Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest

ELTE

08/09/2020

Parity (contd.)

Instead of momentum eigenstates $|\vec{p}\rangle$
\rightarrow use energy, orbital angular momentum eigenstates $\left|E ; \ell \ell_{z}\right\rangle$
$\left|\ell \ell_{z}\right\rangle$ are also P eigenstates: $P\left|\ell \ell_{z}\right\rangle=(-1)^{\ell}\left|\ell \ell_{z}\right\rangle$ as in quantum mechanics

$$
\begin{aligned}
0 & =\left\langle\ell^{\prime}, \ell_{z}^{\prime} ; c d\right|\left[P, H_{l}\right]\left|\ell, \ell_{z} ; a b\right\rangle \\
& =\left[(-1)^{\ell^{\prime}} \eta_{c} \eta_{d}-(-1)^{\ell} \eta_{a} \eta_{b}\right]\left\langle\ell^{\prime}, \ell_{z}^{\prime} ; c d\right| H_{l}\left|\ell, \ell_{z} ; a b\right\rangle \\
0 & =\left\langle\ell, \ell_{z} ; b c\right|\left[P, H_{l}\right]|a\rangle=\left[(-1)^{\ell} \eta_{b} \eta_{c}-\eta_{a}\right]\left\langle\ell, \ell_{z} ; b c\right| H_{l}|a\rangle
\end{aligned}
$$

Look at decay process in the rest frame of the decaying particle, no orbital angular momentum Non-vanishing matrix elements \Rightarrow

$$
(-1)^{\ell^{\prime}} \eta_{c} \eta_{d}=(-1)^{\ell} \eta_{a} \eta_{b} \quad(-1)^{\ell} \eta_{b} \eta_{c}=\eta_{a}
$$

\Rightarrow assign intrinsic parity to one of the particles involved in the process using conventional intrinsic parities and those already determined

Parity (contd.)

Parity of the charged pion: study pion capture by deuteron (d)

$$
\pi^{-} d \rightarrow\left(\pi^{-} d\right) \rightarrow n n
$$

$d=(p n)$ bound state with orbital angular momentum $\ell_{d}=0$, intrinsic parity $\eta_{d}=\eta_{p} \eta_{n}(-1)^{0}=1$, spin $s_{d}=1$
π^{-}captured, $\left(\pi^{-} d\right)$ atom formed, decays from ground state into neutrons

- NR final state, wave f. $R_{\ell}(r) Y_{\ell}^{m}(\theta, \varphi)\left|S, S_{z}\right\rangle$
- ground state: $\ell_{G}=0\left(+\right.$ a little $\left.\ell_{G}=2\right)$

$$
\eta_{G}=\eta_{\pi}(-1)^{\ell_{G}}=\eta_{\pi}=\eta_{n}^{2}(-1)^{\ell}=(-1)^{\ell}
$$

- $\ell=0, s_{\pi}=0, s_{d}=1 \Rightarrow J=1$

$$
\frac{1}{\sqrt{2}}\left(\left|-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}\right\rangle-\left|\frac{1}{2}\right\rangle \otimes\left|-\frac{1}{2}\right\rangle\right)=|00\rangle
$$

- antisymmetric wave f. $(-1)^{S+\ell+1}=-1$
- spin wf: $\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1 \Rightarrow \operatorname{sign}(-1)^{S+1}$
- space wf: $\vec{x} \rightarrow-\vec{x} \Rightarrow \operatorname{sign}(-1)^{\ell}$

$$
\eta_{\pi}=-1
$$

Parity (contd.)

Parity of the charged pion: study pion capture by deuteron (d)

$$
\pi^{-} d \rightarrow\left(\pi^{-} d\right) \rightarrow n n
$$

$d=(p n)$ bound state with orbital angular momentum $\ell_{d}=0$, intrinsic parity $\eta_{d}=\eta_{p} \eta_{n}(-1)^{0}=1$, spin $s_{d}=1$
π^{-}captured, $\left(\pi^{-} d\right)$ atom formed, decays from ground state into neutrons

- NR final state, wave f. $R_{\ell}(r) Y_{\ell}^{m}(\theta, \varphi)\left|S, S_{z}\right\rangle$
- ground state: $\ell_{G}=0\left(+\right.$ a little $\left.\ell_{G}=2\right)$

$$
\eta_{G}=\eta_{\pi}(-1)^{\ell_{G}}=\eta_{\pi}=\eta_{n}^{2}(-1)^{\ell}=(-1)^{\ell}
$$

