Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest
October 16, 2020

Isospin and hadron multiplets

Isospin invariance $\left[\vec{l}, H_{s}\right]=0$ implies degenerate energy eigenspaces are representation spaces for irreducible representations of $\mathrm{SU}(2)$

Up to accidental degeneracies
Eigenspace $\{|E ; n\rangle, n=1, \ldots, N\}$ of energy $E, H_{s}|E ; n\rangle=E|E ; n\rangle$, left invariant by $U(\vec{\alpha})=e^{i \vec{\alpha} \cdot \vec{l}}$
$U(\vec{\alpha})$: family of unitary transformations on \mathcal{H}, exists thanks to Wigner's theorem $\overrightarrow{\mathbf{l}}$: operators, representatives of isospin generators in the full (infinite-dimensional) representation on \mathcal{H}

$$
H_{s}(U|E ; n\rangle)=U H_{s}|E ; n\rangle=E(U|E ; n\rangle) \Rightarrow U|E ; n\rangle=\mathcal{U}_{n^{\prime} n}\left|E ; n^{\prime}\right\rangle
$$

Since \mathcal{U} provide an irreducible representation $\Rightarrow N=2 i+1,2 i \in \mathbb{N}_{0}$
Experimental observation of hadron multiplets: almost degenerate in mass, same baryon number/strangeness but different electric charge

- assign i from dimension $2 i+1$ of multiplet
- assign increasing i_{3} to increasing electric charge (no same-charge states in multiplets observed)

Isospin and hadron multiplets (contd.)

Empirical formula for el. charge Q (Gell-Mann-Nishijima formula)

$$
Q=I_{3}+\frac{1}{2}(B+S)=I_{3}+\frac{1}{2} Y
$$

B : baryon number
S : strangeness
$Y=B+S$: hypercharge
Examples:

- p, n : nucleon doublet
- $\pi^{-, 0,+}$: pion triplet
- K^{+}, K^{0} and \bar{K}^{0}, K^{-}: kaon doublets
- $\Sigma^{-, 0,+}$: Sigma triplet
- $\Delta^{-, 0,+,++}$: Delta quartet

particle	i	i_{3}	Q	B	S	Y
p	$\frac{1}{2}$	$\frac{1}{2}$	1	1	0	1
n	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	0	1
π^{+}	1	1	1	0	0	0
π^{0}	1	0	0	0	0	0
π^{-}	1	-1	-1	0	0	0
K^{+}	$\frac{1}{2}$	$\frac{1}{2}$	1	0	1	1
K^{0}	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	1	1
\bar{K}^{0}	$\frac{1}{2}$	$\frac{1}{2}$	0	0	-1	-1
K^{-}	$\frac{1}{2}$	$-\frac{1}{2}$	-1	0	1	-1
Σ^{+}	1	1	1	1	-1	0
Σ^{0}	1	0	0	1	-1	0
Σ^{-}	1	-1	-1	1	-1	0
Δ^{++}	$\frac{3}{2}$	$\frac{3}{2}$	2	1	0	1
Δ^{+}	$\frac{3}{2}$	$\frac{1}{2}$	1	1	0	1
Δ^{0}	$\frac{3}{2}$	$-\frac{1}{2}$	0	1	0	1
Δ^{-}	$\frac{3}{2}$	$-\frac{3}{2}$	-1	1	0	1

Isospin and hadron multiplets (contd.)

Modern perspective: isomultiplets understood in terms of u, d quarks Light quark/antiquark isodoublet, flavour wave function

$$
\begin{array}{cl}
q=\psi_{u} u+\psi_{d} d & \bar{q}=\psi_{\bar{u}} \bar{u}+\psi_{\bar{d}} \bar{d} \\
u=\bar{u}=\binom{1}{0} & d=\bar{d}=\binom{0}{1}
\end{array}
$$

