Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest

November 6, 2020

SU(3) (contd.)

Three more commutation relations directly form $\mathrm{SU}(2)$
$\left[I_{+}, I_{-}\right]=2 I_{3} \quad\left[V_{+}, V_{-}\right]=2 V_{3}=I_{3}+\frac{3}{2} Y \quad\left[W_{+}, W_{-}\right]=2 W_{3}=-I_{3}+\frac{3}{2} Y$
Mathematically more convenient to use $\bar{Y}=\frac{\sqrt{3}}{2} Y\left(=t^{8}\right)$

$$
\vec{H}=\left(I_{3}, \bar{Y}\right) \quad E_{ \pm}^{(1)}=I_{ \pm} \quad E_{ \pm}^{(2)}=V_{ \pm} \quad E_{ \pm}^{(3)}=W_{ \pm}
$$

Compact form of commutation relations:

$$
\left[\vec{H}, E_{ \pm}^{(j)}\right]= \pm \vec{\alpha}^{(j)} E_{ \pm}^{(j)}
$$

$-\vec{a}^{(1)}$
$\vec{\alpha}^{(j)}$: root vectors, $\left(\vec{\alpha}^{(j)}\right)^{2}=1$
$\vec{\alpha}^{(1)}=(1,0) \quad \vec{\alpha}^{(2)}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad \vec{\alpha}^{(3)}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

Define linear operator $\operatorname{ad}_{A}, \operatorname{ad}_{A} X \equiv[A, X]$, acting on the algebra Simultaneous eigenvectors of $\operatorname{ad}_{H^{1,2}}$:

- $E_{ \pm}^{(j)}$ with eigenvalues $\pm \vec{\alpha}^{(j)}$
- $H^{1,2}$ with both eigenvalues 0

SU(3) (contd.)

Missing: commutators among ladder operators
Can be computed explicitly, but more instructive argument using Jacobi:

$$
\begin{aligned}
{\left[\vec{H},\left[E_{s}^{(i)}, E_{t}^{(j)}\right]\right] } & =-\left[E_{t}^{(j)},\left[\vec{H}, E_{s}^{(i)}\right]\right]-\left[E_{s}^{(i)},\left[E_{t}^{(j)}, \vec{H}\right]\right] \\
& =-s \vec{\alpha}^{(i)}\left[E_{t}^{(j)}, E_{s}^{(i)}\right]+t \vec{\alpha}^{(j)}\left[E_{s}^{(i)}, E_{t}^{(j)}\right] \\
& =\left(s \vec{\alpha}^{(i)}+t \vec{\alpha}^{(j)}\right)\left[E_{s}^{(i)}, E_{t}^{(j)}\right]
\end{aligned}
$$

$\Rightarrow\left[E_{s}^{(i)}, E_{t}^{(j)}\right] \propto$ simultaneous eigenvector with eigenvalues $s \vec{\alpha}^{(i)}+t \vec{\alpha}^{(j)}$
In general $s \vec{\alpha}^{(i)}+t \vec{\alpha}^{(j)}$ is not a vector of eigenvalues
$\Rightarrow\left[E_{s}^{(i)}, E_{t}^{(j)}\right]=0$ unless $s \vec{\alpha}^{(i)}+t \vec{\alpha}^{(j)}=u \vec{\alpha}^{(k)}$ for some u, k

$$
\Longrightarrow\left[E_{s}^{(i)}, E_{t}^{(j)}\right] \propto E_{u}^{(k)}
$$

SU(3) (contd.)

- If SU(3) were exact symmetry, only two generators could be measured simultaneously, but large arbitrariness in choosing them
- Preferred choice exists because $\mathrm{SU}(3)$ symmetry is broken: generators used to label the physical states correspond to unbroken

$$
\mathrm{SU}(3) \underset{m_{s} \neq m_{u}=m_{d}}{\rightarrow} \mathrm{SU}(2)_{I} \times \mathrm{U}(1)_{Y} \underset{\substack{m_{u} \neq m_{d} \\ q_{u} \neq q_{d}}}{\rightarrow} \mathrm{U}(1)_{Q} \times \mathrm{U}(1)_{Y}
$$

\Longrightarrow choose I_{3}, Y, and \vec{I}^{2} (not an element of the Lie algebra)

Simplest irreducible representations of SU(3)

Trivial representation: $D_{T}(U)=1 \forall U \in \mathrm{SU}(3)$

- one-dimensional: 1
- good for any group
- corresponding representation of the algebra: $d\left(t^{a}\right)=0$

Fundamental (defining) representation $D_{F}(U)=U$

- three-dimensional: 3
- good for any matrix Lie groups
- corresponding representation of the algebra: $d_{F}\left(t^{a}\right) \equiv t_{F}^{a}=t^{a}$ Writing $U=e^{i \alpha \cdot t}, D_{F}$ from d_{F}

$$
t^{a} \Rightarrow D_{F}(U)=D_{F}\left(e^{i \alpha \cdot t}\right)=U=e^{i \alpha \cdot t}
$$

Simplest irreducible representations of SU(3) (contd.)

