Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest
September 11, 2020

Cross section

Operative definition

$$
\sigma=\frac{N_{\text {events }}}{N_{t} \frac{N_{b}}{A_{b}}}
$$

Uniformly distributed beam, crossing the whole target in time t

$$
N_{b}=\frac{N_{b}}{t} t=\frac{\Delta N_{b}}{\Delta t} \Delta t=\rho_{b} A_{b} \frac{\Delta x}{\Delta t} \Delta t=\rho_{b} A_{b} v \Delta t=\Phi A_{b} \Delta t
$$

ρ_{b} : beam density (n. particle/unit volume)
$\Phi=\rho_{b} v$: beam flux (n . particle crossing unit area \perp beam per unit time)
Constant event rate $N_{\text {events }}=\frac{N_{\text {events }}}{t} t=\frac{\Delta N_{\text {events }}}{\Delta t} \Delta t$

$$
\sigma=\frac{\frac{\Delta N_{\text {events }}}{\Delta t}}{N_{t} \frac{1}{A_{b}} \frac{\Delta N_{b}}{\Delta t}}=\frac{\Delta N_{\text {events }}}{\Delta t N_{t} \Phi}
$$

Cross section $=\mathrm{n}$. scattering events per unit time, unit target, unit flux

Cross section

Operative definition

Uni

ı)

ค力 ๖と
Cross section $=\mathrm{n}$. scattering events per unit time, unit target, unit flux

Cross section

Operative definition

$$
\sigma=\frac{N_{\text {events }}}{N_{t} \frac{N_{b}}{A_{b}}}
$$

Uniformly distributed beam, crossing the whole target in time t

$$
N_{b}=\frac{N_{b}}{t} t=\frac{\Delta N_{b}}{\Delta t} \Delta t=\rho_{b} A_{b} \frac{\Delta x}{\Delta t} \Delta t=\rho_{b} A_{b} v \Delta t=\Phi A_{b} \Delta t
$$

ρ_{b} : beam density (n. particle/unit volume)
$\Phi=\rho_{b} v$: beam flux (n . particle crossing unit area \perp beam per unit time)
Constant event rate $N_{\text {events }}=\frac{N_{\text {events }}}{t} t=\frac{\Delta N_{\text {events }}}{\Delta t} \Delta t$

$$
\sigma=\frac{\frac{\Delta N_{\text {events }}}{\Delta t}}{N_{t} \frac{1}{A_{b}} \frac{\Delta N_{b}}{\Delta t}}=\frac{\Delta N_{\text {events }}}{\Delta t N_{t} \Phi}
$$

Cross section $=\mathrm{n}$. scattering events per unit time, unit target, unit flux

Scattering processes

Elastic scattering

$$
a b \longrightarrow a b
$$

- same type (and number) of particles in and out
- momenta and spin component can change

Inelastic scattering

$$
a b \longrightarrow X_{1} X_{2} \ldots X_{n}
$$

- different particles in and out
- kinematical and dynamical constraints restrict the allowed inelastic processeses

Resonances

Distinctive sign of unstable particle being created as intermediate state: peak in the cross section as a function of energy (resonance)

- Position of the peak \rightarrow mass m
- Width of the peak \rightarrow decay width $\Gamma=1$ /lifetime "Hand-waving" argument: wave-function of unstable system of $E \approx m$ decaying exponentially in time with lifetime $1 / \Gamma$

$$
\begin{aligned}
\psi(t) & =\psi(0) e^{-i m t} e^{-\frac{\Gamma}{2} t} \longrightarrow|\psi(t)|^{2}=|\psi(0)| e^{-\Gamma t} \\
\tilde{\psi}(E) & =\int d t e^{i E t} \psi(t)=\frac{i \psi(0)}{E-m+i \frac{\Gamma}{2}}
\end{aligned}
$$