Under SU(2) transformation $q \rightarrow U q \quad \bar{q} \rightarrow U^{*} \bar{q}$
Required by QFT
U : fundamental (defining), U^{*} : complex-conjugate representations
Equivalent for SU(2)
Strange quark: isosinglet $(I=0)$, under $\operatorname{SU}(2) s, \bar{s} \rightarrow s, \bar{s}$, trivial rep. Composing the representations of q, s and $\bar{q}, \bar{s} \rightarrow$ meson multiplets

$$
\begin{array}{llll}
& \frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1 & \frac{1}{2} \otimes \underset{\bar{s}}{0}=\frac{1}{2} & \underset{s}{0} \otimes \frac{1}{2}=\frac{1}{q} \\
q & { }_{q} \\
\text { dimension: } & 2 \times 2=1+3 & 2 \times 1=2 & 2 \times 1=2
\end{array}
$$

Composing three representations of $q, s \rightarrow$ baryon multiplets

Isospin and hadron multiplets (contd.)

Fundamental $U=e^{i \vec{\alpha} \cdot \vec{l}}$ and complex-conjugate $U^{*}=e^{-i \vec{\alpha} \cdot \vec{l}^{*}}=e^{i \vec{\alpha} \cdot \vec{l}_{C}}$ representations \Rightarrow fundamental and complex-conjugate rep. of $\mathfrak{s u}_{2}$

$$
\begin{array}{rlrlrl}
\vec{I}_{C} & =-\vec{I}^{*} \Longrightarrow I_{C 3} & =-I_{3} & I_{C+} & =-I_{-} & I_{C-}=-I_{+} \\
& & & I_{1,3}^{*}=I_{1,3}, I_{2}^{*}=-I_{2} \\
I_{3} u & =\frac{1}{2} u & I_{3} d & =-\frac{1}{2} d & I_{-} u & =d \\
I_{C 3} \bar{u} & =-I_{3} \bar{u} & I_{C 3} \bar{d} & =-I_{3} \bar{d} & I_{C-} \bar{d} & =-I_{+} \bar{d} \\
& =-\frac{1}{2} \bar{u} & & =\frac{1}{2} \bar{d} & & =-\overline{I_{C+}} \bar{u}
\end{array}=-I_{-} \bar{u} .
$$

Relation between isospin eigenstates and flavour eigenstates

$$
u=\left|q ; \frac{1}{2}+\frac{1}{2}\right\rangle \quad d=\left|q ; \frac{1}{2}-\frac{1}{2}\right\rangle
$$

$$
\bar{u}=\left|\bar{q} ; \frac{1}{2}-\frac{1}{2}\right\rangle \quad \bar{d}=-\left|\bar{q} ; \frac{1}{2}+\frac{1}{2}\right\rangle
$$

Representation composition $\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1$, triplet $I=1$

$$
\begin{aligned}
-u \bar{d} & = & & \left|q ; \frac{1}{2} \frac{1}{2}\right\rangle \otimes\left|\bar{q} ; \frac{1}{2} \frac{1}{2}\right\rangle
\end{aligned}
$$

Isospin and hadron multiplets (contd.)

- Three quarks for a baryon,

$$
\begin{aligned}
& n_{u}+n_{d}+n_{s}=3 \\
& \Rightarrow \sum_{f}\left(b_{f}-\frac{1}{3}\right) n_{f}=0 \Rightarrow b_{f}=\frac{1}{3}
\end{aligned}
$$

- Isospin assignment

$$
\Rightarrow I_{3}=\frac{1}{2}\left(n_{u}-n_{d}\right)
$$

- Strangeness associated to presence of strange quarks $\Rightarrow S=-n_{s}$

Quantum numbers

	I	I_{3}	Q	B	S	Y
u	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$
d	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$
\bar{u}	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{2}{3}$	$-\frac{1}{3}$	0	$-\frac{1}{3}$
\bar{d}	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	$-\frac{1}{3}$	0	$-\frac{1}{3}$
s	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	-1	$-\frac{2}{3}$
\bar{s}	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{2}{3}$