- $\ell=0, s_{\pi}=0, s_{d}=1 \Rightarrow J=1$

$$
\frac{1}{\sqrt{2}}\left(\left|-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}\right\rangle-\left|\frac{1}{2}\right\rangle \otimes\left|-\frac{1}{2}\right\rangle\right)=|00\rangle
$$

- antisymmetric wave f. $(-1)^{S+\ell+1}=-1$
- spin wf: $\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1 \Rightarrow \operatorname{sign}(-1)^{S+1}$
- space wf: $\vec{x} \rightarrow-\vec{x} \Rightarrow \operatorname{sign}(-1)^{\ell}$

$$
\eta_{\pi}=-1
$$

Parity (contd.)

Parity of the charged pion: study pion capture by deuteron (d)

$$
\pi^{-} d \rightarrow\left(\pi^{-} d\right) \rightarrow n n
$$

$d=(p n)$ bound state with orbital angular momentum $\ell_{d}=0$, intrinsic parity $\eta_{d}=\eta_{p} \eta_{n}(-1)^{0}=1$, spin $s_{d}=1$
π^{-}captured, $\left(\pi^{-} d\right)$ atom formed, decays from ground state into neutrons

- NR final state, wave f. $R_{\ell}(r) Y_{\ell}^{m}(\theta, \varphi)\left|S, S_{z}\right\rangle$
- ground state: $\ell_{G}=0\left(+\right.$ a little $\left.\ell_{G}=2\right)$

$$
\eta_{G}=\eta_{\pi}(-1)^{\ell_{G}}=\eta_{\pi}=\eta_{n}^{2}(-1)^{\ell}=(-1)^{\ell}
$$

- $\ell=0, s_{\pi}=0, s_{d}=1 \Rightarrow J=1$

$$
\frac{1}{\sqrt{2}}\left(\left|-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}\right\rangle-\left|\frac{1}{2}\right\rangle \otimes\left|-\frac{1}{2}\right\rangle\right)=|00\rangle
$$

- antisymmetric wave f. $(-1)^{S+\ell+1}=-1$
- spin wf: $\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1 \Rightarrow \operatorname{sign}(-1)^{S+1}$
- space wf: $\vec{x} \rightarrow-\vec{x} \Rightarrow \operatorname{sign}(-1)^{\ell}$

$$
\eta_{\pi}=-1
$$

Parity (contd.)

Intrinsic parity of Δ^{++}from $\Delta^{++} \rightarrow p \pi^{+}$

- $s_{\Delta^{++}}=\frac{3}{2}, s_{p}=\frac{1}{2}, s_{\pi^{+}}=0 \Rightarrow$ final state must have $\ell=1,2$
- $\eta_{\Delta^{++}}=\eta_{p} \eta_{\pi^{+}}(-1)^{\ell}=(-1)^{\ell+1}$
- angular distribution of decay products implies $\ell=1 \Rightarrow \eta_{\Delta^{++}}=1$

For γ intrinsic parity assigned on the basis of theoretical considerations

- classically \vec{E} (true) vector, $\vec{E}=-\vec{\nabla} \phi-\frac{\partial}{\partial t} \vec{A} \Rightarrow$ vector potential \vec{A} (true) vector
- photon states enconded in \vec{A} after quantisation $\Rightarrow \eta_{\gamma}=-1$
- alternatively: in QED γ-e coupling encoded in $A_{\mu} J^{\mu}$, electric current J^{μ} Lorentz vector $\Rightarrow A_{\mu}$ Lorentz vector, $\eta_{\gamma}=-1$

Charge conjugation

Charge conjugation (C): exchange all particles with corresponding antiparticles keeping momenta and spins unchanged

$$
C\left|\vec{p}, s_{z} ; \alpha\right\rangle=\xi_{\alpha}\left|\vec{p}, s_{z} ; \bar{\alpha}\right\rangle
$$

ξ_{α} : intrinsic charge conjugation phase, meaningful only for truly neutral particles (e.g., γ, π^{0}, but not n)
C unitary and $[C, H]=0$ (same argument used for P)

- changes the sign of all internal quantum numbers $\mathcal{O}_{\text {int }},\left\{C, \mathcal{O}_{\text {int }}\right\}=0$ (el. charge, baryon/lepton/lepton family/quark flavour/lepton flavour)
- changes sign to magnetic moment $\vec{\mu} \propto q \vec{s}$