If the unstable system is formed in a scattering experiment at energy E, $\sigma(E)$ near $m \propto$ probability of observing the unstable system with energy E

$$
\sigma(E) \propto|\tilde{\psi}(E)|^{2}=\frac{|\psi(0)|^{2}}{(E-m)^{+}\left(\frac{\Gamma}{2}\right)^{2}}=\sigma_{\max } \frac{\left(\frac{\Gamma}{2}\right)^{2}}{(E-m)^{2}+\left(\frac{\Gamma}{2}\right)^{2}}
$$

Breit-Wigner distribution describes accurately many resonances

Resonances

Distinctive sign of unstable particle being created as intermediate state: peak in the cross section as a function of energy (resonance)

- Position of the peak \rightarrow mass m
- Width of the peak \rightarrow decay width $\Gamma=1$ /lifetime "Hand-waving" argument: wave-function of unstable system of $E \approx m$ decaying exponentially in time with lifetime $1 / \Gamma$

$$
\begin{aligned}
\psi(t) & =\psi(0) e^{-i m t} e^{-\frac{\Gamma}{2} t} \longrightarrow|\psi(t)|^{2}=|\psi(0)| e^{-\Gamma t} \\
\tilde{\psi}(E) & =\int d t e^{i E t} \psi(t)=\frac{i \psi(0)}{E-m+i \frac{\Gamma}{2}}
\end{aligned}
$$

If the unstable system is formed in a scattering experiment at energy E, $\sigma(E)$ near $m \propto$ probability of observing the unstable system with energy E

$$
\sigma(E) \propto|\tilde{\psi}(E)|^{2}=\frac{|\psi(0)|^{2}}{(E-m)^{+}\left(\frac{\Gamma}{2}\right)^{2}}=\sigma_{\max } \frac{\left(\frac{\Gamma}{2}\right)^{2}}{(E-m)^{2}+\left(\frac{\Gamma}{2}\right)^{2}}
$$

Breit-Wigner distribution describes accurately many resonances

ϕ meson $(s \bar{s})$ in lead-lead collisions
$m_{\phi}=1019.461 \pm 0.016 \mathrm{MeV}, \Gamma_{\phi}=4.249 \pm 0.013 \mathrm{MeV}[4]$

Describing interactions: Feynman diagrams

Interactions can be described as exchange of particles
E.g.: $e^{-} e^{+}$scattering mediated by $\mathrm{EM}=$ exchange of (one or more) γ

- particle 1 emits/absorbs mediator absorbed/emitted by particle 2...
- ... or the other way around?
- both, and none of the two: not well defined who does what on such short time-scales

What matters is the exchange, not who emits/absorbs

> (Also: do not take this picture too literally)

Fundamental processes: emission/absorption of an interaction particle from matter particle or from another interaction particle (vertex) Quantities conserved at vertex \rightarrow automatically conserved by interaction: energy/momentum, angular momentum, electric charge...

Electromagnetic interactions

Interaction vertex in Quantum ElectroDynamics (QED)

- electron enters, emits/absorbs photon, exits (time flows upwards)
- only vertex
- same for any other negatively charged lepton, or for quarks
- same for antiparticles, except arrow is drawn reversed (time still flows upwards)

Diagrams like these are known as Feynman diagrams: more than pictorial representation of a process (in due time)

Electromagnetic interactions

Interaction vertex in Quantum ElectroDynamics (QED)

- electron enters, emits/absorbs photon, exits (time flows upwards)
- only vertex
- same for any other negatively charged lepton, or for quarks
- same for antiparticles, except arrow is drawn reversed (time still flows upwards)

Diagrams like these are known as Feynman diagrams: more than pictorial representation of a process (in due time)

Strong interactions

Interaction vertices in Quantum ChromoDynamics (QCD)

- quark enters, exchanges gluon, exits
- similar to QED, but quarks and gluons carry also colour
- colour of q can change but overall conserved at vertex ("difference" carried by g)
- 3 quark colours, 8 gluon types
($3 \times 3=9$ combinations, but the one leaving all colours unchanged is absent)
- also vertices involving only 3 or 4 gluons (gluons self-interact)

