Particle physics: practice 1 Relativistic Kinematics

Biplab Dey

Eötvös Loránd University (ELTE)
January 9, 2024

Special Relativity

- Newton to Einstein: the problem of causality. Information can't be transferred instantaneously.

- "Special": no acceleration. "General": acceleration 三 gravity.
- HEP can be thought of as the ultimate testbed for SR, since it's bread and butter for us (all particles relativistic).
- https://pdg.lbl.gov/2019/reviews/rpp2019-rev-kinematics.pdf

Relativistic kinematics: Minkowski space

Relativistic theories are conveniently formulated in Minkowski space
Minkowski space $=\mathbb{R}^{4}+$ Minkowski (pseudo)metric
Euclidean space $=\mathbb{R}^{3}+$ Euclidean metric Distance between points in E. space: $d(\vec{x}, \vec{y})=(\vec{x}-\vec{y})^{2}=(\vec{x}-\vec{y})_{i}(\vec{x}-\vec{y})_{j} \delta_{i j}$

Latin indices $1, \ldots, 3$, sum over repeated indices understood Invariant under translations $\vec{x} \rightarrow \vec{x}+\vec{a}$ and rotations $\vec{x} \rightarrow R \vec{x}$ Point in Minkowski space (=event): $X^{\mu}, \mu=0,1,2,3$

$$
X^{\mu}=(c t, \vec{x})=(t, \vec{x})
$$

In Minkowski space distances replaced by interval

$$
\begin{aligned}
\Delta s^{2} & \equiv(X-Y)^{2} \equiv(X-Y)^{\mu}(X-Y)^{\nu} g_{\mu \nu} \equiv(X-Y)^{\mu}(X-Y)_{\mu} \\
& =\left(X^{0}-Y^{0}\right)^{2}-(\vec{X}-\vec{Y})^{2}
\end{aligned}
$$

Minkowski metric tensor: $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$

Lorentz transformation in Minkowski space

- Boost will shift the event along the hyperbolas in Minkowski space.

The lightcone

Contravariant vectors: $X^{\mu}=\left(X^{0}, \vec{X}\right)$
Covariant vectors: $X_{\mu}=g_{\mu \nu} X^{\nu}=\left(X^{0},-\vec{X}\right)$
Indices lowered by $g_{\mu \nu}$ and raised by $g^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$ $g^{\mu \nu}$ defined by $g^{\mu \rho} g_{\rho \nu}=\delta^{\mu}{ }_{\nu}$
Minkowski scalar product $X \cdot Y \equiv X^{\mu} Y^{\nu} g_{\mu \nu}=X^{\mu} Y_{\mu}=X^{0} Y^{0}-\vec{X} \cdot \vec{Y}$
$\vec{X} \cdot \vec{Y}$: three-dimensional Euclidean scalar product

Interval is not a distance because it is not positive-definite:

- $\Delta s^{2}>0$ timelike interval $-X^{2}>0$ timelike vector
- $\Delta s^{2}<0$ spacelike interval $-X^{2}<0$ spacelike vector
- $\Delta s^{2}=0$ lightlike or null interval $-X^{2}=0$ lightlike or null vector

The lightcone (contd.)

- For a fixed event X
- $(Y-X)^{2}=0, Y^{0}-X^{0}>0:$ forward (future) lightcone of X
- $(Y-X)^{2}=0, Y^{0}-X^{0}<0$: backward (past) lightcone of X
- $(Y-X)^{2}>0, Y^{0}-X^{0}>0$: future of X (inside future lightcone)
- $(Y-X)^{2}>0, Y^{0}-X^{0}<0$: past of X (inside past lightcone)

Timelike vectors, $X^{2}>0$

を三
LEF-MOVING ROCKE FRAME

LABORATORY FRAME

$$
\equiv \Sigma
$$

RIGHT-MOVING ROCKE FRAME

- Causally connected. Can go to a frame where the two events occur at the same point in space but at two times. Unique time ordering.
- This special frame Δt is called proper time. Eg. decay of an unstable particle in the particle's restframe.

Spacelike vectors, $X^{2}<0$

- Can go to a frame where two events at the same time occur at two places. But this simultaneity is frame-dependent. No unique time-ordering.
- Eg., virtual particles have spacelike 4-momentum

LORENTZ TRANSFORMATIONS

Principles of special relativity:

- homogeneity and isotropy of space
- equivalence of all inertial reference frames
$=$ travelling at a relative constant speed
- constancy of speed of light
\Rightarrow equivalent frames are related by a Lorentz transformation $X^{\prime}=\Lambda X$: linear transformation that leaves every interval invariant

$$
\begin{aligned}
\left(X^{\prime}-Y^{\prime}\right)^{2} & =(X-Y)^{2} & & \forall X, Y \\
\Rightarrow X^{\prime 2}+Y^{\prime 2}-2 X^{\prime} \cdot Y^{\prime} & =X^{2}+Y^{2}-2 X \cdot Y & & \forall X, Y \\
\Rightarrow X^{\prime} \cdot Y^{\prime} & =X \cdot Y & & \forall X, Y
\end{aligned}
$$

In components $X^{\mu}=\Lambda^{\mu}{ }_{\alpha} X^{\alpha}$

$$
\begin{aligned}
g_{\alpha \beta} X^{\alpha} Y^{\beta} & =g_{\mu \nu} X^{\prime \mu} Y^{\prime \nu}=g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} X^{\alpha} Y^{\beta} \quad \forall X, Y \\
\Longrightarrow g_{\alpha \beta} & =g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda^{\nu}{ }_{\beta}
\end{aligned}
$$

Lorentz transformations (CONTD.)

