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Strong processes

Interaction vertices involve quarks
and gluons which carry colour, but
physical particles are colour
neutral due to confinement

Physical processes must involve
exchange of gluons and quarks in
colour-neutral combinations

Physical processes can be
effectively described as exchange
of hadrons =⇒
lightest mediator is not the gluon
(massless), but the pion (massive)

p p̄ → p p̄
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Range of interactions

Range of interaction ∼ inverse of the mass of the lightest mediator
Back-of-an-envelope calculation: use ∆E∆t ≥ ~

2 :

exchange of particle of mass M requires violation of energy
conservation over time ∆t ∼ ~/∆E ∼ ~/(Mc2)

echanged particles travels no more than ∆x = c∆t in ∆t

∆x ∼ ~/(Mc) = λCompton

More detailed:

Schrödinger equation from NR energy-momentum relation E = ~p 2

2m by

E → i∂t and ~p → −i ~∇

E =
~p 2

2m
⇒ i∂tψ(t,~x) = −

~∇ 2

2m
ψ(t,~x)

relativistic case E 2 − ~p 2 = M2 → Klein-Gordon equation

(2 + M2)ψ(t,~x) = (∂2
t − ~∇2 + M2)ψ(t,~x) = 0
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Range of interactions (contd.)

Correct description of relativistic particles requires

relativistic equation

quantisation of the wave function ψ → Ψ̂ into a field operator that
creates/annihilates particles

Field obeying Klein-Gordon eq. describes propagation of free particles of
mass M

M = 0, 2~A = 0 is classical EM field in vacuum (Coulomb gauge) →
massless quanta (photons) upon quantisation

M 6= 0 → massive quanta upon quantisation

Consider low-energy limit (non-relativistic) and classical limit (exchange of
a large number of particles)

Maxwell equation → non-relativistic Coulomb potential

Klein-Gordon equation → non-relativistic potential corresponding to
exchange of massive particle
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Range of interactions (contd.)

To find the potential, solve the equation in the static (time-independent)
case adding fixed source with “charge” g

(−~∇2 + M2)u(~x) = gδ(~x) =⇒ (~p 2 + M2)ũ(~p ) = g

Fourier transform u(~x) =
∫

d3p
(2π)3 e

i~p·~x ũ(~p )

Solution in momentum space

ũ(~p ) =
g

~p 2 + M2

Coordinate space solution (r = |~x |)

u(~x) =

∫
d3p

(2π)3
e i~p·~x g

~p 2 + M2

=
g

(2π)2

∫ ∞
0

dp p2

∫ +1

−1
dz e iprz 1

p2 + M2

=
g

(2π)2ir

∫ ∞
0

dp p
e ipr − e−ipr

p2 + M2
=

g

(2π)2ir

∫ ∞
−∞

dp p e ipr 1

p2 + M2

=
g

(2π)2ir
(2πi)e−Mr iM

2iM
=

g

4πr
e−Mr Yukawa potential
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Solution in momentum space
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ũ(~p ) =
g

~p 2 + M2

Coordinate space solution (r = |~x |)

u(~x) =

∫
d3p

(2π)3
e i~p·~x g

~p 2 + M2
=

g

(2π)2

∫ ∞
0

dp p2

∫ +1

−1
dz e iprz 1

p2 + M2

=
g

(2π)2ir

∫ ∞
0

dp p
e ipr − e−ipr

p2 + M2
=

g

(2π)2ir

∫ ∞
−∞

dp p e ipr 1

p2 + M2

=
g

(2π)2ir
(2πi)e−Mr iM

2iM
=

g

4πr
e−Mr Yukawa potential

Matteo Giordano (ELTE) Particle physics September 18, 2020 4 / 13



Range of interactions (contd.)

