Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

November 6, 2020

SU(3) (contd.)

Three more commutation relations directly form SU(2)

$$[I_+, I_-] = 2I_3$$
 $[V_+, V_-] = 2V_3 = I_3 + \frac{3}{2}Y$ $[W_+, W_-] = 2W_3 = -I_3 + \frac{3}{2}Y$

Mathematically more convenient to use $\bar{Y} = \frac{\sqrt{3}}{2}Y$ (= t^8)

$$\vec{H} = (I_3, \bar{Y})$$
 $E_{\pm}^{(1)} = I_{\pm}$ $E_{\pm}^{(2)} = V_{\pm}$ $E_{\pm}^{(3)} = W_{\pm}$

Compact form of commutation relations:

$$[\vec{H}, E_{\pm}^{(j)}] = \pm \vec{\alpha}^{(j)} E_{\pm}^{(j)}$$

 $\vec{lpha}^{(j)}$: root vectors, $(\vec{lpha}^{(j)})^2=1$

$$\vec{\alpha}^{(1)} = (1,0)$$
 $\vec{\alpha}^{(2)} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ $\vec{\alpha}^{(3)} = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$

Define linear operator ad_A , $\operatorname{ad}_A X \equiv [A, X]$, acting on the algebra Simultaneous eigenvectors of $\operatorname{ad}_{H^{1,2}}$:

- $E_{\pm}^{(j)}$ with eigenvalues $\pm \vec{\alpha}^{(j)}$
- $H^{\overline{1},2}$ with both eigenvalues 0

SU(3) (contd.)

Missing: commutators among ladder operators

Can be computed explicitly, but more instructive argument using Jacobi:

$$\begin{split} [\vec{H}, [E_s^{(i)}, E_t^{(j)}]] &= -[E_t^{(j)}, [\vec{H}, E_s^{(i)}]] - [E_s^{(i)}, [E_t^{(j)}, \vec{H}]] \\ &= -s\vec{\alpha}^{(i)}[E_t^{(j)}, E_s^{(i)}] + t\vec{\alpha}^{(j)}[E_s^{(i)}, E_t^{(j)}] \\ &= (s\vec{\alpha}^{(i)} + t\vec{\alpha}^{(j)})[E_s^{(i)}, E_t^{(j)}] \end{split}$$

$$\Rightarrow [E_s^{(i)}, E_t^{(j)}] \propto$$
 simultaneous eigenvector with eigenvalues $s\vec{lpha}^{(i)} + t\vec{lpha}^{(j)}$

In general $s\vec{\alpha}^{(i)} + t\vec{\alpha}^{(j)}$ is *not* a vector of eigenvalues

$$\Rightarrow [E_s^{(i)}, E_t^{(j)}] = 0$$
 unless $s\vec{\alpha}^{(i)} + t\vec{\alpha}^{(j)} = u\vec{\alpha}^{(k)}$ for some u, k

$$\Longrightarrow \boxed{[E_s^{(i)}, E_t^{(j)}] \propto E_u^{(k)}}$$

SU(3) (contd.)

- If SU(3) were exact symmetry, only two generators could be measured simultaneously, but large arbitrariness in choosing them
- Preferred choice exists because SU(3) symmetry is broken: generators used to label the physical states correspond to unbroken

$$\mathrm{SU}(3) \underset{m_s \neq m_u = m_d}{\rightarrow} \mathrm{SU}(2)_I \times \mathrm{U}(1)_Y \underset{q_u \neq q_d}{\rightarrow} \mathrm{U}(1)_Q \times \mathrm{U}(1)_Y$$

 \implies choose I_3 , Y, and \vec{I}^2 (not an element of the Lie algebra)

Simplest irreducible representations of SU(3)

Trivial representation: $D_T(U) = 1 \ \forall U \in SU(3)$

- one-dimensional: 1
- good for any group
- corresponding representation of the algebra: $d(t^a) = 0$

Fundamental (defining) representation $D_F(U) = U$

- three-dimensional: 3
- good for any matrix Lie groups
- corresponding representation of the algebra: $d_F(t^a) \equiv t_F^a = t^a$

Writing $U = e^{i\alpha \cdot t}$, D_F from d_F

$$t^a \Rightarrow D_F(U) = D_F(e^{i\alpha \cdot t}) = U = e^{i\alpha \cdot t}$$

Simplest irreducible representations of SU(3) (contd.)

