Particle physics

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest

ELTE

08/09/2020

Dyson's formula

$S=\Omega_{-}^{\dagger} \Omega_{+}=\lim _{t_{2} \rightarrow+\infty} \lim _{t_{1} \rightarrow-\infty} e^{i H_{0} t_{2}} e^{-i H t_{2}} e^{i H t_{1}} e^{-i H_{0} t_{1}}=\lim _{t_{2} \rightarrow+\infty} \lim _{t_{1} \rightarrow-\infty} \mathcal{U}\left(t_{2}, t_{1}\right)$
To find S :
(1) write differential equation for unitary operator $\mathcal{U}\left(t_{2}, t_{1}\right)$
(2) solve it with "initial condition" $\mathcal{U}(t, t)=\mathbf{1}$
(3) take limits

$$
\begin{aligned}
\frac{\partial}{\partial t_{2}} \mathcal{U}\left(t_{2}, t_{1}\right) & =e^{i H_{0} t_{2}} i\left(H_{0}-H\right) e^{-i H_{0} t_{2}} \mathcal{U}\left(t_{2}, t_{1}\right) \\
& =-i e^{i H_{0} t_{2}} V e^{-i H_{0} t_{2}} \mathcal{U}\left(t_{2}, t_{1}\right)=-i V_{I}\left(t_{2}\right) \mathcal{U}\left(t_{2}, t_{1}\right) \\
V_{I}(t) & \equiv e^{i H_{0} t} V e^{-i H_{0} t}
\end{aligned}
$$

$\mathcal{U}\left(t_{2}, t_{1}\right)^{\dagger}=\mathcal{U}\left(t_{1}, t_{2}\right)$, nothing new from $\partial / \partial t_{1}$
$V_{l}(t)$: interaction Hamiltonian in interaction picture

$$
\begin{array}{rll}
\text { Schrödinger picture: } & |\psi(t)\rangle_{S}=e^{-i H t}|\psi(0)\rangle_{S} & \mathcal{O}_{S} \\
\text { Heisenberg picture: } & |\psi\rangle_{H}=|\psi(0)\rangle_{S} & \mathcal{O}_{H}(t)=e^{i H t} \mathcal{O}_{S} e^{-i H t} \\
\text { Dirac (interaction) picture: } & |\psi(t)\rangle_{I}=e^{i H_{0} t} e^{-i H t}|\psi(0)\rangle_{S} & \mathcal{O}_{I}(t)=e^{i H_{0} t} \mathcal{O}_{S} e^{-i H_{0} t}
\end{array}
$$

$$
{ }_{S}\langle\phi(t)| \mathcal{O}_{S}|\psi(t)\rangle_{S}={ }_{H}\langle\phi| \mathcal{O}_{H}(t)|\psi\rangle_{H}={ }_{\iota}\langle\phi(t)| \mathcal{O}_{l}(t)|\psi(t)\rangle_{I}
$$

Dyson's formula (contd.)

Solution:

$$
\begin{aligned}
\mathcal{U}\left(t_{2}, t_{1}\right) & =\operatorname{Texp}\left\{-i \int_{t_{1}}^{t_{2}} d t V_{l}(t)\right\} \\
& =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{t_{1}}^{t_{2}} d \tau_{1} \ldots \int_{t_{1}}^{t_{2}} d \tau_{n} T\left\{V_{l}\left(\tau_{1}\right) \ldots V_{l}\left(\tau_{n}\right)\right\}
\end{aligned}
$$

T : time-ordering symbol, places operators in descending time order

$$
\begin{aligned}
T\left\{A_{1}\left(t_{1}\right) A_{2}\left(t_{2}\right)\right\} & =\theta\left(t_{1}-t_{2}\right) A_{1}\left(t_{1}\right) A_{2}\left(t_{2}\right)+\theta\left(t_{2}-t_{1}\right) A_{2}\left(t_{2}\right) A_{1}\left(t_{1}\right) \\
T\left\{A_{1}\left(t_{1}\right) \ldots A_{n}\left(t_{n}\right)\right\} & =\sum_{P} \theta\left(t_{P(1)}-t_{P(2)}\right) \ldots \theta\left(t_{P(n-1)}-t_{P(n)}\right) A_{P(1)}\left(t_{P(1)}\right) \ldots A_{P(n)}\left(t_{P(n)}\right)
\end{aligned}
$$ Sum over permutations P of $\{1, \ldots, n\}$