QFT imposes relations between intrinsic C of particle α and antiparticle $\bar{\alpha}$
$C^{2}=\begin{gathered}\text { bosons and fermions: } \xi_{\alpha} \xi_{\bar{\alpha}}=1 \\ {\text { phase transformation, one can set } C^{2}=1 \Rightarrow \xi_{\alpha}}^{2}= \pm 1\end{gathered}$

$$
C^{2}\left|\vec{p}, s_{z} ; \alpha\right\rangle=\xi_{\alpha} \xi_{\bar{\alpha}}\left|\vec{p}, s_{z} ; \alpha\right\rangle
$$

Charge conjugation (contd.)

How to assign ξ_{α} to a self-conjugate particle?

- theoretical arguments: e.g., γ from Maxwell eqs.

$$
\begin{array}{rlrl}
\vec{\nabla} \cdot \vec{E} \propto \rho, & \vec{E} & =-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t} \\
\vec{\nabla} \wedge \vec{B} \propto \vec{J}, & & \vec{B} & =\vec{\nabla} \wedge \vec{A}
\end{array}
$$

- exchanging \pm charges $\Rightarrow \rho \rightarrow-\rho, \vec{J} \rightarrow-\vec{J}$ \Rightarrow change sign of $\vec{E}, \vec{B} \Rightarrow A_{\mu}=(\phi, \vec{A}) \rightarrow-A_{\mu}$
- for the photon quantum field $C^{\dagger} A_{\mu} C=-A_{\mu} \Rightarrow \xi_{\gamma}=-1$
- selection rule implied by C invariance: e.g., π^{0}
- $\pi^{0} \rightarrow \gamma \gamma \Rightarrow \xi_{\pi^{0}}=\xi_{\gamma}^{2}=1$
- can assign $\xi_{\pi^{ \pm}}=1$ as well but just a matter of convention: no selection rule for them, cannot fix $\xi_{\pi^{ \pm}}$
- if C exact $\Rightarrow \pi^{0} \rightarrow \gamma \gamma \gamma$ strictly forbidden;
C violations from WI, quite unrelated to this process
\Rightarrow expect strong suppression (expt.: $\Gamma_{\pi^{0} \rightarrow 3 \gamma} / \Gamma_{\pi^{0} \rightarrow 2 \gamma}<3.1 \cdot 10^{-8}$)

Time reversal

Time reversal (T): inversion of the arrow of time $t \rightarrow t^{\prime}=-t$ Under T both momentum and spin components change sign

$$
T\left|\vec{p}, s_{z} ; \alpha\right\rangle=\zeta_{\alpha, s_{z}}\left|-\vec{p},-s_{z} ; \alpha\right\rangle
$$

Intrinsic phase $\zeta_{\alpha, s_{z}}=(-1)^{s-s_{z}} \zeta_{\alpha}$
T is an antiunitary symmetry: from invariance
$T U(t) \psi(0)=U\left(t^{\prime}\right) T \psi(0)=U(-t) T \psi(0) \Rightarrow T i H=-i H T \Rightarrow\{T, i H\}=0$
(1) linear unitary $\Rightarrow\{T, H\}=0$
(2) antilinear antiunitary $\Rightarrow T i=-i T \Rightarrow[T, H]=0$

Option 1 excluded by absence of negative-energy states Antiunitarity implies residual phase ζ_{α} has no physical meaning (can be reabsorbed in a redefinition of the states)

CPT theorem

General theorem of quantum field theory: the antiunitary transformation $\Theta=C P T$ is a symmetry for any translation and Lorentz-invariant theory of local quantum fields

$$
\begin{aligned}
\Theta\left|\vec{p}, s_{z} ; \alpha\right\rangle & =C P T\left|\vec{p}, s_{z} ; \alpha\right\rangle=C P \zeta_{\alpha, s_{z}}\left|-\vec{p},-s_{z} ; \alpha\right\rangle=C \eta_{\alpha} \zeta_{\alpha, s_{z}}\left|\vec{p},-s_{z} ; \alpha\right\rangle \\
& =\xi_{\alpha} \eta_{\alpha} \zeta_{\alpha, s_{z}}\left|\vec{p},-s_{z} ; \bar{\alpha}\right\rangle=\theta_{\alpha, s_{z}}\left|\vec{p},-s_{z} ; \bar{\alpha}\right\rangle
\end{aligned}
$$