Using matrix notation $\boldsymbol{\Lambda}_{\mu \alpha}=\Lambda^{\mu}{ }_{\alpha}, \mathbf{g}_{\mu \nu}=g_{\mu \nu}, \mathbf{g}_{\mu \nu}^{-1}=g^{\mu \nu}=\mathbf{g}_{\mu \nu}$

$$
\mathbf{g}=\boldsymbol{\Lambda}^{T} \mathbf{g} \boldsymbol{\Lambda}
$$

$(\operatorname{det} \boldsymbol{\Lambda})^{2}=1 \Rightarrow \operatorname{det} \boldsymbol{\Lambda}= \pm 1, \boldsymbol{\Lambda}$ invertible

- $\operatorname{det} \boldsymbol{\Lambda}=1$: proper transformations, leave orientation of space unchanged
- $\operatorname{det} \boldsymbol{\Lambda}=-1$: improper transformations invert the orientation of space
$\boldsymbol{\Lambda}^{-1}=\mathbf{g}^{-1} \boldsymbol{\Lambda}^{T} \mathbf{g}$ still a Lorentz transformation
- $\mathbf{g}=\left[\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1}\right]^{T} \mathbf{g}\left[\boldsymbol{\Lambda} \mathbf{\Lambda}^{-1}\right]=\boldsymbol{\Lambda}^{-1 T}\left[\boldsymbol{\Lambda}^{T} \mathbf{g} \boldsymbol{\Lambda}\right] \boldsymbol{\Lambda}^{-1}=\boldsymbol{\Lambda}^{-1 T} \mathbf{g} \boldsymbol{\Lambda}^{-1}$
- $\boldsymbol{\Lambda}_{\alpha \beta}^{-1}=g^{\alpha \mu} \Lambda^{\nu}{ }_{\mu} g_{\nu \beta}=\Lambda_{\beta}{ }^{\alpha}$

From the $\alpha=0, \beta=0$ component of the defining relation

$$
1=\Lambda_{0}^{0} \Lambda_{0}^{0}{ }_{0}-\Lambda_{0}^{i} \Lambda_{0}^{i} \Longrightarrow \Lambda_{0}^{0} \Lambda_{0}{ }_{0}{ }_{0}=1+\Lambda_{0}^{i} \Lambda_{0}^{i} \geq 1
$$

- $\Lambda^{0}{ }_{0} \geq 1$: orthochronous (does not change the sign of time)
- $\Lambda^{0}{ }_{0} \leq-1$: non-orthochronous (changes the sign of time)

Proper orthochronous Lorentz group

Proper orthochronous Lorentz transformations $=$ three-dimensional rotations (the $\mathrm{SO}(3)$ group) and boosts
Most general transformation: rotation \times boost in x direction \times rotation
Boost along $x: \quad \Lambda^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}\gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \begin{aligned} & \beta=\frac{v}{c}=v<1 \\ & \gamma=\frac{1}{\sqrt{1-\beta^{2}}}\end{aligned}$
Boost in general direction \vec{n} : rotate \vec{n} to x, boost, rotate back
Coordinates in the new frame:

$$
\begin{array}{rlrl}
c t^{\prime} & =\gamma(c t-\beta x) & & x^{\prime}=\gamma(x-\beta c t) \\
y^{\prime} & =y & z^{\prime}=z
\end{array}
$$

\Rightarrow relates R to R^{\prime} moving with speed β in the negative x direction Nonrelativistic limit $\beta=v / c \ll 1 \Rightarrow$ Galilei transformations

$$
c t^{\prime}=c t \quad x^{\prime}=x-v t
$$

Full Lorentz group

Most general Lorentz transformation $=$ proper orthochronous transformation times P (parity), T (time reversal), or $P T$

$$
P_{\nu}^{\mu}=\operatorname{diag}(1,-1,-1,-1) \quad T_{\nu}^{\mu}=\operatorname{diag}(-1,1,1,1)
$$

	$\operatorname{det} \Lambda=1$		$\operatorname{det} \Lambda=-1$
$\Lambda^{0}{ }_{0} \geq 1$	proper orthochronous	$\underset{P}{\Rightarrow}$	improper orthochronous
	\Downarrow_{T}		\Downarrow_{T}
$\Lambda^{0}{ }_{0} \leq-1$	proper non-orthochronous	$\underset{P}{\Rightarrow}$	improper non-orthochronous

RAPIDITY AND PSEUDORAPIDITY

$$
\binom{c t^{\prime}}{x^{\prime}}=\left[\begin{array}{cc}
\cosh \zeta & -\sinh \zeta \\
-\sinh \zeta & \cosh \zeta
\end{array}\right]\binom{c t}{x}
$$

- $\tanh \zeta \equiv \beta . \zeta=\frac{1}{2} \ln \frac{E+|\mathbf{p}| c}{E-|\mathbf{p}| c}$ is called the rapidity for the boost.
- Show that the transformation is $e^{\mathcal{Z} \zeta}$ where $\mathcal{Z}=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
- Use this to show that rapidities are additive for two subsequent boosts.
- At colliders, rapidity is $y=\frac{1}{2} \ln \frac{E+p_{L}}{E-p_{L}}$, while pseudorapidity $\eta=\frac{1}{2} \ln \frac{|\mathbf{p}|+p_{L}}{|\mathbf{p}|-p_{L}}$

Rapidity and pseudorapidity (CONTD.)

$$
\begin{aligned}
& \eta=0
\end{aligned}
$$

- .Pseudorapidity $\eta=\frac{1}{2} \ln \frac{|\mathbf{p}|+p_{L}}{|\mathbf{p}|-p_{L}}=-\ln [\tan (\theta / 2)]$ is purely angular term. Agrees with the usual rapidity definition in the limit $p_{T} \gg m$.
- Colliders typically use $\Delta R \equiv \sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}$ as 3-d angular separation between particles/jets.
- $p_{L}=p_{T} \sinh \eta$ and $|\mathbf{p}|=p_{T} \cosh \eta$

