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Dyson's formula

_ T _ H H iHoty .—iHty _iHty . —iHot1 __
S5=Q' Q= lim lim €""%2¢e e'e =
thr—+o0 t1——o0

lim lim U(tg,tl)
thr—+oo t1——o0

To find S:

© write differential equation for unitary operator U(t2, t1)
@ solve it with “initial condition” U(t,t) =1
O take limits

%U(tg, tl) = eiHotZi(Ho - H)eiiHOQU(tQ, tl)

= —je'Hot2 Ve_iH0t2U(t2, tl) = —iV/(tz)U(tz, tl)
Vi(t) = g/tot \fg—iHot
U(t2, t1)1L = U(t1, t2), nothing new from 9/0t;
Vi(t): interaction Hamiltonian in interaction picture

Schrédinger picture:  [4(t))s = e~ M|)(0))s Os
Heisenberg picture:  [¢)y = [¢(0))s Ou(t) = et oge=Mt
Dirac (interaction) picture: |i(t)); = eote =Mt (0))s Oy (t) = eMotOge=Hot

s{@(8)|Os[9(t))s = H(P|On(B)|[d)n = 1{S(B)|O1(2) (1))
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Dyson’s formula (contd.)

Solution:
U(ts, t1) = Texp {—ift2 dt v,(t)}

=y, L Cdr [ dra T {Vi(m) ... Vi(ma)}
T: time-ordering symbol, places operators in descending time order
T{A1(t1)A2(t2)} = 0(t1 — t2)A1(t1)Ax(t2) + O(t2 — t1)Ax(t2)AL(t1)
T{AL(t1). .. An(ta)} = >_p 0(try—tr)- - -O(tp(—1 — tr ) Arw (tr)- - -Aprp) (tr()

Sum over permutations P of {1,...,n}

Check solution: (obviously (t, t) = 1)
L{(t‘27 tl) = Zn—o( I ftfz dry fljl—l dm .. fgnfl dmn V/(Tl) L. V/(Tn)
%u(tz,tl):—fV/(tz)z I)" lftz dm .. f:l—nfl drp V[(Tz)... V/(Tn)

= 7I'V,(t2) Z;’io(*i)" ftlz dr... fgnfl dtn V/(Tl) C. V/(Tn) = 7I'V/(t2)u(t2, tl)

S =U(+o0, —00) = Texp {—/fj;o dt V,(t)} (Dyson'’s formula)
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Cross sections - reprise

Rate of scattering events (n. events per unit time) for a beam of flux ¢
(particles per unit area per unit time) on a target with N; particles:

ANevents
——— =oN®
At !
1. Count all scattering events = measure total cross section
o= ANevents
AtN:®
2. Classify scattering events = measure differential cross section
ANevents(aa 5) daa . dNevents(av 5)

Ao, (&) = AE

— =
AtAEN,D 0 AtAés0 dE (€) dtdeN,®
@ «: discrete variables (e.g., number/type of particles, s,), essentially
label different processes
@ &: continuous variables (e.g., momenta)
® ANevents(co, §o): scattering events w/ a = ag, § € [{o — %, o+ %]

do . .
—99—— are not derivatives
dérde,. ..
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Cross sections - reprise (contd.)

Transition probability Pg from initial state |¢;) to final state |¢¢) not
directly measurable due to practical limitations

@ initial state in one single given scattering process not known with
arbitrary accuracy

@ particle states used in scattering experiments obtained through
practical processes (e.g. acceleration of particles, preparation of
beams) affected by inherent uncertainties

@ accurate determination of the actual wave function of the state
impossible

What can be measured is the transition probability averaged over many
experiments, corresponding to many slightly different initial states = cross
section related to averaged Py

Ideally: repeat N times experiment with one scatterer in target, one
particle in beam = Neyents/N = Py
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Cross sections - reprise (contd.)

Differential cross section in ideal case (and N = 1):

o A Nevents o Pr;

Ao =
Nt% Atd(N, = 1)

Q.: What Py should we use since we do not known ¢; ¢ accurately?