- CPT good also for weak interactions where $P, C, C P$ not conserved
- if violations of CPT observed, QFT inadequate to explain them

CPT theorem $\Rightarrow(m, s)_{\alpha}=(m, s)_{\bar{\alpha}}$ since $\left[\Theta, p^{2}\right]=\left[\Theta, \vec{J}^{2}\right]=0$
$\Theta p^{2}\left|\vec{p}, s_{z} ; \alpha\right\rangle=m_{\alpha}^{2} \theta_{\alpha, s_{z}}\left|\vec{p},-s_{z} ; \bar{\alpha}\right\rangle=p^{2} \Theta\left|\vec{p}, s_{z} ; \alpha\right\rangle=m_{\bar{\alpha}}^{2} \theta_{\alpha, s_{z}}\left|\vec{p},-s_{z} ; \bar{\alpha}\right\rangle$
Also $\tau_{\alpha}=\tau_{\bar{\alpha}}$ for unstable particles: in Born approximation

$$
\begin{aligned}
\tau_{\alpha}^{-1}=\Gamma_{\alpha} & \left.\left.=\sum_{f} c_{f}\left|\langle f| H_{l}\right| \alpha\right\rangle\left.\right|^{2}=\sum_{f} c_{f}\left|\langle f| \Theta^{\dagger} H_{l} \Theta\right| \alpha\right\rangle\left.\right|^{2} \\
& \left.\left.=\sum_{f} c_{f}\left|\langle\bar{f}| H_{l}\right| \bar{\alpha}\right\rangle\left.\right|^{2}=\sum_{f} c_{\bar{f}}\left|\langle\bar{f}| H_{l}\right| \bar{\alpha}\right\rangle\left.\right|^{2}=\Gamma_{\bar{\alpha}}=\tau_{\bar{\alpha}}^{-1}
\end{aligned}
$$

$$
c_{f}=c_{\bar{f}}: \text { kinematical factors dependent on masses and spins of final state }
$$

Isospin

1932: Chadwick discovers the neutron, solves the puzzle of mass/charge mismatch in nuclei

- nuclear electric charge $=e \times$ number of protons in the nucleus
- nuclear mass is very accurately $m_{p} \times$ number of protons and neutrons

$$
m_{n}=939.57 \mathrm{MeV} \quad m_{p}=938.28 \mathrm{MeV} \quad\left(m_{n}-m_{p}\right) / m_{p} \simeq 0.0014
$$

1932: Heisenberg proposes

- p, n are two different states of the same particle, the nucleon
- affected in the same way by the strong interactions

Heisenberg's view:
\Rightarrow strong interactions exactly invariant under $p \leftrightarrow n$
\Rightarrow small mass difference attributed to EM effects
What we know now:
\Rightarrow symmetry approximate even if EM interactions switched off
\Rightarrow important role played by $m_{d}-m_{u}$ (EM alone would lead to $m_{p}>m_{n}$)

Isospin (contd.)

- Nucleon N has internal degree of freedom, two states corresponding to p, n

$$
p=\binom{1}{0} \quad n=\binom{0}{1}
$$

- Superposition principle: $N(\alpha, \beta)=\alpha p+\beta n$ also a possible state
- Assumption: all states $N(\alpha, \beta)$ look the same to strong interactions
- Mathematically speaking: strong interactions invariant under SU(2) rotations of the nucleon state - isospin symmetry
- Generalised to SU(2) symmetry of strong interaction Hamiltonian (nucleons, pions, kaons...)
- Isospin symmetry not exact but very good approximate symmetry of strong interactions (we will soon see why)

Isospin (contd.)

Invariance of strong interactions under internal $\operatorname{SU}(2)$, symmetry group
SU(2) group:

- Lie group (group which is also a manifold)
- three generators $\vec{l}=\left(I_{1}, I_{2}, l_{3}\right)$
- same Lie algebra as $\mathrm{SO}(3)$

$$
\left[I_{a}, I_{b}\right]=i \varepsilon_{a b c} I_{c}
$$

Invariance of strong Hamiltonian $H_{s} \Rightarrow\left[\vec{I}, H_{s}\right]=0$ In Heisenberg picture: $\frac{d}{d t} \vec{l}(t)=i\left[H_{s}, \vec{l}(t)\right]=0$

Important consequences:

- spectrum of the theory organised in degenerate isospin multiplets (corresponding to irreducible representations of SU(2))
- conservation of isospin in dynamical hadronic processes (decay, scattering)

Isospin (contd.)