- From p, n isospin and strangeness $\Rightarrow n_{u}^{(p)}=n_{d}^{(n)}=2, n_{u}^{(n)}=n_{d}^{(p)}=1$, from charge $\Rightarrow q_{u}=\frac{2}{3}, q_{d}=-\frac{1}{3}$
- From $\wedge(Q=0, S=-1, I=0) \Rightarrow q_{s}=-\frac{1}{3}$

Gell-Mann-Nishijima satisfied at quark level since
$I_{3}=\frac{1}{2}\left(n_{u}-n_{d}\right) \quad Q=\frac{2}{3} n_{u}-\frac{1}{3}\left(n_{d}+n_{s}\right) \quad B=\frac{1}{3}\left(n_{u}+n_{d}+n_{s}\right) \quad S=-n_{s}$
A bit ad hoc construction, will be fully justified in the quark model

Isospin conservation and scattering processes

$\pi N \rightarrow \pi^{\prime} N^{\prime}$ scattering, $\mathcal{M}_{\pi N \rightarrow \pi^{\prime} N^{\prime}}=\left\langle\pi^{\prime} N^{\prime}\right| H_{l}|\pi N\rangle$

$$
p \pi^{+} \rightarrow p \pi^{+} \quad p \pi^{-} \rightarrow p \pi^{-} \quad p \pi^{-} \rightarrow n \pi^{0}
$$

Pion-nucleon state decomposed in eigenstates of total isospin $\vec{I}=\vec{I}_{\pi}+\vec{l}_{N}$

$$
\begin{gathered}
\left|\pi^{-}\right\rangle=|1-1\rangle \quad\left|\pi^{0}\right\rangle=|10\rangle \quad\left|\pi^{+}\right\rangle=|1+1\rangle \\
|n\rangle=\left|\frac{1}{2}-\frac{1}{2}\right\rangle \quad|p\rangle=\left|\frac{1}{2}+\frac{1}{2}\right\rangle
\end{gathered}
$$

Decompose $1 \otimes \frac{1}{2}=\frac{1}{2} \oplus \frac{3}{2}$ using Clebsch-Gordan coefficients

$$
\begin{aligned}
\left|p \pi^{+}\right\rangle & =\left|\frac{3}{2} \frac{3}{2}\right\rangle \\
\left|p \pi^{-}\right\rangle & =\sqrt{\frac{1}{3}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle \\
\left|n \pi^{0}\right\rangle & =\sqrt{\frac{2}{3}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle
\end{aligned}
$$

Isospin conservation and scattering processes (contd.)

Isospin conservation $\left[H_{l}, \vec{l}\right]=0 \Rightarrow\left\langle i^{\prime} i_{3}^{\prime}\right| H_{l}\left|i i_{3}\right\rangle=\delta_{i^{\prime} i^{\prime}} \delta_{i_{3}^{\prime} i_{3}} \mathcal{M}_{i}$
Special case of Wigner-Eckart theorem, can be proved using only $\left[I_{ \pm}, H_{l}\right]=0$

$$
\begin{aligned}
\mathcal{M}_{p \pi^{+} \rightarrow p \pi^{+}}=\left\langle p \pi^{+}\right| H_{l}\left|p \pi^{+}\right\rangle & =\left\langle\frac{3}{2} \frac{3}{2}\right| H_{l}\left|\frac{3}{2} \frac{3}{2}\right\rangle=\mathcal{M}_{\frac{3}{2}} \\
\mathcal{M}_{p \pi^{-} \rightarrow p \pi^{-}}=\left\langle p \pi^{-}\right| H_{l}\left|p \pi^{-}\right\rangle & =\frac{1}{3}\left(\left\langle\frac{3}{2}-\frac{1}{2}\right| H_{l}\left|\frac{3}{2}-\frac{1}{2}\right\rangle+2\left\langle\frac{1}{2}-\frac{1}{2}\right| H_{l}\left|\frac{1}{2}-\frac{1}{2}\right\rangle\right) \\
& =\frac{1}{3}\left(\mathcal{M}_{\frac{3}{2}}+2 \mathcal{M}_{\frac{1}{2}}\right) \\
\mathcal{M}_{p \pi^{-} \rightarrow n \pi^{0}}=\left\langle n \pi^{0}\right| H_{l}\left|p \pi^{-}\right\rangle & =\frac{\sqrt{2}}{3}\left(\left\langle\frac{3}{2}-\frac{1}{2}\right| H_{l}\left|\frac{3}{2}-\frac{1}{2}\right\rangle-\left\langle\frac{1}{2}-\frac{1}{2}\right| H_{l}\left|\frac{1}{2}-\frac{1}{2}\right\rangle\right) \\
& =\frac{\sqrt{2}}{3}\left(\mathcal{M}_{\frac{3}{2}}-\mathcal{M}_{\frac{1}{2}}\right)=\mathcal{M}_{n \pi^{0} \rightarrow p \pi^{+}}
\end{aligned}
$$

