Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

October 16, 2020

Isospin and hadron multiplets

Isospin invariance $[\vec{l}, H_s] = 0$ implies degenerate energy eigenspaces are representation spaces for irreducible representations of SU(2)

Up to accidental degeneracies

Eigenspace { $|E; n\rangle$, n = 1, ..., N} of energy $E, H_s|E; n\rangle = E|E; n\rangle$, left invariant by $U(\vec{\alpha}) = e^{i\vec{\alpha}\cdot\vec{\mathbf{l}}}$

 $U(\vec{\alpha})$: family of unitary transformations on \mathcal{H} , exists thanks to Wigner's theorem $\vec{\mathbf{l}}$: operators, representatives of isospin generators in the full (infinite-dimensional) representation on \mathcal{H}

$$H_{s}(U|E;n\rangle) = UH_{s}|E;n\rangle = E(U|E;n\rangle) \Rightarrow U|E;n\rangle = \mathcal{U}_{n'n}|E;n'\rangle$$

Since \mathcal{U} provide an irreducible representation $\Rightarrow N = 2i + 1$, $2i \in \mathbb{N}_0$ Experimental observation of hadron multiplets: almost degenerate in mass, same baryon number/strangeness but different electric charge

- assign *i* from dimension 2i + 1 of multiplet
- assign increasing *i*₃ to increasing electric charge (no same-charge states in multiplets observed)

Empirical formula for el. charge *Q* (*Gell-Mann–Nishijima formula*)

$$Q = I_3 + \frac{1}{2}(B+S) = I_3 + \frac{1}{2}Y$$

- B: baryon number
- S: strangeness
- Y = B + S: hypercharge

Examples:

- p, n: nucleon doublet
- $\pi^{-,0,+}$: pion triplet
- K^+, K^0 and \bar{K}^0, K^- : kaon doublets
- $\Sigma^{-,0,+}$: Sigma triplet
- $\Delta^{-,0,+,++}$: Delta quartet

particle	i	i ₃	Q	В	S	<u>Y</u>
р	$\frac{1}{2}$	$\frac{1}{2}$	1	1	0	1
п	$\frac{\overline{1}}{2}$	$-\frac{\overline{1}}{2}$	0	1	0	1
π^+	1	1	1	0	0	0
π^0	1	0	0	0	0	0
π^{-}	1	-1	-1	0	0	0
K^+	$\frac{1}{2}$	$\frac{1}{2}$	1	0	1	1
K^0	$\frac{\overline{1}}{2}$	$-\frac{\overline{1}}{2}$	0	0	1	1
\bar{K}^0	$\frac{\overline{1}}{2}$	$\frac{\overline{1}}{2}$	0	0	-1	-1
K^-	$\frac{1}{2}$	$-\frac{1}{2}$	-1	0	1	-1
Σ^+	1	1	1	1	-1	0
Σ^0	1	0	0	1	-1	0
Σ^{-}	1	-1	-1	1	-1	0
Δ^{++}	$\frac{3}{2}$	$\frac{3}{2}$	2	1	0	1
Δ^+	$\frac{\overline{3}}{2}$	$\frac{\overline{1}}{2}$	1	1	0	1
Δ^0	$\frac{3}{2}$	$-\frac{\overline{1}}{2}$	0	1	0	1
Δ^{-}	$\frac{\overline{3}}{2}$	$-\frac{3}{2}$	-1	1	0	1

Modern perspective: isomultiplets understood in terms of u, d quarks Light quark/antiquark isodoublet, flavour wave function

$$q = \psi_{u}u + \psi_{d}d \qquad \bar{q} = \psi_{\bar{u}}\bar{u} + \psi_{\bar{d}}\bar{d}$$
$$u = \bar{u} = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad d = \bar{d} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Under SU(2) transformation $q
ightarrow Uq \qquad ar q
ightarrow U^*ar q$

Required by QFT

 $U: \begin{tabular}{ll} fundamental (defining), $U^*: complex-conjugate representations $$Equivalent for $$U(2)$} \end{tabular}$

