Particle physics problem sheet

- A pion with mass M is moving by velocity β in the lab frame and decays to two photons. Determine the relationship between the energies of the photons and their angles (relative to the motion of the pion)!
- A photon collides with a proton of mass M at rest in the lab frame. What is the necessary minimal energy for the photon such that in the final states we will have a neutral pion of mass M_{0} in addition to the original proton?
- Under which conditions will the 4 -momentum of a system of 2 photons correspond to zero mass?
- Consider the process $e^{+} e^{-} \rightarrow Z \gamma$. Find the processes related to this one by the crossing relations and also the kinematical bounds on the Mandelstam variables s, t and u !
- It is often useful to use the I_{3} and step operators $I_{ \pm}=I_{1} \pm i I_{2}$ instead of the original $I_{j} j=1,2,3$ isospin components. Show that the commutation relations are

$$
\left[I_{+}, I_{-}\right]=2 I_{3}, \quad\left[I_{3}, I_{ \pm}\right]= \pm I_{ \pm}
$$

- The irreducible representation of $S U(2)$ labelled by j is spanned by the basis vectors $|j, m\rangle(m \in-j,-j+1, \ldots, j)$. The action of $I_{ \pm}=I_{1} \pm i I_{2}$ and I_{3} on these is given by

$$
I_{ \pm}|j, m\rangle=\sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle, \quad I_{3}|j, m\rangle=m|j, m\rangle
$$

Construct the 3×3 representation matrices for I_{1}, I_{2} and I_{3} for the $j=1$ representation!

- The Casimir operator of $S U(2)$ is given by $I=I_{1}^{2}+I_{2}^{2}+I_{3}^{2}$. Express I by I_{3} and $I_{ \pm}$and using the expressions from the previous exercise show that

$$
I|j, m\rangle=j(j+1)|j, m\rangle
$$

- Plot the pseudo-scalar meson octet consisting of a quark and anti-quark and the baryon octet consisting of 3 quarks on the I_{3}, Y plane and label each particle by its quark content (e.g. $\pi^{+}=(u, \bar{d}), n=(d, d, u)$)!
- Consider the flavour $S U(3)$ decuplet in the I_{3}, Y plane. For each particle calculate $I(I+1)-Y^{2} / 4$ where I is the total isospin and show that it is a linear function of Y and find the coefficients α, β in $I(I+1)-Y^{2} / 4=\alpha Y+\beta$!
- Plot the states corresponding to the $\overline{3}$ representation of flavour $S U(3)$ in the I_{3}, Y plane and label each with its quark content! These states correspond to \bar{q} anti-quarks.
- Plot the states corresponding to the 6 representation of flavour $S U(3)$ in the I_{3}, Y plane and label each with its quark content! The 6 representation is the 2-index-symmetric representation hence these states correspond to $q q$-states or diquarks.
- Determine which processes can take place and which ones can not:

$$
\begin{gathered}
\pi^{+} \rightarrow e^{+} e^{-} e^{+} \\
K^{+} \rightarrow \mu^{+} \nu_{\mu}
\end{gathered} K^{-}+n \rightarrow \Sigma^{-}+\pi^{0} \quad l i e^{-} \gamma
$$

- Let $a^{\dagger}(\mathbf{p})$ and $b^{\dagger}(\mathbf{p})$ be the creation operators of free, 0 spin, mass m particles corresponding to a complex field. Show that the following states are eigenstates of the energy, momentum and charge operators and find the eigenvalues as well:

$$
|a b\rangle=a^{\dagger}(\mathbf{p}) b^{\dagger}(-\mathbf{p})|0\rangle \quad \text { és } \quad|a a\rangle=a^{\dagger}(\mathbf{p}) a^{\dagger}(\mathbf{p})|0\rangle
$$

- Let b_{1}^{\dagger} and b_{2}^{\dagger} be the creation operators of the ground state and excited state of an atom

$$
|G\rangle=b_{1}^{\dagger}|0\rangle, \quad|X\rangle=b_{2}^{\dagger}|0\rangle, \quad b_{1}|0\rangle=0=b_{2}|0\rangle
$$

fulfilling the commutation relations $\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j} i, j=1,2$. Show that the following holds for $\Pi=b_{1}^{\dagger} b_{2}$ and $\Pi^{\dagger}=b_{2}^{\dagger} b_{1}$:

$$
\Pi^{\dagger}|G\rangle=|X\rangle, \quad \Pi|X\rangle=|G\rangle, \quad \Pi^{\dagger}|X\rangle=0, \quad \Pi|G\rangle=0
$$

- Let ϕ be a real scalar field whose self-interaction is described by the Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}+g \phi^{3}
$$

Determine the following
(a) mass dimension of g,
(b) the expression for the vertex in Feynman diagrams
(c) lowest order Feynman diagrams for the $2 \rightarrow 2$ and the $2 \rightarrow 3$ scatterings

- Let $\phi(x)$ be a real scalar field and $\psi(x)$ a Dirac spinor field and assume that their interaction is described by the Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}+\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi+M \bar{\psi} \psi+g \phi \bar{\psi} \psi
$$

(The last term is often called Yukawa interaction.) Determine the following (a) mass dimension of g
(b) the expression for the vertex in Feynman diagrams

- Show that the time ordered product of spin $1 / 2$ fields satisfies the equation

$$
\left(i \gamma^{\mu} \partial_{\mu}^{x}-m\right)_{\alpha \beta} T\left(\psi_{\beta}(x) \bar{\psi}_{\gamma}(y)\right)=i \delta_{\alpha \gamma} \delta^{(4)}(x-y)
$$