Check solution: (obviously $\mathcal{U}(t, t)=\mathbf{1}$)

$$
\begin{aligned}
\mathcal{U}\left(t_{2}, t_{1}\right) & =\sum_{n=0}^{\infty}(-i)^{n} \int_{t_{1}}^{t_{2}} d \tau_{1} \int_{t_{1}}^{\tau_{1}} d \tau_{2} \ldots \int_{t_{1}}^{\tau_{n-1}} d \tau_{n} V_{l}\left(\tau_{1}\right) \ldots V_{l}\left(\tau_{n}\right) \\
\frac{\partial}{\partial t_{2}} \mathcal{U}\left(t_{2}, t_{1}\right) & =-i V_{l}\left(t_{2}\right) \sum_{n=1}^{\infty}(-i)^{n-1} \int_{t_{1}}^{t_{2}} d \tau_{2} \ldots \int_{t_{1}}^{\tau_{n-1}} d \tau_{n} V_{l}\left(\tau_{2}\right) \ldots V_{l}\left(\tau_{n}\right) \\
& =-i V_{l}\left(t_{2}\right) \sum_{n=0}^{\infty}(-i)^{n} \int_{t_{1}}^{t_{2}} d \tau_{1} \ldots \int_{t_{1}}^{\tau_{n}-1} d \tau_{n} V_{l}\left(\tau_{1}\right) \ldots V_{l}\left(\tau_{n}\right)=-i V_{l}\left(t_{2}\right) \mathcal{U}\left(t_{2}, t_{1}\right)
\end{aligned}
$$

$$
S=\mathcal{U}(+\infty,-\infty)=\operatorname{Texp}\left\{-i \int_{-\infty}^{+\infty} d t V_{l}(t)\right\}
$$

(Dyson's formula)

Cross sections - reprise

Rate of scattering events (n . events per unit time) for a beam of flux Φ (particles per unit area per unit time) on a target with N_{t} particles:

$$
\frac{\Delta N_{\text {events }}}{\Delta t}=\sigma N_{t} \Phi
$$

1. Count all scattering events \Rightarrow measure total cross section

$$
\sigma=\frac{\Delta N_{\text {events }}}{\Delta t N_{t} \Phi}
$$

2. Classify scattering events \Rightarrow measure differential cross section

$$
\Delta \sigma_{\alpha}(\xi)=\frac{\Delta N_{\text {events }}(\alpha, \xi)}{\Delta t \Delta \xi N_{t} \Phi} \Delta \xi \underset{\Delta t, \Delta \xi \rightarrow 0}{\Longrightarrow} \frac{d \sigma_{\alpha}}{d \xi}(\xi)=\frac{d N_{\text {events }}(\alpha, \xi)}{d t d \xi N_{t} \Phi}
$$

- α : discrete variables (e.g., number/type of particles, s_{z}), essentially label different processes
- ξ : continuous variables (e.g., momenta)
- $\Delta N_{\text {events }}\left(\alpha_{0}, \xi_{0}\right)$: scattering events $\mathrm{w} / \alpha=\alpha_{0}, \xi \in\left[\xi_{0}-\frac{\Delta \xi}{2}, \xi_{0}+\frac{\Delta \xi}{2}\right]$ $\frac{d \sigma}{d \xi_{1} d \xi_{2} \ldots}$ are not derivatives

Cross sections - reprise (contd.)