Strange quark: isosinglet (I = 0), under SU(2) $s, \bar{s} \rightarrow s, \bar{s}$, trivial rep. Composing the representations of q, s and $\bar{q}, \bar{s} \rightarrow$ meson multiplets

$$\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1 \qquad \frac{1}{2} \otimes \underbrace{0}_{\overline{s}} = \frac{1}{2} \qquad \underbrace{0}_{s} \otimes \frac{1}{2} = \frac{1}{2}$$

dimension: $2 \times 2 = 1 + 3 \qquad 2 \times 1 = 2 \qquad 2 \times 1 = 2$

Composing three representations of q,s
ightarrow baryon multiplets

Fundamental $U = e^{i\vec{\alpha}\cdot\vec{l}}$ and complex-conjugate $U^* = e^{-i\vec{\alpha}\cdot\vec{l}*} = e^{i\vec{\alpha}\cdot\vec{l}_c}$ representations \Rightarrow fundamental and complex-conjugate rep. of \mathfrak{su}_2

$$\vec{l}_{C} = -\vec{l}^{*} \Longrightarrow l_{C3} = -l_{3}$$
 $l_{C+} = -l_{-}$ $l_{C-} = -l_{+}$
 $l_{1,3}^{*} = l_{1,3}, l_{2}^{*} = -l_{2}$

$$\begin{array}{ll} l_{3}u = \frac{1}{2}u & l_{3}d = -\frac{1}{2}d & l_{-}u = d & l_{+}d = u \\ l_{C3}\bar{u} = -l_{3}\bar{u} & l_{C3}\bar{d} = -l_{3}\bar{d} & l_{C-}\bar{d} = -l_{+}\bar{d} & l_{C+}\bar{u} = -l_{-}\bar{u} \\ = -\frac{1}{2}\bar{u} & = \frac{1}{2}\bar{d} & = -\bar{u} & = -\bar{d} \end{array}$$

Relation between isospin eigenstates and flavour eigenstates

$$u = |q; \frac{1}{2} + \frac{1}{2}\rangle \quad d = |q; \frac{1}{2} - \frac{1}{2}\rangle \qquad \overline{u} = |\overline{q}; \frac{1}{2} - \frac{1}{2}\rangle \quad \overline{d} = -|\overline{q}; \frac{1}{2} + \frac{1}{2}\rangle$$

Representation composition $\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$, triplet I = 1

$$\begin{array}{ccc} -u\bar{d} = & |q; \frac{1}{2} \frac{1}{2} \rangle \otimes |\bar{q}; \frac{1}{2} \frac{1}{2} \rangle & = |11\rangle & = \pi^{+} \\ \frac{u\bar{u} - d\bar{d}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left[|q; \frac{1}{2} \frac{1}{2} \rangle \otimes |\bar{q}; \frac{1}{2} - \frac{1}{2} \rangle + |q; \frac{1}{2} - \frac{1}{2} \rangle \otimes |\bar{q}; \frac{1}{2} \frac{1}{2} \rangle \right] = |10\rangle & = \pi^{0} \\ d\bar{u} = & |q; \frac{1}{2} - \frac{1}{2} \rangle \otimes |\bar{q}; \frac{1}{2} - \frac{1}{2} \rangle & = |1 - 1\rangle = \pi^{-} \end{array}$$

• Three quarks for a baryon,

$$n_u + n_d + n_s = 3$$

$$\Rightarrow \sum_f \left(b_f - \frac{1}{3} \right) n_f = 0 \Rightarrow b_f = \frac{1}{3}$$

- Isospin assignment $\Rightarrow I_3 = \frac{1}{2} (n_u - n_d)$
- Strangeness associated to presence of strange quarks
 ⇒ S = −n_s

• From p, n isospin and strangeness $\Rightarrow n_u^{(p)} = n_d^{(n)} = 2$, $n_u^{(n)} = n_d^{(p)} = 1$, from charge $\Rightarrow q_u = \frac{2}{3}$, $q_d = -\frac{1}{3}$

• From Λ $(Q = 0, S = -1, I = 0) \Rightarrow q_s = -\frac{1}{3}$

Gell-Mann-Nishijima satisfied at quark level since

$$I_3 = \frac{1}{2}(n_u - n_d)$$
 $Q = \frac{2}{3}n_u - \frac{1}{3}(n_d + n_s)$ $B = \frac{1}{3}(n_u + n_d + n_s)$ $S = -n_s$

A bit ad hoc construction, will be fully justified in the quark model

Isospin conservation and scattering processes

$$\pi N \to \pi' N'$$
 scattering, $\mathcal{M}_{\pi N \to \pi' N'} = \langle \pi' N' | H_I | \pi N \rangle$
 $p \ \pi^+ \to p \ \pi^+ \qquad p \ \pi^- \to p \ \pi^- \qquad p \ \pi^- \to n \ \pi^0$

