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Dyson’s formula

S =Ω†−Ω+ = lim
t2→+∞

lim
t1→−∞

e iH0t2e−iHt2e iHt1e−iH0t1 = lim
t2→+∞

lim
t1→−∞

U(t2, t1)

To find S :
1 write differential equation for unitary operator U(t2, t1)
2 solve it with “initial condition” U(t, t) = 1
3 take limits

∂
∂t2
U(t2, t1) = e iH0t2 i(H0 − H)e−iH0t2U(t2, t1)

= −ie iH0t2Ve−iH0t2U(t2, t1) = −iVI (t2)U(t2, t1)

VI (t) ≡ e iH0tVe−iH0t

U(t2, t1)† = U(t1, t2), nothing new from ∂/∂t1

VI (t): interaction Hamiltonian in interaction picture

Schrödinger picture: |ψ(t)〉S = e−iHt |ψ(0)〉S OS

Heisenberg picture: |ψ〉H = |ψ(0)〉S OH (t) = e iHtOS e−iHt

Dirac (interaction) picture: |ψ(t)〉I = e iH0t e−iHt |ψ(0)〉S OI (t) = e iH0tOS e−iH0t

S 〈φ(t)|OS |ψ(t)〉S = H〈φ|OH (t)|ψ〉H = I 〈φ(t)|OI (t)|ψ(t)〉I
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Dyson’s formula (contd.)

Solution:

U(t2, t1) = Texp
{
−i
∫ t2

t1
dt VI (t)

}
=
∑∞

n=0
(−i)n

n!

∫ t2

t1
dτ1 . . .

∫ t2

t1
dτnT {VI (τ1) . . .VI (τn)}

T : time-ordering symbol, places operators in descending time order

T{A1(t1)A2(t2)} = θ(t1 − t2)A1(t1)A2(t2) + θ(t2 − t1)A2(t2)A1(t1)

T{A1(t1). . .An(tn)} =
∑

P θ(tP(1)−tP(2)). . .θ(tP(n−1)−tP(n))AP(1)(tP(1)). . .AP(n)(tP(n))

Sum over permutations P of {1, . . . , n}

Check solution: (obviously U(t, t) = 1)

U(t2, t1) =
∑∞

n=0(−i)n
∫ t2

t1
dτ1

∫ τ1
t1

dτ2 . . .
∫ τn−1

t1
dτn VI (τ1) . . .VI (τn)

∂

∂t2
U(t2, t1) = −iVI (t2)

∑∞
n=1(−i)n−1

∫ t2
t1

dτ2 . . .
∫ τn−1

t1
dτn VI (τ2) . . .VI (τn)

= −iVI (t2)
∑∞

n=0(−i)n
∫ t2

t1
dτ1 . . .

∫ τn−1
t1

dτn VI (τ1) . . .VI (τn) = −iVI (t2)U(t2, t1)

S = U(+∞,−∞) = Texp
{
−i
∫ +∞
−∞ dt VI (t)

}
(Dyson’s formula)
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Cross sections - reprise

Rate of scattering events (n. events per unit time) for a beam of flux Φ
(particles per unit area per unit time) on a target with Nt particles:

∆Nevents

∆t
= σNtΦ

1. Count all scattering events ⇒ measure total cross section

σ =
∆Nevents

∆tNtΦ

2. Classify scattering events ⇒ measure differential cross section

∆σα(ξ) =
∆Nevents(α, ξ)

∆t∆ξNtΦ
∆ξ =⇒

∆t,∆ξ→0

dσα
dξ

(ξ) =
dNevents(α, ξ)

dtdξNtΦ

α: discrete variables (e.g., number/type of particles, sz ), essentially
label different processes
ξ: continuous variables (e.g., momenta)
∆Nevents(α0, ξ0): scattering events w/ α = α0, ξ ∈ [ξ0− ∆ξ

2 , ξ0 + ∆ξ
2 ]

dσ
dξ1dξ2...

are not derivatives
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Cross sections - reprise (contd.)

