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SPECIAL RELATIVITY

e Newton to Einstein: the problem of causality. Information can’t
be transferred instantaneously.

@ “Special”: no acceleration. “General”: acceleration = gravity.
e HEP can be thought of as the ultimate testbed for SR, since it’s
bread and butter for us (all particles relativistic).

@ https://pdg.1lbl.gov/2019/reviews/rpp2019-rev-kinematics.pdf
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RELATIVISTIC KINEMATICS: MINKOWSKI SPACE

Relativistic theories are conveniently formulated in Minkowski space
Minkowski space = R* + Minkowski (pseudo)metric

Euclidean space = R? + Euclidean metric

Distance between points in E. space: d(Z,7) = (£ —7)? = (F— §)i(T — 7);0i;
Latin indices 1,...,3, sum over repeated indices understood

Invariant under translations © — & + @ and rotations £ — RZ

Point in Minkowski space (=event): X*, un=0,1,2,3
XH = (ct, @) = (t, T)
In Minkowski space distances replaced by interval
A= (X-Y)P=X-Y)"X -Y)gu=X-Y)X-Y),
(X0 YR (£
Minkowski metric tensor: g,,, = diag(1, —1,—-1,—1)
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LORENTZ TRANSFORMATION IN MINKOWSKI SPACE

@ Boost will shift the event along the hyperbolas in Minkowski space.
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THE LIGHTCONE

Contravariant vectors: X* = (X°, X)
Covariant vectors: X,, = g, X" = (X%, —X)
Indices lowered by g¢,, and raised by ¢* = diag(1,—-1,—1,—1)
gh? defined by ghPg,, = 6",

Minkowski scalar product X - Y = X#Y"g,, = X'Y, = X0y0 X .Y

X -Y: three-dimensional Euclidean scalar product

Interval is not a distance because it is not positive-definite:
o As? > 0 timelike interval — X2 > 0 timelike vector
o As? < 0 spacelike interval — X2 < 0 spacelike vector
o As? =0 lightlike or null interval — X? = 0 lightlike or null vector
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THE LIGHTCONE (CONTD.)

causal curve

e For a fixed event X

(Y —X)2=0,Y"— X > 0: forward (future) lightcone of X

(Y —X)2=0,Y"— X% <0: backward (past) lightcone of X

(Y —X)2>0,Y%— X% > 0: future of X (inside future lightcone)
(Y = X)?2>0,Y%— X% <0: past of X (inside past lightcone)
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TIMELIKE VECTORS, X2 > 0

left-rocket time laboratory time right-rocket time

A A

AN »

left-rocket space . . laboratory space right-rocket spclcer
=i =B
LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME

e Causally connected. Can go to a frame where the two events occur
at the same point in space but at two times. Unique time ordering.

o This special frame At is called proper time. Eg. decay of an
unstable particle in the particle’s restframe.
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SPACELIKE VECTORS, X2 < 0

A lefi-rocket time A laboratory time A right-rocket fime
i
A > A > A >
left-rocket laboratory right-rocket
space space space
=i f E :._- =
LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME

e Can go to a frame where two events at the same time occur at two
places. But this simultaneity is frame-dependent. No unique
time-ordering.

o Eg., virtual particles have spacelike 4-momentum
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LORENTZ TRANSFORMATIONS

Principles of special relativity:
e homogeneity and isotropy of space
@ equivalence of all inertial reference frames
= travelling at a relative constant speed
e constancy of speed of light
= equivalent frames are related by a Lorentz transformation X’ = AX:
linear transformation that leaves every interval invariant

(X' —Y')?=(X-Y)? VX, Y
= X24Y2 22X YV =X?24+Y?-2XY VXY
=X Y=X.Y VXY

In components X'* = A, X¢
9apXYP = g XY = g A A 3 XOYVP VXY
= Jop = g Ao
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LORENTZ TRANSFORMATIONS (CONTD.)
Using matrix notation A,y = A", 8 = G, g;yl =g" =g
g=A"gA

