Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

> ELTE 08/09/2020

Strong interactions, colour conservation, and confinement

Colour conserved at vertices, what are the consequences?

Essentially none: quarks and antiquarks are confined in hadrons with net colour zero \Rightarrow conservation law is zero colour in, zero colour out

Confinement not (yet) proved in QCD, detailed mechanism not fully understood, but basic idea simple: static quark-antiquark potential approx.

$$V_s = -\frac{4}{3}\frac{\alpha_s}{r} + \sigma r$$

static = limit of infinite quark masses

 $\alpha_s = \frac{g_s^2}{4\pi}$, g_s the strong coupling constant; σ : string tension

Pulling q and \bar{q} apart, energy stored in the system increases linearly \Rightarrow infinite energy needed to free them (at $r = \infty$) \Rightarrow confinement

For finite quark masses, when $\sigma r > 2m_q$ energy stored in the system sufficient to create $q\bar{q}$ pair out of the vacuum \Rightarrow string breaking, new q and \bar{q} bind to the old ones and get confined again

Matteo Giordano (ELTE)

Symmetries

Symmetry: change in the experimenter's point of view that does not change the results of possible experiments (according to [5])

Observers ${\mathcal O}$ and ${\mathcal O}'$ making measurements on the same physical system

- use *same* operative rules concerning measurements
- use in general *different* reference frames
- find different values for physical quantities, providing different descriptions of the same system

In QM: \mathcal{O} and \mathcal{O}' assign different state vectors to the same system (*different* expectation values of the *same* operators), physics encoded in Hilbert space rays \mathcal{R} and \mathcal{R}' associated to the state of the system

 $\mathcal{R}=[\psi]$ equivalence class of ψ under relation $\psi\sim\psi'$ if $\psi'={
m e}^{i\phi}\psi$

For certain pairs of observers descriptions are different but *equivalent*: same physical laws implied by measurements, impossible for an observer to determine her/his reference frame using only her/his measurements

Symmetries (contd.)

If ${\mathcal O}$ and ${\mathcal O}'$ give equivalent descriptions, then

- same set of possible physical states that they can observe
- if \mathcal{O} sees two states of the system as different, so must do \mathcal{O}' If not, then one could distinguish the two observers \rightarrow not equivalent

Establishing a relation between \mathcal{O} and $\mathcal{O}' = \text{defining a mapping } \mathcal{M}$ from the space of rays $\underline{\mathcal{H}} = \{\mathcal{R}\}$ to $\{\mathcal{R}'\} = \underline{\mathcal{H}}$, i.e., itself

- to each R observed by O there corresponds one and only one R' observed by O' (domain of definition = <u>H</u>)
- every \mathcal{R}' possible observation of $\mathcal{O}' \Rightarrow \mathcal{M}$ must be surjective (onto)
- $\mathcal{R}_1 \neq \mathcal{R}_2$ must be mapped into $\mathcal{R}'_1 \neq \mathcal{R}'_2 \Rightarrow \mathcal{M}$ must be injective (one-to-one) \Longrightarrow bijective, invertible mapping

More directly: if \mathcal{O} , \mathcal{O}' equivalent, and mapping exists from \mathcal{O} to \mathcal{O}' , then inverse mapping from \mathcal{O}' to \mathcal{O} must exist too (otherwise not equivalent)

$$\begin{aligned} \mathcal{M} &: \underline{\mathcal{H}} \to \underline{\mathcal{H}} \\ \mathcal{R} &\mapsto \mathcal{R}' = \mathcal{M} \mathcal{R} \end{aligned}$$

Wigner's theorem

Suppose we perform an experiment on the system, and ${\cal O}$ and ${\cal O}'$ see the system transition between two states

$$\mathcal{O}: \mathcal{R}_i \longrightarrow \mathcal{R}_f \qquad \mathcal{O}': \mathcal{R}'_i \longrightarrow \mathcal{R}'_f$$

occurring with probabilities P and P',

$$P = (\mathcal{R}_i \cdot \mathcal{R}_f)^2$$
 $P' = (\mathcal{R}'_i \cdot \mathcal{R}'_f)^2$