Pion-nucleon state decomposed in eigenstates of total isospin $ec{l}=ec{l}_{\pi}+ec{l}_{N}$

$$egin{array}{lll} |\pi^{-}
angle = |1 \ -1
angle & |\pi^{0}
angle = |1 \ 0
angle & |\pi^{+}
angle = |1 \ +1
angle \ |n
angle = |rac{1}{2} \ -rac{1}{2}
angle & |p
angle = |rac{1}{2} \ +rac{1}{2}
angle \end{array}$$

Decompose $1\otimes \frac{1}{2}=\frac{1}{2}\oplus \frac{3}{2}$ using Clebsch-Gordan coefficients

$$\begin{split} |p \, \pi^+ \rangle &= |\frac{3}{2} \, \frac{3}{2} \rangle \\ |p \, \pi^- \rangle &= \sqrt{\frac{1}{3}} |\frac{3}{2} \, -\frac{1}{2} \rangle - \sqrt{\frac{2}{3}} |\frac{1}{2} \, -\frac{1}{2} \rangle \\ |n \, \pi^0 \rangle &= \sqrt{\frac{2}{3}} |\frac{3}{2} \, -\frac{1}{2} \rangle + \sqrt{\frac{1}{3}} |\frac{1}{2} \, -\frac{1}{2} \rangle \end{split}$$

Isospin conservation and scattering processes (contd.)

Isospin conservation
$$[H_I, \vec{I}] = 0 \Rightarrow \langle i' i'_3 | H_I | i i_3 \rangle = \delta_{i'i} \delta_{i'_3 i_3} \mathcal{M}_i$$

Special case of Wigner-Eckart theorem, can be proved using only $[I_{\pm}, H_I] = 0$

$$\begin{split} \mathcal{M}_{p\pi^{+} \to p\pi^{+}} &= \langle p\pi^{+} | H_{I} | p\pi^{+} \rangle = \langle \frac{3}{2} \frac{3}{2} | H_{I} | \frac{3}{2} \frac{3}{2} \rangle = \mathcal{M}_{\frac{3}{2}} \\ \mathcal{M}_{p\pi^{-} \to p\pi^{-}} &= \langle p\pi^{-} | H_{I} | p\pi^{-} \rangle = \frac{1}{3} \left(\langle \frac{3}{2} - \frac{1}{2} | H_{I} | \frac{3}{2} - \frac{1}{2} \rangle + 2 \langle \frac{1}{2} - \frac{1}{2} | H_{I} | \frac{1}{2} - \frac{1}{2} \rangle \right) \\ &= \frac{1}{3} \left(\mathcal{M}_{\frac{3}{2}} + 2 \mathcal{M}_{\frac{1}{2}} \right) \\ \mathcal{M}_{p\pi^{-} \to n\pi^{0}} &= \langle n\pi^{0} | H_{I} | p\pi^{-} \rangle = \frac{\sqrt{2}}{3} \left(\langle \frac{3}{2} - \frac{1}{2} | H_{I} | \frac{3}{2} - \frac{1}{2} \rangle - \langle \frac{1}{2} - \frac{1}{2} | H_{I} | \frac{1}{2} - \frac{1}{2} \rangle \right) \\ &= \frac{\sqrt{2}}{3} \left(\mathcal{M}_{\frac{3}{2}} - \mathcal{M}_{\frac{1}{2}} \right) = \mathcal{M}_{n\pi^{0} \to p\pi^{+}} \end{split}$$

 πN amplitudes all depend on only two independent amplitudes $\mathcal{M}_{\frac{1}{2},\frac{3}{2}} \Rightarrow$ relations among physical amplitudes, cross sections

Isospin conservation and scattering processes (contd.)

Experimental fact: $\sigma_{p\pi^+ \text{ tot}} \propto \sum_f |\mathcal{M}_{p\pi^+ \to \text{anything}}|^2$ has a peak at $\sqrt{s} = 1.232 \text{ GeV} = m_\Delta \sim \Delta^{++}$ resonance

At $\sqrt{s} \simeq m_{\Delta}$

- $p\pi^+$ scattering proceeds through the formation of unstable particle Δ^{++} and its subsequent decay, $I_{\Delta} = \frac{3}{2} \Rightarrow \text{expect } |\mathcal{M}_{\frac{3}{2}}| \gg |\mathcal{M}_{\frac{1}{2}}|$
- Ratios of cross sections (same proportionality factors between amplitude square and cross section)

$$\frac{\sigma_{p\pi^+\to p\pi^+}}{\sigma_{p\pi^-\to p\pi^-}} \simeq 9 \qquad \frac{\sigma_{p\pi^+\to p\pi^+}}{\sigma_{p\pi^-\to n\pi^0}} \simeq \frac{9}{2}$$

