Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest
September 18, 2020

Strong processes

- Interaction vertices involve quarks and gluons which carry colour, but physical particles are colour neutral due to confinement
- Physical processes must involve exchange of gluons and quarks in colour-neutral combinations
- Physical processes can be effectively described as exchange of hadrons \Longrightarrow
lightest mediator is not the gluon (massless), but the pion (massive)

Range of interactions

Range of interaction \sim inverse of the mass of the lightest mediator Back-of-an-envelope calculation: use $\Delta E \Delta t \geq \frac{\hbar}{2}$:

- exchange of particle of mass M requires violation of energy conservation over time $\Delta t \sim \hbar / \Delta E \sim \hbar /\left(M c^{2}\right)$
- echanged particles travels no more than $\Delta x=c \Delta t$ in Δt
- $\Delta x \sim \hbar /(M c)=\lambda_{\text {Compton }}$

More detailed:

- Schrödinger equation from NR energy-momentum relation $E=\frac{\overrightarrow{\vec{p}}^{2}}{2 m}$ by $E \rightarrow i \partial_{t}$ and $\vec{p} \rightarrow-i \vec{\nabla}$

$$
E=\frac{\vec{p}^{2}}{2 m} \Rightarrow i \partial_{t} \psi(t, \vec{x})=-\frac{\vec{\nabla}^{2}}{2 m} \psi(t, \vec{x})
$$

- relativistic case $E^{2}-\vec{p}^{2}=M^{2} \rightarrow$ Klein-Gordon equation

$$
\left(\square+M^{2}\right) \psi(t, \vec{x})=\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}\right) \psi(t, \vec{x})=0
$$

Range of interactions (contd.)

Correct description of relativistic particles requires

- relativistic equation
- quantisation of the wave function $\psi \rightarrow \hat{\Psi}$ into a field operator that creates/annihilates particles
Field obeying Klein-Gordon eq. describes propagation of free particles of mass M
- $M=0, \square \vec{A}=0$ is classical EM field in vacuum (Coulomb gauge) \rightarrow massless quanta (photons) upon quantisation
- $M \neq 0 \rightarrow$ massive quanta upon quantisation

Consider low-energy limit (non-relativistic) and classical limit (exchange of a large number of particles)

- Maxwell equation \rightarrow non-relativistic Coulomb potential
- Klein-Gordon equation \rightarrow non-relativistic potential corresponding to exchange of massive particle

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}
$$

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}=\frac{g}{(2 \pi)^{2}} \int_{0}^{\infty} d p p^{2} \int_{-1}^{+1} d z e^{i p r z} \frac{1}{p^{2}+M^{2}}
$$

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
\begin{aligned}
u(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}=\frac{g}{(2 \pi)^{2}} \int_{0}^{\infty} d p p^{2} \int_{-1}^{+1} d z e^{i p r z} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r} \int_{0}^{\infty} d p p \frac{e^{i p r}-e^{-i p r}}{p^{2}+M^{2}}
\end{aligned}
$$

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
\begin{aligned}
u(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}=\frac{g}{(2 \pi)^{2}} \int_{0}^{\infty} d p p^{2} \int_{-1}^{+1} d z e^{i p r z} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r} \int_{0}^{\infty} d p p \frac{e^{i p r}-e^{-i p r}}{p^{2}+M^{2}}=\frac{g}{(2 \pi)^{2} i r} \int_{-\infty}^{\infty} d p p e^{i p r} \frac{1}{p^{2}+M^{2}}
\end{aligned}
$$

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
\begin{aligned}
u(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}=\frac{g}{(2 \pi)^{2}} \int_{0}^{\infty} d p p^{2} \int_{-1}^{+1} d z e^{i p r z} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r} \int_{0}^{\infty} d p p \frac{e^{i p r}-e^{-i p r}}{p^{2}+M^{2}}=\frac{g}{(2 \pi)^{2} i r} \int_{-\infty}^{\infty} d p p e^{i p r} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r}(2 \pi i) e^{-M r} \frac{i M}{2 i M}
\end{aligned}
$$

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
\begin{aligned}
u(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}=\frac{g}{(2 \pi)^{2}} \int_{0}^{\infty} d p p^{2} \int_{-1}^{+1} d z e^{i p r z} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r} \int_{0}^{\infty} d p p \frac{e^{i p r}-e^{-i p r}}{p^{2}+M^{2}}=\frac{g}{(2 \pi)^{2} i r} \int_{-\infty}^{\infty} d p p e^{i p r} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r}(2 \pi i) e^{-M r} \frac{i M}{2 i M}=\frac{g}{4 \pi r} e^{-M r}
\end{aligned}
$$

Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent) case adding fixed source with "charge" g

$$
\left(-\vec{\nabla}^{2}+M^{2}\right) u(\vec{x})=g \delta(\vec{x}) \Longrightarrow\left(\vec{p}^{2}+M^{2}\right) \tilde{u}(\vec{p})=g
$$

Fourier transform $u(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \tilde{u}(\vec{p})$
Solution in momentum space

$$
\tilde{u}(\vec{p})=\frac{g}{\vec{p}^{2}+M^{2}}
$$

Coordinate space solution $(r=|\vec{x}|)$

$$
\begin{aligned}
u(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \frac{g}{\vec{p}^{2}+M^{2}}=\frac{g}{(2 \pi)^{2}} \int_{0}^{\infty} d p p^{2} \int_{-1}^{+1} d z e^{i p r z} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r} \int_{0}^{\infty} d p p \frac{e^{i p r}-e^{-i p r}}{p^{2}+M^{2}}=\frac{g}{(2 \pi)^{2} i r} \int_{-\infty}^{\infty} d p p e^{i p r} \frac{1}{p^{2}+M^{2}} \\
& =\frac{g}{(2 \pi)^{2} i r}(2 \pi i) e^{-M r} \frac{i M}{2 i M}=\frac{g}{4 \pi r} e^{-M r} \quad \text { Yukawa potential }
\end{aligned}
$$

Range of interactions (contd.)

Yukawa potential $V_{\text {Yukawa }}(r)=\frac{g}{4 \pi r} e^{-M r}$, range $\sim 1 / M$

$$
\text { range }=\frac{\hbar}{M c}=\frac{\hbar c}{M c^{2}}=\frac{197 \mathrm{MeV} \cdot \mathrm{fm}}{M\left[\mathrm{MeV} / c^{2}\right] \mathrm{MeV}}=\frac{197}{M\left[\mathrm{MeV} / c^{2}\right]} \mathrm{fm}
$$

- weak interactions: lightest mediator $=W, M_{W}=80 \mathrm{GeV} / c^{2}$

$$
\text { range }_{\text {weak }}=\frac{197}{8 \cdot 10^{4}} \mathrm{fm}=2.5 \cdot 10^{-3} \mathrm{fm}
$$

- strong interactions: lightest mediator $=\pi^{0}, M_{\pi^{0}}=135 \mathrm{MeV} / c^{2}$ (recall: confinement)

$$
\text { range }_{\text {strong }}=\frac{197}{135} \mathrm{fm}=1.5 \mathrm{fm} \quad \text { (typical scale of nuclei) }
$$

- electromagnetic interactions: mediator $=\gamma$, massless \rightarrow infinite range $\left(V_{\text {Yukawa }} \rightarrow_{m \rightarrow 0} V_{\text {Coulomb }} \propto 1 / r\right)$
Conversely: mediator mass $=$ range $^{-1} \sim$ typical energy scale strong: $\mathcal{O}(100 \mathrm{MeV})$, weak: $\mathcal{O}(100 \mathrm{GeV})$

Strength of the interactions

Relative strength of interactions can be estimated from lifetimes of particle decays or from cross sections mediated by them

- "weight" of Feynman diagram $\propto \prod_{v \in \text { vertices }}$ coupling $_{v}$
"weight" since it is generally a complex quantity
- process amplitude $=$ sum of weights of all corresponding diagrams
- probability per unit time of a process (decay width/scattering rate) \propto |amplitude| ${ }^{2}$
Consider decay with width $\Gamma=\tau^{-1}$ governed by interaction $\mathrm{w} /$ coupling g
- simplest diagrams for a process: two vertices $\rightarrow \Gamma \propto\left(g^{2}\right)^{2}=g^{4}$

$$
\text { stronger interaction } \Rightarrow \text { shorter lifetime }
$$

- relative strength of interactions 1 and 2

$$
\frac{g_{1}^{4}}{g_{2}^{4}} \sim \frac{\tau_{2}}{\tau_{1}} \Longrightarrow \frac{g_{1}^{2}}{g_{2}^{2}} \sim \sqrt{\frac{\tau_{2}}{\tau_{1}}}
$$

Strength of the interactions (contd.)