πN amplitudes all depend on only two independent amplitudes $\mathcal{M}_{\frac{1}{2}, \frac{3}{2}} \Rightarrow$ relations among physical amplitudes, cross sections

Isospin conservation and scattering processes (contd.)

Experimental fact: $\sigma_{p \pi^{+} \text {tot }} \propto \sum_{f}\left|\mathcal{M}_{p \pi^{+} \rightarrow \text { anything }}\right|^{2}$ has a peak at $\sqrt{s}=1.232 \mathrm{GeV}=m_{\Delta} \sim \Delta^{++}$resonance

At $\sqrt{s} \simeq m_{\Delta}$

- $p \pi^{+}$scattering proceeds through the formation of unstable particle Δ^{++}and its subsequent decay, $I_{\Delta}=\frac{3}{2} \Rightarrow$ expect $\left|\mathcal{M}_{\frac{3}{2}}\right| \gg\left|\mathcal{M}_{\frac{1}{2}}\right|$
- Ratios of cross sections (same proportionality factors between amplitude square and cross section)

$$
\frac{\sigma_{p \pi^{+} \rightarrow p \pi^{+}}}{\sigma_{p \pi^{-} \rightarrow p \pi^{-}}} \simeq 9 \quad \frac{\sigma_{p \pi^{+} \rightarrow p \pi^{+}}}{\sigma_{p \pi^{-} \rightarrow n \pi^{0}}} \simeq \frac{9}{2}
$$

- For $p \pi^{+}$scattering, elastic channel essentially only available channel Very little phase space for an extra π^{0}
- For $p \pi^{-}$scattering, elastic channel and inelastic channel $p \pi^{-} \rightarrow n \pi^{0}$

Again very little phase space for an extra π^{0}

Isospin conservation and scattering processes (contd.)

$$
\frac{\sigma_{p \pi^{+} \text {tot }}}{\sigma_{p \pi^{-} \text {tot }}}=\frac{\sigma_{p \pi^{+} \rightarrow p \pi^{+}}}{\sigma_{p \pi^{-} \rightarrow p \pi^{-}}+\sigma_{p \pi^{-} \rightarrow n \pi^{0}}} \underset{\sqrt{s}=m_{\Delta}}{ } \frac{1}{\frac{1}{9}+\frac{2}{9}}=3
$$

Quark model

End of '50s: hadron "zoo" lacking organisation, besides baryons/mesons and isospin multiplets + strangeness

Patterns were present: plot in $\left(I_{3}, S\right)$ plane:
Use only hadrons known in late '50s
eight lightest $s=\frac{1}{2}$ baryons

- fit nicely in a hexagonal array
- fit into isospin multiplets with small (permille) mass splittings
- larger but regular splitting between baryons with different S :

$\Delta S=-1 \leftrightarrow \Delta M=+150 \mathrm{MeV}$

Quark model

End of '50s: hadron "zoo" lacking organisation, besides baryons/mesons and isospin multiplets + strangeness

Patterns were present: plot in $\left(I_{3}, S\right)$ plane:
Use only hadrons known in late '50s
nine $s=\frac{3}{2}$ baryon resonances

- fit in almost-triangular array
- single isospin multiplet for each S
- same regularity in splittings between states with different S

$Q=-1$

Quark model

End of '50s: hadron "zoo" lacking organisation, besides baryons/mesons and isospin multiplets + strangeness

Patterns were present: plot in $\left(I_{3}, S\right)$ plane:
Use only hadrons known in late '50s
seven lightest pseudoscalar mesons

- hexagonal array similar to light baryons with a state missing in the centre
- shifted by one unit in S
- patterns overlap if one uses hypercharge $Y=B+S$

Quark model (contd.)

