

Coefficients $\delta m_{j}(R)$ depend on multiplet

Hadron masses: the Gell-Mann-Okubo formula (contd.)

First structure: $\mathcal{T}_{a}^{(8,1)}=T_{a}^{R}$

$$
\mathcal{U}^{R \dagger} T_{a}^{R} \mathcal{U}^{R}=\left(\mathcal{U}^{8}\right)_{a b} T_{b}^{R}
$$

Second structure: $\mathcal{T}_{a}^{(8,2)}=D_{a}^{R} \equiv d_{a b c} T_{b}^{R} T_{c}^{R}$

- $\lambda^{a} \lambda^{b}=k_{0} \mathbf{1}+k_{c} \lambda^{c}$ since it is a 3×3 complex matrix

$$
\begin{aligned}
\lambda^{a} \lambda^{b} & =\frac{1}{2}\left\{\lambda^{a}, \lambda^{b}\right\}+\frac{1}{2}\left[\lambda^{a}, \lambda^{b}\right]=\frac{2}{3} \delta_{a b}+\left(i f_{a b c}+d_{a b c}\right) \lambda^{c} \\
d_{a b c} & =\frac{1}{4} \operatorname{tr}\left\{\lambda^{a}, \lambda^{b}\right\} \lambda^{c}=2 \operatorname{tr}\left\{t^{a}, t^{b}\right\} t^{c}
\end{aligned}
$$

- $d_{a b c}$ totally symmetric, invariant under adjoint transformation

$$
\left(\mathcal{U}^{8}\right)_{a^{\prime} a}\left(\mathcal{U}^{8}\right)_{b^{\prime} b}\left(\mathcal{U}^{8}\right)_{c^{\prime} c} d_{a^{\prime} b^{\prime} c^{\prime}}=d_{a b c}
$$

$\Rightarrow D_{a}^{R}$ transforms in the adjoint: since $\left(\mathcal{U}^{8}\right)^{T} \mathcal{U}^{8}=1$

$$
\begin{aligned}
\mathcal{U}^{R \dagger} D_{a}^{R} \mathcal{U}^{R} & =\mathcal{U}^{R} d_{a b c} T_{b}^{R} T_{c}^{R} \mathcal{U}^{R}=d_{a b c}\left(\mathcal{U}^{8}\right)_{b b^{\prime}}\left(\mathcal{U}^{8}\right)_{c c^{\prime}} T_{b^{\prime}}^{R} T_{c^{\prime}}^{R} \\
& \left.=\left(\mathcal{U}^{8}\right)_{a a^{\prime}} d_{a^{\prime \prime} b c}\left(\mathcal{U}^{8}\right)_{a^{\prime \prime} a^{\prime}}\left(\mathcal{U}^{8}\right)_{b b^{\prime}} \mathcal{U}^{8}\right)_{c c^{\prime}} T_{b^{\prime}}^{R} T_{c^{\prime}}^{R} \\
& =\left(U^{(8)}\right)_{a a^{\prime}} d_{a^{\prime} b^{\prime} c^{\prime} c^{\prime}}^{R} T_{b^{\prime}}^{R} T_{c^{\prime}}^{R}=\left(U^{(8)}\right)_{a a^{\prime}} D_{a^{\prime}}^{R}
\end{aligned}
$$

Hadron masses: the Gell-Mann-Okubo formula (contd.)

Perturbation:

$$
\begin{aligned}
& \left\langle B^{\prime}(R)\right| H_{8}|B(R)\rangle=\delta m_{1}(R)\left(T_{8}^{R}\right)_{B^{\prime} B}+\delta m_{2}(R)\left(D_{8}^{R}\right)_{B^{\prime} B} \\
D_{8}^{R} & =d_{8 b c} T_{b}^{R} T_{c}^{R} \\
& =-\frac{1}{2 \sqrt{3}} \sum_{a}\left(T_{a}^{R}\right)^{2}+\frac{\sqrt{3}}{2}\left[\left(T_{1}^{R}\right)^{2}+\left(T_{2}^{R}\right)^{2}+\left(T_{3}^{R}\right)^{2}\right]-\frac{1}{2 \sqrt{3}}\left(T_{8}^{R}\right)^{2} \\
& =-\frac{1}{2 \sqrt{3}} C^{R}+\frac{\sqrt{3}}{2}\left(\vec{l}^{2}-\frac{1}{4} Y^{2}\right)
\end{aligned}
$$

