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Parity (contd.)

Instead of momentum eigenstates |~p〉
→ use energy, orbital angular momentum eigenstates |E ; ``z〉

|``z〉 are also P eigenstates: P|``z〉 = (−1)`|``z〉 as in quantum mechanics

0 = 〈`′, `′z ; c d |[P,HI ]|`, `z ; a b〉

= [(−1)`
′
ηcηd − (−1)`ηaηb]〈`′, `′z ; c d |HI |`, `z ; a b〉

0 = 〈`, `z ; b c|[P,HI ]|a〉 = [(−1)`ηbηc − ηa]〈`, `z ; b c|HI |a〉

Look at decay process in the rest frame of the decaying particle, no orbital angular momentum

Non-vanishing matrix elements ⇒

(−1)`
′
ηcηd = (−1)`ηaηb (−1)`ηbηc = ηa

⇒ assign intrinsic parity to one of the particles involved in the process
using conventional intrinsic parities and those already determined
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Parity (contd.)

Parity of the charged pion: study pion capture by deuteron (d)

π− d → (π−d)→ n n

d = (pn) bound state with orbital angular momentum `d = 0, intrinsic parity
ηd = ηpηn(−1)0 = 1, spin sd = 1

π− captured, (π−d) atom formed, decays from ground state into neutrons

NR final state, wave f. R`(r)Y m
` (θ, ϕ)|S ,Sz〉

ground state: `G = 0 (+ a little `G = 2)

ηG =ηπ(−1)`G =ηπ=η2
n(−1)`=(−1)`

` = 0, sπ = 0, sd = 1⇒ J = 1

antisymmetric wave f. (−1)S+`+1 = −1

I spin wf: 1
2
⊗ 1

2
= 0⊕ 1 ⇒ sign (−1)S+1

I space wf: ~x → −~x ⇒ sign (−1)`

ηπ = −1

| 1
2
〉 ⊗ | 1

2
〉= |11〉

1√
2

(|- 1
2
〉 ⊗ | 1

2
〉+| 1

2
〉 ⊗ |- 1

2
〉)= |10〉

|- 1
2
〉 ⊗ |- 1

2
〉= |1-1〉

1√
2

(|- 1
2
〉 ⊗ | 1

2
〉−| 1

2
〉 ⊗ |- 1

2
〉)= |00〉

` S J (−1)S+̀+1

0 1 1 1
1 0 1 1
1 1 0⊕ 1⊕ 2 -1
2 1 1⊕ 2⊕ 3 1
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Parity (contd.)

Intrinsic parity of ∆++ from ∆++ → p π+

s∆++ = 3
2 , sp = 1

2 , sπ+ = 0 ⇒ final state must have ` = 1, 2

η∆++ = ηpηπ+(−1)` = (−1)`+1

angular distribution of decay products implies ` = 1 ⇒ η∆++ = 1

For γ intrinsic parity assigned on the basis of theoretical considerations

classically ~E (true) vector, ~E = −~∇φ− ∂
∂t
~A ⇒ vector potential ~A

(true) vector

photon states enconded in ~A after quantisation ⇒ ηγ = −1

alternatively: in QED γ-e coupling encoded in AµJ
µ, electric current

Jµ Lorentz vector ⇒ Aµ Lorentz vector, ηγ = −1
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Charge conjugation

Charge conjugation (C ): exchange all particles with corresponding
antiparticles keeping momenta and spins unchanged

C |~p, sz ;α〉 = ξα|~p, sz ; ᾱ〉

ξα: intrinsic charge conjugation phase, meaningful only for truly neutral
particles (e.g., γ, π0, but not n)
C unitary and [C ,H] = 0 (same argument used for P)

changes the sign of all internal quantum numbers Oint, {C ,Oint} = 0
(el. charge, baryon/lepton/lepton family/quark flavour/lepton flavour)

changes sign to magnetic moment ~µ ∝ q~s

QFT imposes relations between intrinsic C of particle α and antiparticle ᾱ

bosons and fermions: ξαξᾱ = 1

C 2 = phase transformation, one can set C 2 = 1 ⇒ ξα = ±1

C 2|~p, sz ;α〉 = ξαξᾱ|~p, sz ;α〉
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Charge conjugation (contd.)