• For $p\pi^+$ scattering, elastic channel essentially only available channel Very little phase space for an extra π^0

• For $p\pi^-$ scattering, elastic channel and inelastic channel $p\pi^- \rightarrow n\pi^0$ Again very little phase space for an extra π^0

Isospin conservation and scattering processes (contd.)

$$\frac{\sigma_{p\pi^+\text{tot}}}{\sigma_{p\pi^-\text{tot}}} = \frac{\sigma_{p\pi^+ \to p\pi^+}}{\sigma_{p\pi^- \to p\pi^-} + \sigma_{p\pi^- \to n\pi^0}} \underset{\sqrt{s}=m_\Delta}{\simeq} \frac{1}{\frac{1}{9} + \frac{2}{9}} = 3$$

End of '50s: hadron "zoo" lacking organisation, besides baryons/mesons and isospin multiplets + strangeness

Patterns were present: plot in (I_3, S) plane:

Use only hadrons known in late '50s

eight lightest $s = \frac{1}{2}$ baryons

- fit nicely in a hexagonal array
- fit into isospin multiplets with small (permille) mass splittings
- larger but regular splitting between baryons with different S: $\Delta S = -1 \leftrightarrow \Delta M = +150 \text{MeV}$

Quark model

End of '50s: hadron "zoo" lacking organisation, besides baryons/mesons and isospin multiplets + strangeness

Patterns were present: plot in (I_3, S) plane:

Use only hadrons known in late '50s

nine $s = \frac{3}{2}$ baryon resonances

- fit in almost-triangular array
- single isospin multiplet for each S
- same regularity in splittings between states with different *S*

Quark model

End of '50s: hadron "zoo" lacking organisation, besides baryons/mesons and isospin multiplets + strangeness

Patterns were present: plot in (I_3, S) plane:

Use only hadrons known in late '50s

seven lightest pseudoscalar mesons

- hexagonal array similar to light baryons with a state missing in the centre
- shifted by one unit in S
- patterns overlap if one uses hypercharge Y = B + S

Quark model (contd.)

Plot in (I_3, Y) plane, isomultiplets identified

Including all hadrons known now

Quark model (contd.)

Plot in (I_3, Y) plane, isomultiplets identified

Including all hadrons known now

Quark model (contd.)

Possible explanation:

- approximate internal symmetry exists extending $SU(2)_I \times U(1)_Y$ (isospin and hypercharge $\vec{I} \cdot Y$) \Rightarrow explain patterns
- symmetry breaking \Rightarrow explain mass differences

Assume strong Hamiltonian $H_s = H_0 + H_I$:

- H_0 symmetric, yields degenerate multiplets \sim unitary irreps of internal (continuous) symmetry group $G \Rightarrow$ should match observed multiplets
- H_I symmetry-breaking term \Rightarrow should reproduce the splittings Reasonable assumptions:
 - internal symmetry group, compact Lie group
 - looking for extension of \vec{I} -Y symmetry $\Rightarrow G \supset SU(2)_I \times U(1)_Y$ Full symmetry group contains $U(1)_B \sim$ baryon number conservation, expected to commute with G since no baryon/meson degeneracy
 - I, I_3 , Y fully classify light hadrons (besides \vec{p} , s_z , \mathcal{B})

Simplest group satisfying requirements, with 8-dim irrep having desired decomposition into I-Y multiplets: [SU(3)]

SU(3)

SU(3): group of 3×3 unitary unimodular matrices, $U^{\dagger}U = \mathbf{1}$, det U = 1General form $U = e^{iA}$ with $A^{\dagger} = A$, tr A = 0

Hermitean traceless matrices = 8-dim linear space, choose basis $t^a = \frac{1}{2}\lambda^a$

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

 λ^a : Gell-Mann matrices

Scalar product $(t^a, t^b) \equiv 2 \operatorname{tr} t^a t^b = \delta^{ab}$, extended by (anti)linearity Commutator of tr.less Hermitean matrices = tr.less anti-Hermitean matrix $[t^a, t^b] = i f_{abc} t^c$

Real totally antisymmetric/cyclic structure constants $f_{abc} = -2i \operatorname{tr} [t^a, t^b] t^c$ $U = e^{i\alpha_a t^a} \Rightarrow t^a$ generators of $\mathfrak{su}(3)$ algebra

SU(3) (contd.)