 $\mathcal{R}_1 \cdot \mathcal{R}_2 \equiv |(\psi_1, \psi_2)|$ with $\psi_{1,2}$ normalised vectors belonging to $\mathcal{R}_{1,2}$ \mathcal{O} and \mathcal{O}' looking at same process $\Rightarrow P = P'$ for any pair of states

$$\mathcal{R}_i \cdot \mathcal{R}_f = \mathcal{R}'_i \cdot \mathcal{R}'_f = (\mathcal{M}\mathcal{R}_i) \cdot (\mathcal{M}\mathcal{R}_f)$$

Wigner's theorem: invertible transformation $\mathcal{M} : \underline{\mathcal{H}} \to \underline{\mathcal{H}}$ that conserves probabilities can be implemented as a transformation on the space of vectors \mathcal{H} that is either linear and unitary or antilinear and antiunitary:

$$\begin{split} U(\alpha\psi+\beta\phi) &= \alpha U\psi+\beta U\phi, \qquad (U\psi,U\phi) = (\psi,\phi), \\ T(\alpha\psi+\beta\phi) &= \alpha^* T\psi+\beta^* T\phi, \qquad (T\psi,T\phi) = (\psi,\phi)^* \end{split}$$

See [5] for a proof

Wigner's theorem

Wigner's theorem implies that we can search for symmetry transformations looking only at unitary and antiunitary transformations in \mathcal{H} (Anti)unitary transformations: norm-preserving, onto (anti)linear transformations

• linear/antilinear:

$$U(\alpha\psi+\beta\phi)=lpha U\psi+eta U\phi \qquad T(lpha\psi+eta\phi)=lpha^*T\psi+eta^*T\phi$$

 $\bullet\,$ preserve the norm $\|\psi\|$ of vectors; using polarisation identity

$$\begin{aligned} \mathsf{4}(\psi,\phi) &= \|\psi+\phi\| + \|\psi-\phi\| + i\|\psi-i\phi\| - i\|\psi+i\phi\| \\ \implies (U\psi,U\phi) &= (\psi,\phi) \qquad (T\psi,T\phi) = (\psi,\phi)^* \\ \text{adjoint operator:} \quad (\psi,U\phi) &= (U^{\dagger}\psi,\phi) \qquad (\psi,T\phi) = (T^{\dagger}\psi,\phi)^* \\ \implies U^{\dagger}U = T^{\dagger}T = \mathbf{1} \end{aligned}$$

• whole Hilbert space as their image: $\forall \psi \exists \phi_{U,T} \text{ s.t. } \psi = U\phi_U = T\psi_T$ $\psi = U(U^{\dagger}U)\phi = (UU^{\dagger})U\phi = (UU^{\dagger})\psi \Longrightarrow UU^{\dagger} = TT^{\dagger} = \mathbf{1}$

Conversely: linear U with $U^{\dagger}U = UU^{\dagger} = 1$ implies unitary, antilinear T with $T^{\dagger}T = TT^{\dagger} = 1$ implies antiunitary

Matteo Giordano (ELTE)

Equivalence of observers = same space of states and same laws of physics

Same laws of physics means equations of motion have the same form in both reference frames (i.e., for both observers)

- ⇒ Same Hamiltonian (= same dynamical evolution) for both observers ⇒ transformed of the evolved = evolved of the transformed
- $\Leftarrow Transformed of the evolved = evolved of the transformed \Rightarrow same \\ Hamiltonian (= same dynamical evolution) for both observers$

For time-independent transformations M, temporal evolution $U(t) = e^{-iHt}$ with time-independent H:

$$U(t)M\psi(0) = MU(t)\psi(0) \Rightarrow [U(t), M] = 0 \Rightarrow [H, M] = 0$$

Symmetry group

Given symmetry transformations M_i on \mathcal{H}

- M_2M_1 still a symmetry
- 1 (identity) is a symmetry
- M_i^{-1} (inverse) exists and is a symmetry
- $M_3(M_2M_1) = M_3M_2M_1 = (M_3M_2)M_1$ (associativity)
- \Rightarrow symmetry transformations of a physical system form a group

Two types of symmetry transformations:

- continuous: transformations M = M(α) are part of a continuous family dependent on a set of real parameters α
 (e.g.: translations, rotations, Lorentz boosts, isospin)
- *discrete*: no such family

(e.g.: parity, charge conjugation, time reversal)

