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Noether current: Lorentz transformations

Infinitesimal Lorentz transformation of coordinates
X = x4 Lo, M)k v MmPo) o= PlET, — P,
Scalar field ¢(x) left invariant by a Lorentz transformation (by definition)

$a(x') = a(x)
Noether current J(P?)" (associated to only w,, # 0)
MHPT = J(PU)# — M(PU) XYL — M(PU)V aaV¢aB(8 )
= x (07 Gy —w7L) = x7 (P bapi sy — L)
— xPOHT _ T QHP

Conserved charges (generators of Lorentz transformations)
/d3x/\/l0’p” = /d3x [Xp@o" —XUGOP] = g(ro)
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Noether current: internal symmetries

Internal symmetry transformations involve only the fields and not the
spacetime coordinates (M # 0, A = 0)

Simplest case: linear transformations
5¢3(X) = €ZbKab¢b(X)
Conserved current/charge:

Jmternal Zab 3(3;41153 ab¢b

Qinternal = /d3X Zaba(ao¢ ab¢b - /d3X ZabﬂaKabgﬁb
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Noether charges as symmetry generators

Derivation in classical case can be extended to quantum case taking into
account operator-ordering problems and short-distance singularities

For free fields normal ordering of operators suffices

Since Q(t) = Q(0) is time-independent
i@, 0i(] = [ &y [{SWlMulol).y) = A)ouly)Im(y)
— A H(G(), 7(v)) = FO(6(1), )} 6i ()] pp
—ie [ &y S {Muloly).y) = H(1)0j0(5) ~ A0 GBZD Y m(y), 1() e

— / Py S IM(O().y) — A ()i0(y) — A()bi(y) @ (E - 7)
= (Mi(6(x), %) — A(x)By8i(x)] = 56;(x)

Conserved-charge operators @ generate the corresponding symmetry
transformations on the fields
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Noether charges as symmetry generators (contd.)

Q@ generates symmetry transformation on fields

translations: [Py, #(x)] = —10,6(x)
Lorentz transformations: [T p(x)] = i (xPD” — x7D°) p(x)
internal symmetries: [Qinternal, @a(x)] = —iKapPp(x)

Q are Hermitean (after dealing with ordering problems) as long as
Lagrangian is Hermitean (starting from real Lagrangian at classic level)

Noether's theorem in quantum case entails existence of Hermitean
generators of the continuous symmetries of the Lagrangian

= unitary representation of Poincaré and other symmetry groups,
transforming quantum field operators like their classical counterpart

= quantum system exhibits the desired symmetry
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Interacting fields

Free fields are of limited utility to describe the real world, need a theory
@ describing interacting particles

@ complying with Poincaré invariance and locality

Use fields (local, simple transf. properties) and canonical quantisation:
@ Lagrangian exhibits symmetries of the theory manifestly

@ imposing canonical commutation (CCR) gives microcausality/locality

or anticommutation relations (or CAR)
@ Noether's theorem gives symmetry generators
Unfortunately almost never possible to complete the program: nonlinear
EOM, hard to solve = need approximation technique

In many cases of practical interest, Hamiltonian H = Hy + V/, free
(solvable) Hp + interaction part V

Treat V as a perturbation to the free Hamiltonian Hy, evaluate effects in
successive steps = perturbative quantisation
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Interaction picture

Let ¢(x), 7(x) be field and conjugate momentum realising canonical
quantisation program (solve EOM + obey CCR)
d(x) = ¢(t,%) = eM(0,%)e™ ™ (t,%) = i[H, ¢(t,%)]
m(x) = 7w(t,%) = eMtr(0,%)e™ M #(t,X) = i[H,7(t,%)]

Full Hamiltonian
H = / I [n(t,2)d(t. %) — L((t, %), 06(t,%))]

Op¢ expressed as a function of ¢ and
Assume L(¢p, 0¢) = Lo(p, 09) + L1(¢) (no derivative interaction)

oL oLy
7T(¢7a¢) - a(aod)) - 8(80¢) - 7T0(¢7 8¢)

Same functional form as conjugate momentum g of free theory
< o in full theory is the same function of ¢ and 7 as in the free theory
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Interaction picture (contd.)