Isospin symmetry traces back to symmetry under $\operatorname{SU}(2)$ rotations in the space of up and down quarks, broken only by small mass difference

Analogy: u and d two states of the "light quark" q

$$
u=\binom{1}{0} \quad d=\binom{0}{1}
$$

Strong interaction Hamiltonian

$$
H_{s}=H_{0}+H^{\prime}
$$

- H_{0} : invariant under $\operatorname{SU}(2)$ rotations in (u, d) space
- H^{\prime} : symmetry-breaking term $\propto m_{u}-m_{d}$
- $m_{u}-m_{d} \ll 0.1 \div 1 \mathrm{GeV}$ (typical strong scale)
\Rightarrow isospin good approximate symmetry

SU(2) and Lie groups

Unitary unimodular 2×2 complex matrices

$$
U^{\dagger} U=U U^{\dagger}=\mathbf{1} \quad \operatorname{det} U=1
$$

Group: $\left(U_{2} U_{1}\right)^{\dagger}\left(U_{2} U_{1}\right)=U_{1}^{\dagger} U_{2}^{\dagger} U_{2} U_{1}=\mathbf{1}, \operatorname{det}\left(U_{2} U_{1}\right)=\operatorname{det} U_{2} \operatorname{det} U_{1}=1$ U. matrix $U=e^{i H}, H=H^{\dagger}$ Hermitean, $1=\operatorname{det} U=e^{i \operatorname{tr} H} \Rightarrow \operatorname{tr} H=0$

$$
\begin{gathered}
H=\frac{1}{2}\left(\begin{array}{cc}
\alpha_{3} & \alpha_{1}-i \alpha_{2} \\
\alpha_{1}+i \alpha_{2} & -\alpha_{3}
\end{array}\right)=\vec{\alpha} \cdot \frac{\vec{\sigma}}{2} \\
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
{\left[\sigma_{a}, \sigma_{b}\right]=2 i \epsilon_{a b c} \sigma_{c} \quad\left\{\sigma_{a}, \sigma_{b}\right\}=2 \delta_{a b}}
\end{gathered}
$$

Continuous group

$$
U(\vec{\alpha})=e^{i \vec{\alpha} \cdot \frac{\vec{\sigma}}{2}}=\cos \frac{|\vec{\alpha}|}{2} \mathbf{1}+i \sin \frac{|\vec{\alpha}|}{2} \hat{\alpha} \cdot \vec{\sigma}=u_{0} \mathbf{1}+i \vec{u} \cdot \vec{\sigma} \quad u_{0}^{2}+\vec{u}^{2}=1
$$

Also a manifold: point in $\operatorname{SU}(2) \leftrightarrow$ point on the 4 d -sphere S^{3}
\Rightarrow Lie group

SU(2) and Lie groups (contd.)

- Group reconstructed from generators $\vec{l}=\frac{\vec{\sigma}}{2}$ by exponentiation

$$
U(\vec{\alpha})=e^{i \vec{\alpha} \vec{l}}
$$

- For small $|\vec{\alpha}| \ll 1, U(\vec{\alpha}) \simeq 1+i \vec{\alpha} \cdot \frac{\vec{\sigma}}{2}=1+i \vec{\alpha} \cdot \vec{l}$
- Generators: $l_{a}=-\left.i \frac{\partial}{\partial \alpha_{a}} U(\vec{\alpha})\right|_{\vec{\alpha}=\overrightarrow{0}}$
- Lie algebra $\mathfrak{s u}(2)$:
- real vector space spanned by $\left\{I_{a}\right\}, X \in \mathfrak{s u}(2): X=X^{a} I_{a}$
- commutator $[X, Y]=X Y-Y X \in \mathfrak{s u}(2)$ (antisymm. bilinear form)
- Basic commutation relations: $[X, Y]=X^{a} Y^{b}\left[I_{a}, I_{b}\right]$,

$$
\left[I_{a}, I_{b}\right]=i \epsilon_{a b c} I_{c}
$$

- In general: for any Lie group
- elements $U=U\left(\alpha_{1}, \ldots, \alpha_{n}\right)=U(\alpha)$
- generators $t_{a}=-\left.i \frac{\partial}{\partial \alpha_{a}} U(\alpha)\right|_{\alpha_{a}=0}$ satisfy $\left[t_{a}, t_{b}\right]=i C_{a b}{ }^{c} t_{c}$ for some real structure constants $C_{a b}{ }^{c}$, yield a Lie algebra
- for compact groups (\sim compact manifolds), structure constants are totally antisymmetric and one writes $C_{a b}{ }^{c}=f_{a b c}$