Transition probability $P_{f i}$ from initial state $\left|\phi_{i}\right\rangle$ to final state $\left|\phi_{f}\right\rangle$ not directly measurable due to practical limitations

- initial state in one single given scattering process not known with arbitrary accuracy
- particle states used in scattering experiments obtained through practical processes (e.g. acceleration of particles, preparation of beams) affected by inherent uncertainties
- accurate determination of the actual wave function of the state impossible
What can be measured is the transition probability averaged over many experiments, corresponding to many slightly different initial states \Rightarrow cross section related to averaged $P_{f i}$
Ideally: repeat N times experiment with one scatterer in target, one particle in beam $\Rightarrow N_{\text {events }} / N=P_{f i}$

Cross sections - reprise (contd.)

Differential cross section in ideal case (and $N=1$):

$$
\Delta \sigma=\frac{\Delta N_{\text {events }}}{N_{t} \frac{N_{b}}{A_{b}}}=\frac{P_{f i}}{\Delta t \Phi\left(N_{b}=1\right)}
$$

Q.: What $P_{f i}$ should we use since we do not known $\phi_{i, f}$ accurately?
A.: for initial/final states well peaked around definite particle momenta details do not matter, relevant $P_{f i}$ is transition probability between idealised initial/final momentum eigenstates

- Can be shown using wave-packet description of initial/final states and careful consideration of how scattering experiments are carried out
- Alternatively: quantisation in a periodic box (equivalent results \& much simpler)

Cross section from the S matrix

Transition probability :

$$
P_{f i}=\frac{\left.\left|\left\langle\phi_{f}\right| S\right| \phi_{i}\right\rangle\left.\right|^{2}}{\left\langle\phi_{f} \mid \phi_{f}\right\rangle\left\langle\phi_{i} \mid \phi_{i}\right\rangle}
$$

Energy-momentum conservation implies

$$
S=\mathbf{1}+i(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right) \mathcal{M}
$$

1: no-scattering term
$P_{f i}$ not well defined for momentum eigenstates Non-normalisable states, square of $\delta^{(4)}\left(P_{f}-P_{i}\right)$ Trick: regularise expressions by putting system in a finite $T \times V=T \times L^{3}$ four-dimensional box with periodic boundary conditions

- allowed momenta become discrete, $p_{j}=\frac{2 \pi k_{j}}{L}, k_{j} \in \mathbb{Z}$
- corresponding eigenstates are normalisable
- four-momentum conserving Dirac-delta replaced by Kronecker delta, can be squared without problems

Cross section from the S matrix (contd.)

Make sure correct normalisation obtained in infinite-volume limit:

- infinite-volume momentum eigenstates: relativistic normalisation

$$
\left\langle\vec{p}^{\prime} \mid \vec{p}\right\rangle=(2 \pi)^{3} 2 p^{0} \delta^{(3)}\left(\vec{p}^{\prime}-\vec{p}\right)
$$

- finite-volume momentum eigenstates: matching normalisation

$$
v\left\langle\vec{p}^{\prime} \mid \vec{p}\right\rangle_{V}=2 p^{0} V \delta_{\vec{p}^{\prime}, \vec{p}}^{(3)}
$$

One admissible momentum in a cube of volume $\frac{V}{(2 \pi)^{3}} \Rightarrow$ density of modes $=\frac{(2 \pi)^{3}}{V}$
$\Rightarrow \sum_{\vec{p}, V} \rightarrow \frac{V}{(2 \pi)^{3}} \int d^{3} p$ in the infinite-volume limit

- finite-volume S-matrix:

$$
S_{T, V}=\mathbf{1}_{T, V}+i T V \delta_{P_{f}, P_{i}}^{(4)} \mathcal{M}_{T, V}
$$

with $T V \delta_{P_{f}, P_{i}}^{(4)} \rightarrow(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right)$ and $\mathcal{M}_{T, V} \rightarrow \mathcal{M}$ as $T, V \rightarrow \infty$

Cross section from the S matrix (contd.)