Complex conjugate representation: $D_C(U) = U^*$

- three-dimensional: $\bar{3}$
- good for any matrix group, but non necessarily a new rep (e.g., for SU(2) $\mathbf{2} \sim \bar{\mathbf{2}}$)
- for SU(3) $3 \sim \bar{3}$
- corresponding algebra rep: $d_C(t^a) \equiv t_C^a = (-t^a)^* = -(t^a)^T$

$$\operatorname{tr} t_C^a t_C^b = \operatorname{tr} (-t^a)^* (-t^b)^* = \frac{1}{2} \delta^{ab}$$

It is a representation

For the group:

$$D_C(U_1U_2) = (U_1U_2)^* = U_1^*U_2^* = D_C(U_1)D_C(U_2)$$
 $D_C(\mathbf{1}) = \mathbf{1}$

For the algebra:

$$[t^{a}, t^{b}]^{*} = [(t^{a})^{*}, (t^{b})^{*}] = [(-t^{a})^{*}, (-t^{b})^{*}] = -if_{abc}(t^{c})^{*} = if_{abc}(-t^{c})^{*}$$
$$[t^{a}_{C} = -(t^{a})^{*} \Rightarrow D_{C}(U) = D_{C}(e^{i\alpha \cdot t}) = U^{*} = e^{-i\alpha \cdot t^{*}} = e^{i\alpha \cdot t_{C}}$$

Simplest irreducible representations of SU(3) (contd.)

Adjoint representation: $D_A(U) = Ad_U$

- eight-dimensional: 8
- exists for any Lie group

 Ad_U : linear transformation acting on the algebra: $X=X_at^a$

$$\mathrm{Ad}_U X \equiv U X U^\dagger \qquad \mathrm{Ad}_U X = X_b \mathrm{Ad}_U t^b = t^a (\mathrm{Ad}_U)_{ab} X_b$$

 $(\mathrm{Ad}_U)_{ab}$ are 8 imes 8 matrices, and provide a representation:

$$\operatorname{Ad}_{U_1}\operatorname{Ad}_{U_2}X = U_1U_2XU_2^{\dagger}U_1^{\dagger} = (U_1U_2)X(U_1U_2)^{\dagger} = \operatorname{Ad}_{U_1U_2}X$$

What are the generators? For infinitesimal $U \simeq \mathbf{1} + i\alpha \cdot t$

$$UXU^{\dagger} \simeq (\mathbf{1} + i\alpha \cdot t)X(\mathbf{1} - i\alpha \cdot t) \simeq X + i\alpha \cdot [t, X]$$

$$= X + i\alpha_{a}X_{b}[t^{a}, t^{b}] = (X_{b} + i\alpha_{a}X_{c}if_{acb})t^{b}$$

$$= t^{b}[\delta_{bc} + i\alpha_{a}(-if_{abc})]X_{c} = t^{b}[\delta_{bc} + i\alpha_{a}(T^{a})_{bc}]X_{c}$$

$$(T^{a})_{bc} \equiv -if_{abc} \qquad T^{a}X = [t^{a}, X] = \operatorname{ad}_{t^{a}}X$$

Simplest irreducible representations of SU(3) (contd.)

Abstractly: $ad_X Y = [X, Y]$ linear transf. of the algebra (as a vector space)

$$\begin{split} [\mathrm{ad}_X,\mathrm{ad}_Y]Z &= (\mathrm{ad}_X\mathrm{ad}_Y - \mathrm{ad}_Y\mathrm{ad}_X)Z = [X,[Y,Z]] - [Y,[X,Z]] \\ &= [X,[Y,Z]] + [X,[Z,Y]] = [[X,Y],Z] = \mathrm{ad}_{[X,Y]}Z \end{split}$$

 $X \to \operatorname{ad}_X$ is a representation of the algebra

$$\operatorname{ad}_{t^a} X = X_b[t^a, t^b] = t^c(-if_{acb})X_b = t^c(T^a)_{cb}X_b$$