Point Particles: Kinematics

Trajectory $X^{\mu}(t)$ of point particle; over infinitesimal $d t$, $X^{\mu} \rightarrow X^{\mu}+d X^{\mu}$

$$
\begin{aligned}
X^{\mu}(t) & =(c t, \vec{x}(t))=(t, \vec{x}(t)) \\
d X^{\mu}(t) & =(d t, d \vec{x}(t))=d t\left(1, \frac{d \vec{x}}{d t}(t)\right)=d t(1, \vec{v}(t))
\end{aligned}
$$

Empirical fact: for massive particles $\vec{v}^{2}<1$, for massless particles $\vec{v}^{2}=1$

$$
\begin{align*}
(d X)^{2}=d X^{\mu} d X_{\mu} & =d t^{2}\left(1-\vec{v}^{2}\right) \geq 0 \tag{timelike}\\
\frac{d X^{\mu}}{d t}(t) & =(1, \vec{v}(t))
\end{align*}
$$

$\frac{d X^{\mu}}{d t}$ not a Lorentz vector: $d X^{\mu}=$ vector, $d t \neq$ scalar
Massive particle $\vec{v}^{2}<1: \exists$ reference frame in which $\vec{v}=0$ (rest frame)

$$
X_{\text {rest }}^{\mu}(\tau)=(\tau, \overrightarrow{0})
$$

τ : proper time (time measured in the particle's rest frame)

$$
\left(d X_{\text {rest }}\right)^{2}=d \tau^{2}=(d X)^{2}=d t^{2}\left(1-\vec{v}^{2}\right)=\frac{d t^{2}}{\gamma^{2}}
$$

Point Particles: Kinematics (CONTD.)

Proper time:

- $d \tau^{2}=\frac{d t^{2}}{\gamma^{2}} \Rightarrow|d t|>|d \tau|$ (time-dilation effect)
- determine the elapsed proper time by going over to the instantaneous rest frame of the particle \Rightarrow twins' paradox

$$
\tau=\int d \tau=\int_{t_{0}}^{t} d t^{\prime} \sqrt{1-\vec{v}^{2}\left(t^{\prime}\right)} \leq t-t_{0}
$$

- true scalar $\Rightarrow \frac{d^{n} X^{\mu}}{d \tau^{n}}$ are true vectors

Four-velocity

$$
u^{\mu} \equiv \frac{d X^{\mu}}{d \tau}=\left(\frac{d t}{d \tau}, \frac{d \vec{x}}{d \tau}\right)=\left(\gamma, \gamma \frac{d \vec{x}}{d t}\right)=(\gamma, \gamma \vec{v})=(\gamma, \gamma \vec{\beta})
$$

Four-momentum (vector u^{μ} times scalar m)

$$
\begin{aligned}
p^{\mu} & \equiv m u^{\mu}=(\gamma m, \gamma m \vec{\beta}) \\
p^{0} & =m \gamma=\frac{m}{\sqrt{1-\vec{v}^{2}}}=E \quad p^{i}=m \gamma \vec{\beta}^{i}=\frac{m \vec{v}^{i}}{\sqrt{1-\vec{v}^{2}}}=\vec{p}^{i}
\end{aligned}
$$

Point Particles: FOUR-MOMENTUM IN THE NR LIMIT

Do E, \vec{p} match their non-relativistic definition when $\frac{|\vec{v}|}{c} \ll 1$?
Needs reinstating powers of c

$$
\begin{aligned}
p^{0} & =m c \frac{1}{\sqrt{1-\left(\frac{\vec{v}}{c}\right)^{2}}}=m c\left(1+\frac{1}{2}\left(\frac{\vec{v}}{c}\right)^{2}+\mathcal{O}\left(\left(\frac{v}{c}\right)^{4}\right)\right) \\
\vec{p} & =m c \frac{\frac{\vec{v}}{c}}{\sqrt{1-\left(\frac{\vec{v}}{c}\right)^{2}}}=m \vec{v}\left(1+\mathcal{O}\left(\left(\frac{v}{c}\right)^{2}\right)\right)
\end{aligned}
$$

Second line ok, first line times c

$$
p^{0} c=m c^{2}+\frac{1}{2} m \vec{v}^{2}+\ldots=E_{0}+E_{K}^{\mathrm{NR}}+\ldots
$$

$\Rightarrow \mathrm{NR}$ kinetic energy E_{K}^{NR} of a particle plus rest energy $E_{0}=m c^{2}$

Point Particles: FOUR-MOMENTUM FOR $m \neq 0$ AND

 $m=0$Massive particles: $p^{2}=m^{2}>0$

$$
p^{\mu}=m \frac{d X^{\mu}}{d \tau}=\left(\frac{E}{c}, \vec{p}\right)_{c=1}^{=}(E, \vec{p})=\left(p^{0}, \vec{p}\right)
$$

Mass $=$ relativistic invariant

$$
p^{2}=m^{2} \gamma^{2}\left(1-\vec{\beta}^{2}\right)=m^{2}>0 \quad u^{2}=\gamma^{2}\left(1-\vec{\beta}^{2}\right)=1
$$

Trajectory always inside the forward lightcone
Any constant would do, but m is the constant such that total momentum $\sum_{i} p_{i}=\sum_{i} m_{i} u_{i}$ of a system of particles is conserved

Also: correct NR limit of $p^{\mu}=m u^{\mu}$
Energy-momentum relation is called dispersion relation

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

Massless particles: $p^{2}=0$

$$
p^{\mu}=(\omega, \vec{k})
$$

Kinematics of 2-PARTICLE SCATTERING

Two particle \rightarrow two particle scattering process $a b \rightarrow c d$
Lab frame: one initial particle is at rest ($=$ target)

$$
\begin{array}{ll}
p_{a}=\left(E_{L}, \vec{p}_{L}\right) & p_{b}=\left(m_{b}, 0\right) \\
p_{c}=\left(E_{c}, \vec{p}_{c}\right) & p_{d}=\left(E_{d}, \vec{p}_{d}\right)
\end{array}
$$