Strong interactions

Interaction vertices in Quantum ChromoDynamics (QCD)

- quark enters, exchanges gluon, exits
- similar to QED, but quarks and gluons carry also colour
- colour of q can change but overall conserved at vertex ("difference" carried by g)
- 3 quark colours, 8 gluon types
($3 \times 3=9$ combinations, but the one leaving all colours unchanged is absent)
- also vertices involving only 3 or 4 gluons (gluons self-interact)

Strong interactions

Interaction vertices in Quantum ChromoDynamics (QCD)

- quark enters, exchanges gluon, exits
- similar to QED, but quarks and gluons carry also colour
- colour of q can change but overall conserved at vertex ("difference" carried by g)
- 3 quark colours, 8 gluon types
($3 \times 3=9$ combinations, but the one leaving all colours unchanged is absent)
- also vertices involving only 3 or 4 gluons (gluons self-interact)

Weak interactions

Interaction vertices for weak interactions

- charged current: negatively charged lepton enters, emits W^{-}/absorbs W^{+}and turns into neutrino...
- ... or neutrino enters, emits W^{+}/absorbs W^{-}and turns into neg. charged lepton
- similarly with antiparticles
- leptons from same family are involved: $\left(I^{-}, \nu_{l}\right),\left(I^{+}, \bar{\nu}_{l}\right)$
- neutral current: lepton enters, exchanges Z^{0}, exits
- also vertices involving only 3 or 4 IVB (self-interactions) and/or γ ($W^{ \pm}$are charged)

Weak interactions

Interaction vertices for weak interactions

- charged current: negatively charged lepton enters, emits W^{-}/absorbs W^{+}and turns into neutrino...
- ... or neutrino enters, emits
\square W^{+}/absorbs W^{-}and turns into neg. charged lepton
- similarly with antiparticles
- leptons from same family are involved: $\left(I^{-}, \nu_{l}\right),\left(I^{+}, \bar{\nu}_{l}\right)$
- neutral current: lepton enters, exchanges Z^{0}, exits
- also vertices involving only 3 or 4 IVB (self-interactions) and/or γ ($W^{ \pm}$are charged)

Weak interactions

Interaction vertices for weak interactions

- charged current: negatively charged lepton enters, emits W^{-}/absorbs W^{+}and turns into neutrino...
- ... or neutrino enters, emits W^{+}/absorbs W^{-}and turns into neg. charged lepton
- similarly with antiparticles
- leptons from same family are involved: $\left(I^{-}, \nu_{l}\right),\left(I^{+}, \bar{\nu}_{l}\right)$
- neutral current: lepton enters, exchanges Z^{0}, exits
- also vertices involving only 3 or 4 IVB (self-interactions) and/or γ ($W^{ \pm}$are charged)

Weak interactions

Interaction vertices for weak interactions

- charged current: negatively charged lepton enters, emits W^{-}/absorbs W^{+}and turns into neutrino...
- ... or neutrino enters, emits W^{+}/absorbs W^{-}and turns into neg. charged lepton
- similarly with antiparticles
- leptons from same family are involved: $\left(I^{-}, \nu_{l}\right),\left(I^{+}, \bar{\nu}_{l}\right)$
- neutral current: lepton enters, exchanges Z^{0}, exits
- also vertices involving only 3 or 4 IVB (self-interactions) and/or γ ($W^{ \pm}$are charged)

Weak interactions of quarks

N . current same as with leptons, ch. current analogue $\left(e^{-}, \nu_{e}\right) \rightarrow(u, d)$ Instead $\left(e^{-}, \nu_{e}\right) \rightarrow\left(u, d^{\prime}\right)$ with d^{\prime} a superposition of d and s quarks

$$
\left|d^{\prime}\right\rangle=\cos \theta_{C}|d\rangle+\sin \theta_{C}|s\rangle
$$