$C^{R}=\sum_{a}\left(T_{a}^{R}\right)^{2}$: quadratic Casimir operator, commutes with all T_{a}^{R}
\Rightarrow must be $\propto 1$ within multiplet (Schur's lemma)
Perturbation diagonal within a multiplet, diagonal terms read

$$
\Delta m(B)=\left\langle B^{(0)}\right| H_{8}\left|B^{(0)}\right\rangle=\frac{\sqrt{3}}{2}\left[\delta m_{1} Y+\delta m_{2}\left(-\frac{C_{R}}{3}+I(I+1)-\frac{1}{4} Y^{2}\right)\right]
$$

Redefining unknown constants \Rightarrow Gell-Mann-Okubo mass formula:

$$
m(B)=m^{(0)}+\left\langle B^{(0)}\right| H_{8}\left|B^{(0)}\right\rangle=\tilde{m}^{(0)}+\delta \tilde{m}_{1} Y+\delta \tilde{m}_{2}\left[I(I+1)-\frac{1}{4} Y^{2}\right]
$$

$m^{(0)}, \tilde{m}^{(0)}, \delta \tilde{m}_{1,2}$ depend on irreducible multiplet

Hadron masses: the Gell-Mann-Okubo formula (contd.)

Notation: $X_{I, Y}$ is particle X with isospin I and hypercharge Y

Baryon octet:

$$
\begin{array}{ll}
\Lambda_{0,0}: & m_{\Lambda}=\tilde{m}^{(0)} \\
N_{\frac{1}{2}, 1}: & m_{N}=\tilde{m}^{(0)}+\delta \tilde{m}_{1}+\frac{1}{2} \delta \tilde{m}_{2} \\
\Sigma_{1,0}: & m_{\Sigma}=\tilde{m}^{(0)}+2 \delta \tilde{m}_{2} \\
\Xi_{\frac{1}{2},-1}: & m_{\equiv}=\tilde{m}^{(0)}-\delta \tilde{m}_{1}+\frac{1}{2} \delta \tilde{m}_{2}
\end{array}
$$

Four equations with three unknowns \Rightarrow one relation among masses, e.g.

$$
m_{N}+m_{\equiv}=\frac{3}{2} m_{\Lambda}+\frac{1}{2} m_{\Sigma}
$$

Exp.: LHS $=2257 \mathrm{MeV}$ vs. $\mathrm{RHS}=2270.5 \mathrm{MeV}$ (accurate to percent level)

Hadron masses: the Gell-Mann-Okubo formula (contd.)

Baryon decuplet:

I and Y linearly related: $2 I-Y=2$

$$
\begin{array}{rlrl}
I(I+1)-\frac{1}{4} Y^{2}=2+\frac{3}{2} Y & \Longrightarrow \quad m_{B}=\tilde{m}^{(0)}+\delta m Y \\
\Delta_{\frac{3}{2}, 1}: & m_{\Delta} & =\tilde{m}^{(0)}+\delta m \\
\Sigma_{1,0}^{*}: & m_{\Sigma^{*}} & =\tilde{m}^{(0)} \\
\Xi_{\frac{1}{2},-1}^{*}: & m_{\Xi^{*}} & =\tilde{m}^{(0)}-\delta m \\
\Omega_{0,-2}: & m_{\Omega} & =\tilde{m}^{(0)}-2 \delta m
\end{array}
$$

Four equations with two unknowns \Rightarrow two mass relations, e.g.

$$
m_{\Delta}+m_{\Xi^{*}}=2 m_{\Sigma^{*}} \quad 2 m_{\Delta}+m_{\Omega}=3 m_{\Sigma^{*}}
$$

LHS $=2765 \mathrm{MeV}$ vs. $\mathrm{RHS}=2768 \mathrm{MeV}$,
LHS $=4136 \mathrm{MeV}$ vs. $\mathrm{RHS}=4152 \mathrm{MeV}$ (accuracy of permille)
Mass of Ω predicted by means of this type of formula

Hadron masses: the Gell-Mann-Okubo formula (contd.)