Scattering angle θ_{L} in the lab: angle between trajectories of c and a

$$
\cos \theta_{L}=\frac{\vec{p}_{L} \cdot \overrightarrow{p_{c}}}{\left|\vec{p}_{L}\right|\left|\vec{p}_{c}\right|}
$$

CM frame: vanishing total spatial momentum

$$
\begin{array}{ll}
p_{a}=\left(E_{a}^{*}, \vec{p}^{*}\right) & p_{b}=\left(E_{b}^{*},-\vec{p}^{*}\right) \\
p_{c}=\left(E_{c}^{*}, \vec{p}^{* *}\right) & p_{d}=\left(E_{d}^{*},-\vec{p}^{\prime *}\right)
\end{array}
$$

Scattering angle θ^{*} in the CM: angle formed by the trajectories of a and c

$$
\cos \theta^{*}=\frac{\vec{p}^{*} \cdot \vec{p}^{* *}}{\left|\vec{p}^{*}\right|\left|\vec{p}^{* *}\right|}
$$

Total center of mass energy $\sqrt{s}=$ Lorentz invariant

Kinematics of 2-Particle scattering (Contd.)

LAB

$p_{a}=\left(E_{L}, \vec{p}_{L}\right)$	$p_{b}=\left(m_{b}, 0\right)$
$p_{c}=\left(E_{c}, \vec{p}_{c}\right)$	$p_{d}=\left(E_{d}, \vec{p}_{d}\right)$

CM

$$
\begin{array}{ll}
p_{a}=\left(E_{a}^{*}, \vec{p}^{*}\right) & p_{b}=\left(E_{b}^{*},-\vec{p}^{*}\right) \\
p_{c}=\left(E_{c}^{*}, \vec{p}^{\prime *}\right) & p_{d}=\left(E_{d}^{*},-\vec{p}^{\prime *}\right)
\end{array}
$$

Kinematics of 2-Particle scattering (Contd.)

$$
p_{a}+p_{b}=p_{c}+p_{d}
$$

- Four-momentum conservation implies $E_{c, d}^{*},\left|\vec{p}_{c, d}^{*}\right|=\left|\vec{p}^{*}\right|$ determined uniquely in the CM, independent of θ^{*}
- $E_{c, d},\left|\vec{p}_{c, d}\right|$ and θ_{L} in the lab by Lorentz transf., depend on θ^{*}

$$
\begin{aligned}
p_{b} & =p_{c}+p_{d}-p_{a} \\
p_{b}^{2} & =\left(p_{c}+p_{d}\right)^{2}+p_{a}^{2}-2 p_{a} \cdot\left(p_{c}+p_{d}\right) \\
m_{b}^{2} & =s+m_{a}^{2}-2 E_{a}^{*} \sqrt{s} \\
E_{a}^{*} & =\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}} \underset{a \leftrightarrow b}{\Rightarrow} \quad E_{b}^{*}=\frac{s+m_{b}^{2}-m_{a}^{2}}{2 \sqrt{s}}
\end{aligned}
$$

- CM energy squared s Lorentz invariant $\Rightarrow E_{a}^{*}$ from E_{L} in the lab:

$$
s=\left(p_{a}+p_{b}\right)^{2}=m_{a}^{2}+m_{b}^{2}+2 p_{a} \cdot p_{b}=m_{a}^{2}+m_{b}^{2}+2 E_{L} m_{b} \Rightarrow E_{L}=\frac{s-m_{a}^{2}-m_{b}^{2}}{2 m_{b}}
$$

- Exchanging $a, b \leftrightarrow c, d$

$$
E_{c}^{*}=\frac{s+m_{c}^{2}-m_{d}^{2}}{2 \sqrt{s}} \quad E_{d}^{*}=\frac{s+m_{d}^{2}-m_{c}^{2}}{2 \sqrt{s}}
$$

Kinematics of 2-Particle scattering: CM

Center of mass energies:

$$
\begin{array}{ll}
E_{a}^{*}=\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}} & E_{b}^{*}=\frac{s+m_{b}^{2}-m_{a}^{2}}{2 \sqrt{s}} \\
E_{c}^{*}=\frac{s+m_{c}^{2}-m_{d}^{2}}{2 \sqrt{s}} & E_{d}^{*}=\frac{s+m_{d}^{2}-m_{c}^{2}}{2 \sqrt{s}}
\end{array}
$$

Center of mass momentum magnitude $\left|\vec{p}^{*}\right|$:

$$
\begin{aligned}
\left|\vec{p}^{*}\right|^{2} & =E_{a}^{* 2}-m_{a}^{2}=\frac{\left(s+m_{a}^{2}-m_{b}^{2}\right)^{2}-4 s m_{a}^{2}}{4 s}=\frac{s^{2}+\left(m_{a}^{2}-m_{b}^{2}\right)^{2}-2 s\left(m_{a}^{2}+m_{b}^{2}\right)}{4 s} \\
& =\frac{\left(s-m_{a}^{2}-m_{b}^{2}\right)^{2}-4 m_{a}^{2} m_{b}^{2}}{4 s}=\frac{\left[s-\left(m_{a}+m_{b}\right)^{2}\right]\left[s-\left(m_{a}-m_{b}\right)^{2}\right]}{4 s}=\frac{\lambda\left(s, m_{a}^{2}, m_{b}^{2}\right)}{4 s} \\
\left|\vec{p}^{\prime *}\right|^{2} & =E_{c}^{* 2}-m_{c}^{2}=\frac{\left(s+m_{c}^{2}-m_{d}^{2}\right)^{2}-4 s m_{c}^{2}}{4 s}=\frac{s^{2}+\left(m_{c}^{2}-m_{d}^{2}\right)^{2}-2 s\left(m_{c}^{2}+m_{d}^{2}\right)}{4 s} \\
& =\frac{\left(s-m_{c}^{2}-m_{d}^{2}\right)^{2}-4 m_{c}^{2} m_{d}^{2}}{4 s}=\frac{\left[s-\left(m_{c}+m_{d}\right)^{2}\right]\left[s-\left(m_{c}-m_{d}\right)^{2}\right]}{4 s}=\frac{\lambda\left(s, m_{c}^{2}, m_{d}^{2}\right)}{4 s}
\end{aligned}
$$