In the cases of interest H is time-independent

H=Hlo.7 = [ &xln(e2)8(6,%) = Lo(0(t. 7). 00(8.)) ~ £1(6(e. 7))
— Holi 7]~ [ & £1(6(6,%) = Holo.7] + VIo

Ho and V are separately time dependent; do splitting at t = 0

HI6(t,%), (2, %)] = HIG(0, %), 7(0, %)] = Hol(0, %), 7(0, % )]+ VI6(0, %]

Fields in the interaction picture:
@ evolve in time with the free Hamiltonian

@ coincide with fully interacting fields (in Heisenberg picture) at t =0

Pint(t, %) = 04 (0,%)e™ 0t $,0(0,%) = $(0,X)

Tint(t, X ) = e"HOtmnt(O,f(')ef’.Hot Tint (0, X ) = 7(0, X)
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Interaction picture (contd.)

Gint, Tint CCR at t = 0, free unitary evolution =
@ obey CCR at all times
@ obey Hamilton equations of motion of free theory

5Ho . 5H0

bint = i[Hos Pint] = e Tint = I[Ho, Tint] = o

Oint, Ting are free fields = we know exactly what they are
Example: Hg free Hamiltonian for charged (non-Hermitian) scalar field

(ﬁint(t,)?):/dﬂ [a(B)e ™+ b(B) e} mi(t,%) = din(1. %)

a(B), a(B)', b(B), b(B)' usual annihilation and creation operators
Interaction Hamiltonian in the interaction picture V/(t)

( ) = eIHOtV[d)lnt(O X)]eilHOt V[¢1nt(t X)] = —/d3X [’/(Qbint(ta)?))

We have not solved anything yet, but we have set up the stage for solving
the theory iteratively (spectrum, S-matrix)
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Perturbation theory

If V (and so V}) is a small perturbation = power-expand S and compute
S-matrix elements order by order in the perturbation

S = Texp {i/_:o dt V,(t)}

_Z —l)” /+°° ”/+ood7-nT{V/(7'1)...V/(Tn)}

—00

Products of fields at same spacetime point lead to problems (infinities)
= get rid of (part of) them taking V; to be normal-ordered

Does not change the symmetries of S

S = Texp {i/d“x : L1(hins(x)) :}

-3 o[t [ T L)) s L)) )

Can now compute scattering cross sections in perturbation theory (PT)
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Perturbation theory (contd.)

Final state coinciding initial state practically impossible to observe in
experiments (would interfere with experimental setup) = i # f

Basic assumption of PT: exact S-matrix elements (¢¢|S|pi) well
approximated with lowest-order terms of the expansion of S

(prlS = 1pi) = <<pf\i/d4x C L(x) :
+i22/d4x1/d4X2T{: Li(xt) = L)+ ... o)
Object of interest: matrix element
<<Pf|/d4X1/d4X2-../d4x,,T{:L;(xl) 2 Li(0) t et Li(xn) ) i)

|pif): energy/momentum eigenstates — eigenstates of free Hamiltonian Hyp
and free spatial momentum operators built out of free fields ¢y, created
out of vacuum |0) by corresponding creation operators
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Perturbation theory (contd.)

Energy-momentum conservation from translation invariance: for total
initial /final momentum p; ¢

<<Pf|/d4X1 . --/d4XnT{i Li(xt) o Li(xn) ) |ei)

= /d4x1 .. ./d4x,, r e~ P T{ Li(x1—xn) i ... L£4(0) :} ehnP loi)
operator operator

_ /d4X,, e—xn(Pr—pi)
| S —

phase factor

X <<pf|/d4y1 . ../d4y,,,1T{: Li(y1) o Li(Yn—1) = £4(0) :} i)
= (2m)*6“ (pr — p;)

X <cpf|/d4y1 . ../d4y,,_1T{: Li(y1) oo Li(Yn=1) = L1(0) :} i)

= |5 =14+ (27T)45(4)(Pf - Pi)iMfi

Factor i conventional
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Matrix elements simplified using Wick's theorem
For a single Hermitean scalar field:

T (e(x1). . o(xn))
= Zﬁio{ : (P(Xl) . -(P(Xn—Zm) : D(Xn_2m+1, Xn_2m+2) .. D(X,,_l,x,,)
+ other pairings}