Transition probability Pfi from initial state |φi 〉 to final state |φf 〉 not
directly measurable due to practical limitations

initial state in one single given scattering process not known with
arbitrary accuracy

particle states used in scattering experiments obtained through
practical processes (e.g. acceleration of particles, preparation of
beams) affected by inherent uncertainties

accurate determination of the actual wave function of the state
impossible

What can be measured is the transition probability averaged over many
experiments, corresponding to many slightly different initial states ⇒ cross
section related to averaged Pfi

Ideally: repeat N times experiment with one scatterer in target, one
particle in beam ⇒ Nevents/N = Pfi
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Cross sections - reprise (contd.)

Differential cross section in ideal case (and N = 1):

∆σ =
∆Nevents

Nt
Nb
Ab

=
Pfi

∆tΦ(Nb = 1)

Q.: What Pfi should we use since we do not known φi ,f accurately?

A.: for initial/final states well peaked around definite particle momenta
details do not matter, relevant Pfi is transition probability between
idealised initial/final momentum eigenstates

Can be shown using wave-packet description of initial/final states and
careful consideration of how scattering experiments are carried out

Alternatively: quantisation in a periodic box (equivalent results &
much simpler)
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Cross section from the S matrix

Transition probability :

Pfi =
|〈φf |S |φi 〉|2

〈φf |φf 〉〈φi |φi 〉

Energy-momentum conservation implies

S = 1 + i(2π)4δ(4)(Pf − Pi )M
1: no-scattering term

Pfi not well defined for momentum eigenstates

Non-normalisable states, square of δ(4)(Pf − Pi )

Trick: regularise expressions by putting system in a finite T × V = T × L3

four-dimensional box with periodic boundary conditions

allowed momenta become discrete, pj =
2πkj

L , kj ∈ Z
corresponding eigenstates are normalisable

four-momentum conserving Dirac-delta replaced by Kronecker delta,
can be squared without problems
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Cross section from the S matrix (contd.)

Make sure correct normalisation obtained in infinite-volume limit:

infinite-volume momentum eigenstates: relativistic normalisation

〈~p ′|~p〉 = (2π)32p0δ(3)(~p ′ − ~p)

finite-volume momentum eigenstates: matching normalisation

V 〈~p ′|~p〉V = 2p0V δ
(3)
~p ′,~p

One admissible momentum in a cube of volume V
(2π)3 ⇒ density of modes = (2π)3

V

⇒
∑
~p,V →

V
(2π)3

∫
d3p in the infinite-volume limit

finite-volume S-matrix:

ST ,V = 1T ,V + iTV δ
(4)
Pf ,Pi
MT ,V

with TV δ
(4)
Pf ,Pi

→ (2π)4δ(4)(Pf − Pi ) and MT ,V →M as T ,V →∞
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Cross section from the S matrix (contd.)

Derivation:

∆Pfi : transition probability from initial state of two particles with
momenta ~p1,2 to final state of particles with prescribed momenta ~p ′i
Consider only f 6= i , drop no-scattering term

Denote with ∆3p′i = (2π)3

V the size of the “unit cell” in the phase
space of final particle i

∆Pfi =
1

4p0
1p0

2V 2︸ ︷︷ ︸
initial state norm.

(TV )2δ
(4)
Pf ,Pi
|MT ,V |2︸ ︷︷ ︸

|Sfi |2

∏
j

1

2p′0j V

∆3p′i V

(2π)3︸ ︷︷ ︸
final state norm.

For large V ,T

replace MT ,V with infinite-volume matrix element Mfi

combine one factor VT with Kronecker delta to obtain Dirac delta

∆Pfi −→
T

V

|Mfi |2

4p0
1p0

2

(2π)4δ(4)(Pf − Pi )
∏

j

1

2p′0j

∆3p′i
(2π)3
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Cross section from the S matrix (contd.)