Complex conjugate representation: $D_{C}(U)=U^{*}$

- three-dimensional: $\overline{3}$
- good for any matrix group, but non necessarily a new rep (e.g., for $\operatorname{SU}(2) \mathbf{2} \sim \overline{\mathbf{2}}$)
- for SU(3) $\mathbf{3} \nsim \overline{3}$
- corresponding algebra rep: $d_{C}\left(t^{a}\right) \equiv t_{C}^{a}=\left(-t^{a}\right)^{*}=-\left(t^{a}\right)^{T}$

$$
\operatorname{tr} t_{C}^{a} t_{C}^{b}=\operatorname{tr}\left(-t^{a}\right)^{*}\left(-t^{b}\right)^{*}=\frac{1}{2} \delta^{a b}
$$

It is a representation

- For the group:

$$
D_{C}\left(U_{1} U_{2}\right)=\left(U_{1} U_{2}\right)^{*}=U_{1}^{*} U_{2}^{*}=D_{C}\left(U_{1}\right) D_{C}\left(U_{2}\right) \quad D_{C}(\mathbf{1})=\mathbf{1}
$$

- For the algebra:

$$
\begin{gathered}
{\left[t^{a}, t^{b}\right]^{*}=\left[\left(t^{a}\right)^{*},\left(t^{b}\right)^{*}\right]=\left[\left(-t^{a}\right)^{*},\left(-t^{b}\right)^{*}\right]=-i f_{a b c}\left(t^{c}\right)^{*}=i f_{a b c}\left(-t^{c}\right)^{*}} \\
t_{C}^{a}=-\left(t^{a}\right)^{*} \Rightarrow D_{C}(U)=D_{C}\left(e^{i \alpha \cdot t}\right)=U^{*}=e^{-i \alpha \cdot t^{*}}=e^{i \alpha \cdot t_{c}}
\end{gathered}
$$

Simplest irreducible representations of $\mathrm{SU}(3)$ (contd.)

Adjoint representation: $D_{A}(U)=\operatorname{Ad}_{U}$

- eight-dimensional: 8
- exists for any Lie group
Ad_{U} : linear transformation acting on the algebra: $X=X_{a} t^{a}$

$$
\operatorname{Ad}_{U} X \equiv U X U^{\dagger} \quad \operatorname{Ad}_{U} X=X_{b} \operatorname{Ad}_{U} t^{b}=t^{a}\left(\operatorname{Ad}_{U}\right)_{a b} X_{b}
$$

$\left(\operatorname{Ad}_{U}\right)_{a b}$ are 8×8 matrices, and provide a representation:

$$
\operatorname{Ad}_{U_{1}} \operatorname{Ad}_{U_{2}} X=U_{1} U_{2} X U_{2}^{\dagger} U_{1}^{\dagger}=\left(U_{1} U_{2}\right) X\left(U_{1} U_{2}\right)^{\dagger}=\operatorname{Ad}_{U_{1} U_{2}} X
$$

What are the generators? For infinitesimal $U \simeq 1+i \alpha \cdot t$

$$
\begin{aligned}
U X U^{\dagger} & \simeq(1+i \alpha \cdot t) X(\mathbf{1}-i \alpha \cdot t) \simeq X+i \alpha \cdot[t, X] \\
& =X+i \alpha_{a} X_{b}\left[t^{a}, t^{b}\right]=\left(X_{b}+i \alpha_{a} X_{c} i f_{a c b}\right) t^{b} \\
& =t^{b}\left[\delta_{b c}+i \alpha_{a}\left(-i f_{a b c}\right)\right] X_{c}=t^{b}\left[\delta_{b c}+i \alpha_{a}\left(T^{a}\right)_{b c}\right] X_{c} \\
\left(T^{a}\right)_{b c} & \equiv-i f_{a b c} \quad T^{a} X=\left[t^{a}, X\right]=\operatorname{ad}_{t^{a}} X
\end{aligned}
$$

Simplest irreducible representations of SU(3) (contd.)