(det A)?2 =1 = det A = +1, A invertible
o det A = 1: proper transformations, leave orientation of space

unchanged
o det A = —1: improper transformations invert the orientation of
space

A7l =g 1ATg still a Lorentz transformation
o g=[AATg[AAT | = ATT[ATgA]JA "t = A1 TgA !
-1
o A s =g"A" 9.8 = Aﬁa
From the o = 0, § = 0 component of the defining relation
o A% > 1: orthochronous (does not change the sign of time)

o A% < —1: non-orthochronous (changes the sign of time)
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PROPER ORTHOCHRONOUS LORENTZ GROUP

Proper orthochronous Lorentz transformations = three-dimensional
rotations (the SO(3) group) and boosts

Most general transformation: rotation x boost in z direction x
rotation

v B 8 8 b= % =v<l1
Boost along z: A", = B 1

0 0 10 y =

0 0 01 V1-p?

Boost in general direction 7i: rotate 7 to x, boost, rotate back

Coordinates in the new frame:
ct' =v(ct — Bx) ' =~(x — Bet)
v =y 2=z
= relates R to R’ moving with speed 8 in the negative x direction

Nonrelativistic limit 8 = v/c < 1 = Galilei transformations
' =ct 2 =z—vt
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FuLL LORENTZ GROUP

Most general Lorentz transformation = proper orthochronous
transformation times P (parity), T (time reversal), or PT

Pt = diag(1,—-1,—-1,-1) T, = diag(—1,1,1,1)

detA=1 det A= -1

A% >1 proper orthochronous improper orthochronous

vl

Jr Jr

improper non-orthochronous

A% < —1 | proper non-orthochronous

wl
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RAPIDITY AND PSEUDORAPIDITY

ct’\ | cosh( —sinh(]| (et
2’ ) |—sinh¢ cosh( | \z

o tanh(=p. (=3In jg}i is called the rapidity for the boost.

e Show that the transformation is eZ¢ where Z = < 0 _1)

-1 0
o Use this to show that rapidities are additive for two subsequent
boosts.
o At colliders, rapidity is y = %l gfi i, while pseudorapidity
1 III Ipl+pL
R
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RAPIDITY AND PSEUDORAPIDITY (CONTD.)

o .Pseudorapidity n = §In }gi%gi = —In[tan(0/2)] is purely angular
term. Agrees with the usual rapidity definition in the limit

pT > m.
e Colliders typically use AR = /(An)? + (A¢)? as 3-d angular

separation between particles/jets.

e p;, = prsinhn and |p| = prcoshn
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POINT PARTICLES: KINEMATICS
Trajectory X*(t) of point particle; over infinitesimal dt,
XH — XF+dXH

XH(t) = (ct, 2(t)) = (¢, Z(2))

AXM(t) = (dt, di (1)) = db(1, (1)) = di(1, 5(2))
Empirical fact: for massive particles 2 < 1, for massless particles
72 =1
(dX)? =dXFdX, =dt*(1 —5?) >0  (timelike)
B (1) = (1,7(t))

dif—tu not a Lorentz vector: dX* = vector, dt # scalar

Massive particle 72 < 1: 3 reference frame in which ¥ = 0 (rest frame)
Xest (1) = (7,0)
T: proper time (time measured in the particle’s rest frame)

. 2
(dXrest)” = d7? = (dX)* = dt*(1 - %) = %5
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POINT PARTICLES: KINEMATICS (CONTD.)

Proper time:
o dr? = %t; = |dt| > |d7| (time-dilation effect)
o determine the elapsed proper time by going over to the
instantaneous rest frame of the particle = twins’ paradox

T=[dr= [l dt' JT-T2() <t—t
@ true scalar = d;:ff are true vectors
Four-velocity

wt = G = (&) = (v,4%) = (v,79) = (1,76)

Four-momentum (vector u* times scalar m)
P = mut = (ym,ymp)

m , - mut ’
P=my=—c==E p=mp=—es=p

1_o2 Vi ©
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POINT PARTICLES: FOUR-MOMENTUM IN THE NR
LIMIT

Do FE,p match their non-relativistic definition when li;' <17

Needs reinstating powers of ¢

P =me s = me(144 (2) + o))
p=me 1_3(3)2 —mi(1+0((%)?))

Second line ok, first line times ¢
poc:mc2—|—%m172+...:EO—I—EII\}R+...