Källén function: $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x$

Kinematics of 2-Particle scattering: Lab

Lab kinematics recovered from CM kinematics
Given $\vec{p}_{\text {lab,CM }}, E_{\text {lab,CM }}$ total spatial momentum/total energy in lab/CM

$$
\begin{gathered}
\left|\vec{p}_{\mathrm{CM}}\right|=0=\gamma_{\mathrm{CM}}\left(\left|\vec{p}_{\mathrm{lab}}\right|-\beta_{\mathrm{CM}} E_{\mathrm{lab}}\right)=\gamma_{\mathrm{CM}}\left(\left|\vec{p}_{L}\right|-\beta_{\mathrm{CM}}\left(m_{b}+E_{L}\right)\right) \\
\Longrightarrow \beta_{\mathrm{CM}}=\frac{\left|\vec{p}_{L}\right|}{E_{L}+m_{b}}
\end{gathered}
$$

Inverse Lorentz transformation from CM to lab

$$
\begin{aligned}
E_{c, \text { lab }} & =\gamma_{\mathrm{CM}}\left(E_{c}^{*}+\beta_{\mathrm{CM}}\left|\vec{p}^{\prime *}\right| \cos \theta^{*}\right), \\
\left|\vec{p}_{c, \text { lab }}\right| \cos \theta_{L} & =\gamma_{\mathrm{CM}}\left(\left|\vec{p}^{\prime *}\right| \cos \theta^{*}+\beta_{\mathrm{CM}} E_{c}^{*}\right), \\
\left|\vec{p}_{c, \text { lab }}\right| \sin \theta_{L} & =\left|\vec{p}^{\prime *}\right| \sin \theta^{*},
\end{aligned}
$$

Transverse directions unaffected by Lorentz transformation, azimuthal angle transforms trivially

EXAMPLE: PROTON-ANTIPROTON SCATTERING

For $p \bar{p}$ scattering in circular collider, $E_{p}=E_{\bar{p}}=270 \mathrm{GeV}$

$$
\Rightarrow \sqrt{s}=540 \mathrm{GeV}
$$

Let now p be at rest in the lab.
Q. What should be the energy E_{L} of \bar{p} in the lab to obtain the same s ?
A. CM energy square s is a relativistic invariant, can be evaluated in any reference frame; in the lab

$$
s=\left(p_{p}+p_{\bar{p}}\right)^{2}=2\left(m_{p}^{2}+E_{L} m_{p}\right)=2 m_{p}\left(m_{p}+E_{L}\right)
$$

Solve for E_{L} and impose $\sqrt{s}=540 \mathrm{GeV}\left(\gg m_{p}\right)$

$$
E_{L}=\frac{s-2 m_{p}^{2}}{2 m_{p}} \simeq \frac{s}{2 m_{p}} \simeq \frac{(540)^{2}}{2} \mathrm{GeV} \simeq \frac{30}{2} \cdot 10^{4} \mathrm{GeV}=150 \mathrm{TeV} \quad(!!!)
$$

In general total CM energy $E_{\mathrm{CM}} \simeq \sqrt{2 m_{p} E_{L}}$

Mandelstam variables (COnt.)

Convenient set of relativistic invariant variables for $2 \rightarrow 2$ scattering

Mandelstam variables (COnt.)

Convenient set of relativistic invariant variables for $2 \rightarrow 2$ scattering

$$
\begin{aligned}
& s \equiv\left(p_{a}+p_{b}\right)^{2}=\left(p_{c}+p_{d}\right)^{2} \\
& t \equiv\left(p_{a}-p_{c}\right)^{2}=\left(p_{b}-p_{d}\right)^{2} \\
& u \equiv\left(p_{a}-p_{d}\right)^{2}=\left(p_{b}-p_{c}\right)^{2}
\end{aligned}
$$

- $s=$ total CM energy squared
- $t=$ square of four-momentum transfer from a to c

$$
t=p_{a}^{2}+p_{c}^{2}-2 p_{a} \cdot p_{c}=m_{a}^{2}+m_{c}^{2}-2\left(E_{a}^{*} E_{c}^{*}-\left|\vec{p}^{*}\right|\left|\vec{p}^{*}\right| \cos \theta^{*}\right)
$$

- $u=$ square of four-momentum transfer from a to d

$$
u=p_{a}^{2}+p_{d}^{2}-2 p_{a} \cdot p_{d}=m_{a}^{2}+m_{d}^{2}-2\left(E_{a}^{*} E_{d}^{*}+\left|\vec{p}^{*}\right|\left|\vec{p}^{\prime *}\right| \cos \theta^{*}\right)
$$

Energies and magnitudes of momenta entirely determined by s and particle masses $\Rightarrow t=t\left(s, \theta^{*}\right)$, or instead $\theta^{*}=\theta^{*}(s, t)$ and use s, t

Mandelstam variables (CONTD.)