SU(2) representations

Group representation: mapping $G \rightarrow{ }_{n} \mathbb{C}_{n}, g \mapsto D(g)$ respecting group composition law, \mathbb{C}^{n} : representation space

$$
D\left(g_{2}\right) D\left(g_{1}\right)=D\left(g_{2} g_{1}\right)
$$

- $D(g) D(e)=D(g) \Rightarrow D(e)=\mathbf{1}$
- $D\left(g^{-1}\right) D(g)=D(e) \Rightarrow D\left(g^{-1}\right)=D(g)^{-1}$

Unitary representation: $D(g)$ unitary, $D(g)^{-1}=D(g)^{\dagger}$
Reducible representation: proper subspace $\exists S \subset \mathbb{C}^{n}$ left invariant by the representation, $D(g) S=S \forall g \in G$
For unitary representation, if S invariant then S^{\perp} invariant as well

$$
\begin{array}{r}
0=\left(s_{\perp}, D\left(g^{-1}\right) s\right)=\left(D(g) s_{\perp}, D(g) D\left(g^{-1}\right) s\right)=\left(D(g) s_{\perp}, s\right), \\
\forall g \in G \Rightarrow D(g) S^{\perp} \stackrel{S}{=} S^{\perp}
\end{array}
$$

Repeat until no invariant subspace is left \Rightarrow completely reducible, decomposes in irreducible representations: $\nexists S \subset \mathbb{C}^{n}$ left invariant

SU(2) representations (contd.)

Lie algebra representation: linear mapping $\mathfrak{g} \rightarrow{ }_{n} \mathbb{C}_{n}, X \mapsto d(X)$ respecting commutators

$$
d(\alpha X+\beta Y)=\alpha d(X)+\beta d(Y) \alpha, \beta \in R \quad d([X, Y])=[d(X), d(Y)]
$$

Unitary representation of $\operatorname{SU}(2) \leftrightarrow$ Hermitean representation of $\mathfrak{s u}_{\mathbb{C}}(2)$

Representation of the complexified algebra $\mathfrak{s u}_{\mathbb{C}}(2)$

- if rep. of $\mathfrak{s u}(2)$ exists \Rightarrow extend by linearity to complex coefficients \Rightarrow get rep. of $\mathfrak{s u} \mathbb{C}$ (2)
- if rep. of $\mathfrak{s u}_{\mathbb{C}}(2)$ exists \Rightarrow restrict to real coefficients \Rightarrow get rep. of $\mathfrak{s u}(2)$

Irreducible representation of Lie algebra: does not leave any subspace invariant, S s.t. $d(X) S \subset S \forall X \in \mathfrak{g}$

Irreducible representation of $\mathrm{SU}(2) \leftrightarrow$ irreducible representation of $\mathfrak{s u}_{\mathbb{C}}(2)$
Theorem: for compact Lie groups all finite-dim. representations equivalent to unitary representations

After change of basis all $M^{-1} D(g) M$ become unitary
Task: classify unitary irreps of $\mathrm{SU}(2) \approx$ classify Hermitean irreps of $\mathfrak{s u}(2)$

SU(2) representations (contd.)

Finite-dimensional Hermitean representations of $\mathfrak{s u}(2)$
Hermitean rep. of generators $d\left(I_{a}\right)=d\left(I_{a}\right)^{\dagger},\left[d\left(I_{a}\right), d\left(I_{b}\right)\right]=i \epsilon_{a b c} d\left(I_{c}\right)$
\Rightarrow algebra representation by linearity
\Rightarrow group representation by exponentiation
Denote representatives with I_{a}, can diagonalise (only) one of them, I_{3} \Rightarrow representation space spanned by eigenvectors $I_{3}\left|i_{3}\right\rangle=i_{3}\left|i_{3}\right\rangle$

$$
\left[I_{3}, X^{a} I_{a}\right]=\mathrm{i} \epsilon_{3 a b} X^{a} I_{b}=0 \Leftrightarrow \mathrm{i} \epsilon_{3 a b} X^{a}=0 \forall b \Leftrightarrow X^{a}=0 \forall a
$$