Abstractly: $\operatorname{ad}_{X} Y=[X, Y]$ linear transf. of the algebra (as a vector space)

$$
\begin{aligned}
{\left[\operatorname{ad}_{X}, \operatorname{ad}_{Y}\right] Z } & =\left(\operatorname{ad}_{X} \operatorname{ad}_{Y}-\operatorname{ad}_{Y} \operatorname{ad}_{X}\right) Z=[X,[Y, Z]]-[Y,[X, Z]] \\
& =[X,[Y, Z]]+[X,[Z, Y]]=[[X, Y], Z]=\operatorname{ad}_{[X, Y]} Z
\end{aligned}
$$

$X \rightarrow \operatorname{ad}_{X}$ is a representation of the algebra

$$
\operatorname{ad}_{t^{a}} X=X_{b}\left[t^{a}, t^{b}\right]=t^{c}\left(-i f_{a c b}\right) X_{b}=t^{c}\left(T^{a}\right)_{c b} X_{b}
$$

More directly from Jacobi identity

$$
\begin{gathered}
(-i) f_{b a m}(-i) f_{c m n}-(-i) f_{c a m}(-i) f_{b m n}=i f_{b c m}(-i) f_{m a n} \\
\left(\left[T^{a}, T^{b}\right]\right)_{m n}=i f_{a b c}\left(T^{c}\right)_{m n} \\
\operatorname{tr} T^{a} T^{b}=-f_{a m n} f_{b n m}=f_{a m n} f_{b m n}=3 \delta^{a b} \\
t_{A}^{a}=T^{a} \Rightarrow D_{A}(U)=\mathrm{Ad}_{e^{i \alpha \cdot t}}=e^{i a^{a d \cdot t}}
\end{gathered}
$$

Weight diagrams

More interested in representation space than in representative matrices: basis corresponds to mass-degenerate particle multiplets

- Convenient basis: eigenvectors of I_{3} and $Y \sim$ basis of physical particles with definite Q and S, corresponding to unbroken part of symmetry $U(1)_{Y} \times U(1)_{l_{3}} \sim U(1)_{Y} \times U(1)_{Q}$
- Find weights, pairs of simultaneous eigenvalues $\left(i_{3}, y\right)$ of I_{3}, Y representatives of in an irrep, plot in ($i_{3}, \frac{\sqrt{3}}{2} y$) plane
\Rightarrow weight diagram of the irreducible representation
- completely and uniquely identifies a representation
- tells degeneracy of each weight
- Also convenient to organise eigenvectors in isospin multiplets
$\mathrm{SU}(2)$, good approx. symmetry of strong interactions

Fundamental representation

Representation space: \mathbb{C}^{3} Representatives of generators: $t^{a}=\frac{\lambda^{a}}{2}$ $\Rightarrow I_{3}^{F}$ and Y^{F} already diagonal

$$
\begin{gathered}
I_{3}^{F}=\frac{1}{2} \lambda^{3}=\operatorname{diag}\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
Y^{F}=\frac{1}{\sqrt{3}} \lambda^{8}=\operatorname{diag}\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)
\end{gathered}
$$

Basis vectors $e_{i}^{(j=1,2,3)}=\delta_{i j}$ eigenstates of $\left(I_{3}^{F}, Y^{F}\right) \sim$ physical states

$$
e^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e^{(2)}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad e^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Fundamental representation

Representation space: \mathbb{C}^{3}
Representatives of generators: $t^{a}=\frac{\lambda^{a}}{2}$
$\Rightarrow I_{3}^{F}$ and Y^{F} already diagonal

$$
\begin{aligned}
I_{3}^{F} & =\frac{1}{2} \lambda^{3}=\operatorname{diag}\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
Y^{F} & =\frac{1}{\sqrt{3}} \lambda^{8}=\operatorname{diag}\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)
\end{aligned}
$$

Basis vectors $e_{i}^{(j=1,2,3)}=\delta_{i j}$ eigenstates of $\left(I_{3}^{F}, Y^{F}\right) \sim$ physical states
$\left(I_{3}^{F}, Y^{F}\right) e^{(1)}=\left(\frac{1}{2}, \frac{1}{3}\right) e^{(1)}$
$I_{+}^{F} e^{(2)}=e^{(1)}$
$I_{-}^{F} e^{(1)}=e^{(2)}$
$\left(I_{3}^{F}, Y^{F}\right) e^{(2)}=\left(-\frac{1}{2}, \frac{1}{3}\right) e^{(2)}$
$V_{+}^{F} e^{(3)}=e^{(1)} \quad V_{-}^{F} e^{(1)}=e^{(3)}$
$\left(I_{3}^{F}, Y^{F}\right) e^{(3)}=\left(0,-\frac{2}{3}\right) e^{(3)}$
$W_{+}^{F} e^{(3)}=e^{(2)} \quad W_{-}^{F} e^{(2)}=e^{(3)}$