More directly from Jacobi identity

$$(-i)f_{bam}(-i)f_{cmn} - (-i)f_{cam}(-i)f_{bmn} = if_{bcm}(-i)f_{man}$$
$$([T^a, T^b])_{mn} = if_{abc}(T^c)_{mn}$$
$$\operatorname{tr} T^a T^b = -f_{amn}f_{bnn} = f_{amn}f_{bmn} = 3\delta^{ab}$$

$$t_A^a = T^a \Rightarrow D_A(U) = \mathrm{Ad}_{e^{i\alpha \cdot t}} = e^{i\mathrm{ad}_{\alpha \cdot t}}$$

Weight diagrams

More interested in representation space than in representative matrices: basis corresponds to mass-degenerate particle multiplets

• Convenient basis: eigenvectors of I_3 and $Y \sim$ basis of physical particles with definite Q and S, corresponding to unbroken part of symmetry $U(1)_Y \times U(1)_{I_3} \sim U(1)_Y \times U(1)_Q$

Ignore weak interactions

- Find weights, pairs of simultaneous eigenvalues (i_3, y) of I_3, Y representatives of in an irrep, plot in $(i_3, \frac{\sqrt{3}}{2}y)$ plane
 - ⇒ weight diagram of the irreducible representation
 - completely and uniquely identifies a representation
 - tells degeneracy of each weight
- Also convenient to organise eigenvectors in isospin multiplets

 $SU(2)_I$ good approx. symmetry of strong interactions

Fundamental representation

Representation space: \mathbb{C}^3 Representatives of generators: $t^a = \frac{\lambda^a}{2}$ $\Rightarrow I_3^F$ and Y^F already diagonal

$$I_3^F = \frac{1}{2}\lambda^3 = \operatorname{diag}\left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$

 $Y^F = \frac{1}{\sqrt{3}}\lambda^8 = \operatorname{diag}\left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$

Basis vectors $e_i^{(j=1,2,3)} = \delta_{ij}$ eigenstates of $(I_3^F, Y^F) \sim$ physical states

$$e^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad e^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad e^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Fundamental representation

Representation space: \mathbb{C}^3 Representatives of generators: $t^a = \frac{\lambda^a}{2}$ $\Rightarrow J_3^F$ and Y^F already diagonal

$$I_3^F = \frac{1}{2}\lambda^3 = \operatorname{diag}\left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$

 $Y^F = \frac{1}{\sqrt{3}}\lambda^8 = \operatorname{diag}\left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$

Basis vectors $e_i^{(j=1,2,3)} = \delta_{ij}$ eigenstates of $(I_3^F, Y^F) \sim$ physical states

$$(I_3^F, Y^F)e^{(1)} = (\frac{1}{2}, \frac{1}{3})e^{(1)}$$

$$(I_3^F, Y^F)e^{(2)} = (-\frac{1}{2}, \frac{1}{3})e^{(2)}$$

$$(I_3^F, Y^F)e^{(3)} = (0, -\frac{2}{3})e^{(3)}$$

$$I_{+}^{F}e^{(2)} = e^{(1)}$$
 $I_{-}^{F}e^{(1)} = e^{(2)}$
 $V_{+}^{F}e^{(3)} = e^{(1)}$ $V_{-}^{F}e^{(1)} = e^{(3)}$
 $W_{-}^{F}e^{(3)} = e^{(2)}$ $W_{-}^{F}e^{(2)} = e^{(3)}$

All other combinations give 0

Fundamental representation

Representation space: \mathbb{C}^3 Representatives of generators: $t^a = \frac{\lambda^a}{2}$ $\Rightarrow I_3^F$ and Y^F already diagonal

$$I_3^F = \frac{1}{2}\lambda^3 = \operatorname{diag}\left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$

 $Y^F = \frac{1}{\sqrt{3}}\lambda^8 = \operatorname{diag}\left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$

Basis vectors $e_i^{(j=1,2,3)} = \delta_{ij}$ eigenstates of $(I_3^F, Y^F) \sim$ physical states

Using
$$\vec{l}^2 = I_- I_+ + I_3 (I_3 + 1) = I_+ I_- + I_3 (I_3 - 1)$$

$$\vec{I}_F^2 e^{(1)} = \frac{3}{4} e^{(1)}$$
 $\vec{I}_F^2 e^{(2)} = \frac{3}{4} e^{(2)}$ $\vec{I}_F^2 e^{(3)} = 0$

$$\Rightarrow$$
 $e^{(1)}, e^{(2)}$ isodoublet ($I = \frac{1}{2}$), $e^{(3)}$ isosinglet ($I = 0$)

$$e^{(1)} = |\tfrac{1}{2}\,\tfrac{1}{2};\tfrac{1}{3}\rangle \quad e^{(2)} = |\tfrac{1}{2}\,\,-\tfrac{1}{2};\tfrac{1}{3}\rangle \quad e^{(3)} = |0\,0;-\tfrac{2}{3}\rangle$$