Typical decay times:

$$
\tau_{\text {strong }} \sim 10^{-23} \div 10^{-20} s \quad \tau_{\text {weak }} \sim 10^{-13} \div 10^{3} s \quad \tau_{\text {em }} \sim 10^{-16} s
$$

- strong vs. weak:
- Δ^{0} resonance, $\tau_{\Delta}=5.6 \cdot 10^{-24} s$ (strong, $\Delta^{0} \rightarrow p \pi^{-}, n \pi^{0}$)
- neutron, $\tau_{n}=880 s$ (weak, $n \rightarrow p e^{-} \bar{\nu}_{e}$)

$$
\frac{g_{w}^{2}}{g_{s}^{2}} \sim \sqrt{\frac{\tau_{\Delta}}{\tau_{n}}} \sim 10^{-13}
$$

- EM vs. weak:
- neutral pion $\pi^{0}, \tau_{\pi^{0}}=8.4 \cdot 10^{-17} s\left(E M, \pi^{0} \rightarrow \gamma \gamma\right)$
- charged pion $\pi^{ \pm}, \tau_{\pi^{+}}=2.6 \cdot 10^{-8} s$ (weak, $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$)

$$
\frac{g_{\nu}^{2}}{g_{e m}^{2}} \sim \sqrt{\frac{\tau_{\pi^{0}}}{\tau_{\pi^{+}}}} \sim 10^{-4} \div 10^{-3}
$$

strong force $>$ electromagnetic force $>$ weak force

different estimates from different processes but qualitatively unchanged
Similar estimate from scattering processes: $\sigma \propto \mid$ amplitude $\left.\right|^{2} \propto g^{4}$

$$
\text { stronger interaction } \Rightarrow \text { larger cross section }
$$

Strength of weak interactions and the weak coupling

Weak coupling used above is not the true one but an effective one In GWS theory, (true) weak coupling g_{w} related to e and $e^{2} \sim 0.2 g_{w}^{2}$ Reason for weakness of weak interaction is not the smallness of the coupling, but the large mass of the mediator:

- exchange of boson brings factor $\left(p^{2}-m^{2}\right)^{-1}$ in Feynman diagram, (p : four-momentum, m : mass of the virtual boson)
- M_{W} large, at low energies the effective coupling is the Fermi constant $G_{F}=g_{W}^{2} / M_{W}^{2} \sim 1.1 \cdot 10^{-5} \mathrm{GeV}^{-2}$
- $1 / \sqrt{G_{F}} \gg$ typical m and $p \rightarrow$ weak interactions are indeed weak
- applies as long as $p^{2} \ll M_{W}^{2}$, then weak interaction become stronger

Fermi constant appeared first in Fermi's theory of β decay (1933): p, n, e, ν interact via a 4 -fermion vertex with coupling G_{F}

- good approximation at low energy ($p^{2} \ll M_{W}^{2}$)
- $\left[G_{F}\right]=m^{-2}=$ trouble, "more fundamental" theory had to exist
- assuming unification $e \sim g$ and using $G_{F} \rightarrow M_{W} \sim \sqrt{4 \pi \alpha / G_{F}} \sim 90 \mathrm{GeV}$

How to tell the nature of a decay process

How do we tell what interaction governs a given process?

- signature particles: $\gamma \rightarrow \mathrm{EM}, \nu \rightarrow$ weak, $\pi \rightarrow$ strong (but also weak)
- lifetime (related to strength)
- conservation laws

Dynamical conservation laws originate in the symmetries of the interactions

- some conservation laws apply to all interactions (energy-momentum, angular momentum, electric charge, baryon and lepton number)
- some are interaction specific (e.g., flavour-type symmetries)

If a conservation law is violated by a process, an interaction that respects it cannot be the one responsible for the process

Applies to scattering as well

Symmetries of fundamental interactions

Degree of symmetry varies: strong interactions "most symmetrical", weak interactions "least symmetrical"

Quark flavour: n. of quarks minus antiquarks of each type

- strangeness $S=n_{\bar{s}}-n_{s}$, charm $C=n_{c}-n_{\bar{c}} \quad$ (sign of S is a historical accident)
- $U=n_{u}-n_{\bar{u}}, D=n_{\bar{d}}-n_{d} \leftrightarrow$ baryon number \mathcal{B} and electric charge Q, conserved by all interactions
Strong: yes EM: yes Weak: no
e.g.: neutral kaon \rightarrow pions: $\$(+$ long lifetime), cannot be via strong (it is weak)

Lepton flavour: n . of leptons minus antileptons of each type
Strong: not relevant EM: yes Weak: no

Lepton family: n . of leptons minus antileptons of each family
Strong: not relevant EM: yes Weak: yes*

Baryon/lepton number: n. of baryons/leptons minus antibaryons/leptons
Strong: yes/n.r.
EM: yes
Weak: yes**

Symmetries of fundamental interactions (contd.)