Yukawa potential VYukawa(r) =
g

4πr
e−Mr , range ∼ 1/M

range =
~
Mc

=
~c
Mc2

=
197 MeV · fm

M[MeV/c2]MeV
=

197

M[MeV/c2]
fm .

weak interactions: lightest mediator = W , MW = 80GeV/c2

rangeweak =
197

8 · 104
fm = 2.5 · 10−3 fm

strong interactions: lightest mediator = π0, Mπ0 = 135MeV/c2

(recall: confinement)

rangestrong =
197

135
fm = 1.5 fm (typical scale of nuclei)

electromagnetic interactions: mediator = γ, massless → infinite range
(VYukawa→m→0 VCoulomb ∝ 1/r)

Conversely: mediator mass = range−1 ∼ typical energy scale
strong: O(100MeV), weak: O(100GeV)
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Strength of the interactions

Relative strength of interactions can be estimated from lifetimes of particle
decays or from cross sections mediated by them

“weight” of Feynman diagram ∝
∏

v∈vertices couplingv

“weight” since it is generally a complex quantity

process amplitude = sum of weights of all corresponding diagrams

probability per unit time of a process (decay width/scattering rate) ∝
|amplitude|2

Consider decay with width Γ = τ−1 governed by interaction w/ coupling g

simplest diagrams for a process: two vertices → Γ ∝ (g2)2 = g4

stronger interaction ⇒ shorter lifetime

relative strength of interactions 1 and 2

g4
1

g4
2

∼ τ2

τ1
=⇒ g2

1

g2
2

∼
√
τ2

τ1
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Strength of the interactions (contd.)

Typical decay times:

τstrong ∼ 10−23 ÷ 10−20s τweak ∼ 10−13 ÷ 103s τem ∼ 10−16s

strong vs. weak:
I ∆0 resonance, τ∆ = 5.6 · 10−24s (strong, ∆0 → p π−, n π0)
I neutron, τn = 880 s (weak, n→ pe−ν̄e)

g2
w

g2
s
∼

√
τ∆
τn
∼ 10−13

EM vs. weak:
I neutral pion π0, τπ0 = 8.4 · 10−17s (EM, π0 → γγ)
I charged pion π±, τπ+ = 2.6 · 10−8s (weak, π+ → µ+νµ)

g2
w

g2
em
∼

√
τπ0

τπ+
∼ 10−4 ÷ 10−3

strong force > electromagnetic force > weak force

different estimates from different processes but qualitatively unchanged

Similar estimate from scattering processes: σ ∝ |amplitude|2 ∝ g4

stronger interaction ⇒ larger cross section
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Strength of weak interactions and the weak coupling

Weak coupling used above is not the true one but an effective one

In GWS theory, (true) weak coupling gw related to e and e2 ∼ 0.2g2
w

Reason for weakness of weak interaction is not the smallness of the
coupling, but the large mass of the mediator:

exchange of boson brings factor (p2 −m2)−1 in Feynman diagram,
(p: four-momentum, m: mass of the virtual boson)
MW large, at low energies the effective coupling is the Fermi constant
GF = g2

w/M
2
W ∼ 1.1 · 10−5 GeV−2

1/
√
GF � typical m and p → weak interactions are indeed weak

applies as long as p2 � M2
W , then weak interaction become stronger

Fermi constant appeared first in Fermi’s theory of β decay (1933): p, n, e, ν
interact via a 4-fermion vertex with coupling GF

good approximation at low energy (p2 � M2
W )

[GF ] = m−2 = trouble, “more fundamental” theory had to exist

assuming unification e∼g and using GF → MW ∼
√

4πα/GF ∼ 90GeV
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How to tell the nature of a decay process

How do we tell what interaction governs a given process?

signature particles: γ → EM, ν → weak, π → strong (but also weak)

lifetime (related to strength)

conservation laws

Dynamical conservation laws originate in the symmetries of the interactions

some conservation laws apply to all interactions (energy-momentum,
angular momentum, electric charge, baryon and lepton number)

some are interaction specific (e.g., flavour-type symmetries)