Sum over number m of pairings of coordinates {xi,...,x,} (from 0 to

maximal possible value [5]) and over all possible such pairings

D(x,y): contraction of two fields, or propagator
D(x,y) = (0T (¢(x)¢(y)) [0) = (0le™"F T (o(x — y)i2(0)) &”7|0)
= (0| T (o(x = ¥)¥(0)) [0) = D(x — y)
For Hermitean scalar field also
D(x —y) = (O] T (¢(x)(y)) 10) = (O] T (¢(y)¢(x)) [0) = D(y — x)
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Wick's theorem (contd.)

Sketch of proof: for n = 2 we know already

p(x1)e(x2) =: p(x1)p(x2) : +(0]e(x1)e(x2)|0)
Imposing time ordering

T (p(xa)e(x2)) =: e(x)e(x2) : (0| T (¢(x1)e(x2)) [0) =: ¢(x1)p(x2) : +D(x1, %)
se(x)e(x) =1 pa)e(x) :
For general n: use induction (prove true for n fields = true for n+ 1)
e write field product in terms of positive/negative-frequency parts and
bring them to normal order
o for any ¢_ passing from right to left of a ¢4, pay by adding term
with pair of fields replaced by their contraction
@ doing combinatorics right, the result follows
Formula valid for any set of (R or C) scalar fields ¢,: nonzero
contractions only for ¢, and o}, a= b ([¢as ©b] = [Pas apz] =0 for a # b)
When fields in T product are already partially NO, contractions have to be

considered only among fields belonging to different NO blocks
No ¢_-¢+ exchange needed within NO block
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Feynman diagrams

Perturbative calculation of S-matrix elements:
@ expand S in powers of V|
@ use Wick's theorem to write T-product as sums of NO products

© normal-ordered products matrix elements = coefficients of string of
annihilation/creation operators destroying particles in initial /final
state summed over pairings with initial /final particles

Feynman diagrams: graphic device to accomplish the task

Example: ¢* theory
L£i(¢) = %¢54 = S = Texp {Z\/d“x 2¢int(X)41}

Free field ¢int(x) describes free neutral scalar particles
Consider elastic scattering of two particles: assume A small, to lowest order

- Lo i Lo L
BBHS — Upipe) = b [ d*x BB om0 [BiPe) + O0)

Matteo Giordano (ELTE) Particle physics Budapest, 08/09/2020 14 /20



Feynman diagrams (contd.)

Expanding : ¢int(x)*: in creation/annihilation operators
@ nonzero contribution only when matching
initial /final particles (2 creation, 2 annihilation)

e can pick any a/a’ from any of the fields
= 4! ways

o draw 4-pronged vertex for each L;, contract
lines with external particles or among themselves

<51’52'|5—1I5152>03) i/\/d4X<l31’|¢int(X)|0><5£\¢int(><)|0><0|¢int(><)|51><0|¢int(><)|52>
Remaining matrix elements correspond to value of external lines

<O|¢1nt(x p) =JdQqe "’X<0\ (@)IB) = [ dQq e="7*(0]a(¢ )a(7)"|0)

[ aril] - f a2, -4~ o). (5 10) =

<p|¢mt(X 10) = [ dQq e (B |a(q)"[0) = [ dQq e"’X<0| (B)a(d)'|0)

40,05, o) 0 = e

Matteo Giordano (ELTE) Particle physics Budapest, 08/09/2020 15 / 20



Feynman diagrams (contd.)

Expanding : ¢int(x)*: in creation/annihilation operators
@ nonzero contribution only when matching 7 75
initial /final particles (2 creation, 2 annihilation)

e can pick any a/a’ from any of the fields
= 4! ways

o draw 4-pronged vertex for each L;, contract
lines with external particles or among themselves n P2

<51’52'|5—1I5152>03) i/\/d4X<l31’|¢int(X)|0><5£\¢int(><)|0><0|¢int(><)|51><0|¢int(><)|52>
Remaining matrix elements correspond to value of external lines

<O|¢1nt(x p) =JdQqe "’X<0\ (@)IB) = [ dQq e="7*(0]a(¢ )a(7)"|0)

[ aril] - f a2, -4~ o). (5 10) =

<p|¢mt(X 10) = [ dQq e (B |a(q)"[0) = [ dQq e"’X<0| (B)a(d)'|0)

40,05, o) 0 = e

Matteo Giordano (ELTE) Particle physics Budapest, 08/09/2020 15 / 20



Feynman diagrams (contd.)