How to assign ξα to a self-conjugate particle?

theoretical arguments: e.g., γ from Maxwell eqs.

~∇ · ~E ∝ ρ , ~E = −~∇φ− ∂~A
∂t

~∇∧ ~B ∝ ~J , ~B = ~∇∧ ~A

I exchanging ± charges ⇒ ρ→ −ρ, ~J → −~J
⇒ change sign of ~E , ~B ⇒ Aµ = (φ, ~A)→ −Aµ

I for the photon quantum field C †AµC = −Aµ ⇒ ξγ = −1

selection rule implied by C invariance: e.g., π0

I π0 → γ γ ⇒ ξπ0 = ξ2
γ = 1

I can assign ξπ± = 1 as well but just a matter of convention: no
selection rule for them, cannot fix ξπ±

I if C exact ⇒ π0 → γγγ strictly forbidden;
C violations from WI, quite unrelated to this process
⇒ expect strong suppression (expt.: Γπ0→3γ/Γπ0→2γ < 3.1 · 10−8)
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Time reversal

Time reversal (T ): inversion of the arrow of time t → t ′ = −t
Under T both momentum and spin components change sign

T |~p, sz ;α〉 = ζα,sz | − ~p,−sz ;α〉

Intrinsic phase ζα,sz = (−1)s−sz ζα

T is an antiunitary symmetry: from invariance

TU(t)ψ(0) = U(t ′)Tψ(0) = U(−t)Tψ(0)⇒ TiH = −iHT ⇒ {T , iH} = 0

1 linear unitary ⇒ {T ,H} = 0

2 antilinear antiunitary ⇒ Ti = −iT ⇒ [T ,H] = 0

Option 1 excluded by absence of negative-energy states

Antiunitarity implies residual phase ζα has no physical meaning
(can be reabsorbed in a redefinition of the states)
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CPT theorem

General theorem of quantum field theory: the antiunitary transformation
Θ = CPT is a symmetry for any translation and Lorentz-invariant theory
of local quantum fields

Θ|~p, sz ;α〉 = CPT |~p, sz ;α〉 = CPζα,sz | − ~p,−sz ;α〉 = Cηαζα,sz |~p,−sz ;α〉
= ξαηαζα,sz |~p,−sz ; ᾱ〉 = θα,sz |~p,−sz ; ᾱ〉

CPT good also for weak interactions where P, C , CP not conserved

if violations of CPT observed, QFT inadequate to explain them

CPT theorem ⇒ (m, s)α = (m, s)ᾱ since [Θ, p2] = [Θ,~J 2] = 0

Θp2|~p, sz ;α〉 = m2
αθα,sz |~p,−sz ; ᾱ〉 = p2Θ|~p, sz ;α〉 = m2

ᾱθα,sz |~p,−sz ; ᾱ〉

Also τα = τᾱ for unstable particles: in Born approximation

τ−1
α = Γα =

∑
f cf |〈f |HI |α〉|2 =

∑
f cf |〈f |Θ†HI Θ|α〉|2

=
∑

f cf |〈f̄ |HI |ᾱ〉|2 =
∑

f cf̄ |〈f̄ |HI |ᾱ〉|2 = Γᾱ = τ−1
ᾱ

cf = cf̄ : kinematical factors dependent on masses and spins of final state
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Isospin

1932: Chadwick discovers the neutron, solves the puzzle of mass/charge
mismatch in nuclei

nuclear electric charge = e × number of protons in the nucleus

nuclear mass is very accurately mp × number of protons and neutrons

mn = 939.57 MeV mp = 938.28 MeV (mn −mp)/mp ' 0.0014

1932: Heisenberg proposes

p, n are two different states of the same particle, the nucleon

affected in the same way by the strong interactions

Heisenberg’s view:
⇒ strong interactions exactly invariant under p ↔ n
⇒ small mass difference attributed to EM effects
What we know now:
⇒ symmetry approximate even if EM interactions switched off
⇒ important role played by md −mu (EM alone would lead to mp > mn)
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Isospin (contd.)