If $M = M(\alpha)$ is an element of a continuous family of symmetry transformations connected to the identity **1** then it must be unitary

Consider one-parameter group of (unitary) symmetries $M(\alpha)$

Unitary: $M(\alpha)^{\dagger}M(\alpha) = M(\alpha)M(\alpha)^{\dagger} = 1$ Symmetry: $[M(\alpha), H] = 0$

$$M(\alpha_1)M(\alpha_2) = M(\alpha_1 + \alpha_2)$$
 $M(0) = 1$

Such a parameterisation can always be found under general, reasonable conditions

$$M(d\alpha)M(\alpha) = M(\alpha + d\alpha)$$

$$(\mathbf{1} + d\alpha \frac{dM}{d\alpha}(0)) M(\alpha) = M(\alpha) + d\alpha \frac{dM}{d\alpha}(\alpha)$$

$$\frac{dM}{d\alpha}(0)M(\alpha) = \frac{dM}{d\alpha}(\alpha)$$

$$M(\alpha) = \exp\left\{\alpha \frac{dM}{d\alpha}(0)\right\} = \exp\left\{i\alpha(-i)\frac{dM}{d\alpha}(0)\right\} = \exp\left\{i\alpha Q\right\}$$

 $Q=Q^\dagger$ Hermitean and [H,Q]=0 \Rightarrow conserved physical quantity

E.g.: translations \Rightarrow four-momentum, rotations \Rightarrow angular momentum

Matteo Giordano (ELTE)

Conserved quantities and Schrödinger/Heisenberg pictures

- Schrödinger picture:
 - time-independent observables $Q = Q_S$
 - ▶ time-dependent states $|\psi_S(t)\rangle = U(t)|\psi_S(0)\rangle = U(t)|\psi\rangle$
- Heisenberg picture:
 - time-dependent observables $Q_H(t)$
 - time-independent states $|\psi_H\rangle = |\psi_S(0)\rangle = |\psi\rangle$

Relation between pictures: expectation values should be the same

$$egin{aligned} &\langle Q
angle_{\psi}(t) \equiv \langle \psi_{S}(t) | Q_{S} | \psi_{S}(t)
angle = \langle \psi_{S}(0) | U(t)^{\dagger} Q_{S} U(t) | \psi_{S}(0)
angle \ &= \langle \psi_{S}(0) | U(t)^{\dagger} Q_{S} U(t) | \psi_{S}(0)
angle = \langle \psi_{H} | Q_{H}(t) | \psi_{H}
angle \ &Q_{H}(t) = U(t)^{\dagger} QU(t) \end{aligned}$$

Equation of motion $\dot{Q}_{H}(t) = \frac{dQ_{H}(t)}{dt} = i[H, Q_{H}(t)]$ For a conserved quantity $\dot{Q}_{H}(t) = 0 \Leftrightarrow Q_{H}(t) = Q \Leftrightarrow [H, Q] = 0$ Independently of the picture: $\langle Q \rangle_{\psi}(t) = \langle Q \rangle_{\psi}(0)$

Free particles

Free particles (empirical definition):

localised objects travelling on straight lines at constant speed

- simple system
- physically relevant: initial and final states in scattering experiments
 - ▶ initial state: particles are far away from each other, not interacting yet
 - final state: measurements on final products far away from each other, not interacting any more

Free particle state characterised by

- type = mass m, spin s, electric charge q + other (compatible) charges
- energy E, momenta \vec{p} and spin component in some direction (conventionally: s_z)
- \Rightarrow complete set of observables (overcomplete since $E^2 = \vec{p}^2 + m^2$)

One-particle states: type $\alpha = (m, s, ...)$, momentum \vec{p} , spin z-comp. s_z

 $|\vec{p}, s_z; \alpha\rangle$

Parity

Parity (P): change sign to all spatial coordinates

Non-relativistic case: use quantum mechanics, wave function changes as

$$\mathsf{P}\psi_{\mathbf{s}_z}(\vec{x}) = \psi_{\mathbf{s}_z}(-\vec{x})$$

 $\vec{x} \rightarrow -\vec{x}$, $t \rightarrow t$, $s_z \rightarrow s_z \Rightarrow$ momenta change sign, angular momenta do not

Relativistic case: cannot use wave functions in coordinate space to describe a system, characterise particles by momenta and spin

$$P|\vec{p}, s_z; \alpha\rangle = \eta_{\alpha}|-\vec{p}, s_z; \alpha\rangle$$

P: (anti)unitary operator on the Hilbert space of the system η_{α} : phase factor (*intrinsic parity*) included for generality (does not change the physical meaning of the transformation); if *P* is a symmetry a consistent assignment of phases can be made

Heisenberg picture: quantum states given once and for all, effect of symmetry transformations shifted on *operators*

$$P^{\dagger}\vec{p}P = -\vec{p}$$
 $P^{\dagger}\vec{s}P = \vec{s}$

Parity (contd.)