All nonzero matrix elements of I_{\pm} , V_{\pm} , W_{\pm} are positive

Complex conjugate representation

Representation space: \mathbb{C}^3

Representatives of generators: $(-t^a)^* = \frac{(-\lambda^a)^*}{2}$ $\Rightarrow I_2^C$ and Y^C already diagonal

$$\begin{split} I_3^C &= \frac{1}{2} (-\lambda^3)^* = \operatorname{diag} \left(-\frac{1}{2}, +\frac{1}{2}, 0 \right) \\ Y^C &= \frac{1}{\sqrt{3}} (-\lambda^8)^* = \operatorname{diag} \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3} \right) \end{split}$$

Basis vectors $e_i^{(j=1,2,3)} = \delta_{ii}$ eigenstates of $(I_3^C, Y^C) \sim$ physical states

$$e^{(1)}=egin{pmatrix}1\0\0\end{pmatrix}$$

$$e^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad e^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad e^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$e^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Complex conjugate representation

Representation space: \mathbb{C}^3

Representatives of generators: $(-t^a)^* = \frac{(-\lambda^a)^*}{2}$ $\Rightarrow I_3^C$ and Y^C already diagonal

$$\begin{split} I_3^C &= \frac{1}{2} (-\lambda^3)^* = \operatorname{diag} \left(-\frac{1}{2}, +\frac{1}{2}, 0 \right) \\ Y^C &= \frac{1}{\sqrt{3}} (-\lambda^8)^* = \operatorname{diag} \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3} \right) \end{split}$$

Basis vectors $e_i^{(j=1,2,3)} = \delta_{ii}$ eigenstates of $(I_3^C, Y^C) \sim$ physical states

$$(I_3^C, Y^C)e^{(1)} = (-\frac{1}{2}, -\frac{1}{3})e^{(1)}$$
$$(I_3^C, Y^C)e^{(2)} = (\frac{1}{2}, -\frac{1}{3})e^{(2)}$$
$$(I_3^C, Y^C)e^{(3)} = (0, \frac{2}{3})e^{(3)}$$

$$I_{+}^{C}e^{(1)}=-e^{(2)}$$

$$I_{-}^{C}e^{(2)}=-e^{(1)}$$

$$V_{+}^{C}e^{(1)}=-e^{(3)}$$

$$V_{-}^{C}e^{(3)}=-e^{(1)}$$

$$W_{+}^{C}e^{(2)}=-e^{(3)}$$

$$W_{-}^{C}e^{(3)}=-e^{(2)}$$

All other combinations give 0

$$I_{\pm}^{C} = -(I_{\pm}^{F})^{*} = -I_{\mp}^{F}$$

$$V_{+}^{C} = -(V_{+}^{F})^{*} = -V_{\pm}^{F}$$

$$I_{\pm}^{C} = -(I_{\pm}^{F})^{*} = -I_{\pm}^{F}$$
 $V_{\pm}^{C} = -(V_{\pm}^{F})^{*} = -V_{\pm}^{F}$ $W_{\pm}^{C} = -(W_{\pm}^{F})^{*} = -W_{\pm}^{F}$

Complex conjugate representation

Representation space: \mathbb{C}^3

Representatives of generators: $(-t^a)^* = \frac{(-\lambda^a)^*}{2}$ $\Rightarrow l_3^C$ and Y^C already diagonal

$$\begin{split} I_3^C &= \frac{1}{2} (-\lambda^3)^* = \operatorname{diag} \left(-\frac{1}{2}, +\frac{1}{2}, 0 \right) \\ Y^C &= \frac{1}{\sqrt{3}} (-\lambda^8)^* = \operatorname{diag} \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3} \right) \end{split}$$

Basis vectors $e_i^{(j=1,2,3)} = \delta_{ij}$ eigenstates of $(I_3^C, Y^C) \sim$ physical states