A.: for initial /final states well peaked around definite particle momenta
details do not matter, relevant Py is transition probability between
idealised initial/final momentum eigenstates

e Can be shown using wave-packet description of initial /final states and
careful consideration of how scattering experiments are carried out

@ Alternatively: quantisation in a periodic box (equivalent results &
much simpler)
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Cross section from the S matrix

Transition probability :

P, — [(¢¢]S|oi) 2
" (orlor) (9iloi)

Energy-momentum conservation implies
S=1+i2n)*W(P; — P)M

1: no-scattering term
Ps not well defined for momentum eigenstates

Non-normalisable states, square of §(*)(Pf — P;)
Trick: regularise expressions by putting system in a finite T x V = T x 3

four-dimensional box with periodic boundary conditions
. 2mk;
@ allowed momenta become discrete, p; = % ki € Z
@ corresponding eigenstates are normalisable

@ four-momentum conserving Dirac-delta replaced by Kronecker delta,
can be squared without problems
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Cross section from the S matrix (contd.)

Make sure correct normalisation obtained in infinite-volume limit:

@ infinite-volume momentum eigenstates: relativistic normalisation
=/ = 30 ,05(3) (5 =
(B'|B) = (27)*2p°C) (5’ — p)
@ finite-volume momentum eigenstates: matching normalisation
=/ = 3
v(B'B)v = 2p° V5

_ @)

One admissible momentum in a cube of volume =5 = density of modes = *=;

(2m )
= va — ﬁ fd3p in the infinite-volume limit

@ finite-volume S-matrix:

Sty =11y +iTV8S) , M1,y

with TV6S) . — (2m)*6™) (P — P;) and M7y — M as T,V —
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Cross section from the S matrix (contd.)

Derivation:
o APy transition probability from initial state of two particles with
momenta Py » to final state of particles with prescribed momenta p/
o Consider only f # i, drop no-scattering term
@ Denote with A3p§ = @ the size of the “unit cell” in the phase
space of final particle i

1 2+(4) 2 1 A% 4
AP = ——5— (TV)0p p|M
= g VorpMrv H 20V (21)° )
. M |5fl|2
initial state norm. final state norm.
For large V, T

@ replace M1y with infinite-volume matrix element Mg
@ combine one factor VT with Kronecker delta to obtain Dirac delta

1 A3p/

T Mgl 45(4) ) = i
(277) O (Pr — Pl)lJ—I 2pJ/_0 (2n)3

v 4p?ps

APy —
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Cross section from the S matrix (contd.)

Elementary process involving only two particles, N; =1, N, =1
Beam flux: ® = {7 (speed v x density 1/V), duration of the process: T
“Number of scattering events” = probability APy

Differential cross section:

APV APs | M |?
TN:® T v 4p9p9v

( 7r)45(4)(Pf_P)H A3 I

Ao = il /B
2PJ°(2W)

All factors of V, T cancel, can take the limit T,V — oo

Mi[? P Mg

21 Pf P; do(n
4pdpdv n o )H2p’° 2m)®  4p?pdv

do =

d®(M: infinitesimal invariant-volume element of n-particle phase space

n dP: 4¢(4
dq)()_l_lzplo(27r (27) 5()pr
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Cross section from the S matrix (contd.)

Derivation done in the lab frame with one of the particles at rest, but we

would rather have a Lorentz-invariant definition of the cross section

o |M|? is Lorentz-invariant if

» S is Lorentz invariant (it should bel)
» momentum eigenstates obey relativistic normalisation

@ phase-space measure is Lorentz-invariant

@ need the Lorentz-invariant expression for p?pgv

In the lab frame

pYpdv = Eyvmy = |y mo = \/(Pl - p2)? — p2p3

Manifestly invariant expression for differential cross section:

2
do | M|
don) 2 2
4y/(p1 - P2)2 — P1P3
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Collider experiments

beam 2 @ Two beams in opposite directions
on same circular trajectory
(assume same cross-sectional
area Ap, velocity v)

detectors
@ Beams of Np; > bunches with
beam 1 Np1 o particles per bunch
@ Take one bunch per beam, over period T to go around whole circle:
» two crossings = collision frequency 2/ T
> Np1Npy possible pairwise particle interactions = Neyents = 2Aleb1 Npy
@ Number of events per unit time:
1 ANevents