S-matrix element to lowest order:
(PiP2|S — 1|p1p2) = "(27T)45(4)(Pi + Py — p1 — p2)M(Pr, Pa; Bi, Bs)
= i/\/d4x /(PP —pi=p2)x | 0O(\?)
= iA2m)* 60 (py + Py — p1 — p2) + O(N*) = M(B1, Bo: 1, B3) = A + O(N?)
Example: ¢3 theory
A 3
Li(6) = 379
Neutral scalar particles, same 2 — 2 elastic scattering process as above
O(A) : term does not have enough fields, vanishing contribution
002) : (BIBIIS — 1ppn)
1 /i e o
=5 (3|> /d4X/d4y (BIBs| T {:0me(x)*: 1 dine (y)*:} [PLB2) + O(N?)

Two vertices at points x and y

Matteo Giordano (ELTE) Particle physics Budapest, 08/09/2020 16 / 20



Feynman dlagrams (cont )

72

o OI : o\ // Kol
o [e] . O

P P2 6 p

From Wick's theorem, only term with NO of 4 fields for i/f particles
= one contraction (between fields from different vertices = 32 ways)

(PiPs|S— 1|P1P2> 32/d4 /d4yDX Y){(BLBs| : bint (X)*Pine (v)* : | B12)

Expand normal—ordered product term, need two a and two af

@ both a from one vertex, both af from other vertex (2 ways)
@ or one a and one af from each vertex (22 ways)

Vertices are equivalent since integrated over
i f icles in all ibl 2
@ associate a/a' to particles in all possible ways (2 ways or 242 ways)
. VA .
= factors e~ P12 Xl (initial) and €112 xly (final)
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Feynman diagrams (cont

b2 23

L o1 in?

GBI - Unm =3 (5) G2 [aix [aty Dix-y)

> {ei(P{+P£)'xe—i(m+Pz)~y + el(P1=P1)x gilP2=P2)y | ei(pé—m)'xei(P{—Pz)v} + (/)()\3)
= (iA)? /d4x/d4y D(x —y)

% {ei(P{+P£)~Xe—i(p1+pz)~y + el(P1=P1)x gilP2=p2)y | ei(Pé—P1)~Xei(p{—pz)~y} +0(\%)
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Feynman diagrams (contd.)

d*q
Go over to momentum space: D(x) = 2n)

27)4 e D(q)

<.51/I_52|5_ 1|p152)

d*x [ d*y

v)

% {el(p1+p2 9)x g=i(P1+p2—q) y+e(p1 P1=q)X o i(py— p2+q)y+el(p2 P1=q)X o i(py— pz+q)y}

Integrate over x and y = momentum conservation at each vertex
<*’l*‘/

P1P>|S — 1|p1p2)
d*a -
= (’A)2/( T B(q){(2m)*6®(p} + ps — q)(27)*6“) (p1 + p> — q)

+(2m)* 6@ (p; - p1 — q)(2m)* 6 (py — p2 + q)

T (205 (0 — p1 — )(27)* 6 (B, — po + @)} + O()
=i(2m)*6®) (p} +p5— p1— p2){iN2[D(p1+p2)+D(p} —p1)+D(ps—p1)] } +O(N?)
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Feynman diagrams (contd.)

'
Py

Feynman rules:

@ one point for each vertex, as many lines out of it as fields in £,
@ pair particles with lines (external), remaining lines with each other (internal)
@ draw all the possible topologically inequivalent diagrams with prescribed

external particles and number of vertices; count multiplicity of diagram
@ associate a momentum to each line of the graph

Flowing in/out for i/f particles/external lines; for internal lines arbitrary

@ for each external line factor 1; for each internal line factor D(q)
@ conserve momentum at each vertex (21)*6()(3; p;)

@ integrate over internal momenta
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