Isomultiplets:

$$\vec{I}_C^2 e^{(1)} = \frac{3}{4} e^{(1)} \quad \vec{I}_C^2 e^{(2)} = \frac{3}{4} e^{(2)} \quad \vec{I}_C^2 e^{(3)} = 0$$

 \Rightarrow $e^{(1)}, e^{(2)}$ isodoublet $(I = \frac{1}{2}), e^{(3)}$ isosinglet (I = 0)

$$e^{(1)} = |\overline{\tfrac{1}{2} \ -\tfrac{1}{2}; -\tfrac{1}{3}}\rangle \quad e^{(2)} = -|\overline{\tfrac{1}{2} \ \tfrac{1}{2}; -\tfrac{1}{3}}\rangle \quad e^{(3)} = |\overline{0 \ 0; \tfrac{2}{3}}\rangle$$

Signs choosen to have l_{\pm} and W_{\pm} with positive matrix elements only, cannot have also V_{\pm}

Adjoint representation

Representation space: $\mathbb{C}^8 \sim \mathfrak{su}(3)_{\mathbb{C}}$ Representatives of generators: $(T^a)_{bc} = -if_{abc}$ $\Rightarrow I_3^A$ and Y^A diagonal in the basis

$$\{\vec{H}, E_{\pm}^{(s)}\} = \{I_3, \bar{Y}, I_{\pm}, V_{\pm}, W_{\pm}\}$$

$$\bar{Y} = t^8$$

$$T^a X \equiv \operatorname{ad}_{t^a} X \equiv [t^a, X]$$

Basis vectors $\{I_3, \bar{Y}, I_\pm, V_\pm, W_\pm\}$ are eigenstates of $(I_3^A, Y^A) \sim$ physical states

$$\vec{H}^{A}E_{\pm}^{(s)} = [\vec{H}, E_{\pm}^{(s)}] = \pm \vec{\alpha}^{(s)}E_{\pm}^{(s)} \qquad \vec{H}^{A}H_{i} = [\vec{H}, H_{i}] = 0$$

$$T^{3,8}I_3 = 0 T^{3,8}\bar{Y} = 0 T^3I_{\pm} = \pm I_{\pm} T^8I_{\pm} = 0$$

$$T^3V_{\pm} = \pm \frac{1}{2}V_{\pm} T^8V_{\pm} = \pm \frac{\sqrt{3}}{2}V_{\pm} T^3W_{\pm} = \mp \frac{1}{2}W_{\pm} T^8W_{\pm} = \pm \frac{\sqrt{3}}{2}W_{\pm}$$

Adjoint representation

Representation space: $\mathbb{C}^8 \sim \mathfrak{su}(3)_{\mathbb{C}}$ Representatives of generators: $(T^a)_{bc} = -if_{abc}$ $\Rightarrow I_3^A$ and Y^A diagonal in the basis

$$\{\vec{H}, E_{\pm}^{(s)}\} = \{I_3, \bar{Y}, I_{\pm}, V_{\pm}, W_{\pm}\}$$
 $\bar{Y} = t^8$ $T^a X \equiv \operatorname{ad}_{t^a} X \equiv [t^a, X]$

Basis vectors $\{I_3, \bar{Y}, I_\pm, V_\pm, W_\pm\}$ are eigenstates of $(I_3^A, Y^A) \sim$ physical states

$$\vec{l}_A^2 X = \sum_{j=1}^3 (T^j)^2 X = \sum_{j=1}^3 [t^j, [t^j, X]]$$

 \Rightarrow (I_-, I_3, I_+) isotriplet $(I = 1), \bar{Y}$ isosinglet (I = 0) (W_+, V_+) and (V_-, W_-) isodoublets $(I = \frac{1}{2})$

Adjoint representation

Representation space: $\mathbb{C}^8 \sim \mathfrak{su}(3)_{\mathbb{C}}$ Representatives of generators: $(T^a)_{bc} = -if_{abc}$ $\Rightarrow I_3^A$ and Y^A diagonal in the basis

$$\{\vec{H}, E_{\pm}^{(s)}\} = \{I_3, \bar{Y}, I_{\pm}, V_{\pm}, W_{\pm}\}$$

$$\bar{Y} = t^8$$

$$T^a X \equiv \operatorname{ad}_{t^a} X \equiv [t^a, X]$$

Basis vectors $\{I_3,\, \bar{Y},\, I_\pm,\, V_\pm,\, W_\pm\}$ are eigenstates of $(I_3^A,\, Y^A)\sim$ physical states

⇒ looks like the baryon octet!