Meson octet

Gell-Mann-Okubo formula fails disastrously for pseudoscalar meson octet
We did not take into account mixing of singlet and octet, but this is small for pseudoscalars

Using instead the square of the masses one gets

$$
4 m_{K}^{2}=3 m_{\eta}^{2}+m_{\pi}^{2}
$$

LHS $=0.98 \mathrm{GeV}^{2}$ vs. $\mathrm{RHS}=0.92 \mathrm{GeV}^{2}$ (percent accuracy)

- Why does original formula fail? Perturbation not small here, same order of unperturbed masses \Rightarrow PT does not work
- Why does modified formula work? Spontaneous breaking of chiral symmetry in QCD (beyond the scope of this course)

Weak interactions

- Strong interactions: most symmetric (P, C, I, Q, B, flavour symmetries)
- EM interactions: almost as symmetric (break I)
- Weak interactions: least symmetric (only Q, B, L, lepton family - for massless ν) New effects:
\Rightarrow many new decay channels available:
- $\pi^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}, \pi^{+} \rightarrow \ell^{+} \nu_{\ell}$ (violates flavour symmetries)
- $K \rightarrow 2 \pi, 3 \pi$ (violate S, I - also P)
$\Rightarrow P, C$-violation effects
$\Rightarrow C P$-violation effects
$\Rightarrow K^{0}-\bar{K}^{0}$ oscillations

Parity violation

P, C violations in weak interactions:

- 1956: Yang and Lee suggest P violations to solve $\theta-\tau$ puzzle
- 1956: Wu's experiment demonstrates it
β-decay of polarised nuclei of cobalt $60,{ }_{27}^{60} \mathrm{Co}(J=5)$
\rightarrow excited nichel $60,{ }_{28}^{60} \mathrm{Ni}^{*}(J=4)$
\rightarrow electromagnetic decay to ground state emitting two photons

$$
\begin{array}{r}
{ }_{27}^{60} \mathrm{Co} \longrightarrow \quad{ }_{28}^{60} \mathrm{Ni}^{*}+e^{-}+\bar{\nu}_{e} \\
\stackrel{4}{60} \mathrm{Ni}+\gamma+\gamma
\end{array}
$$

Fundamental process: β-decay $n \rightarrow p e^{-} \bar{\nu}_{e}$

- cool down Co, put in uniform magnetic to polarise their spin in (say) up direction
- e, $\bar{\nu}_{e}$ are spin- $\frac{1}{2}$, angular momentum conservation requires $\mathrm{Ni}, e, \bar{\nu}_{e}$ all polarised in the up direction
- Ni essentially at rest, e and $\bar{\nu}_{e}$ emitted back-to-back to conserve momentum

Parity violation (contd.)

If P were a symmetry: $\vec{s} \vec{P} \vec{s}$, equally probable to find electrons emitted in the direction of nuclear spin and in the direction opposite to it

Experiment shows preferential emission opposite to nuclear spin $\Rightarrow P$ violation

Why?

- $\bar{\nu}_{e}$ only exist with positive helicity $h=\frac{\vec{p} \cdot \vec{s}}{|\vec{p}|}$
- if e emitted opposite to nuclear spin $\Rightarrow h_{e}=-1, h_{\bar{\nu}}=+1$ all right
- if e emitted along nuclear spin $\Rightarrow h_{e}=+1, h_{\bar{\nu}}=-1$ impossible ${ }_{27}^{60} \overline{\mathrm{Co}} \rightarrow{ }_{28}^{60} \overline{\mathrm{Ni}}^{*}+e^{+}+\nu_{e}: e^{+}$emitted preferentially along nuclear spin since $h_{\nu}=-1 \Rightarrow C$ violated, but CP apparently not

Is $C P$ a symmetry of weak interactions? Optimal place to look for $C P$ violations is the $K^{0}-\bar{K}^{0}$ system