Only two independent Mandelstam variables:

$$
\begin{aligned}
s+t+u & =\left(p_{a}+p_{b}\right)^{2}+\left(p_{a}-p_{c}\right)^{2}+\left(p_{a}-p_{d}\right)^{2} \\
& =m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}+2 p_{a} \cdot\left(p_{a}+p_{b}-p_{c}-p_{d}\right) \\
& =m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}
\end{aligned}
$$

Bounds on Mandelstam variables determine physical region for s, t, u

$$
\begin{gathered}
s \geq \max \left(\left(m_{a}+m_{b}\right)^{2},\left(m_{c}+m_{d}\right)^{2}\right) \\
t=\left(p_{a}-p_{c}\right)^{2}=m_{a}^{2}+m_{c}^{2}-2 p_{a} \cdot p_{c}=2\left(m_{a}^{2}+m_{c}^{2}\right)-\left(p_{a}+p_{c}\right)^{2} \\
\leq 2\left(m_{a}^{2}+m_{c}^{2}\right)-\left(m_{a}+m_{c}\right)^{2}=\left(m_{a}-m_{c}\right)^{2}
\end{gathered}
$$

Similarly using p_{b} and p_{d}; same approach for u

$$
t \leq \min \left(\left(m_{a}-m_{c}\right)^{2},\left(m_{b}-m_{d}\right)^{2}\right) \quad u \leq \min \left(\left(m_{a}-m_{d}\right)^{2},\left(m_{b}-m_{c}\right)^{2}\right)
$$

Lower bound from this and $t\left|u=m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}-s-u\right| t$

$$
\begin{aligned}
t & \geq \max \left(m_{b}^{2}+m_{c}^{2}+2 m_{a} m_{d}, m_{a}^{2}+m_{d}^{2}+2 m_{b} m_{c}\right)-s \\
u & \geq \max \left(m_{a}^{2}+m_{c}^{2}+2 m_{b} m_{d}, m_{b}^{2}+m_{d}^{2}+2 m_{a} m_{c}\right)-s
\end{aligned}
$$

Mandelstam variables (CONTD.)

Simplification if $m_{a}=m_{b}, m_{c}=m_{d} \Rightarrow E_{a}^{*}=E_{b}^{*}=E_{c}^{*}=E_{d}^{*}=\frac{\sqrt{s}}{2}$

$$
t=m_{a}^{2}+m_{c}^{2}-\frac{s}{2}\left(1-\cos \theta^{*} \sqrt{1-\frac{4 m_{a}^{2}}{s}} \sqrt{1-\frac{4 m_{c}^{2}}{s}}\right)
$$

If also $m_{a}=m_{c} \equiv m$

$$
\begin{gathered}
t=2 m^{2}-\frac{s}{2}\left(1-\cos \theta^{*}\left(1-\frac{4 m^{2}}{s}\right)\right)=-\left(s-4 m^{2}\right) \sin ^{2} \frac{\theta^{*}}{2} \\
s \geq 4 m^{2} \quad-\left(s-4 m^{2}\right) \leq t \leq 0
\end{gathered}
$$

- Upper limit: at threshold $s=4 m^{2}$ or when $\theta^{*}=0(f w d$ scatter)
- Lower limit: when $\theta^{*}=\pi$ (backscattering)
- In this case $u\left(s, \theta^{*}\right)=t\left(s, \pi-\theta^{*}\right) \Rightarrow$ same bound applies to u; role of $\theta^{*}=0$ and $\theta^{*}=\pi$ exchanged
Relevant for
- elastic processes involving only one type of particles/antiparticles
- very high energy limit (masses negligible, particles \approx massless)

EXAMPLE: PROTON-PROTON SCATTERING

Elastic $p p$ scattering, $\sqrt{s}=53 \mathrm{GeV}$
Differential cross section $\frac{d \sigma}{d t}(t)$ has a peak at $-t=t_{0}=1.81 \mathrm{GeV}^{2}$
E. Nagy et al., Nucl. Phys. B150 (1979) 221
Q. What is the corresponding scattering angle in the CM?
A. Elastic scattering of identical particles, $s / m_{p}^{2} \gg 1$

$$
\begin{gathered}
-t=\left(s-4 m_{p}^{2}\right) \sin ^{2} \frac{\theta^{*}}{2} \simeq s \sin ^{2} \frac{\theta^{*}}{2} \\
\sin ^{2} \frac{\theta^{*}}{2}=-\frac{t}{s-4 m_{p}^{2}}=\frac{1.81}{53^{2}-4 \cdot 0.938^{2}}=\frac{1.81}{2805}=6.45 \cdot 10^{-4} \\
\sin ^{2} \frac{\theta^{*}}{2} \simeq \frac{\left(\theta^{*}\right)^{2}}{4} \Longrightarrow \quad \theta^{*} \simeq 2 \sqrt{5} \cdot 10^{-2} \simeq 5 \cdot 10^{-2}
\end{gathered}
$$

Mandelstam Plane

- Sides of eq. triangle: $s=0, t=0$ and $u=0$ axes
- For appropriate side length $s+t+u=m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}$
- Physical region for the $a+b \rightarrow c+d$ process (equal masses) $=$ wedge defined by the prolongation of the u and t axes

Crossing symmetry

QFT result: scattering amplitudes for $a+b \rightarrow c+d, a+\bar{c} \rightarrow \bar{b}+d$, $a+\bar{d} \rightarrow c+\bar{b}$ are part of a single analytic function extending beyond physical momenta, and related to each other

$$
A_{a b \rightarrow c d}\left(p_{a}, p_{b} ; p_{c}, p_{d}\right)=A_{a \bar{c} \rightarrow \bar{b} d}\left(p_{a},-p_{c} ;-p_{b}, p_{d}\right)=A_{a \bar{d} \rightarrow c \bar{b}}\left(p_{a},-p_{d} ; p_{c},-p_{b}\right)
$$