Elementary process involving only two particles, Nt = 1, Nb = 1
Beam flux: Φ = v

V (speed v × density 1/V ), duration of the process: T
“Number of scattering events” = probability ∆Pfi

Differential cross section:

∆σ =
∆Pfi

TNtΦ
=

V

T

∆Pfi

v
=
|Mfi |2

4p0
1p0

2v
(2π)4δ(4)(Pf − Pi )

∏
j

∆3p′i
2p′0j (2π)3

All factors of V ,T cancel, can take the limit T ,V →∞

dσ =
|Mfi |2

4p0
1p0

2v
(2π)4δ(4)(Pf − Pi )

∏
j

d3p′i
2p′0j (2π)3

=
|Mfi |2

4p0
1p0

2v
dΦ(n)

dΦ(n): infinitesimal invariant-volume element of n-particle phase space

dΦ(n) =
∏

j

d3p′i
2p′0j (2π)3

(2π)4δ(4)(
∑

j

p′j − Pi )
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Cross section from the S matrix (contd.)

Derivation done in the lab frame with one of the particles at rest, but we
would rather have a Lorentz-invariant definition of the cross section

|M|2 is Lorentz-invariant if
I S is Lorentz invariant (it should be!)
I momentum eigenstates obey relativistic normalisation

phase-space measure is Lorentz-invariant

need the Lorentz-invariant expression for p0
1p0

2v

In the lab frame

p0
1p0

2v = E1vm2 = |~p1|m2 =
√

(p1 · p2)2 − p2
1p2

2

Manifestly invariant expression for differential cross section:

dσ

dΦ(n)
=

|Mfi |2

4
√

(p1 · p2)2 − p2
1p2

2
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Collider experiments

Two beams in opposite directions
on same circular trajectory
(assume same cross-sectional
area Ab, velocity v)

Beams of NB1,2 bunches with
Nb1,2 particles per bunch

Take one bunch per beam, over period T to go around whole circle:
I two crossings ⇒ collision frequency 2/T
I Nb1Nb2 possible pairwise particle interactions ⇒ Nevents = 2 σ

Ab
Nb1Nb2

Number of events per unit time:

∆Nevents

∆t
=

2

T

NB1NB2Nb1Nb2

Ab
σ = Lσ =⇒ σ =

1

L
∆Nevents

∆t

L: luminosity delivered by the collider

To make further progress, we need a detailed relativistic quantum theory
to compute Mfi ⇒ Quantum Field Theory
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Introduction to Quantum Field Theory

Fact of Nature: particles can be created or destroyed

decays, e.g., π+ → µ+ νµ
particle creation in collisions, e.g., e− e+ → X

Formalism of quantum mechanics inadequate for such processes: to each
particle in the game corresponds a wave function, how can that just
appear or disappear?

Not really a problem in the non-relativistic, low-energy regime:
p p̄ → p p̄ e− e+ requires ECM

p −mp ≥ me ⇒ β & 1/10

Serious problem at high energies when particle production and
annihilation become important

Appropriate formalism must take into account

principles of special relativity (Lorentz covariance, locality)

principles of quantum mechanics (superposition principle, uncertainty
principle)

Locality better dealt with using fields, uncertainty corresponds to non
commutativity of measurements ⇒ use field operators
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Introduction to Quantum Field Theory (contd.)

Fields are better suited to describe local interactions (= no action at a
distance):

fields: entities φ(x) defined everywhere in spacetime

dynamics automatically local if field interactions depend only on value
of fields at a point and in an infinitesimal neighbourhood (= φ(x),
∂µφ(x), . . . )

automatically Lorentz-covariant dynamics easily constructed using
fields with simple Lorentz transformation properties

Particles are better suited to describe experiments:

straightforward construction of state superpositions

multiparticle kinematics easy to describe in terms of Fock space:
direct sum of n-particle Hilbert spaces, any number of particles
allowed

How does one connect the two? Theory of quantised fields
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Fock space

Consider a system of non-interacting spinless bosons of mass m

Most general state: linear superposition of states with arbitrary number n
of particles with definite momenta (momentum operator eigenstates)