Isospin \vec{I} : hadrons organised in multiplets of $2 I+1$ particles with nearly identical masses, same $\vec{I}^{2}=I(I+1)$, distinguished by $I_{3} \quad$ (non-hadrons: $I=0$)

- $\vec{I} \rightarrow \mathrm{SU}(2)$ symmetry
like spin but physically unrelated
- we will see that $I_{3}=\frac{1}{2}(U+D)$
- for light quarks (made of u, d, s)

$$
I_{3}=Q-\frac{1}{2}(\mathcal{B}+S)
$$

including $c: I_{3}=Q-\frac{1}{2}(\mathcal{B}+S+C)$

$$
\begin{array}{c|cc|c}
\hline \text { pions } & \text { triplet } & I=1 & I_{3}=Q \\
p, n & \text { doublet } & I=\frac{1}{2} & I_{3}=Q-\frac{1}{2} \\
K^{+}, K^{0} & \text { doublet } & I=\frac{1}{2} & I_{3}=Q-1 \\
\Delta^{\prime} \text { s } & \text { quartet } & I=\frac{3}{2} & I_{3}=Q-\frac{1}{2}
\end{array}
$$

EM: no Weak: no

EM: $q_{u} \neq q_{d}$, weak: $d^{\prime} \neq d$

$$
\pi^{0}(I=1) \underset{\mathrm{EM}}{\rightarrow} \gamma \gamma(I=0) \quad \pi^{+}(I=1) \underset{\text { weak }}{\rightarrow} \mu^{+} \nu_{\mu}(I=0)
$$

Symmetries of fundamental interactions (contd.)

Discrete symmetries:

- parity P (spatial inversion $\vec{x} \rightarrow-\vec{x}$)
$=$ cannot tell if process takes place here or in the mirror
- charge conjugation C (exchange of particles with antiparticles) $=$ sign of all conserved charges is conventional
- time reversal $T(t \rightarrow-t)$
$=$ cannot tell if process takes place in real time or in reversed film
Strong: all EM: all Weak: none

CPT: conserved in any local QFT (so $C P=T$)

- physics unchanged if $\vec{x} \rightarrow-\vec{x}, t \rightarrow-t$, particles \leftrightarrow antiparticles
- CPT conservation is a theorem in QFT, violations \Rightarrow QFT inadequate

Parity non-conservation in weak interactions

Physical phenomena that we see in the mirror are not always possible physical phenomena in the real world mirror image $=$ parity and 180° rotation around an axis orthogonal to the mirror

- neutrinos left-handed $(h=-1)$, antineutrinos right-handed $(h=+1)$ helicity $h=\frac{\vec{s} \cdot \vec{p}}{|\vec{p}|}$, Lorentz-invariant for massless particles
- $h \xrightarrow{P}-h \Rightarrow$ mirror neutrinos/antineutrinos are right/left-handed! Lee and Yang suggest parity non-conservation in weak interactions, immediately confirmed experimentally (1956)
- Wu et al.: polarised cobalt- 60 decay ${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+e^{-}+\bar{\nu}_{e}$
- e^{-}emitted preferentially opposite to nucleus spin
- in mirror $\left(\| \vec{S}_{\mathrm{Co}}\right)$ spin reversed, e^{-}pref. emitted in spin direction
- Garwin et al.: polarised muon decay $\mu^{-} \rightarrow e^{-} \nu_{\mu} \bar{\nu}_{e}$
- e^{-}angular distribution $\propto 1-\frac{1}{3} \cos \theta, \theta$: angle between $\vec{p}_{e^{-}}$and \vec{s}_{μ}
- under P, \vec{s}_{μ} unchanged, $\vec{p}_{e^{-}}$reversed \Rightarrow
e^{-}angular distribution $\propto 1+\frac{1}{3} \cos \theta$ in the mirror
- this is the angular distribution of e^{+}in the μ^{+}decay $\Rightarrow C P$ seems still good (but it is not in the end)

References

- https://chemistrygod.com/cathode-ray-tube-experiments
- https://en.wikipedia.org/wiki/Rutherford_model
- Douglas Adams, The Hitchhiker's Guide to the Galaxy
- P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
- Steven Weinberg, The quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, Cambridge, 1995)