ANeyents _ 2 Np1NpaNpi Npo _ _
At T Ay =L = 0= Ay
L: luminosity delivered by the collider

To make further progress, we need a detailed relativistic quantum theory
to compute Mg = Quantum Field Theory
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Introduction to Quantum Field Theory

Fact of Nature: particles can be created or destroyed
o decays, e.g., 7t — ptuy,
@ particle creation in collisions, e.g., e~ e™ — X
Formalism of quantum mechanics inadequate for such processes: to each
particle in the game corresponds a wave function, how can that just
appear or disappear?
@ Not really a problem in the non-relativistic, low-energy regime:
pp— ppe el requires EEM —mp,>me = [ 21/10
@ Serious problem at high energies when particle production and
annihilation become important
Appropriate formalism must take into account
e principles of special relativity (Lorentz covariance, locality)
@ principles of quantum mechanics (superposition principle, uncertainty
principle)
Locality better dealt with using fields, uncertainty corresponds to non
commutativity of measurements = use field operators
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Introduction to Quantum Field Theory (contd.)

Fields are better suited to describe local interactions (= no action at a
distance):

o fields: entities ¢(x) defined everywhere in spacetime

@ dynamics automatically local if field interactions depend only on value
of fields at a point and in an infinitesimal neighbourhood (= ¢(x),

Ouo(x), ...)

@ automatically Lorentz-covariant dynamics easily constructed using
fields with simple Lorentz transformation properties

Particles are better suited to describe experiments:
@ straightforward construction of state superpositions

@ multiparticle kinematics easy to describe in terms of Fock space:
direct sum of n-particle Hilbert spaces, any number of particles
allowed

How does one connect the two? Theory of quantised fields
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Consider a system of non-interacting spinless bosons of mass m

Most general state: linear superposition of states with arbitrary number n
of particles with definite momenta (momentum operator eigenstates)

Basis of Hilbert space: {|p1,. .., Pn) }n=0,1,....00
n = 0 state |0): vacuum state (no particle is present)

Experimental fact: particles of the same type are indistinguishable

Quantum state vector of a system of bosons invariant under any
permutation P of the particle labels (Bose-Einstein statistics)

|Bp(1)s - -+ Pp(n)) = |P1s-- - Bn)

Formally: take one-particle states |5) and fully symmetrise their n-fold
tensor product

‘517 cee ;,Bn> = #EP ’ﬁP(l)) ®...® |I_5P(n)>

Space generated by {|p1, ..., Pn) }n=01,..,00 = Fock space
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Fock space (contd.)

Energy and momentum related by dispersion relation E2 = p2 + m? =
one-particle vectors are eigenvectors of four-momentum operator P*

PUB) =p'lB) P =B+ m?
Momenta additive = also n-particle states are P* eigenvectors
Relativistic normalisation:
(B'1B) = (27)*2p0d®) (5’ — p)
(Bl BplPr- . o) = On Yo TT01 (27)32006C) (Bl — B)
(0[0) =1

: d?
Invariant measure: dQ, = (277)732;)0
Rotations: pgd() (3’ — B) manifestly invariant, boosts in 1-direction: (Ap)®! = ~v(p%! — Bp™0),

5((Ap)* = (Ap)Y) = 8(+[(p™ — p*) — B(p"° — pO)]) = |21 E 22 _5,, |7*s(p™ = pY)

=P’ (p° — Bp")| 1o (" — ') = f(,\p)oé(p’l )
T T3y E3



Creation /annihilation operators

Creation operators a(p)!:
a(B)(B1, -+ Bn) = B, Pr - - - Bn)
Annihilation operators a(B): adjoint of a(p)!
a(p)|p1; - Pn) = 2;21(277)32@05(3)(5} = P)IP1,- s Bj—1,Bj+1s- -+ Pn)

Creation/annihilation operators allow us to change as we please the
particle content of a state

Since we cannot remove particles from the vacuum = a(p)|0) =0 Vp

The vacuum |0) is the only state annihilated by all a(5), any other state
can be obtained from |0) by repeated application of a(5)f

|Bi, -, Bn) = a(B1)" ... a(Bn)T|0)
Commutation relations follow from definition:
[2(B), a(@)] = [a(F)",a(d)T| =0  [a(B),a(d)"] = (2m)*2p°6®) (5 — G)
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Creation/annihilation operators (contd.)