Basis of Hilbert space: {|~p1, . . . , ~pn〉}n=0,1,...,∞
n = 0 state |0〉: vacuum state (no particle is present)

Experimental fact: particles of the same type are indistinguishable

Quantum state vector of a system of bosons invariant under any
permutation P of the particle labels (Bose-Einstein statistics)

|~pP(1), . . . , ~pP(n)〉 = |~p1, . . . , ~pn〉

Formally: take one-particle states |~p 〉 and fully symmetrise their n-fold
tensor product

|~p1, . . . , ~pn〉 = 1
n!

∑
P |~pP(1)〉 ⊗ . . .⊗ |~pP(n)〉

Space generated by {|~p1, . . . , ~pn〉}n=0,1,...,∞ = Fock space
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Fock space (contd.)

Energy and momentum related by dispersion relation E 2 = ~p 2 + m2 ⇒
one-particle vectors are eigenvectors of four-momentum operator Pµ

Pµ|~p 〉 = pµ|~p 〉 p0 =
√
~p 2 + m2

Momenta additive ⇒ also n-particle states are Pµ eigenvectors

Relativistic normalisation:

〈~p ′|~p〉 = (2π)32p0δ
(3)(~p ′ − ~p)

〈~p ′1, . . . , ~p ′n′ |~p1, . . . , ~pn〉 = δn′n
∑

P

∏n
j=1(2π)32p0

j δ
(3)(~p ′P(j) − ~pj )

〈0|0〉 = 1

Invariant measure: dΩp ≡
d3p

(2π)32p0

Rotations: p0δ
(3)(~p ′ − ~p) manifestly invariant, boosts in 1-direction: (Λp)0,1 = γ(p0,1 − βp1,0),

δ((Λp)′1 − (Λp)1) = δ(γ[(p′1 − p1)− β(p′0 − p0)]) = | ∂γ(p1−βp0)

∂p1 |−1δ(p′1 − p1)

= p0|γ(p0 − βp1)|−1δ(p′1 − p1) = p0

(Λp)0 δ(p′1 − p1)
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Creation/annihilation operators

Creation operators a(~p)†:

a(~p)†|~p1, . . . , ~pn〉 ≡ |~p, ~p1, . . . , ~pn〉

Annihilation operators a(~p): adjoint of a(~p)†

a(~p)|~p1, . . . , ~pn〉 =
∑n

j=1(2π)32p0
j δ

(3)(~pj − ~p )|~p1, . . . , ~pj−1, ~pj+1, . . . , ~pn〉

Creation/annihilation operators allow us to change as we please the
particle content of a state

Since we cannot remove particles from the vacuum ⇒ a(~p )|0〉 = 0 ∀~p
The vacuum |0〉 is the only state annihilated by all a(~p ), any other state
can be obtained from |0〉 by repeated application of a(~p)†

|~p1, . . . , ~pn〉 ≡ a(~p1)† . . . a(~pn)†|0〉

Commutation relations follow from definition:

[a(~p ), a(~q )] = [a(~p )†, a(~q )†] = 0 [a(~p ), a(~q )†] = (2π)32p0δ(3)(~p − ~q )
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Creation/annihilation operators (contd.)

Number/number density operators

N =

∫
d3p

(2π)32p0
a(~p )†a(~p ) =

∫
d3p

(2π)32p0
ν(~p )

Commutation relations:

[ν(~p ), a(~q )] = [a(~p )†, a(~q )]a(~p ) = −(2π)32p0δ(3)(~q − ~p )a(~p )

[ν(~p ), a(~q )†] = a(~p )†[a(~p ), a(~q )†] = (2π)32p0δ(3)(~q − ~p )a(~p )†

⇒ N diagonal operator, eigenvalue = number of particles

N|~p1, . . . , ~pn〉 = n|~p1, . . . , ~pn〉

For any additive diagonal quantum number f (~p) (e.g., Pµ), corresponding
operator reads