= NR kinetic energy E%R of a particle plus rest energy Eq = mc?
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POINT PARTICLES: FOUR-MOMENTUM FOR m # (0 AND
m =10

Massive particles: p?> =m? >0
P = = (£,5) = (B.5) = (. 7)
Mass = relativistic invariant
PP=m*P1-F)=m?>0 WP =11-F%) =1
Trajectory always inside the forward lightcone

Any constant would do, but m is the constant such that total

momentum » , p; = » ., m;u; of a system of particles is conserved
Also: correct NR limit of p# =mu*

Energy-momentum relation is called dispersion relation
E? =52 +m?

Massless particles: p? =0
P = (w, k)

o a bd) -
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KINEMATICS OF 2-PARTICLE SCATTERING

Two particle — two particle scattering process ab — cd
Lab frame: one initial particle is at rest (= target)

pa = (EL,pL)  pp = (my,0)

Pe = (ECaﬁc) Pa = (Edaﬁd)

Scattering angle 81, in the lab: angle between trajectories of ¢ and a

i ﬁL 'ﬁc
cos Oy = LLe
L= TpeTpel

CM frame: vanishing total spatial momentum
pa:(E;aﬁ*) pb:(El>)k7_ﬁ*)
pe=(E;,p")  pa=(E3—p")

Scattering angle 0* in the CM: angle formed by the trajectories of a
and ¢

Sk ok
COS 9* — %
5 [1p7*]
Total center of mass energy /s = Lorentz invariant
Particle Physics
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KINEMATICS OF 2-PARTICLE SCATTERING (CONTD.)

LAB

CM

pa=(ErL,pL)  pp = (ms,0)
DPec = (Ecaﬁc) Pd = (Edaﬁd)

pa=(Eq,0")  pp=(Ey,—P")

pe= (B2, ™) pa=(Eg,—p")

a ————————— - —— -

N
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KINEMATICS OF 2-PARTICLE SCATTERING (CONTD.)

‘pa + Dy :pc“‘pd‘

e Four-momentum conservation implies EY ,, |55 ;| = [p™]
determined uniquely in the CM, independent of 6*
E.d, |peq| and 7, in the lab by Lorentz transf., depend on 6*

Pb = Pc+Pd — Pa

i = (e +pa)* + Ps = 2P0 - (Pe + Pa)

mi=s+m2 —2E:\/s

2 _ 2 9 9
E;:s—kma m, E;:s—i-mb mg

2\/5 a+>b 2\/5

@ CM energy squared s Lorentz invariant = E* from Ey, in the lab:

2 2
s—m,—m;
2my,

5= (pat+pp)? =m2+mi+2p,-py = mi—l—mg—l—QELmb = F; =

o Exchanging a,b < c,d
e smiomd L smdom?
c = 2\/} d — 2\/5
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KINEMATICS OF 2-PARTICLE SCATTERING: CM

Center of mass energies:

E*_s~|—m3—mg E*_s—l—mg—m2
a T T o /2 b= T 5 o

a
NE N
E::s—i-mg—mg E§:s+m§—m§
2\/s 2\/s

Center of mass momentum magnitude [p™|:

P = B 2 Lot _ sl )
- ~a a 4s - 4s
. (s—mi—m§)2—4mgm§ _ [s=(mat+my)?][s—(ma—my)?] /\(s,mg,mb)
- 4s - 4s - 4s
%12 *2 2 (s+m2—m2)2—4sm? s24+(m2—m2)2—2s(m2+m32)
|p ’ = EC —me = 4s = 4s
. (8—m£—m5)2—4mzm§ _ [s=(metmg)?][s—(mec—mg)?] A(s,mg,mg)
- 4s - 4s - 4s

Killén function: A(x,vy,2) = 22 + 9% + 22 — 22y — 2yz — 222
Particle Physics January 9, 2024
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KINEMATICS OF 2-PARTICLE SCATTERING: LAB

Lab kinematics recovered from CM kinematics

Given plab,cMm, Elab,cm total spatial momentum/total energy in lab/CM

Ipem| = 0 = vem([Plab] — BevBrab) = YoM (L] — Bom(ms + EL))
1L

e =
6CM Er +my

Inverse Lorentz transformation from CM to lab

Ec1ab = yoMm(EX + Bem|p™| cos 6%)
|Pe1ab| cos 0, = yem (|57 | cos 0" + BemEY)
‘ﬁc,lab| sin 0L = ’ﬁ/*‘ sin 0* s

Transverse directions unaffected by Lorentz transformation, azimuthal
angle transforms trivially
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EXAMPLE: PROTON-ANTIPROTON SCATTERING
For pp scattering in circular collider, E, = E; = 270 GeV

= /s = 540 GeV

Let now p be at rest in the lab.
Q. What should be the energy Ej, of p in the lab to obtain the same s?