Raising/lowering operators $I_{ \pm}=I_{1} \pm i I_{2}, I_{+}^{\dagger}=I_{-}$, obey comm. relations

$$
\left[I_{3}, I_{ \pm}\right]= \pm I_{ \pm} \quad\left[I_{+}, I_{-}\right]=2 I_{3}
$$

Here we use the complexified algebra

$$
I_{3} I_{ \pm}\left|i_{3}\right\rangle=\left(I_{ \pm} I_{3}+\left[I_{3}, I_{ \pm}\right]\right)\left|i_{3}\right\rangle=\left(i_{3} I_{ \pm} \pm I_{ \pm}\right)\left|i_{3}\right\rangle=\left(i_{3} \pm 1\right) I_{ \pm}\left|i_{3}\right\rangle
$$

\Rightarrow If $\left|i_{3}\right\rangle$ eigenvector then $I_{ \pm}\left|i_{3}\right\rangle$ are eigenvectors too

SU(2) representations (contd.)

- There must be a unique eigenvector $|i\rangle$ such that $I_{+}|i\rangle=0(\langle i \mid i\rangle=1)$
- existence: finite-dimensional representation requires the chain $I_{+}\left|i_{3}\right\rangle, I_{+}^{2}\left|i_{3}\right\rangle, I_{+}^{3}\left|i_{3}\right\rangle, \ldots$, to stop
- uniqueness: if more than one existed rep. would not be irreducible If $I_{+}\left|i^{\prime}\right\rangle=0$, make $\left\langle i^{\prime} \mid i\right\rangle=0$, then use commutation relations

$$
\left\langle i^{\prime}\right| I_{a_{1}} \ldots I_{a_{n}}|i\rangle=\sum_{k_{1}+k_{2} \leq n} c_{k_{1} k_{2}}\left\langle i^{\prime}\right| \|_{-}^{k_{1}} \ldots l_{+}^{k_{2}}|i\rangle=0
$$

$$
\Rightarrow\left\langle i^{\prime}\right| e^{i \vec{\alpha} \cdot \vec{l}}|i\rangle=0,|i\rangle,\left|i^{\prime}\right\rangle \text { belong to different invariant subspaces }
$$

- also eigenvector of $\vec{I}^{2}=\sum_{a} I_{a}^{2}=I_{-} I_{+}+I_{3}+I_{3}^{2}=I_{+} I_{-}-I_{3}+I_{3}^{2}$, eigenvalue $\vec{I}^{2}|i\rangle=i(i+1)|i\rangle$
- Construct vectors $\left|i_{3}\right\rangle$ from $|i\rangle$ via $I_{-}, I_{-}^{i-i_{3}}|i\rangle=C\left|i_{3}\right\rangle$ with $\left\langle i_{3} \mid i_{3}\right\rangle=1$
- Condon-Shortley convention: choose C real positive
- automatically eigenvectors of \vec{I}^{2} since $\left[I_{ \pm}, \vec{l}^{2}\right]=\left[I_{3}, \vec{l}^{2}\right]=0$
- chain must stop, $I_{-}\left|i_{*}\right\rangle=0$,

$$
0=\left\langle i_{*}\right| I_{+} I_{-}\left|i_{*}\right\rangle=\left\langle i_{*}\right| \vec{I}^{2}+I_{3}-I_{3}^{2}\left|i_{*}\right\rangle=i(i+1)+i_{*}\left(i_{*}-1\right) \Rightarrow i_{*}=-i
$$

Other solution $i_{*}=i+1>i$ unacceptable
Irreps: $(2 i+1)$-d, rep. space spanned by $\{|i\rangle,|i-1\rangle, \ldots,|-i+1\rangle,|-i\rangle\}$ eigenvectors of I_{3}, with constant $\vec{I}^{2}=i(i+1), 2 i \in \mathbb{N}_{0}$ (spin- i reps.)

References

- https://chemistrygod.com/cathode-ray-tube-experiments
- https://en.wikipedia.org/wiki/Rutherford_model
- Douglas Adams, The Hitchhiker's Guide to the Galaxy
- P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
- Steven Weinberg, The quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, Cambridge, 1995)