F =

∫
d3p

(2π)32p0
f (~p )a(~p )†a(~p ) F |~p1,. . ., ~pn〉=

(∑n
j=1 f (~pj )

)
|~p1,. . ., ~pn〉

Can we reproduce this with field operators?
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Fock space: generalisations

Straightforward extension to several types of bosons:
I introducing creation/annihilation operators for each type
I impose standard commutation relations among operators of the same

type
I impose that operators of different type commute with each other

Extension to fermions must take into account the different particle
statistics: exchanging labels of any two particles must change the
state vector by a minus sign (Fermi-Dirac statistics)

I introduce creation and annihilation operators
I impose anticommutation relations

{a(~p ), a(~q )} = {a(~p )†, a(~q )†} = 0

{a(~p ), a(~q )†} = (2π)32p0δ(3)(~p − ~q )

I impose that operators corresponding to fermions of different type
anticommute with each other

I impose that operators corresponding to fermions and bosons commute
with each other
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Quantisation of the scalar field

Can one replace the Schrödinger equation with a relativistic one? Sure:
Klein-Gordon equation

(2 + m2)φ(x) = 0

Can one obtain a sensible quantum mechanical theory from this, with φ(x)
treated as a wave function? Nope:

second-order in time as well as in space (as required by invariance) ⇒
admits negative-energy solutions (leads to instability)

only probability current with the right symmetry properties under
Lorentz transformations leads to a probability density which is not
positive-definite

fundamental problem is that we cannot describe multiparticle
interactions in terms of single-particle wave functions

Classically, Klein-Gordon equation describes a free scalar field:
can we quantise it?

Can be interpreted as quantisation of the wave function (second quantisation)
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Quantisation of the scalar field (contd.)

Solution for the classical field: use Fourier transform to momentum space

φ(x) =

∫
d4p

(2π)4
e−ip·x φ̃(p)

(p2 −m2)φ̃(p) = 0⇒ φ̃(p) = 2πδ(p2 −m2)f (p0, ~p)

Solution:

φ̃(p) =
2π

2ε(~p )

{
δ(p0 − ε(~p ))f (ε(~p ), ~p ) + δ(p0 + ε(~p ))f (−ε(~p ), ~p )

}
ε(~p ) ≡

√
~p 2 + m2

Back to coordinate space:

φ(x)=
∫ d3p

(2π)32ε(~p )

{
e−i(ε(~p )x0−~p·~x)f (ε(~p ), ~p ) + e i(ε(~p )x0+~p·~x)f (−ε(~p ), ~p )

}
=
∫ d3p

(2π)32ε(~p )

{
e−i(ε(~p )x0−~p·~x)f (ε(~p ), ~p )+e i(ε(~p )x0−~p·~x)f (−ε(~p ),−~p )

}
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Quantisation of the scalar field (contd.)

Set dΩp = d3p
(2π)32p0 with p0 = ε(~p ), denote

a(~p ) ≡ f (ε(~p ), ~p ) b(~p )∗ ≡ f (−ε(~p ),−~p )

Most general solution of Klein-Gordon equation:

φ(x) =

∫
dΩp

{
a(~p )e−ip·x + b(~p )∗e ip·x}

Real field ⇒ b(~p ) = a(~p )

What is the energy stored in the field? From 0=(2+m2)φ= φ̈−∆φ+m2φ

0 =
∫

d3x φ̇[φ̈−∆φ+ m2φ] =
∫

d3x [φ̇φ̈+ ~∇φ̇ · ~∇φ+ m2φ̇φ]

0 = d
dt

1
2

∫
d3x [φ̇2 + (~∇φ)2 + m2φ2]

H = 1
2

∫
d3x [φ̇2 + (~∇φ)2 + m2φ2] = const.

Setting π(x) = ∂0φ(x)

H = 1
2

∫
d3x [π(~x)2 + (~∇φ(~x))2 + m2φ(~x)2]

π(~x) = π(0, ~x), φ(~x) = φ(0, ~x)
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