All other combinations give 0

Fundamental representation

Representation space: \mathbb{C}^{3}
Representatives of generators: $t^{a}=\frac{\lambda^{a}}{2}$
$\Rightarrow I_{3}^{F}$ and Y^{F} already diagonal

$$
\begin{gathered}
I_{3}^{F}=\frac{1}{2} \lambda^{3}=\operatorname{diag}\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
Y^{F}=\frac{1}{\sqrt{3}} \lambda^{8}=\operatorname{diag}\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)
\end{gathered}
$$

Basis vectors $e_{i}^{(j=1,2,3)}=\delta_{i j}$ eigenstates of $\left(I_{3}^{F}, Y^{F}\right) \sim$ physical states Using $\vec{I}^{2}=I_{-} I_{+}+I_{3}\left(I_{3}+1\right)=I_{+} I_{-}+I_{3}\left(I_{3}-1\right)$

$$
\vec{I}_{F}^{2} e^{(1)}=\frac{3}{4} e^{(1)} \quad \vec{I}_{F}^{2} e^{(2)}=\frac{3}{4} e^{(2)} \quad \vec{I}_{F}^{2} e^{(3)}=0
$$

$\Rightarrow e^{(1)}, e^{(2)}$ isodoublet $\left(I=\frac{1}{2}\right), e^{(3)}$ isosinglet $(I=0)$

$$
e^{(1)}=\left|\frac{1}{2} \frac{1}{2} ; \frac{1}{3}\right\rangle \quad e^{(2)}=\left|\frac{1}{2}-\frac{1}{2} ; \frac{1}{3}\right\rangle \quad e^{(3)}=\left|00 ;-\frac{2}{3}\right\rangle
$$

All nonzero matrix elements of $I_{ \pm}, V_{ \pm}, W_{ \pm}$are positive

Complex conjugate representation

Representation space: \mathbb{C}^{3}
Representatives of generators: $\left(-t^{a}\right)^{*}=\frac{\left(-\lambda^{a}\right)^{*}}{2}$
$\Rightarrow I_{3}^{C}$ and Y^{C} already diagonal

$$
\begin{aligned}
I_{3}^{C} & =\frac{1}{2}\left(-\lambda^{3}\right)^{*}=\operatorname{diag}\left(-\frac{1}{2},+\frac{1}{2}, 0\right) \\
Y^{C} & =\frac{1}{\sqrt{3}}\left(-\lambda^{8}\right)^{*}=\operatorname{diag}\left(-\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Basis vectors $e_{i}^{(j=1,2,3)}=\delta_{i j}$ eigenstates of $\left(I_{3}^{C}, Y^{C}\right) \sim$ physical states

$$
e^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e^{(2)}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad e^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Complex conjugate representation

Representation space: \mathbb{C}^{3}
Representatives of generators: $\left(-t^{a}\right)^{*}=\frac{\left(-\lambda^{a}\right)^{*}}{2}$
$\Rightarrow I_{3}^{C}$ and Y^{C} already diagonal

$$
\begin{aligned}
I_{3}^{C} & =\frac{1}{2}\left(-\lambda^{3}\right)^{*}=\operatorname{diag}\left(-\frac{1}{2},+\frac{1}{2}, 0\right) \\
Y^{C} & =\frac{1}{\sqrt{3}}\left(-\lambda^{8}\right)^{*}=\operatorname{diag}\left(-\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Basis vectors $e_{i}^{(j=1,2,3)}=\delta_{i j}$ eigenstates of $\left(I_{3}^{C}, Y^{C}\right) \sim$ physical states

$$
\left.\left.\begin{array}{rlrl}
\left(I_{3}^{C}, Y^{C}\right) e^{(1)} & =\left(-\frac{1}{2},-\frac{1}{3}\right) e^{(1)} & I_{+}^{C} e^{(1)} & =-e^{(2)}
\end{array}\right) I_{-}^{C} e^{(2)}=-e^{(1)}\right)
$$

All other combinations give 0

$$
I_{ \pm}^{C}=-\left(I_{ \pm}^{F}\right)^{*}=-I_{\mp}^{F} \quad V_{ \pm}^{C}=-\left(V_{ \pm}^{F}\right)^{*}=-V_{\mp}^{F} \quad W_{ \pm}^{C}=-\left(W_{ \pm}^{F}\right)^{*}=-W_{\mp}^{F}
$$