General irreducible finite-dimensional representations

- look for finite-dimensional Hermitian representation of complexified algebra
- diagonalise I₃, Y
- find highest-weight vector $|\psi\rangle$, $I_{+}|\psi\rangle = V_{+}|\psi\rangle = W_{+}|\psi\rangle = 0$ (exists, unique in finite-dim irrep), highest weight $\vec{x}_{\psi} = (i_{0}, \frac{\sqrt{3}}{2}y_{0})$
- build remaining vectors using I_-, V_-, W_-
- lowering operators are part of \mathfrak{su}_2 algebra \to stop after $2i_0$, $2v_0$, $2w_0$ times $\Rightarrow 2i_0, 2w_0$ integers, $\frac{3}{2}y_0 = i_0 + 2w_0$, $v_0 = i_0 + w_0$
- \bullet weight diagram reflection-symmetric wrt axis \bot root vectors
- count degeneracies:
 - weights on the boundary are nondegenerate
 - degeneracy increases by one moving from one hexagonal layer to the next
 - b degeneracy further increases by one moving to first triangular layer, then constant
- summary: irrep characterised by pair of half-integers (i_0, w_0) , dimension $d = (2i_0 + 1)(2w_0 + 1)(i_0 + w_0 + 1)$
- given (i_0, w_0) irrep, (w_0, i_0) is its complex-conjugate $(i_0 = w_0)$: real irrep

The "Eightfold Way"

Baryon octet:

- highest weight = p, $i = \frac{1}{2}$, $y = 1 \rightarrow i_0 = w_0 = \frac{1}{2}$
- $2(i_0 + w_0) + 1 = 3$ lines of constant y with 2, 4, 2 states
 - isodoublet $i = \frac{1}{2}$ with y = 1 $(S = 0) \Rightarrow n, p$
 - ▶ isotriplet i = 1 and isosinglet i = 0 (S = -1) with $y = 0 \Rightarrow \Sigma^{-,0,+}$, Λ
 - ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -2) \Rightarrow \Xi^{-,0}$

Meson "septuplet"? Impossible $(d_{irrep} \neq 7) \Rightarrow$ meson octet

- isodoublet $i = \frac{1}{2}$ with y = 1 $(S = 1) \Rightarrow K^0, K^+$
- ▶ isotriplet i = 1 and isosinglet i = 0 with y = 0 $(S = 0) \Rightarrow \pi^{-,0,+}$, η
- ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -1) \Rightarrow K^-, \bar{K}^0$

Baryon $s=\frac{3}{2}$ resonances "nonuplet"? Impossible $(d_{\mathrm{irrep}}\neq 9)\Rightarrow$ baryon decuplet

- highest weight = Δ^{++} , $i = \frac{3}{2}, y = 1 \rightarrow i_0 = \frac{3}{2}, w_0 = 0$
- triangular weight diagram, non-degenerate weights
- $2(i_0 + w_0) + 1 = 4$ lines of constant y with 4, 3, 2, 1 states
 - isoquartet $i = \frac{3}{2}$ with y = 1 $(S = 0) \Rightarrow \Delta^{-,0,+,++}$
 - ▶ isotriplet i = 1 with y = 0 $(S = -1) \Rightarrow \Sigma^{*-,0,+}$
 - ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -2) \Rightarrow \Xi^{*-,0}$
 - isosinglet i = 0 with y = -2 $(S = -3) \Rightarrow \Omega^-$

The "Eightfold Way"

Baryon octet:

- highest weight = p, $i = \frac{1}{2}$, $y = 1 \rightarrow i_0 = w_0 = \frac{1}{2}$
- $2(i_0 + w_0) + 1 = 3$ lines of constant y with 2, 4, 2 states
 - isodoublet $i = \frac{1}{2}$ with y = 1 $(S = 0) \Rightarrow n, p$
 - ▶ isotriplet i = 1 and isosinglet i = 0 (S = -1) with $y = 0 \Rightarrow \Sigma^{-,0,+}$, Λ
 - ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -2) \Rightarrow \Xi^{-,0}$