Plot in $\left(I_{3}, Y\right)$ plane, isomultiplets identified
Including all hadrons known now
baryon and meson octets

Quark model (contd.)

Plot in $\left(I_{3}, Y\right)$ plane, isomultiplets identified
Including all hadrons known now
baryon decuplet

Quark model (contd.)

Possible explanation:

- approximate internal symmetry exists extending $S U(2)_{I} \times U(1)_{Y}$ (isospin and hypercharge $\vec{I}-Y$) \Rightarrow explain patterns
- symmetry breaking \Rightarrow explain mass differences

Assume strong Hamiltonian $H_{s}=H_{0}+H_{l}$:

- H_{0} symmetric, yields degenerate multiplets \sim unitary irreps of internal (continuous) symmetry group $G \Rightarrow$ should match observed multiplets
- H_{l} symmetry-breaking term \Rightarrow should reproduce the splittings

Reasonable assumptions:

- internal symmetry group, compact Lie group
- looking for extension of $\vec{l}-Y$ symmetry $\Rightarrow G \supset \mathrm{SU}(2)_{I} \times \mathrm{U}(1)_{Y}$

Full symmetry group contains $\mathrm{U}(1)_{B} \sim$ baryon number conservation, expected to commute with G since no baryon/meson degeneracy

- I, I_{3}, Y fully classify light hadrons (besides $\vec{p}, s_{z}, \mathcal{B}$)

Simplest group satisfying requirements, with 8-dim irrep having desired decomposition into $I-Y$ multiplets: $\mathrm{SU}(3)$

SU(3)

SU(3): group of 3×3 unitary unimodular matrices, $U^{\dagger} U=\mathbf{1}$, $\operatorname{det} U=1$ General form $U=e^{i A}$ with $A^{\dagger}=A, \operatorname{tr} A=0$ Hermitean traceless matrices $=8$-dim linear space, choose basis $t^{a}=\frac{1}{2} \lambda^{a}$
$\lambda^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\lambda^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\lambda^{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
$\lambda^{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right) \quad \lambda^{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad \lambda^{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right)$
$\lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$
$\lambda^{a}:$ Gell-Mann matrices
Scalar product $\left(t^{a}, t^{b}\right) \equiv 2 \operatorname{tr} t^{a} t^{b}=\delta^{a b}$, extended by (anti)linearity
Commutator of tr.less Hermitean matrices $=$ tr.less anti-Hermitean matrix

$$
\left[t^{a}, t^{b}\right]=i f_{a b c} t^{c}
$$

Real totally antisymmetric/cyclic structure constants $f_{a b c}=-2 i \operatorname{tr}\left[t^{a}, t^{b}\right] t^{c}$ $U=e^{i \alpha_{a} t^{a}} \Rightarrow t^{a}$ generators of $\mathfrak{s u}(3)$ algebra

SU(3) (contd.)

Jacobi identity: for any matrices A, B, C

$$
[[A, B], C]+[[C, A], B]+[[B, C], A]=0
$$

Applied to generators

$$
\begin{array}{r}
{\left[\left[t^{a}, t^{b}\right], t^{c}\right]+\left[\left[t^{c}, t^{a}\right], t^{b}\right]+\left[\left[t^{b}, t^{c}\right], t^{a}\right]=0} \\
\Longrightarrow f_{b c m} f_{a m n}+f_{a b m} f_{c m n}+f_{c a m} f_{b m n}=0
\end{array}
$$

Structure constant satisfy

$$
f_{a b c} f_{a b d}=3 \delta_{c d}
$$

- Changing basis of the algebra \Rightarrow equally good set of generators, but different structure constants and normalisation
- Possibility to choose t^{a} so that $f_{a b c}$ totally antisymmetric and $f_{a b c} f_{a b d} \propto \delta_{c d}$ are consequences of semisimplicity and compactness of SU(3):
- semisimple $G=$ direct product of simple groups
- simple $G=$ non-Abelian group w/out normal subgroups $N \subset G, g n g^{-1} \subseteq N \forall n \in N, g \in G$
- compact $G=$ compact as a manifold

SU(3) (contd.)