Derivation:

- $\Delta P_{f i}$: transition probability from initial state of two particles with momenta $\vec{p}_{1,2}$ to final state of particles with prescribed momenta \vec{p}_{i}^{\prime}
- Consider only $f \neq i$, drop no-scattering term
- Denote with $\Delta^{3} p_{i}^{\prime}=\frac{(2 \pi)^{3}}{V}$ the size of the "unit cell" in the phase space of final particle i

$$
\Delta P_{f i}=\underbrace{\frac{1}{4 p_{1}^{0} p_{2}^{0} V^{2}}}_{\text {initial state norm. }} \underbrace{(T V)^{2} \delta_{P_{f}, P_{i}}^{(4)}\left|\mathcal{M}_{T, V}\right|^{2}}_{\left|S_{f i}\right|^{2}} \underbrace{\prod_{j} \frac{1}{2 p_{j}^{\prime 0} V} \frac{\Delta^{3} p_{i}^{\prime} V}{(2 \pi)^{3}}}_{\text {final state norm. }}
$$

For large V, T

- replace $\mathcal{M}_{T, V}$ with infinite-volume matrix element $\mathcal{M}_{f i}$
- combine one factor $V T$ with Kronecker delta to obtain Dirac delta

$$
\Delta P_{f i} \longrightarrow \frac{T}{V} \frac{\left|\mathcal{M}_{f i}\right|^{2}}{4 p_{1}^{0} p_{2}^{0}}(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right) \prod_{j} \frac{1}{2 p_{j}^{\prime 0}} \frac{\Delta^{3} p_{i}^{\prime}}{(2 \pi)^{3}}
$$

Cross section from the S matrix (contd.)

Elementary process involving only two particles, $N_{t}=1, N_{b}=1$ Beam flux: $\Phi=\frac{v}{V}$ (speed $v \times$ density $1 / V$), duration of the process: T "Number of scattering events" $=$ probability $\Delta P_{f i}$
Differential cross section:

$$
\Delta \sigma=\frac{\Delta P_{f i}}{T N_{t} \Phi}=\frac{V}{T} \frac{\Delta P_{f i}}{v}=\frac{\left|\mathcal{M}_{f i}\right|^{2}}{4 p_{1}^{0} p_{2}^{0} v}(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right) \prod_{j} \frac{\Delta^{3} p_{i}^{\prime}}{2 p_{j}^{\prime 0}(2 \pi)^{3}}
$$

All factors of V, T cancel, can take the limit $T, V \rightarrow \infty$

$$
d \sigma=\frac{\left|\mathcal{M}_{f i}\right|^{2}}{4 p_{1}^{0} p_{2}^{0} v}(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right) \prod_{j} \frac{d^{3} p_{i}^{\prime}}{2 p_{j}^{\prime 0}(2 \pi)^{3}}=\frac{\left|\mathcal{M}_{f i}\right|^{2}}{4 p_{1}^{0} p_{2}^{0} v} d \Phi^{(n)}
$$

$d \Phi^{(n)}$: infinitesimal invariant-volume element of n-particle phase space

$$
d \Phi^{(n)}=\prod_{j} \frac{d^{3} p_{i}^{\prime}}{2 p_{j}^{\prime 0}(2 \pi)^{3}}(2 \pi)^{4} \delta^{(4)}\left(\sum_{j} p_{j}^{\prime}-P_{i}\right)
$$

Cross section from the S matrix (contd.)

Derivation done in the lab frame with one of the particles at rest, but we would rather have a Lorentz-invariant definition of the cross section

- $|\mathcal{M}|^{2}$ is Lorentz-invariant if
- S is Lorentz invariant (it should be!)
- momentum eigenstates obey relativistic normalisation
- phase-space measure is Lorentz-invariant
- need the Lorentz-invariant expression for $p_{1}^{0} p_{2}^{0} v$

In the lab frame

$$
p_{1}^{0} p_{2}^{0} v=E_{1} v m_{2}=\left|\vec{p}_{1}\right| m_{2}=\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-p_{1}^{2} p_{2}^{2}}
$$