A. CM energy square s is a relativistic invariant, can be evaluated in
any reference frame; in the lab

s = (pp +pp)° = 2(mjy + Eymy) = 2mp(my, + By)
Solve for Ey, and impose /s = 540 GeV (>> m,)

5 —2m? 40)2 30
Ep = NI (540) GeV ~ = - 10% GeV = 150 TeV ()
2m,, 2m,, 2 2

In general total CM energy Ecm ~ /2mpEL
Particle Physics January 9, 2024 24 /1



MANDELSTAM VARIABLES (CONT.)

Convenient set of relativistic invariant variables for 2 — 2 scattering

s = (pa +pb)2
t= (pa - pc)2
U= (pa - pd)2

M 7 1/\/\/

= (pc +pd)2
= (p — pa)®
= (pb - pc)2

\/\'/

meson ! baryon
resonance 1
’ /‘\ ’
P s-channel P P t-channel P P u-channel M
Time flow

Js=W

Biplab Dey (ELTE)
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MANDELSTAM VARIABLES (CONT.)
Convenient set of relativistic invariant variables for 2 — 2 scattering
s = (pa+m)° = (P +pa)”
t= (pa - pc)2 = (pb - pd)2
u= (pa — pa)” = (pb — pe)?
e s = total CM energy squared
e ¢t = square of four-momentum transfer from a to ¢
t= s +D; =204 - pe = mg +m; — 2(E;E; — |5*||7"] cos %)
e u = square of four-momentum transfer from a to d

=P+ p3—2p, - pqg =m2 +m?2 —2(EIE; + |5*||p"*| cos 6%)
u obtained from t after m. — mg and cos 6* — — cos 6*
Energies and magnitudes of momenta entirely determined by s and
particle masses = t = t(s,0"), or instead 6* = 6*(s,t) and use s, t
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MANDELSTAM VARIABLES (CONTD.)

Only two independent Mandelstam variables:
s+t+u=(pa+ps)’ + (Pa — )’ + (Pa — Pa)’
=m2 +mj +mZ +mj+2pa - (Da + Db — Pe — Pa)
:mi—i-mg—i—mg—kmﬁ
Bounds on Mandelstam variables determine physical region for s, ¢, u
s > max((mq +mp)?, (me +mq)?)
t = (pa —pe)® = mZ +m?2 — 2pq - pe = 2(m2 + m?2) — (pa +pc)’
< 2(mj; +mZ) — (ma +me)? = (mg —m,)?
Similarly using p, and pg; same approach for u
t < min((mg —me)?, (mpy — mq)?) u < min((mg —mq)?, (my —me)?)
Lower bound from this and tju = m2 + m + m2 + m?2 — s — ult
t > max(mj +m?2 + 2mgmg, m2 +m3 + 2mym.) — s
u > max(m? +m?2 + 2mymg, mi +m?2 4+ 2mgm,) — s
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MANDELSTAM VARIABLES (CONTD.)

Simplification if m, = my, me = mg = E; = B = E; = E} = %

t:mg+mg—%(1—6089*\/1—@\/1—%)

If also my = me =m

t=2m? — % <1 — cos 6* (1— 4m2>) = — (s—4m2) sinQ%

s

s > 4m? —(5—4m2)§t§0

o Upper limit: at threshold s = 4m? or when * = 0 (fwd scatter)
e Lower limit: when 6* = 7 (backscattering)
e In this case u(s,0*) = t(s,m — 0*) = same bound applies to u; role
of 0 =0 and 6* = 7 exchanged
Relevant for
e elastic processes involving only one type of particles/antiparticles
e very high energy limit (masses negligible, particles ~ massless)
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EXAMPLE: PROTON-PROTON SCATTERING