Nucleon N has internal degree of freedom, two states corresponding
to p, n

p =

(
1
0

)
n =

(
0
1

)
Superposition principle: N(α, β) = αp + βn also a possible state

Assumption: all states N(α, β) look the same to strong interactions

Mathematically speaking: strong interactions invariant under SU(2)
rotations of the nucleon state – isospin symmetry

Generalised to SU(2) symmetry of strong interaction Hamiltonian
(nucleons, pions, kaons. . . )

Isospin symmetry not exact but very good approximate symmetry of
strong interactions (we will soon see why)
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Isospin (contd.)

Invariance of strong interactions under internal SU(2)I symmetry group

SU(2) group:

Lie group (group which is also a manifold)

three generators ~I = (I1, I2, I3)

same Lie algebra as SO(3)

[Ia, Ib] = iεabc Ic

Invariance of strong Hamiltonian Hs ⇒ [~I ,Hs ] = 0

In Heisenberg picture: d
dt
~I (t) = i [Hs ,~I (t)] = 0

Important consequences:

spectrum of the theory organised in degenerate isospin multiplets
(corresponding to irreducible representations of SU(2))

conservation of isospin in dynamical hadronic processes (decay,
scattering)
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Isospin (contd.)

Isospin symmetry traces back to symmetry under SU(2) rotations in the
space of up and down quarks, broken only by small mass difference

Broken also by EM effects

Analogy: u and d two states of the “light quark” q

u =

(
1
0

)
d =

(
0
1

)
Strong interaction Hamiltonian

Hs = H0 + H ′

H0: invariant under SU(2) rotations in (u, d) space

H ′: symmetry-breaking term ∝ mu −md

mu −md � 0.1÷ 1GeV (typical strong scale)
⇒ isospin good approximate symmetry
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SU(2) and Lie groups

Unitary unimodular 2× 2 complex matrices

U†U = UU† = 1 detU = 1

Group: (U2U1)†(U2U1) = U†1U
†
2U2U1 = 1, det(U2U1) = detU2 detU1 = 1

U. matrix U = e iH , H = H† Hermitean, 1 = detU = e itrH ⇒ trH = 0

H = 1
2

(
α3 α1 − iα2

α1 + iα2 −α3

)
= ~α · ~σ2

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
[σa, σb] = 2iεabcσc {σa, σb} = 2δab

Continuous group

U(~α) = e i~α·~σ2 = cos |~α|2 1 + i sin |~α|2 α̂ · ~σ = u01 + i~u · ~σ u2
0 + ~u2 = 1

Also a manifold: point in SU(2) ↔ point on the 4d-sphere S3

⇒ Lie group
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SU(2) and Lie groups (contd.)

Group reconstructed from generators ~I = ~σ
2 by exponentiation

U(~α) = e i~α~I

For small |~α| � 1, U(~α) ' 1 + i~α · ~σ2 = 1 + i~α ·~I
Generators: Ia = −i ∂

∂αa
U(~α)|~α=~0

Lie algebra su(2):
I real vector space spanned by {Ia}, X ∈ su(2) : X = X aIa
I commutator [X ,Y ] = XY − YX ∈ su(2) (antisymm. bilinear form)

Basic commutation relations: [X ,Y ] = X aY b[Ia, Ib],

[Ia, Ib] = iεabc Ic

In general: for any Lie group
I elements U = U(α1, . . . , αn) = U(α)
I generators ta = −i ∂

∂αa
U(α)|αa=0 satisfy [ta, tb] = iC c

ab tc for some real

structure constants C c
ab , yield a Lie algebra

I for compact groups (∼ compact manifolds), structure constants are
totally antisymmetric and one writes C c

ab = fabc
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SU(2) representations

Group representation: mapping G → nCn, g 7→ D(g) respecting group
composition law, Cn: representation space

D(g2)D(g1) = D(g2g1)

D(g)D(e) = D(g)⇒ D(e) = 1

D(g−1)D(g) = D(e)⇒ D(g−1) = D(g)−1

Unitary representation: D(g) unitary, D(g)−1 = D(g)†

Reducible representation: proper subspace ∃S ⊂ Cn left invariant by the
representation, D(g)S = S ∀g ∈ G

For unitary representation, if S invariant then S⊥ invariant as well

0 = (s⊥,D(g−1)s) = (D(g)s⊥,D(g)D(g−1)s) = (D(g)s⊥, s),
∀g ∈ G ⇒ D(g)S⊥ = S⊥

Repeat until no invariant subspace is left ⇒ completely reducible,
decomposes in irreducible representations: @S ⊂ Cn left invariant
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SU(2) representations (contd.)