Complex conjugate representation

Representation space: \mathbb{C}^{3}
Representatives of generators: $\left(-t^{a}\right)^{*}=\frac{\left(-\lambda^{a}\right)^{*}}{2}$
$\Rightarrow I_{3}^{C}$ and Y^{C} already diagonal

$$
\begin{aligned}
I_{3}^{C} & =\frac{1}{2}\left(-\lambda^{3}\right)^{*}=\operatorname{diag}\left(-\frac{1}{2},+\frac{1}{2}, 0\right) \\
Y^{C} & =\frac{1}{\sqrt{3}}\left(-\lambda^{8}\right)^{*}=\operatorname{diag}\left(-\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Basis vectors $e_{i}^{(j=1,2,3)}=\delta_{i j}$ eigenstates of $\left(I_{3}^{C}, Y^{C}\right) \sim$ physical states Isomultiplets:

$$
\vec{l}_{C}^{2} e^{(1)}=\frac{3}{4} e^{(1)} \quad \vec{l}_{C}^{2} e^{(2)}=\frac{3}{4} e^{(2)} \quad \vec{l}_{C}^{2} e^{(3)}=0
$$

$\Rightarrow e^{(1)}, e^{(2)}$ isodoublet $\left(I=\frac{1}{2}\right), e^{(3)}$ isosinglet $(I=0)$

$$
e^{(1)}=\left|\overline{\frac{1}{2}-\frac{1}{2} ;-\frac{1}{3}}\right\rangle \quad e^{(2)}=-\left|\overline{\frac{1}{2} \frac{1}{2} ;-\frac{1}{3}}\right\rangle \quad e^{(3)}=\left|\overline{00 ; \frac{2}{3}}\right\rangle
$$

Signs choosen to have $I_{ \pm}$and $W_{ \pm}$with positive matrix elements only, cannot have also $V_{ \pm}$

Adjoint representation

Representation space: $\mathbb{C}^{8} \sim \mathfrak{s u}(3)_{\mathbb{C}}$
Representatives of generators: $\left(T^{a}\right)_{b c}=-i f_{a b c}$ $\Rightarrow I_{3}^{A}$ and Y^{A} diagonal in the basis

$$
\left\{\vec{H}, E_{ \pm}^{(s)}\right\}=\left\{I_{3}, \bar{Y}, I_{ \pm}, V_{ \pm}, W_{ \pm}\right\}
$$

$$
\bar{Y}=t^{8}
$$

$$
T^{a} X \equiv \operatorname{ad}_{t^{a}} X \equiv\left[t^{a}, X\right]
$$

Adjoint representation

Representation space: $\mathbb{C}^{8} \sim \mathfrak{s u}(3)_{\mathbb{C}}$
Representatives of generators: $\left(T^{a}\right)_{b c}=-i f_{a b c}$ $\Rightarrow I_{3}^{A}$ and Y^{A} diagonal in the basis

$$
\left\{\vec{H}, E_{ \pm}^{(s)}\right\}=\left\{I_{3}, \bar{Y}, I_{ \pm}, V_{ \pm}, W_{ \pm}\right\}
$$

$$
\bar{Y}=t^{8}
$$

$$
T^{a} X \equiv \operatorname{ad}_{t^{a}} X \equiv\left[t^{a}, X\right]
$$

Basis vectors $\left\{I_{3}, \bar{Y}, I_{ \pm}, V_{ \pm}, W_{ \pm}\right\}$are eigenstates of $\left(I_{3}^{A}, Y^{A}\right) \sim$ physical states

$$
\vec{\iota}_{A}^{2} X=\sum_{j=1}^{3}\left(T^{j}\right)^{2} X=\sum_{j=1}^{3}\left[t^{j},\left[t^{j}, X\right]\right]
$$

$\Rightarrow\left(I_{-}, I_{3}, I_{+}\right)$isotriplet $(I=1), \bar{Y}$ isosinglet $(I=0)$
$\left(W_{+}, V_{+}\right)$and $\left(V_{-}, W_{-}\right)$isodoublets $\left(I=\frac{1}{2}\right)$

Adjoint representation

Representation space: $\mathbb{C}^{8} \sim \mathfrak{s u}(3)_{\mathbb{C}}$
Representatives of generators: $\left(T^{a}\right)_{b c}=-i f_{a b c}$ $\Rightarrow I_{3}^{A}$ and Y^{A} diagonal in the basis

$$
\left\{\vec{H}, E_{ \pm}^{(s)}\right\}=\left\{I_{3}, \bar{Y}, I_{ \pm}, V_{ \pm}, W_{ \pm}\right\}
$$

$$
\bar{Y}=t^{8}
$$

$$
T^{a} X \equiv \operatorname{ad}_{t^{a}} X \equiv\left[t^{a}, X\right]
$$

Basis vectors $\left\{I_{3}, \bar{Y}, I_{ \pm}, V_{ \pm}, W_{ \pm}\right\}$are eigenstates of $\left(I_{3}^{A}, Y^{A}\right) \sim$ physical states

$$
\begin{array}{lll}
\left|\frac{1}{2}-\frac{1}{2} ; 1\right\rangle \propto W_{+} & & \left|\frac{1}{2} \frac{1}{2} ; 1\right\rangle \propto V_{+} \\
& |10 ; 0\rangle \propto I_{3} & \\
& |00 ; 0\rangle \propto Y & \\
\left|\frac{1}{2}-\frac{1}{2} ;-1\right\rangle \propto V_{-} & & \left|\frac{1}{2} \frac{1}{2} ;-1\right\rangle \propto W_{-}
\end{array}
$$

\Rightarrow looks like the baryon octet!