Elastic pp scattering, /s = 53 GeV

Differential cross section 4 %7 (t) has a peak at —t = to = 1.81 GeV?
E. Nagy et al., Nucl. Phys. B150 (1979) 221

Q. What is the corresponding scattering angle in the CM?
A. Elastic scattering of identical particles, s/ mg >1

— 2 9 ~ .2 9%
—t—(5—4m)sm & ~ssin® &
in20° .t 1.81 _ 181 _ 14
Sy = s—4mZ — 532-4.0.9382 — 2805 6.45 - 10

sin? & ~ © L — 9" ~2v5.1077~5.1072
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MANDELSTAM PLANE

e Sides of eq. triangle: s =0, t =0 and u = 0 axes

o For appropriate side length s+t +u = m2 + mz +m? + m?l

e Physical region for the a + b — ¢ + d process (equal masses) =
wedge defined by the prolongation of the v and t axes

Biplab Dey (ELTE) Particle Physics January 9, 2024 30/1



CROSSING SYMMETRY

QFT result: scattering amplitudes fora +b —c+d, a+¢— b+d,
a+d — ¢+ b are part of a single analytic function extending beyond
physical momenta, and related to each other

Aab—ed(Pas Pvi Pes Pa) = Agestd(Par—De;—Pbs Pa) = Agd—s b (Par—Pd; Pes—Db)
Use Mandelstam variables
a+b—c+d As(s,t,u

) = Aab—cd(Pas Pb; Pes Pd) s-channel
a—|—5—>l_)—|—d At(st,tt,ut)
)=

Ayisia(Pas Pe; Dy, pa)  t-channel

at+d—=c+b  Au(Sutu,uu) = Ayg s (PasPgiPe,y)  u-channel

) t= (pa _pc)2 U= (pa - pd)2
st=(pa+pe)’ ti=(pa—pp)®  w=(pa—pa)°
) by = (pa —Pc>2 Uy = (pa _pl_7>2

Crossing-symmetry relations

Ag(s,t,u) = Ai(t, s,u) = Ay(u, t, s)
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CROSSING SYMMETRY (CONTD.)

>/ o As(s,t,u) = Ay(t, s,u) = Au(u, t, )

e & “ W o If s, t, u take physical values for
) 5, \ ! the s-channel process ab — cd,
/ t=0_ crossing relations involve A; and

‘ \ s34 A, at unphysical values of their
arguments
o Relations fully meaningful if A; can be analytically continued
outside the physical domain

e For equal masses, physical regions of A; and A,, are
Sp > 4m2,tt <0 and s, > 4m2,tu <0,butt<0and s> 4m?2

Physical regions = wedges outside Mandelstam triangle

Biplab Dey (ELTE) Particle Physics January 9, 2024 32/1



INVARIANT PHASE SPACE

States of spinless particle, mass m are characterised by four-momenta p* with
p? = m? and positive energy p® > m > 0

One-particle phase space:

{peRYp? —m?> =0, p° >0} CcR*

Measure of infinitesimal element of phase space

dq;(l)_d‘l_pg(g 2 _m2o(p°
_(27T)4 W(p m) (p)

@ Manifestly invariant under orthochronous Lorentz transformations:

p? invariant, sign(p°) invariant under orthochronous transformations

@ Overall scale appropriate for relativistic normalisation of one-particle
states: (5"|7) = (2m)?2p°6®) (5" — )
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INVARIANT PHASE SPACE (CONTD.)

Recast d®() in more convenient form: for any f with simple zeros {x,}

1
S(f) =Y. 0z — )
o f o 17/ n)

e multiply both sides by some function h(x), integrate over R, show
that one gets the same result

o divide R = (—o00, +00) = Ui} with f(x) monotonic in Ij
= f invertible in I} and vanishes at most once (|f’| # 0 there)

o set y = f(z) = = = f~'(y) in each I}

+o0o
/_OO dro(f Z/Ik dx 6(f
B T -1
- 2k:/f(m W If’(f—l(y))|5(y)h(f ()

1
) ;/Oem Yo" =2 ] e
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INVARIANT PHASE SPACE (CONTD.)