Manifestly invariant expression for differential cross section:

$$
\frac{d \sigma}{d \Phi^{(n)}}=\frac{\left|\mathcal{M}_{f i}\right|^{2}}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-p_{1}^{2} p_{2}^{2}}}
$$

Collider experiments

beam 2

- Two beams in opposite directions on same circular trajectory (assume same cross-sectional area A_{b}, velocity v)
- Beams of $N_{B 1,2}$ bunches with $N_{b 1,2}$ particles per bunch
- Take one bunch per beam, over period T to go around whole circle:
- two crossings \Rightarrow collision frequency $2 / T$
- $N_{b 1} N_{b 2}$ possible pairwise particle interactions $\Rightarrow N_{\text {events }}=2 \frac{\sigma}{A_{b}} N_{b 1} N_{b 2}$
- Number of events per unit time:

$$
\frac{\Delta N_{\text {events }}}{\Delta t}=\frac{2}{T} \frac{N_{B 1} N_{B 2} N_{b 1} N_{b 2}}{A_{b}} \sigma=\mathcal{L} \sigma \Longrightarrow \sigma=\frac{1}{\mathcal{L}} \frac{\Delta N_{\text {events }}}{\Delta t}
$$

\mathcal{L} : luminosity delivered by the collider
To make further progress, we need a detailed relativistic quantum theory to compute $\mathcal{M}_{f i} \Rightarrow$ Quantum Field Theory

Introduction to Quantum Field Theory

Fact of Nature: particles can be created or destroyed

- decays, e.g., $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$
- particle creation in collisions, e.g., $e^{-} e^{+} \rightarrow X$

Formalism of quantum mechanics inadequate for such processes: to each particle in the game corresponds a wave function, how can that just appear or disappear?

- Not really a problem in the non-relativistic, low-energy regime:

$$
p \bar{p} \rightarrow p \bar{p} e^{-} e^{+} \text {requires } E_{p}^{\mathrm{CM}}-m_{p} \geq m_{e} \Rightarrow \beta \gtrsim 1 / 10
$$

- Serious problem at high energies when particle production and annihilation become important
Appropriate formalism must take into account
- principles of special relativity (Lorentz covariance, locality)
- principles of quantum mechanics (superposition principle, uncertainty principle)
Locality better dealt with using fields, uncertainty corresponds to non commutativity of measurements \Rightarrow use field operators

Introduction to Quantum Field Theory (contd.)

Fields are better suited to describe local interactions (= no action at a distance):

- fields: entities $\phi(x)$ defined everywhere in spacetime
- dynamics automatically local if field interactions depend only on value of fields at a point and in an infinitesimal neighbourhood $(=\phi(x)$, $\left.\partial_{\mu} \phi(x), \ldots\right)$
- automatically Lorentz-covariant dynamics easily constructed using fields with simple Lorentz transformation properties

Particles are better suited to describe experiments:

- straightforward construction of state superpositions
- multiparticle kinematics easy to describe in terms of Fock space: direct sum of n-particle Hilbert spaces, any number of particles allowed

How does one connect the two? Theory of quantised fields

Fock space

Consider a system of non-interacting spinless bosons of mass m
Most general state: linear superposition of states with arbitrary number n of particles with definite momenta (momentum operator eigenstates)
Basis of Hilbert space: $\left\{\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle\right\}_{n=0,1, \ldots, \infty}$
$n=0$ state $|0\rangle$: vacuum state (no particle is present)
Experimental fact: particles of the same type are indistinguishable Quantum state vector of a system of bosons invariant under any permutation P of the particle labels (Bose-Einstein statistics)

$$
\left|\vec{p}_{\mathrm{P}(1)}, \ldots, \vec{p}_{\mathrm{P}(n)}\right\rangle=\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle
$$

Formally: take one-particle states $|\vec{p}\rangle$ and fully symmetrise their n-fold tensor product

$$
\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle=\frac{1}{n!} \sum_{\mathrm{P}}\left|\vec{p}_{\mathrm{P}(1)}\right\rangle \otimes \ldots \otimes\left|\vec{p}_{\mathrm{P}(n)}\right\rangle
$$

Space generated by $\left\{\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle\right\}_{n=0,1, \ldots, \infty}=$ Fock space

Fock space (contd.)