Needed to explain $K \rightarrow$ hadrons, where s / \bar{s} turns into d / \bar{d}
Better: $\left(\ell^{-}, \nu_{\ell}\right) \rightarrow\left(u, d^{\prime}\right),\left(c, s^{\prime}\right),\left(t, b^{\prime}\right)$ with $d^{\prime}, s^{\prime}, b^{\prime}$ lin. sup. of d, s, b Unitary matrix of mixing coefficients is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

Weak interactions of quarks

N . current same as with leptons, ch. current analogue $\left(e^{-}, \nu_{e}\right) \rightarrow(u, d)$ Instead $\left(e^{-}, \nu_{e}\right) \rightarrow\left(u, d^{\prime}\right)$ with d^{\prime} a superposition of d and s quarks

$$
\left|d^{\prime}\right\rangle=\cos \theta_{C}|d\rangle+\sin \theta_{C}|s\rangle
$$

$$
=\cos \theta_{C}
$$

$$
+\sin \theta_{C}
$$

Needed to explain $K \rightarrow$ hadrons, where s / \bar{s} turns into d / \bar{d}
Better: $\left(\ell^{-}, \nu_{\ell}\right) \rightarrow\left(u, d^{\prime}\right),\left(c, s^{\prime}\right),\left(t, b^{\prime}\right)$ with $d^{\prime}, s^{\prime}, b^{\prime}$ lin. sup. of d, s, b Unitary matrix of mixing coefficients is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

Diagrams with antiparticles

"Reflecting" a fermion line replaces particle with antiparticle

Diagrams with antiparticles

"Reflecting" a fermion line replaces particle with antiparticle

Vertices can be "rotated" to put fermion and antifermion on the same side of the process

Conservation laws

From interaction vertices one can read off conservation laws

	EM	strong	weak
electric charge	yes	yes	yes
lepton type	yes	-	no
flavour (=quark type)	yes	yes	no
lepton family	yes	-	yes (if massless)
quark family	yes	yes	no
lepton number	yes	-	yes
quark number	yes	yes	yes

Lepton type/flavour: $n_{f}-n_{\bar{f}}$
Lepton family number: $L_{\ell}=\left(n_{\ell^{-}}-n_{\ell^{+}}\right)+\left(n_{\nu_{\ell}}-n_{\bar{\nu}_{\ell}}\right)$
"Quark family": $\left(n_{u}-n_{\bar{u}}\right)+\left(n_{d}-n_{\bar{d}}\right)$, etc.
(never used: either more detailed cons. law exists, or not conserved due to quark mixing)
Lepton number: $L=\sum_{\ell=e, \mu, \tau} L_{\ell}$
Quark number: $\mathcal{Q}=\sum_{q} n_{q}-n_{\bar{q}}$

Conservation laws (contd.)

Flavour numbers:

$$
\begin{array}{lll}
U=n_{u}-n_{\bar{u}} & C=n_{c}-n_{\bar{c}} & T=n_{t}-n_{\bar{t}} \\
D=-n_{d}+n_{\bar{d}} & S=-n_{s}+n_{\bar{s}} & B=-n_{b}+n_{\bar{b}}
\end{array}
$$

Quark number is equivalent to baryon number

$$
\begin{aligned}
& \sum_{q} n_{q}=3 n_{\text {baryons }}+n_{\text {mesons }} \\
& \sum_{q} n_{\bar{q}}=3 n_{\text {antibaryons }}+n_{\text {mesons }} \\
& \Longrightarrow \mathcal{Q}=3\left(n_{\text {baryons }}-n_{\text {antibaryons }}\right)=3 \mathcal{B}
\end{aligned}
$$

If flavour is conserved, U and D are traded for \mathcal{B} and electric charge Q

$$
\begin{aligned}
& \mathcal{B}=\frac{1}{3}(U+C+T-D-S-B) \\
& Q=\frac{2}{3}(U+C+T)+\frac{1}{3}(D+S+B)
\end{aligned}
$$

If an interaction conserves a certain particle number it cannot be responsible for decays in which this number is violated (e.g., strangeness changing processes cannot be due to strong int.)