Use Mandelstam variables

$$
\begin{array}{rlrlrl}
a+b \rightarrow c+d & \mathcal{A}_{s}(s, t, u) & =A_{a b \rightarrow c d}\left(p_{a}, p_{b} ; p_{c}, p_{d}\right) & & s \text {-channel } \\
a+\bar{c} \rightarrow \bar{b}+d & \mathcal{A}_{t}\left(s_{t}, t_{t}, u_{t}\right) & =A_{a \bar{c} \rightarrow \bar{b} d}\left(p_{a}, p_{\bar{c}} ; p_{\bar{b}}, p_{d}\right) & & t \text {-channel } \\
a+\bar{d} \rightarrow c+\bar{b} & \mathcal{A}_{u}\left(s_{u}, t_{u}, u_{u}\right) & =A_{a \bar{d} \rightarrow c \bar{b}}\left(p_{a}, p_{\bar{d}} ; p_{c}, p_{\bar{b}}\right) & & u \text {-channel } \\
s=\left(p_{a}+p_{b}\right)^{2} & t & =\left(p_{a}-p_{c}\right)^{2} & u=\left(p_{a}-p_{d}\right)^{2} \\
s_{t}=\left(p_{a}+p_{\bar{c}}\right)^{2} & t_{t} & =\left(p_{a}-p_{\bar{b}}\right)^{2} & u_{t}=\left(p_{a}-p_{d}\right)^{2} \\
s_{u}=\left(p_{a}+p_{\bar{d})^{2}}{ }^{2}\right. & t_{u} & =\left(p_{a}-p_{c}\right)^{2} & u_{u}=\left(p_{a}-p_{\bar{b}}\right)^{2}
\end{array}
$$

Crossing-symmetry relations

$$
\mathcal{A}_{s}(s, t, u)=\mathcal{A}_{t}(t, s, u)=\mathcal{A}_{u}(u, t, s)
$$

Crossing symmetry (contd.)

$$
\mathcal{A}_{s}(s, t, u)=\mathcal{A}_{t}(t, s, u)=\mathcal{A}_{u}(u, t, s)
$$

- If s, t, u take physical values for the s-channel process $a b \rightarrow c d$, crossing relations involve \mathcal{A}_{t} and \mathcal{A}_{u} at unphysical values of their arguments
- Relations fully meaningful if \mathcal{A}_{s} can be analytically continued outside the physical domain
- For equal masses, physical regions of \mathcal{A}_{t} and \mathcal{A}_{u} are $s_{t} \geq 4 m^{2}, t_{t} \leq 0$ and $s_{u} \geq 4 m^{2}, t_{u} \leq 0$, but $t \leq 0$ and $s \geq 4 m^{2}$

Physical regions $=$ wedges outside Mandelstam triangle

InvaRIANT PHASE SPACE

States of spinless particle, mass m are characterised by four-momenta p^{μ} with $p^{2}=m^{2}$ and positive energy $p^{0} \geq m>0$

One-particle phase space:

$$
\left\{p \in \mathbb{R}^{4} \mid p^{2}-m^{2}=0, \quad p^{0}>0\right\} \subset \mathbb{R}^{4}
$$

Measure of infinitesimal element of phase space

$$
d \Phi^{(1)}=\frac{d^{4} p}{(2 \pi)^{4}} 2 \pi \delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right)
$$

- Manifestly invariant under orthochronous Lorentz transformations: p^{2} invariant, $\operatorname{sign}\left(p^{0}\right)$ invariant under orthochronous transformations
- Overall scale appropriate for relativistic normalisation of one-particle states: $\left\langle\vec{p}^{\prime} \mid \vec{p}\right\rangle=(2 \pi)^{3} 2 p^{0} \delta^{(3)}\left(\vec{p}^{\prime}-\vec{p}\right)$

Invariant phase space (CONTD.)

Recast $d \Phi^{(1)}$ in more convenient form: for any f with simple zeros $\left\{x_{n}\right\}$

$$
\delta(f(x))=\sum_{x_{n}, f\left(x_{n}\right)=0} \frac{1}{\left|f^{\prime}\left(x_{n}\right)\right|} \delta\left(x-x_{n}\right)
$$

- multiply both sides by some function $h(x)$, integrate over \mathbb{R}, show that one gets the same result
- divide $\mathbb{R}=(-\infty,+\infty)=\cup_{k} I_{k}$ with $f(x)$ monotonic in I_{k}
$\Rightarrow f$ invertible in I_{k} and vanishes at most once $\left(\left|f^{\prime}\right| \neq 0\right.$ there $)$
- set $y=f(x) \rightarrow x=f^{-1}(y)$ in each I_{k}

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} d x \delta(f(x)) h(x)=\sum_{k} \int_{I_{k}} d x \delta(f(x)) h(x) \\
& =\sum_{k} \int_{f\left(I_{k}\right)} d y \frac{1}{\left|f^{\prime}\left(f^{-1}(y)\right)\right|} \delta(y) h\left(f^{-1}(y)\right) \\
& =\sum_{k} \int_{0 \in f\left(I_{k}\right)} d y \frac{1}{\left|f^{\prime}\left(f^{-1}(0)\right)\right|} \delta(y) h\left(f^{-1}(0)\right)=\sum_{n} \frac{1}{\left|f^{\prime}\left(x_{n}\right)\right|} h\left(x_{n}\right)
\end{aligned}
$$

Invariant phase space (CONTD.)

$$
\begin{aligned}
d \Phi^{(1)} & =\frac{d^{4} p}{(2 \pi)^{3}} \delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right)=\frac{d^{4} p}{(2 \pi)^{3}} \delta\left(p^{02}-\vec{p}^{2}-m^{2}\right) \theta\left(p^{0}\right) \\
& =\frac{d^{4} p}{(2 \pi)^{3}} \frac{1}{2\left|p^{0}\right|}\left[\delta\left(p^{0}-\varepsilon(\vec{p})\right)+\delta\left(p^{0}+\varepsilon(\vec{p})\right)\right] \theta\left(p^{0}\right) \\
& =\frac{d^{4} p}{(2 \pi)^{3}} \frac{1}{2 \varepsilon(\vec{p})} \delta\left(p^{0}-\varepsilon(\vec{p})\right) \theta\left(p^{0}\right)=\frac{d^{3} p}{(2 \pi)^{3} 2 \varepsilon(\vec{p})} \equiv d \Omega_{p} \\
\varepsilon(\vec{p}) & \equiv \sqrt{\vec{p}^{2}+m^{2}}
\end{aligned}
$$

n-particle phase space $\subset \mathbb{R}^{4 n}$ corresponding to four-momenta of n particles subjected to a constraint on the total four-momentum Measure of infinitesimal element:

$$
d \Phi^{(n)}=\prod_{j=1}^{n} d \Omega_{p_{j}}(2 \pi)^{4} \delta^{(4)}\left(p_{\text {tot }}-\sum_{j=1}^{n} p_{j}\right)
$$

