Particle Physics Homework
 5. Quark model/Neutral kaon decays

2023/10/16
(deadline: 2023/10/24)

Problem 1

Diquark states $q_{1} q_{2}$ can be organised in symmetric and antisymmetric combinations, that transform respectively in the $\mathbf{6}$ and $\overline{\mathbf{3}}$ irreducible representations of $\mathrm{SU}(3)$.

1. [4 points] Draw the $\mathbf{6}$ and $\overline{\mathbf{3}}$ representations in the (I_{3}, Y) plane, labelling each state with their quantum numbers I, I_{3}, Y, and with their quark flavour content.
2. [4 points] Find the combinations of two spin- $\frac{1}{2}$ particles spin states that have definite total spin, and determine their symmetry properties under particle exchange.
3. [5 points] Write the possible diquark wave functions in spin and flavour space, and determine the exchange symmetry properties of the total space/spin/flavour wave function (assume that the orbital angular momentum is $\ell=0$).
4. [5 points] Show that a $q_{1} q_{2}$ state cannot be a colour singlet (so it cannot be an acceptable physical state).
5. [7 points] After determining the coefficients of the linear relation $I=\alpha I+\beta$ between the total isospin and the hypercharge of the diquark states in the $\mathbf{6}$ and $\overline{\mathbf{3}}$ representations, write down the Gell-Mann-Okubo mass formula for these representations, and extract as many independent relations between diquark masses as possible.

Problem 2

A beam of K^{0} is produced in the lab with energy E.

1. [5 points] Write the possible two-pion decays of K^{0} compatible with electric charge conservation, and show that they do not conserve parity and total isospin.
2. [10 points] Knowing that the short component of neutral kaons has lifetime $\tau_{S} \simeq 0.9 \cdot 10^{-10} s$, determine how far from the beam source one has to place the detectors in order to detect only ${ }^{1}$ decays of the long component of neutral kaons.
3. [10 points] Determine the magnitudes of the K^{0} and \bar{K}^{0} components of the beam,

$$
\left.\left.\left|\left\langle K^{0}\right| \Pi_{K^{0}} U(t)\right| K^{0}\right\rangle\left.\right|^{2}, \quad\left|\left\langle\bar{K}^{0}\right| \Pi_{K^{0}} U(t)\right| K^{0}\right\rangle\left.\right|^{2},
$$

where $\Pi_{K^{0}}=\left|K^{0}\right\rangle\left\langle K^{0}\right|+\left|\bar{K}^{0}\right\rangle\left\langle\bar{K}^{0}\right|$ is the projector on the neutral kaon subspace and $U(t)$ the temporal evolution operator, as a function of the distance from the beam source. Use the Wigner-Weisskopf approximation $\Pi_{K^{0}} U(t) \simeq e^{-i H_{\text {eff }} t}$ with non-Hermitean $H_{\text {eff }}$, and assume $C P$ invariance.

Hints

Exercise 1:
(1.) you can find the quark content of a product representation graphically by centering the weight diagram of the second one on the states of the first one;
(4.) write the decomposition of the product of the colour representations of the quarks in the diquark in terms of irreducible representations;
(5.) you can start from the general form of the Gell-Mann-Okubo formula derived in class, valid for general representations, and specialise it to the cases at hand.

[^0]Exercise 2:
(1.) write the possible total isospin states of two pions;
(2.) use the exponential decay law to estimate the number of short kaons reaching a certain distance form the source.

Grade

Your grade is given by the sum of points scored for each exercise, divided by 10 , and rounded to the closest integer.

[^0]: ${ }^{1}$ Take this to mean that the number of short kaons in the beam has been reduced to a reasonably small of the initial amount.