Basic processes

- Vertex diagrams describe how the interaction works at the most fundamental level but cannot represent a true physical process due to lack of energy-momentum conservation,
- Actual physical process described combining two or more vertices

- energy and momentum are conserved, but exchanged photon not on mass shell, $p_{\gamma}^{2} \neq 0=m_{\gamma}^{2}$
- internal lines represent virtual particles, not real particles, so not on shell
- external lines represent real particles, must be on-shell $p_{i}^{2}=m_{i}^{2}$

Basic processes in QED

Møller scattering

$$
e^{-} e^{-} \rightarrow e^{-} e^{-}
$$

electrons are indistinguishable, cannot say which one is going left/right after photon exchange \rightarrow must take both possibilities into account

Basic processes in QED

Bhabha scattering

$$
e^{-} e^{+} \rightarrow e^{-} e^{+}
$$

$e^{-} e^{+}$can exchange a photon or annihilate into a photon \rightarrow must take both possibilities into account

Basic processes in QED

Three more basic QED processes:

- electron-positron annihilation $e^{-} e^{+} \rightarrow \gamma \gamma$
- electron-positron pair creation $\gamma \gamma \rightarrow e^{-} e^{+}$
- Compton scattering $\gamma e^{-} \rightarrow \gamma e^{-}$
(For each of these processes there is a second diagram: can you draw it?)

What matters in a Feynman diagram

Feynman diagrams are not an accurate depiction of particle trajectories!

- "time" not well defined, except "before" and "after" of the process
- "when" annihiliation/creation happens are meaningless questions
- all that matters is the topology of the diagram, i.e., connectivity properties (once initial and final states are given)

What matters in a Feynman diagram

Feynman diagrams are not an accurate depiction of particle trajectories!

- "time" not well defined, except "before" and "after" of the process
- "when" annihiliation/creation happens are meaningless questions
- all that matters is the topology of the diagram, i.e., connectivity properties (once initial and final states are given)

What matters in a Feynman diagram

Feynman diagrams are not an accurate depiction of particle trajectories!

- "time" not well defined, except "before" and "after" of the process
- "when" annihiliation/creation happens are meaningless questions
- all that matters is the topology of the diagram, i.e., connectivity properties (once initial and final states are given)

Higher order diagrams

Infinity of ways in which one can combine vertices

Left: light-by-light (Delbrück) scattering, Right: $e^{-} e^{-}$elastic scattering

- Diagrams have different "weights", i.e., are more or less important
- Each vertex contributes a factor e to the weight of a diagram
- two vertices $\rightarrow \propto \alpha, \alpha=e^{2} /(4 \pi) \simeq 1 / 137$ fine structure constant
- four vertices $\rightarrow \alpha^{2}$, relatively suppressed
- Describing process to given precision requires limited n. of diagrams
- Vertex weighting factor: coupling constant

1 EM (e), 1 strong, 2 weak both $\propto e$ via Weinberg angle (EW unification)

Basic charged weak current processes

Muon decay $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$
Neutron β-decay $n \rightarrow p e^{-} \bar{\nu}_{e}$ (same diagram plus spectator quarks)
Pion decay: $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ (replace e with μ)
Strangeness-changing processes: $\Lambda^{0}(u d s) \rightarrow p(u u d) \pi^{-}(d \bar{u}) \quad(\Delta S=1)$

Basic charged weak current processes

Muon decay $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$
Neutron β-decay $n \rightarrow p e^{-} \bar{\nu}_{e}$ (same diagram plus spectator quarks)
Pion decay: $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ (replace e with μ)
Strangeness-changing processes: $\Lambda^{0}(u d s) \rightarrow p(u u d) \pi^{-}(d \bar{u}) \quad(\Delta S=1)$

References

- https://chemistrygod.com/cathode-ray-tube-experiments
- https://en.wikipedia.org/wiki/Rutherford_model
- Douglas Adams, The Hitchhiker's Guide to the Galaxy
- P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