Meson "septuplet"? Impossible $(d_{irrep} \neq 7) \Rightarrow meson octet$

- isodoublet $i = \frac{1}{2}$ with y = 1 $(S = 1) \Rightarrow K^0, K^+$
- isotriplet i=1 and isosinglet i=0 with y=0 $(S=0) \Rightarrow \pi^{-,0,+}$, η
- isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -1) \Rightarrow K^-, \bar{K}^0$

Baryon $s=\frac{3}{2}$ resonances "nonuplet"? Impossible $(d_{\mathrm{irrep}}\neq 9)\Rightarrow$ baryon decuplet

- highest weight = Δ^{++} , $i = \frac{3}{2}, y = 1 \rightarrow i_0 = \frac{3}{2}, w_0 = 0$
- triangular weight diagram, non-degenerate weights
- $2(i_0 + w_0) + 1 = 4$ lines of constant y with 4, 3, 2, 1 states
 - isoquartet $i = \frac{3}{2}$ with y = 1 $(S = 0) \Rightarrow \Delta^{-,0,+,++}$
 - ▶ isotriplet i = 1 with y = 0 $(S = -1) \Rightarrow \Sigma^{*-,0,+}$
 - ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -2) \Rightarrow \Xi^{*-,0}$
 - isosinglet i = 0 with y = -2 $(S = -3) \Rightarrow \Omega^-$

The "Eightfold Way"

Baryon octet:

- highest weight = p, $i = \frac{1}{2}$, $y = 1 \rightarrow i_0 = w_0 = \frac{1}{2}$
- $2(i_0 + w_0) + 1 = 3$ lines of constant y with 2, 4, 2 states
 - ▶ isodoublet $i = \frac{1}{2}$ with y = 1 $(S = 0) \Rightarrow n, p$
 - ▶ isotriplet i = 1 and isosinglet i = 0 (S = -1) with $y = 0 \Rightarrow \Sigma^{-,0,+}$, Λ
 - ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -2) \Rightarrow \Xi^{-,0}$

Meson "septuplet"? Impossible $(d_{irrep} \neq 7) \Rightarrow$ meson octet

- isodoublet $i = \frac{1}{2}$ with y = 1 $(S = 1) \Rightarrow K^0, K^+$
- ▶ isotriplet i = 1 and isosinglet i = 0 with y = 0 $(S = 0) \Rightarrow \pi^{-,0,+}$, η
- ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -1) \Rightarrow K^-, \bar{K}^0$

Baryon $s=\frac{3}{2}$ resonances "nonuplet"? Impossible $(d_{\text{irrep}}\neq 9)\Rightarrow$ baryon decuplet

- highest weight = Δ^{++} , $i = \frac{3}{2}, y = 1 \rightarrow i_0 = \frac{3}{2}, w_0 = 0$
- triangular weight diagram, non-degenerate weights
- $2(i_0 + w_0) + 1 = 4$ lines of constant y with 4, 3, 2, 1 states
 - isoquartet $i = \frac{3}{2}$ with y = 1 $(S = 0) \Rightarrow \Delta^{-,0,+,++}$
 - ▶ isotriplet i = 1 with y = 0 $(S = -1) \Rightarrow \Sigma^{*-,0,+}$
 - ▶ isodoublet $i = \frac{1}{2}$ with y = -1 $(S = -2) \Rightarrow \Xi^{*-,0}$
 - isosinglet i = 0 with y = -2 $(S = -3) \Rightarrow \Omega^-$

The "Eightfold Way" (contd.)

If SU(3) symmetry is correct, tenth particle had to exist:

$$s_{\Omega}=\frac{3}{2}$$
 $i_{\Omega}=0$ $Q_{\Omega}=-1$

Gell-Mann–Nishijima formula $Q = i_3 + \frac{1}{2}y$

Mass pattern:

$$m_{\Delta} = 1232 \; \mathrm{MeV} \qquad m_{\Sigma^*} = 1384 \; \mathrm{MeV} \qquad m_{\Xi^*} = 1533 \; \mathrm{MeV}$$
 $\Longrightarrow m(S) \simeq m(\Delta) + 150 \; \mathrm{MeV} \cdot |S|$

 \Rightarrow guess $m_{\Omega} = 1682 \text{ MeV}$

Resonance with $s_{\Omega}=\frac{3}{2},~Q_{\Omega}=-1$ observed in 1964 with $m_{\Omega}=1672~{
m MeV}$

"Eightfold way" (Gell-Mann, 1961; Ne'eman, 1961), i.e., classification of hadron multiplets in terms of irreducible representations of SU(3), works!