General irreducible finite-dimensional representations

- look for finite-dimensional Hermitian representation of complexified algebra
- diagonalise I_{3}, Y
- find highest-weight vector $|\psi\rangle$, $I_{+}|\psi\rangle=V_{+}|\psi\rangle=W_{+}|\psi\rangle=0$ (exists, unique in finite-dim irrep), highest weight $\vec{x}_{\psi}=\left(i_{0}, \frac{\sqrt{3}}{2} y_{0}\right)$
- build remaining vectors using I_{-}, V_{-}, W_{-}
- lowering operators are part of $\mathfrak{s u}_{2}$ algebra \rightarrow stop after $2 i_{0}, 2 v_{0}, 2 w_{0}$ times $\Rightarrow 2 i_{0}, 2 w_{0}$ integers, $\frac{3}{2} y_{0}=i_{0}+2 w_{0}, v_{0}=i_{0}+w_{0}$
- weight diagram reflection-symmetric wrt axis \perp root vectors
- count degeneracies:
- weights on the boundary are nondegenerate
- degeneracy increases by one moving from one hexagonal layer to the next
- degeneracy further increases by one moving to first triangular layer, then constant
- summary: irrep characterised by pair of half-integers $\left(i_{0}, w_{0}\right)$, dimension $d=\left(2 i_{0}+1\right)\left(2 w_{0}+1\right)\left(i_{0}+w_{0}+1\right)$
- given $\left(i_{0}, w_{0}\right)$ irrep, $\left(w_{0}, i_{0}\right)$ is its complex-conjugate ($i_{0}=w_{0}$: real irrep)

The "Eightfold Way"

Baryon octet:

- highest weight $=p, i=\frac{1}{2}, y=1 \rightarrow i_{0}=w_{0}=\frac{1}{2}$
- $2\left(i_{0}+w_{0}\right)+1=3$ lines of constant y with $2,4,2$ states
- isodoublet $i=\frac{1}{2}$ with $y=1(S=0) \Rightarrow n, p$
- isotriplet $i=1$ and isosinglet $i=0(S=-1)$ with $y=0 \Rightarrow \Sigma^{-, 0,+}, \wedge$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-2) \Rightarrow \Xi^{-, 0}$

Meson "septuplet"? Impossible $\left(d_{\text {irrep }} \neq 7\right) \Rightarrow$ meson octet

- isodoublet $i=\frac{1}{2}$ with $y=1(S=1) \Rightarrow K^{0}, K^{+}$
- isotriplet $i=1$ and isosinglet $i=0$ with $y=0(S=0) \Rightarrow \pi^{-, 0,+}, \eta$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-1) \Rightarrow K^{-}, \bar{K}^{0}$

Baryon $s=\frac{3}{2}$ resonances "nonuplet"? Impossible $\left(d_{\text {irrep }} \neq 9\right) \Rightarrow$ baryon decuplet

- highest weight $=\Delta^{++}, i=\frac{3}{2}, y=1 \rightarrow i_{0}=\frac{3}{2}, w_{0}=0$
- triangular weight diagram, non-degenerate weights
- $2\left(i_{0}+w_{0}\right)+1=4$ lines of constant y with $4,3,2,1$ states
- isoquartet $i=\frac{3}{2}$ with $y=1(S=0) \Rightarrow \Delta^{-, 0,+,++}$
- isotriplet $i=1$ with $y=0(S=-1) \Rightarrow \Sigma^{*-, 0,+}$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-2) \Rightarrow \Xi^{*-, 0}$
- isosinglet $i=0$ with $y=-2(S=-3) \Rightarrow \Omega^{-}$

The "Eightfold Way"

Baryon octet:

- highest weight $=p, i=\frac{1}{2}, y=1 \rightarrow i_{0}=w_{0}=\frac{1}{2}$
- $2\left(i_{0}+w_{0}\right)+1=3$ lines of constant y with $2,4,2$ states
- isodoublet $i=\frac{1}{2}$ with $y=1(S=0) \Rightarrow n, p$
- isotriplet $i=1$ and isosinglet $i=0(S=-1)$ with $y=0 \Rightarrow \Sigma^{-, 0,+}, \wedge$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-2) \Rightarrow \Xi^{-, 0}$