4 4
v = (;lﬂ];“”' (v = m)0") (Zw?iﬂé(p02 = p? = m?)o(p")
4
= (;iﬂ})js 2|;)| [6(0° — (7)) + 6(0° + £(7))] 6(°)
. d4p 1 . B d3p B
- (27r)3 28(17) 5(]90 - 5(17))6(]70) = m = de

(7) = Vi + m?

n-particle phase space C R*" corresponding to four-momenta of n
particles subjected to a constraint on the total four-momentum
Measure of infinitesimal element:

ao™ = H?:l dﬂpj(QW)45(4) (ptot - Z?:l pj)
Lorentz invariant: dej Lorentz invariant
S (AP) = | det A|716W(P) = 6W(P)
Particle Physics January 9, 2024
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INVARIANT PHASE SPACE: 2-PARTICLE CASE

Total momentum piox = (Etot,ﬁtot), particle energies
ei(p) = \/m
’py d°ps A
27)45@) o
(2m)32¢e1(p1 ) (27T)3252(ﬁ2)( ) (Ptot — P1—D2)

1 dpr &Ppo
_ 1 2 5(3) ot — 1 —72)0 (Brot —e1 (1 ) — 2 (7
<2ﬂ)2 281@1)282@2) (pt t — D1 p2) ( tot 1(p1) 2(292))

dd?) —

Integrate trivially over ps, setting it equal to P = Piot — P1

1 &Epy 1

S(Bros — e1(51) — ealfins — 5
G2 251 (1) 2ea (o — 1) Frot — €1(1) = e2(Pior = 1))

To further integrate over |pi| requires changing variables, most easily
done working in the CM

de(®) —

Prot,cM = 0= Plom = —Pacm,  [Piom| = [Pacm| =D

Dropping “CM” in the following
January 9, 2024 36/1
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INVARIANT PHASE SPACE: 2-PARTICLE CASE (CONTD.)

Delta function depends on Eioy — £1(p) — €2(p)
Dropped vector sign on +p’

PP ] _ P
eilp) elp)] elpleap
Changing variables to d3p; = dpp?d cos 0*d¢* = dpp*df2*

1 dpp?d2* 1  ei(p)ea(p) 1 .
(2m)? 2e1(p) 2e2(p) E1(p) el ol = p7)

AE
AEp

B =ex(p) 2] = | o) o)

do?) =

(Eror—e1(p)—e2(p))
d§2* p* _ s p* _ das2* p*

@2 4 (7) + e (p) | (2mP AL, | 1672 /s

* 2 2
_ ds2* \/A(s,m3, m3)
3272 s
* — 2
For equal masses A(s,m?, m?) = s(s — 4m?) = d®?) = ML, [s=4m>
barticle Physics emiey @ SGEC. | 7L




n-BODY PHASE-SPACE

ma ;
v dq)lg X :%1122
y 112
4 my,

o Build sequentially. First combine m; and mgy. Then combine mj9
with mag, ...

@ k1o is the breakup momentum of m;s, etc.
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DALITZ PLOT

e 3-body decay of M — mymamsg. Dalitz plot is m3, vs. m3;. Phase
space is flat in these variables. d® ~ dm%2dm§3.

10_""|"';'|""|""|""_

L 2 H 4

[ (myFmy) ]
g [L-b—c-——- Foooo- (M-m )? ]
~ [ 2y ]
N>6— (m23)max§ _
CE : (M-my)? ]
o b ]
g4 7]
2 [ (mytmy)>— — === ' _
PN AP IS PO P PN I

0 1 2 3 4 5

m2, (GeV?)
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DALITZ PLOT (CONT.)

Complicated patterns in the Daitz plan reveal multiple interfering
(complex) amplitudes.

e 3-body decay of D~ meson (contains a charm quark) to the
KTK~ 7~ final state.

e Can include “resonances” in both ¢(1020) — K™K~ and
K*9(892) — K7~ systems.

Dalitz plot analysis can be used to study these components...
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KINEMATICAL REFLECTIONS/SHADOWS

» A Dalitz plot is a 2-D system
» Fake mass peaks can appear in the
projections due to kinematic
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