Energy and momentum related by dispersion relation $E^{2}=\vec{p}^{2}+m^{2} \Rightarrow$ one-particle vectors are eigenvectors of four-momentum operator P^{μ}

$$
P^{\mu}|\vec{p}\rangle=p^{\mu}|\vec{p}\rangle \quad p^{0}=\sqrt{\vec{p}^{2}+m^{2}}
$$

Momenta additive \Rightarrow also n-particle states are P^{μ} eigenvectors Relativistic normalisation:

$$
\begin{aligned}
\left\langle\vec{p}^{\prime} \mid \vec{p}\right\rangle & =(2 \pi)^{3} 2 p_{0} \delta^{(3)}\left(\vec{p}^{\prime}-\vec{p}\right) \\
\left\langle\vec{p}_{1}^{\prime}, \ldots, \vec{p}_{n^{\prime}}^{\prime} \mid \vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle & =\delta_{n^{\prime} n} \sum_{\mathrm{P}} \prod_{j=1}^{n}(2 \pi)^{3} 2 p_{j}^{0} \delta^{(3)}\left(\vec{p}_{\mathrm{P}(j)}^{\prime}-\vec{p}_{j}\right) \\
\langle 0 \mid 0\rangle & =1
\end{aligned}
$$

Invariant measure:

$$
d \Omega_{p} \equiv \frac{d^{3} p}{(2 \pi)^{3} 2 p^{0}}
$$

Rotations: $p_{0} \delta^{(3)}\left(\vec{p}^{\prime}-\vec{p}\right)$ manifestly invariant, boosts in 1-direction: $(\Lambda p)^{0,1}=\gamma\left(p^{0,1}-\beta p^{1,0}\right)$,

$$
\begin{aligned}
\delta\left((\Lambda p)^{\prime 1}-(\Lambda p)^{1}\right) & =\delta\left(\gamma\left[\left(p^{\prime 1}-p^{1}\right)-\beta\left(p^{\prime 0}-p^{0}\right)\right]\right)=\left|\frac{\partial \gamma\left(p^{1}-\beta p^{0}\right)}{\partial p^{1}}\right|^{-1} \delta\left(p^{\prime 1}-p^{1}\right) \\
& =p^{0}\left|\gamma\left(p^{0}-\beta p^{1}\right)\right|^{-1} \delta\left(p^{\prime 1}-p^{1}\right)=\frac{p^{0}}{(\Lambda p)^{0}} \delta\left(p^{\prime 1}-p^{1}\right)
\end{aligned}
$$

Creation/annihilation operators

Creation operators $a(\vec{p})^{\dagger}$:

$$
a(\vec{p})^{\dagger}\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle \equiv\left|\vec{p}, \vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle
$$

Annihilation operators $a(\vec{p})$: adjoint of $a(\vec{p})^{\dagger}$

$$
a(\vec{p})\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle=\sum_{j=1}^{n}(2 \pi)^{3} 2 p_{j}^{0} \delta^{(3)}\left(\vec{p}_{j}-\vec{p}\right)\left|\vec{p}_{1}, \ldots, \vec{p}_{j-1}, \vec{p}_{j+1}, \ldots, \vec{p}_{n}\right\rangle
$$

Creation/annihilation operators allow us to change as we please the particle content of a state
Since we cannot remove particles from the vacuum $\Rightarrow a(\vec{p})|0\rangle=0 \forall \vec{p}$
The vacuum $|0\rangle$ is the only state annihilated by all $a(\vec{p})$, any other state can be obtained from $|0\rangle$ by repeated application of $a(\vec{p})^{\dagger}$

$$
\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle \equiv a\left(\vec{p}_{1}\right)^{\dagger} \ldots a\left(\vec{p}_{n}\right)^{\dagger}|0\rangle
$$

Commutation relations follow from definition:
$[a(\vec{p}), a(\vec{q})]=\left[a(\vec{p})^{\dagger}, a(\vec{q})^{\dagger}\right]=0 \quad\left[a(\vec{p}), a(\vec{q})^{\dagger}\right]=(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{p}-\vec{q})$

Creation/annihilation operators (contd.)