Meson "septuplet"? Impossible $\left(d_{\text {irrep }} \neq 7\right) \Rightarrow$ meson octet

- isodoublet $i=\frac{1}{2}$ with $y=1(S=1) \Rightarrow K^{0}, K^{+}$
- isotriplet $i=1$ and isosinglet $i=0$ with $y=0(S=0) \Rightarrow \pi^{-, 0,+}, \eta$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-1) \Rightarrow K^{-}, \bar{K}^{0}$

Baryon $s=\frac{3}{2}$ resonances "nonuplet"? Impossible $\left(d_{\text {irrep }} \neq 9\right) \Rightarrow$ baryon decuplet

- highest weight $=\Delta^{++}, i=\frac{3}{2}, y=1 \rightarrow i_{0}=\frac{3}{2}, w_{0}=0$
- triangular weight diagram, non-degenerate weights
- $2\left(i_{0}+w_{0}\right)+1=4$ lines of constant y with $4,3,2,1$ states
- isoquartet $i=\frac{3}{2}$ with $y=1(S=0) \Rightarrow \Delta^{-, 0,+,++}$
- isotriplet $i=1$ with $y=0(S=-1) \Rightarrow \Sigma^{*-, 0,+}$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-2) \Rightarrow \Xi^{*-, 0}$
- isosinglet $i=0$ with $y=-2(S=-3) \Rightarrow \Omega^{-}$

The "Eightfold Way"

Baryon octet:

- highest weight $=p, i=\frac{1}{2}, y=1 \rightarrow i_{0}=w_{0}=\frac{1}{2}$
- $2\left(i_{0}+w_{0}\right)+1=3$ lines of constant y with $2,4,2$ states
- isodoublet $i=\frac{1}{2}$ with $y=1(S=0) \Rightarrow n, p$
- isotriplet $i=1$ and isosinglet $i=0(S=-1)$ with $y=0 \Rightarrow \Sigma^{-, 0,+}, \wedge$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-2) \Rightarrow \Xi^{-, 0}$

Meson "septuplet"? Impossible $\left(d_{\text {irrep }} \neq 7\right) \Rightarrow$ meson octet

- isodoublet $i=\frac{1}{2}$ with $y=1(S=1) \Rightarrow K^{0}, K^{+}$
- isotriplet $i=1$ and isosinglet $i=0$ with $y=0(S=0) \Rightarrow \pi^{-, 0,+}, \eta$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-1) \Rightarrow K^{-}, \bar{K}^{0}$

Baryon $s=\frac{3}{2}$ resonances "nonuplet"? Impossible $\left(d_{\text {irrep }} \neq 9\right) \Rightarrow$ baryon decuplet

- highest weight $=\Delta^{++}, i=\frac{3}{2}, y=1 \rightarrow i_{0}=\frac{3}{2}, w_{0}=0$
- triangular weight diagram, non-degenerate weights
- $2\left(i_{0}+w_{0}\right)+1=4$ lines of constant y with $4,3,2,1$ states
- isoquartet $i=\frac{3}{2}$ with $y=1(S=0) \Rightarrow \Delta^{-, 0,+,++}$
- isotriplet $i=1$ with $y=0(S=-1) \Rightarrow \Sigma^{*-, 0,+}$
- isodoublet $i=\frac{1}{2}$ with $y=-1(S=-2) \Rightarrow \Xi^{*-, 0}$
- isosinglet $i=0$ with $y=-2(S=-3) \Rightarrow \Omega^{-}$

The "Eightfold Way" (contd.)

If $\mathrm{SU}(3)$ symmetry is correct, tenth particle had to exist:

$$
s_{\Omega}=\frac{3}{2} \quad i_{\Omega}=0 \quad Q_{\Omega}=-1
$$

Gell-Mann-Nishijima formula $Q=i_{3}+\frac{1}{2} y$
Mass pattern:

$$
\begin{gathered}
m_{\Delta}=1232 \mathrm{MeV} \quad m_{\Sigma^{*}}=1384 \mathrm{MeV} \quad m_{\Xi^{*}}=1533 \mathrm{MeV} \\
\Longrightarrow m(S) \simeq m(\Delta)+150 \mathrm{MeV} \cdot|S|
\end{gathered}
$$

\Rightarrow guess $m_{\Omega}=1682 \mathrm{MeV}$
Resonance with $s_{\Omega}=\frac{3}{2}, Q_{\Omega}=-1$ observed in 1964 with $m_{\Omega}=1672 \mathrm{MeV}$
"Eightfold way" (Gell-Mann, 1961; Ne'eman, 1961), i.e., classification of hadron multiplets in terms of irreducible representations of SU(3), works!