Lie algebra representation: linear mapping g→ nCn, X 7→ d(X ) respecting
commutators

d(αX + βY ) = αd(X ) + βd(Y ) α, β ∈ R d([X ,Y ]) = [d(X ), d(Y )]

Unitary representation of SU(2) ↔ Hermitean representation of suC(2)

Representation of the complexified algebra suC(2)

if rep. of su(2) exists ⇒ extend by linearity to complex coefficients ⇒ get rep. of suC(2)

if rep. of suC(2) exists ⇒ restrict to real coefficients ⇒ get rep. of su(2)

Irreducible representation of Lie algebra: does not leave any subspace
invariant, S s.t. d(X )S ⊂ S ∀X ∈ g

Irreducible representation of SU(2) ↔ irreducible representation of suC(2)

Theorem: for compact Lie groups all finite-dim. representations equivalent
to unitary representations

After change of basis all M−1D(g)M become unitary

Task: classify unitary irreps of SU(2) ≈ classify Hermitean irreps of su(2)
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SU(2) representations (contd.)

Finite-dimensional Hermitean representations of su(2)

Hermitean rep. of generators d(Ia) = d(Ia)†, [d(Ia), d(Ib)] = iεabcd(Ic )
⇒ algebra representation by linearity
⇒ group representation by exponentiation

Denote representatives with Ia, can diagonalise (only) one of them, I3
⇒ representation space spanned by eigenvectors I3|i3〉 = i3|i3〉

[I3,X aIa] = iε3abX aIb = 0⇔ iε3abX a = 0 ∀b ⇔ X a = 0 ∀a

Raising/lowering operators I± = I1 ± iI2, I †+ = I−, obey comm. relations

[I3, I±] = ±I± [I+, I−] = 2I3

Here we use the complexified algebra

I3I±|i3〉 = (I±I3 + [I3, I±])|i3〉 = (i3I± ± I±)|i3〉 = (i3 ± 1)I±|i3〉

⇒ If |i3〉 eigenvector then I±|i3〉 are eigenvectors too
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SU(2) representations (contd.)

There must be a unique eigenvector |i〉 such that I+|i〉 = 0 (〈i |i〉 = 1)
I existence: finite-dimensional representation requires the chain

I+|i3〉, I 2
+|i3〉, I 3

+|i3〉, . . . , to stop
I uniqueness: if more than one existed rep. would not be irreducible

If I+|i ′〉 = 0, make 〈i ′|i〉 = 0, then use commutation relations

〈i ′|Ia1 . . . Ian |i〉 =
∑

k1+k2≤n ck1k2
〈i ′|I k1
− . . . I k2

+ |i〉 = 0

⇒ 〈i ′|ei~α·~I |i〉 = 0, |i〉, |i ′〉 belong to different invariant subspaces

I also eigenvector of ~I 2 =
∑

a I
2
a = I−I+ + I3 + I 2

3 = I+I− − I3 + I 2
3 ,

eigenvalue ~I 2|i〉 = i(i + 1)|i〉
Construct vectors |i3〉 from |i〉 via I−, I i−i3

− |i〉 = C |i3〉 with 〈i3|i3〉 = 1
I Condon-Shortley convention: choose C real positive
I automatically eigenvectors of ~I 2 since [I±,~I

2] = [I3,~I
2] = 0

I chain must stop, I−|i∗〉 = 0,

0 = 〈i∗|I+I−|i∗〉 = 〈i∗|~I 2 + I3 − I 2
3 |i∗〉 = i(i + 1) + i∗(i∗ − 1) ⇒ i∗ = −i

Other solution i∗ = i + 1 > i unacceptable

Irreps: (2i+1)-d, rep. space spanned by {|i〉, |i−1〉, . . . , |−i+1〉, |−i〉}
eigenvectors of I3, with constant ~I 2 = i(i + 1), 2i ∈ N0 (spin-i reps.)
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