Number/number density operators

$$
N=\int \frac{d^{3} p}{(2 \pi)^{3} 2 p^{0}} a(\vec{p})^{\dagger} a(\vec{p})=\int \frac{d^{3} p}{(2 \pi)^{3} 2 p^{0}} \nu(\vec{p})
$$

Commutation relations:

$$
\begin{aligned}
{[\nu(\vec{p}), a(\vec{q})] } & =\left[a(\vec{p})^{\dagger}, a(\vec{q})\right] a(\vec{p})=-(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{q}-\vec{p}) a(\vec{p}) \\
{\left[\nu(\vec{p}), a(\vec{q})^{\dagger}\right] } & =a(\vec{p})^{\dagger}\left[a(\vec{p}), a(\vec{q})^{\dagger}\right]=(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{q}-\vec{p}) a(\vec{p})^{\dagger}
\end{aligned}
$$

$\Rightarrow N$ diagonal operator, eigenvalue $=$ number of particles

$$
N\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle=n\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle
$$

For any additive diagonal quantum number $f(\vec{p})$ (e.g., P^{μ}), corresponding operator reads
$F=\int \frac{d^{3} p}{(2 \pi)^{3} 2 p^{0}} f(\vec{p}) a(\vec{p})^{\dagger} a(\vec{p}) \quad F\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle=\left(\sum_{j=1}^{n} f\left(\vec{p}_{j}\right)\right)\left|\vec{p}_{1}, \ldots, \vec{p}_{n}\right\rangle$
Can we reproduce this with field operators?

Fock space: generalisations

- Straightforward extension to several types of bosons:
- introducing creation/annihilation operators for each type
- impose standard commutation relations among operators of the same type
- impose that operators of different type commute with each other
- Extension to fermions must take into account the different particle statistics: exchanging labels of any two particles must change the state vector by a minus sign (Fermi-Dirac statistics)
- introduce creation and annihilation operators
- impose anticommutation relations

$$
\begin{aligned}
\{a(\vec{p}), a(\vec{q})\} & =\left\{a(\vec{p})^{\dagger}, a(\vec{q})^{\dagger}\right\}=0 \\
\left\{a(\vec{p}), a(\vec{q})^{\dagger}\right\} & =(2 \pi)^{3} 2 p^{0} \delta^{(3)}(\vec{p}-\vec{q})
\end{aligned}
$$

- impose that operators corresponding to fermions of different type anticommute with each other
- impose that operators corresponding to fermions and bosons commute with each other

Quantisation of the scalar field

Can one replace the Schrödinger equation with a relativistic one? Sure: Klein-Gordon equation

$$
\left(\square+m^{2}\right) \phi(x)=0
$$

Can one obtain a sensible quantum mechanical theory from this, with $\phi(x)$ treated as a wave function? Nope:

- second-order in time as well as in space (as required by invariance) \Rightarrow admits negative-energy solutions (leads to instability)
- only probability current with the right symmetry properties under Lorentz transformations leads to a probability density which is not positive-definite
- fundamental problem is that we cannot describe multiparticle interactions in terms of single-particle wave functions
Classically, Klein-Gordon equation describes a free scalar field: can we quantise it?

Can be interpreted as quantisation of the wave function (second quantisation)

Quantisation of the scalar field (contd.)