Jacobi identity: for any matrices A, B, C

$$[[A, B], C] + [[C, A], B] + [[B, C], A] = 0$$

Applied to generators

$$\begin{split} [[t^a, t^b], t^c] + [[t^c, t^a], t^b] + [[t^b, t^c], t^a] = 0 \\ \implies f_{bcm} f_{amn} + f_{abm} f_{cmn} + f_{cam} f_{bmn} = 0 \end{split}$$

Structure constant satisfy

$$f_{abc}f_{abd} = 3\delta_{cd}$$

 \bullet Changing basis of the algebra \Rightarrow equally good set of generators, but different structure constants and normalisation

• Possibility to choose t^a so that f_{abc} totally antisymmetric and $f_{abc}f_{abd} \propto \delta_{cd}$ are consequences of semisimplicity and compactness of SU(3):

- semisimple G = direct product of simple groups
- simple G = non-Abelian group w/out normal subgroups $N \subset G$, $gng^{-1} \subseteq N \forall n \in N, g \in G$
- compact G = compact as a manifold

SU(3) (contd.)

 $t^{1,2,3} \sim \text{generators } \vec{l} \text{ of } SU(2)_l \text{ isospin subgroup}$ $t^8 \sim \text{generator } Y \text{ of } U(1)_Y \text{ subgroup (up to a numerical factor)}$ SU(3) commutation relations

$$[t^{i}, t^{j}] = i\epsilon_{ijk}t^{k}$$
 $i, j, k = 1, 2, 3$ $[t^{8}, t^{i}] = 0$ $i = 1, 2, 3$

reproduce commutation relations

$$[I_i, I_j] = i\epsilon_{ijk}I_k \quad i, j, k = 1, 2, 3 \qquad [Y, I_i] = 0 \quad i = 1, 2, 3$$

Identify

$$i = I_i$$
 $i = 1, 2, 3$ $t^8 = \frac{\sqrt{3}}{2}Y$

See below for normalisation of Y

Also $t^{4,5}$ and $t^{6,7}$ correspond to (different) SU(2) subgroups

ť

$$t^{4} = V_{1} t^{5} = V_{2} \frac{1}{2}t^{3} + \frac{\sqrt{3}}{2}t^{8} = V_{3} = \frac{1}{2}I_{3} + \frac{3}{4}Y Y_{V} = I_{3} - \frac{1}{2}Y$$

$$t^{6} = W_{1} t^{7} = W_{2} -\frac{1}{2}t^{3} + \frac{\sqrt{3}}{2}t^{8} = W_{3} = -\frac{1}{2}I_{3} + \frac{3}{4}Y Y_{W} = -I_{3} - \frac{1}{2}Y$$

$$[V_{i}, V_{j}] = i\epsilon_{ijk}V_{k} [W_{i}, W_{j}] = i\epsilon_{ijk}W_{k} [Y, I_{i}] = [Y_{V}, V_{i}] = [Y_{W}, W_{i}] = 0$$

$$I_{3}, V_{3}, W_{3}, Y, Y_{V}, Y_{W} \text{ not independent!}$$

SU(3) (contd.)

Same commutation relations of ladder operators

$$[I_3, I_{\pm}] = \pm I_{\pm}$$
 $[V_3, V_{\pm}] = \pm V_{\pm}$ $[W_3, W_{\pm}] = \pm W_{\pm}$

Ladder operators

$$I_{+} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad V_{+} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad W_{+} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$I_{-} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad V_{-} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad W_{-} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Together with $Y_{V,W}$ commutation relation \Longrightarrow

$$\begin{bmatrix} I_3, I_{\pm} \end{bmatrix} = \pm I_{\pm} \qquad \begin{bmatrix} I_3, V_{\pm} \end{bmatrix} = \pm \frac{1}{2}V_{\pm} \qquad \begin{bmatrix} I_3, W_{\pm} \end{bmatrix} = \mp \frac{1}{2}W_{\pm} \\ \begin{bmatrix} Y, I_{\pm} \end{bmatrix} = 0 \qquad \begin{bmatrix} Y, V_{\pm} \end{bmatrix} = \pm V_{\pm} \qquad \begin{bmatrix} Y, W_{\pm} \end{bmatrix} = \pm W_{\pm}$$

- SU(3) is a *rank-2* group: at most two generators can be diagonalised simultaneously we can and will take *I*₃, *Y*
- I_{\pm} , V_{\pm} , W_{\pm} on simultaneous eigenvector of I_3, Y produces new eigenvector
- Y changes by $\pm 1 \Rightarrow$ corresponds to observed integer differences