$t^{1,2,3} \sim$ generators \vec{I} of $\mathrm{SU}(2)$, isospin subgroup $t^{8} \sim$ generator Y of $\mathrm{U}(1)_{Y}$ subgroup (up to a numerical factor)
SU(3) commutation relations

$$
\left[t^{i}, t^{j}\right]=i \epsilon_{i j k} t^{k} \quad i, j, k=1,2,3 \quad\left[t^{8}, t^{i}\right]=0 \quad i=1,2,3
$$

reproduce commutation relations

$$
\left[I_{i}, I_{j}\right]=i \epsilon_{i j k} I_{k} \quad i, j, k=1,2,3 \quad\left[Y, I_{i}\right]=0 \quad i=1,2,3
$$

Identify

$$
t^{i}=l_{i} \quad i=1,2,3 \quad t^{8}=\frac{\sqrt{3}}{2} Y
$$

See below for normalisation of Y
Also $t^{4,5}$ and $t^{6,7}$ correspond to (different) $\operatorname{SU}(2)$ subgroups
$t^{4}=V_{1} \quad t^{5}=V_{2}$
$\frac{1}{2} t^{3}+\frac{\sqrt{3}}{2} t^{8}=V_{3}=\frac{1}{2} l_{3}+\frac{3}{4} Y$

$$
Y_{V}=I_{3}-\frac{1}{2} Y
$$

$t^{6}=W_{1} \quad t^{7}=W_{2}$
$-\frac{1}{2} t^{3}+\frac{\sqrt{3}}{2} t^{8}=W_{3}=-\frac{1}{2} I_{3}+\frac{3}{4} Y \quad Y_{W}=-l_{3}-\frac{1}{2} Y$
$\left[V_{i}, V_{j}\right]=i \epsilon_{i j k} V_{k} \quad\left[W_{i}, W_{j}\right]=i \epsilon_{i j k} W_{k} \quad\left[Y, I_{i}\right]=\left[Y_{V}, V_{i}\right]=\left[Y_{W}, W_{i}\right]=0$ $I_{3}, V_{3}, W_{3}, Y, Y_{v}, Y_{W}$ not independent!

SU(3) (contd.)

Same commutation relations of ladder operators

$$
\left[I_{3}, I_{ \pm}\right]= \pm I_{ \pm} \quad\left[V_{3}, V_{ \pm}\right]= \pm V_{ \pm} \quad\left[W_{3}, W_{ \pm}\right]= \pm W_{ \pm}
$$

Ladder operators

$$
\begin{array}{lll}
I_{+}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & V_{+}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & W_{+}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
I_{-}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & V_{-}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) & W_{-}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{array}
$$

Together with $Y_{V, W}$ commutation relation \Longrightarrow

$$
\begin{array}{llll}
{\left[I_{3}, I_{ \pm}\right]} & = \pm I_{ \pm} & {\left[I_{3}, V_{ \pm}\right]= \pm \frac{1}{2} V_{ \pm}} &
\end{array}\left[I_{3}, W_{ \pm}\right]=\mp \frac{1}{2} W_{ \pm}
$$

- $\mathrm{SU}(3)$ is a rank-2 group: at most two generators can be diagonalised simultaneously - we can and will take I_{3}, Y
- $I_{ \pm}, V_{ \pm}, W_{ \pm}$on simultaneous eigenvector of I_{3}, Y produces new eigenvector
- Y changes by $\pm 1 \Rightarrow$ corresponds to observed integer differences