Is parity a unitary or antiunitary symmetry? Invariance (dynamical part) $\Rightarrow PU(t) = U(t)P \Rightarrow [P, iH] = 0$

- linear unitary $\Rightarrow PH HP = [P, H] = 0$
- **2** antilinear antiunitary $\Rightarrow PH + HP = \{P, H\} = 0$, so given ψ_E , $H\psi_E = E\psi_E$, then $H(P\psi_E) = -PH\psi_E = (-E)(P\psi_E)$

Negative energy particle states not found in nature \Rightarrow empirically forced to choose option 1

P diagonalisable with H, but assignment of intrinsic parities not unique

- Consider only strong and EM interactions \Rightarrow particle-type numbers conserved for each type, associated to U(1) symmetries
- Restrict to $u, d, e^- +$ antiparticles $\rightarrow Q, \mathcal{B}, L$ conserved

If $P^{(0)}$ is a parity operator (= flips \vec{p} not s_z) with intrinsic parities $\eta_{\alpha}^{(0)}$ then $P = P^{(0)}e^{i(aB+bL+cQ)}$ is still a parity operator with different η_{α}

Parity (contd.)

Choose a, b, c such that

$$p: \eta_p = \eta_p^{(0)} e^{i(a+c)} = 1 \qquad n: \eta_n = \eta_n^{(0)} e^{ia} = 1 \qquad e^-: \eta_e = \eta_e^{(0)} e^{i(b-c)} = 1$$

- all other intrinsic parities fixed by consistency
- can choose arbitrarily one intrinsic parity for each conserved quantity
- for truly neutral particles (e.g. γ, π^0) intrinsic parity cannot be redefined through phase transformation, has genuine intrinsic meaning

QFT imposes relations between intrinsic P of particle α and antiparticle $\bar{\alpha}$

bosons: $\eta_{\alpha}\eta_{\bar{\alpha}} = 1$ fermions: $\eta_{\alpha}\eta_{\bar{\alpha}} = -1$

 $P^2=$ phase transformation $(ec{p}
ightarrowec{p},s_z
ightarrow s_z)$, and one can set $P^2=1$

- elementary $\alpha \neq \bar{\alpha} \Rightarrow$ particle-type charge, use the above to fix $\eta_{\alpha}^2 = \eta_{\bar{\alpha}}^2 = 1$
- for self-conjugate bosons $P^2 = 1$
- for self-conjugate (Majorana) fermions $P^2 = -1$, but unobserved in nature

Empirical assignement of intrinsic parities using parity conservation

Ignoring weak interactions where $ot\!\!/$

Transition probability for scattering/decay processes

$$a \; b
ightarrow c \; d \qquad$$
 transition probability $\; \propto \; |\langle c \; d | H_I | a \; b
angle|^2$

 $a
ightarrow b \ c$ transition probability $\propto |\langle b \ c | H_I | a \rangle|^2$

 $H_I = H - H_0$: interaction Hamiltonian

- [P, H] = 0, diagonalise parity and energy together
- If [P, H] = 0 since [P, H₀] = 0 then [P, H_I] = 0 ⇒ selection rule, nonzero matrix element only if same initial and final parity
- Since process takes place \Rightarrow nonzero matrix elements \Rightarrow same parity

But processes could take place to higher orders in perturbation theory! Accurate statement is in terms of scattering, decay operators S, Γ instead of H_I

- https://chemistrygod.com/cathode-ray-tube-experiments
- https://en.wikipedia.org/wiki/Rutherford_model
- Douglas Adams, The Hitchhiker's Guide to the Galaxy
- ▶ P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
- Steven Weinberg, The quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, Cambridge, 1995)