Number/number density operators

Commutation relations:
[v(B),a(d)] = [a(B)", a(d)]a(B) = —(27)*2p°6) (G — B)a(B)
[v(B),a(d)"] = a(B)[a(B), a(d)'] = (27)*2p°5)(G — B)a(p)’
= N diagonal operator, eigenvalue = number of particles
N|p1,....Pn) = nlp1,....Pn)

For any additive diagonal quantum number f(5) (e.g., P*), corresponding
operator reads

3
F= [ G (OVBY a(B)  FlBrw )= (S F(5) I )

Can we reproduce this with field operators?
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Fock space: generalisations

@ Straightforward extension to several types of bosons:
» introducing creation/annihilation operators for each type
» impose standard commutation relations among operators of the same
type
» impose that operators of different type commute with each other
@ Extension to fermions must take into account the different particle
statistics: exchanging labels of any two particles must change the
state vector by a minus sign (Fermi-Dirac statistics)
» introduce creation and annihilation operators
> impose anticommutation relations

{a(p), ()} = {a()", a(d)"} = 0
{a(), a(d)"} = (27)*2p°6C) (5 - 4)

» impose that operators corresponding to fermions of different type
anticommute with each other

» impose that operators corresponding to fermions and bosons commute
with each other
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Quantisation of the scalar field

Can one replace the Schrodinger equation with a relativistic one? Sure:
Klein-Gordon equation

(0+ m?)6(x) = 0

Can one obtain a sensible quantum mechanical theory from this, with ¢(x)
treated as a wave function? Nope:

@ second-order in time as well as in space (as required by invariance) =
admits negative-energy solutions (leads to instability)

@ only probability current with the right symmetry properties under
Lorentz transformations leads to a probability density which is not
positive-definite

o fundamental problem is that we cannot describe multiparticle
interactions in terms of single-particle wave functions

Classically, Klein-Gordon equation describes a free scalar field:
can we quantise it?

Can be interpreted as quantisation of the wave function (second quantisation)
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Quantisation of the scalar field (contd.)

Solution for the classical field: use Fourier transform to momentum space

o) = [ gz P e)
(p* — m*)d(p) = 0 = ¢(p) = 276(p*> — m*)f(p°, P)
Solution:
e) = o057 156" — A=), B) + 3(6° + <(B)F(~2(5). )}

e(p)=Vp?+ m?
Back to coordinate space:

60) = Gty (¢ O PINEB), B) + PP (—e(5),5) }
3 i(e(P p-X =\ = i(e(B)x’—p-X = =
= | G {e_'(s(p)xo_”'x)f(a(p),p)+e( (P)x*=p )f(_f(P)v—P)}
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Quantisation of the scalar field (contd.)

Set d€2, (27T)32p0 with p® = (B), denote
a(p)="f(e(p),p)  b(p) =f(-e(p),—pP)
Most general solution of Klein-Gordon equation:
o) = [ a0, {alp)e P + b(p) eP)
Real field = b(p) = a(p)
What is the energy stored in the field? From 0:(D+m2)¢:<}5—A¢+m2¢
0= fd3xa's[¢9 — D¢+ mPg] = [ BPx (66 + V- Vo + m* o]
= 43 [ Bx[? + (Vo)? + m?¢?]
= 1 [ Px[$% + (V$)? + m?¢?] = const.
Setting 7(x) = 9%(x)
H=1 [ @xln(RP + (Fo(2)P + mPo(s)]
m(X) = m(0,%), $(X) = $(0,%)
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