From SU(3) invariance to the quark model

Eightfold way works, but why only certain irreps are observed in nature?

- baryons: only octets and decuplets
- mesons: only octets and singlets (e.g.: η')
- no fundamental or complex-conjugate (simplest irreps)

Known result: all irreps of SU(3) are obtained from fundamental (3) and complex conjugate $(\bar{3})$ representations by decomposing tensor products

Fundamental representation actually suffices

$$3\otimes \bar{3}=8\oplus 1$$

 \Rightarrow meson irreps

$$3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$$
 \Rightarrow baryon irreps (except singlet)

What if hadrons are bound states of constituents transforming in fundamental rep 3 (and their antiparticles transforming in $\bar{3}$)?

- supported by Gell-Mann–Nishijima formula $Q = I_3 + \frac{1}{2}Y$
- supported by approximate mass relation $m(S) = m(0) + 150 \text{ MeV} \cdot |S|$ for octet and decuplet baryons

Elementary constituents: quarks (Gell-Mann) or "aces" (Zweig)

Zweig was the first to believe in the physical existence of quark

From SU(3) invariance to the quark model (contd.)

Can charges be assigned to quarks to reproduce phenomenology?

• *I*₃, *Y* come from SU(3) fundamental rep: three states = *flavours*: *u*, *d* and *s*

$$u: i_3 = \frac{1}{2}$$
 $y = \frac{1}{3}$
 $d: i_3 = -\frac{1}{2}$ $y = \frac{1}{3}$
 $s: i_3 = 0$ $y = -\frac{2}{3}$

•
$$Q_{u,d,s}$$
 and $S_{u,d,s}$ fixed by baryon octet

$$\begin{array}{llll} \rho: & 2Q_u + Q_d & = 1 & 2S_u + S_d & = 0 \\ n: & Q_u + 2Q_d & = 0 & S_u + 2S_d & = 0 \\ \Lambda: & Q_u + Q_d + Q_s & = 0 & S_u + S_d + S_s & = -1 \end{array}$$

$$\Rightarrow Q_u = rac{2}{3}$$
, $Q_d = Q_s = -rac{1}{3}$, and $S_u = S_d = 0$ and $S_s = -1$

• for each flavour f = u, d, s

$$Q_f = I_{3f} + \frac{1}{2}Y_f = I_{3f} + \frac{1}{2}(B_f + S_f)$$

 \Rightarrow GMN and Y = B + S relation automatically satisfied by all baryons

From SU(3) invariance to the quark model (contd.)

Quantum Field Theory requires existence of antiparticles

- \Rightarrow antiquarks \bar{u} , \bar{d} , and \bar{s}
- charge-conjugation pairs, $Cf = \bar{f}$
- same spin and mass as quarks
- minus all the charges (I₃, Y, Q, B)
- if q transform in rep R of a symmetry group, \bar{q} must transform in \bar{R} (complex-conjugate)

• if meson=
$$(q_1\bar{q}_2) \Rightarrow B_{\mathrm{meson}} = 0$$

GMN and hypercharge/strangeness relations still satisfied

Light baryons, resonances have $s=\frac{1}{2},\ s=\frac{3}{2}\Rightarrow$ assign $s_{q,\bar{q}}=\frac{1}{2}$

$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$$

- baryons/antibaryons are fermions: spin from three half-integer quark/antiquark spins and two integer relative orbital momenta
- mesons are bosons: spin from two half-integer quark/antiquark spins and one integer relative orbital momentum

	1	I_3	Y	Q	S	В
и	1/2	$\frac{1}{2}$	$\frac{1}{3}$	<u>2</u> 3	0	$\frac{1}{3}$
d	1/2	$-\frac{1}{2}$	$\frac{1}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$
S	0	0	$-\frac{2}{3}$	$-\frac{1}{3}$	-1	$\frac{1}{3}$
ū	1/2	$-\frac{1}{2}$ $\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{3}$
ā	$\frac{1}{2}$		$-\frac{1}{3}$	$\frac{1}{3}$	0	$-\frac{1}{3}$
<u>5</u>	0	0	$\frac{2}{3}$	$\frac{1}{3}$	1	$-\frac{1}{3}$