From SU(3) invariance to the quark model

Eightfold way works, but why only certain irreps are observed in nature?

- baryons: only octets and decuplets
- mesons: only octets and singlets (e.g.: η^{\prime})
- no fundamental or complex-conjugate (simplest irreps)

Known result: all irreps of $\mathrm{SU}(3)$ are obtained from fundamental (3) and complex conjugate ($\overline{3}$) representations by decomposing tensor products

Fundamental representation actually suffices

$$
\begin{aligned}
3 \otimes \overline{3} & =8 \oplus 1 & & \Rightarrow \text { meson irreps } \\
3 \otimes 3 \otimes 3 & =10 \oplus 8 \oplus 8 \oplus 1 & & \Rightarrow \text { baryon irreps (except singlet) }
\end{aligned}
$$

What if hadrons are bound states of constituents transforming in fundamental rep 3 (and their antiparticles transforming in $\overline{3}$)?

- supported by Gell-Mann-Nishijima formula $Q=I_{3}+\frac{1}{2} Y$
- supported by approximate mass relation $m(S)=m(0)+150 \mathrm{MeV} \cdot|S|$ for octet and decuplet baryons Elementary constituents: quarks (Gell-Mann) or "aces" (Zweig) Zweig was the first to believe in the physical existence of quark

From SU(3) invariance to the quark model (contd.)

Can charges be assigned to quarks to reproduce phenomenology?

- I_{3}, Y come from SU(3) fundamental rep: three states $=$ flavours: u, d and s

$$
\begin{array}{ll}
u: i_{3}=\frac{1}{2} & y=\frac{1}{3} \\
d: i_{3}=-\frac{1}{2} & y=\frac{1}{3} \\
s: i_{3}=0 & y=-\frac{2}{3}
\end{array}
$$

- if baryon $=\left(q_{1} q_{2} q_{3}\right) \Rightarrow B_{u}=B_{d}=B_{s}=\frac{1}{3}$
- extract $8 \subset 3 \times 3 \times 3 \Rightarrow$ content of baryons: $p=(u u d)$, $n=(u d d), \Lambda=(u d s)$
- $Q_{u, d, s}$ and $S_{u, d, s}$ fixed by baryon octet

$$
\begin{array}{rlrrrr}
p: & 2 Q_{u}+Q_{d} & =1 & 2 S_{u}+S_{d} & =0 \\
n: & Q_{u}+2 Q_{d} & =0 & S_{u}+2 S_{S} & =0 \\
\Lambda: & Q_{u}+Q_{d}+Q_{s} & =0 & S_{u}+S_{d}+S_{s}=-1 \\
\Rightarrow Q_{u}=\frac{2}{3}, Q_{d}=Q_{s}=-\frac{1}{3}, \text { and } S_{u} & =S_{d}=0 \text { and } S_{s}=-1
\end{array}
$$

- for each flavour $f=u, d, s$

$$
Q_{f}=I_{3 f}+\frac{1}{2} Y_{f}=I_{3 f}+\frac{1}{2}\left(B_{f}+S_{f}\right)
$$

$\Rightarrow \mathrm{GMN}$ and $Y=B+S$ relation automatically satisfied by all baryons

From SU(3) invariance to the quark model (contd.)

Quantum Field Theory requires existence of antiparticles \Rightarrow antiquarks \bar{u}, \bar{d}, and \bar{s}

- charge-conjugation pairs, $C f=\bar{f}$
- same spin and mass as quarks
- minus all the charges $\left(I_{3}, Y, Q, B\right)$
- if q transform in rep R of a symmetry group, \bar{q} must transform in \bar{R} (complex-conjugate)

- if meson $=\left(q_{1} \bar{q}_{2}\right) \Rightarrow B_{\text {meson }}=0$
- GMN and hypercharge/strangeness relations still satisfied

Light baryons, resonances have $s=\frac{1}{2}, s=\frac{3}{2} \Rightarrow \operatorname{assign} s_{q, \bar{q}}=\frac{1}{2}$

$$
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}=\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}
$$

- baryons/antibaryons are fermions: spin from three half-integer quark/antiquark spins and two integer relative orbital momenta
- mesons are bosons: spin from two half-integer quark/antiquark spins and one integer relative orbital momentum

	I	I_{3}	Y	Q	S	B
u	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{2}{3}$	0	$\frac{1}{3}$
d	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$
s	0	0	$-\frac{2}{3}$	$-\frac{1}{3}$	-1	$\frac{1}{3}$
\bar{u}	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{3}$
\bar{d}	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{3}$	0	$-\frac{1}{3}$
\bar{s}	0	0	$\frac{2}{3}$	$\frac{1}{3}$	1	$-\frac{1}{3}$