Solution for the classical field: use Fourier transform to momentum space

$$
\begin{aligned}
\phi(x) & =\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \tilde{\phi}(p) \\
\left(p^{2}-m^{2}\right) \tilde{\phi}(p) & =0 \Rightarrow \tilde{\phi}(p)=2 \pi \delta\left(p^{2}-m^{2}\right) f\left(p^{0}, \vec{p}\right)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\tilde{\phi}(p) & =\frac{2 \pi}{2 \varepsilon(\vec{p})}\left\{\delta\left(p^{0}-\varepsilon(\vec{p})\right) f(\varepsilon(\vec{p}), \vec{p})+\delta\left(p^{0}+\varepsilon(\vec{p})\right) f(-\varepsilon(\vec{p}), \vec{p})\right\} \\
\varepsilon(\vec{p}) & \equiv \sqrt{\vec{p}^{2}+m^{2}}
\end{aligned}
$$

Back to coordinate space:

$$
\begin{aligned}
\phi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3} 2 \varepsilon(\vec{p})}\left\{e^{-i\left(\varepsilon(\vec{p}) x^{0}-\vec{p} \cdot \vec{x}\right)} f(\varepsilon(\vec{p}), \vec{p})+e^{i\left(\varepsilon(\vec{p}) x^{0}+\vec{p} \cdot \vec{x}\right)} f(-\varepsilon(\vec{p}), \vec{p})\right\} \\
& =\int \frac{d^{3} p}{(2 \pi)^{3} 2 \varepsilon(\vec{p})}\left\{e^{-i\left(\varepsilon(\vec{p}) x^{0}-\vec{p} \cdot \vec{x}\right)} f(\varepsilon(\vec{p}), \vec{p})+e^{i\left(\varepsilon(\vec{p}) x^{0}-\vec{p} \cdot \vec{x}\right)} f(-\varepsilon(\vec{p}),-\vec{p})\right\}
\end{aligned}
$$

Quantisation of the scalar field (contd.)

Set $d \Omega_{p}=\frac{d^{3} p}{(2 \pi)^{3} 2 p^{0}}$ with $p^{0}=\varepsilon(\vec{p})$, denote

$$
a(\vec{p}) \equiv f(\varepsilon(\vec{p}), \vec{p}) \quad b(\vec{p})^{*} \equiv f(-\varepsilon(\vec{p}),-\vec{p})
$$

Most general solution of Klein-Gordon equation:

$$
\phi(x)=\int d \Omega_{p}\left\{a(\vec{p}) e^{-i p \cdot x}+b(\vec{p})^{*} e^{i p \cdot x}\right\}
$$

Real field $\Rightarrow b(\vec{p})=a(\vec{p})$
What is the energy stored in the field? From $0=\left(\square+m^{2}\right) \phi=\ddot{\phi}-\Delta \phi+m^{2} \phi$

$$
\begin{aligned}
0 & =\int d^{3} x \dot{\phi}\left[\ddot{\phi}-\Delta \phi+m^{2} \phi\right]=\int d^{3} x\left[\dot{\phi} \ddot{\phi}+\vec{\nabla} \dot{\phi} \cdot \vec{\nabla} \phi+m^{2} \dot{\phi} \phi\right] \\
0 & =\frac{d}{d t} \frac{1}{2} \int d^{3} x\left[\dot{\phi}^{2}+(\vec{\nabla} \phi)^{2}+m^{2} \phi^{2}\right] \\
H & =\frac{1}{2} \int d^{3} x\left[\dot{\phi}^{2}+(\vec{\nabla} \phi)^{2}+m^{2} \phi^{2}\right]=\text { const. }
\end{aligned}
$$

Setting $\pi(x)=\partial^{0} \phi(x)$

$$
\begin{aligned}
H=\frac{1}{2} \int d^{3} x\left[\pi(\vec{x})^{2}+(\vec{\nabla} \phi(\vec{x}))^{2}+\right. & \left.m^{2} \phi(\vec{x})^{2}\right] \\
& \pi(\vec{x})=\pi(0, \vec{x}), \phi(\vec{x})=\phi(0, \vec{x})
\end{aligned}
$$