If a conservation law is violated by a process, an interaction that respects
it cannot be the one responsible for the process

Applies to scattering as well
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Symmetries of fundamental interactions

Degree of symmetry varies: strong interactions “most symmetrical”, weak
interactions “least symmetrical”

Quark flavour: n. of quarks minus antiquarks of each type

strangeness S = ns̄ − ns , charm C = nc − nc̄ (sign of S is a historical accident)

U = nu − nū, D = nd̄ − nd ↔ baryon number B and electric charge Q,
conserved by all interactions

Strong: yes EM: yes Weak: no
e.g.: neutral kaon → pions: /S (+ long lifetime), cannot be via strong (it is weak)

Lepton flavour: n. of leptons minus antileptons of each type

Strong: not relevant EM: yes Weak: no

Lepton family: n. of leptons minus antileptons of each family

Strong: not relevant EM: yes Weak: yes*

Baryon/lepton number: n. of baryons/leptons minus antibaryons/leptons

Strong: yes/n.r. EM: yes Weak: yes**
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Symmetries of fundamental interactions (contd.)

Isospin ~I : hadrons organised in multiplets of 2I + 1 particles with nearly

identical masses, same ~I 2 = I (I + 1), distinguished by I3 (non-hadrons: I = 0)

~I → SU(2) symmetry

like spin but physically unrelated

we will see that I3 = 1
2 (U + D)

for light quarks (made of u, d , s)

I3 = Q − 1
2 (B + S)

including c: I3 = Q − 1
2

(B + S + C)

pions triplet I =1 I3 =Q
p, n doublet I = 1

2 I3 =Q− 1
2

K+, K 0 doublet I = 1
2 I3 =Q−1

∆’s quartet I = 3
2 I3 =Q− 1

2

Strong: yes EM: no Weak: no

EM: qu 6= qd , weak: d ′ 6= d

π0(I = 1) →
EM

γγ(I = 0) π+(I = 1) →
weak

µ+νµ(I = 0)
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Symmetries of fundamental interactions (contd.)

Discrete symmetries:

parity P (spatial inversion ~x → −~x)
= cannot tell if process takes place here or in the mirror

charge conjugation C (exchange of particles with antiparticles)
= sign of all conserved charges is conventional

time reversal T (t → −t)
= cannot tell if process takes place in real time or in reversed film

Strong: all EM: all Weak: none

CPT: conserved in any local QFT (so CP = T )

physics unchanged if ~x → −~x , t → −t, particles ↔ antiparticles

CPT conservation is a theorem in QFT, violations ⇒ QFT inadequate

Matteo Giordano (ELTE) Particle physics September 18, 2020 12 / 13



Parity non-conservation in weak interactions

Physical phenomena that we see in the mirror are not always possible
physical phenomena in the real world

mirror image = parity and 180◦ rotation around an axis orthogonal to the mirror

neutrinos left-handed (h=−1), antineutrinos right-handed (h=+1)
helicity h = ~s·~p

|~p | , Lorentz-invariant for massless particles

h
P→ −h ⇒ mirror neutrinos/antineutrinos are right/left-handed!

Lee and Yang suggest parity non-conservation in weak interactions,
immediately confirmed experimentally (1956)

Wu et al.: polarised cobalt-60 decay 60Co→ 60Ni + e− + ν̄e
I e− emitted preferentially opposite to nucleus spin
I in mirror (‖~SCo) spin reversed, e− pref. emitted in spin direction

Garwin et al.: polarised muon decay µ− → e−νµν̄e
I e− angular distribution ∝ 1− 1

3 cos θ, θ: angle between ~pe− and ~sµ
I under P, ~sµ unchanged, ~pe− reversed ⇒

e− angular distribution ∝ 1 + 1
3 cos θ in the mirror

I this is the angular distribution of e+ in the µ+ decay ⇒ CP seems still
good (but it is not in the end)
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