Lorentz invariant: $d \Omega_{p_{j}}$ Lorentz invariant

$$
\delta^{(4)}(\Lambda P)=|\operatorname{det} \Lambda|^{-1} \delta^{(4)}(P)=\delta^{(4)}(P)
$$

Invariant phase space: 2-PARTICle case

Total momentum $p_{\text {tot }}=\left(E_{\text {tot }}, \vec{p}_{\text {tot }}\right)$, particle energies

$$
\varepsilon_{i}(\vec{p})=\sqrt{\vec{p}^{2}+m_{i}^{2}}
$$

$$
d \Phi^{(2)}=\frac{d^{3} p_{1}}{(2 \pi)^{3} 2 \varepsilon_{1}\left(\vec{p}_{1}\right)} \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 \varepsilon_{2}\left(\vec{p}_{2}\right)}(2 \pi)^{4} \delta^{(4)}\left(p_{\text {tot }}-p_{1}-p_{2}\right)
$$

$$
=\frac{1}{(2 \pi)^{2}} \frac{d^{3} p_{1}}{2 \varepsilon_{1}\left(\vec{p}_{1}\right)} \frac{d^{3} p_{2}}{2 \varepsilon_{2}\left(\vec{p}_{2}\right)} \delta^{(3)}\left(\vec{p}_{\mathrm{tot}}-\vec{p}_{1}-\vec{p}_{2}\right) \delta\left(E_{\mathrm{tot}}-\varepsilon_{1}\left(\vec{p}_{1}\right)-\varepsilon_{2}\left(\vec{p}_{2}\right)\right)
$$

Integrate trivially over \vec{p}_{2}, setting it equal to $\vec{p}_{2}=\vec{p}_{\text {tot }}-\vec{p}_{1}$

$$
d \Phi^{(2)}=\frac{1}{(2 \pi)^{2}} \frac{d^{3} p_{1}}{2 \varepsilon_{1}\left(\vec{p}_{1}\right)} \frac{1}{2 \varepsilon_{2}\left(\vec{p}_{\mathrm{tot}}-\vec{p}_{1}\right)} \delta\left(E_{\mathrm{tot}}-\varepsilon_{1}\left(\vec{p}_{1}\right)-\varepsilon_{2}\left(\vec{p}_{\mathrm{tot}}-\vec{p}_{1}\right)\right)
$$

To further integrate over $\left|\vec{p}_{1}\right|$ requires changing variables, most easily done working in the CM

$$
\vec{p}_{\mathrm{tot}, \mathrm{CM}}=0 \Rightarrow \vec{p}_{1 \mathrm{CM}}=-\vec{p}_{2 \mathrm{CM}}, \quad\left|\vec{p}_{1 \mathrm{CM}}\right|=\left|\vec{p}_{2 \mathrm{CM}}\right|=p
$$

Dropping "CM" in the following

Invariant phase space: 2-Particle case (Contd.)

Delta function depends on $E_{\text {tot }}-\varepsilon_{1}(p)-\varepsilon_{2}(p)$
Dropped vector sign on $\pm \vec{p}$
$\left|\frac{\Delta E}{\Delta E p}\left[E_{\mathrm{tot}}-\varepsilon_{1}(p)-\varepsilon_{2}(p)\right]\right|=\left[\frac{p}{\varepsilon_{1}(p)}+\frac{p}{\varepsilon_{2}(p)}\right]=\frac{p}{\varepsilon_{1}(p) \varepsilon_{2}(p)}\left[\varepsilon_{1}(p)+\varepsilon_{2}(p)\right]$
Changing variables to $d^{3} p_{1}=d p p^{2} d \cos \theta^{*} d \phi^{*}=d p p^{2} d \Omega^{*}$

$$
\begin{aligned}
& d \Phi^{(2)}=\frac{1}{(2 \pi)^{2}} \frac{d p p^{2} d \Omega^{*}}{2 \varepsilon_{1}(p)} \frac{1}{2 \varepsilon_{2}(p)} \underbrace{}_{\delta\left(E_{\left.\mathrm{tot}-\varepsilon_{1}(p)-\varepsilon_{2}(p)\right)}^{\frac{\varepsilon_{1}(p) \varepsilon_{2}(p)}{p}\left[\varepsilon_{1}(p)+\varepsilon_{2}(p)\right]^{-1} \delta\left(p-p^{*}\right)}\right.} \\
&=\frac{d \Omega^{*}}{(2 \pi)^{2}} \frac{p^{*}}{4\left(\varepsilon_{1}\left(p^{*}\right)+\varepsilon_{2}\left(p^{*}\right)\right)}=\frac{d \Omega^{*}}{(2 \pi)^{2}} \frac{p^{*}}{4 E_{\mathrm{tot}}^{*}}=\frac{d \Omega^{*}}{16 \pi^{2}} \frac{p^{*}}{\sqrt{s}} \\
&=\frac{d \Omega^{*}}{32 \pi^{2}} \frac{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}}{s}
\end{aligned}
$$

For equal masses $\lambda\left(s, m^{2}, m^{2}\right)=s\left(s-4 m^{2}\right) \Rightarrow d \Phi^{(2)}=\frac{d \Omega^{*}}{32 \pi^{2}} \sqrt{\frac{s-4 m^{2}}{s}}$

n-BODY PHASE-SPACE

- Build sequentially. First combine m_{1} and m_{2}. Then combine m_{12} with m_{3}, \ldots
- k_{12} is the breakup momentum of m_{12}, etc.

Dalitz Plot

- 3-body decay of $M \rightarrow m_{1} m_{2} m_{3}$. Dalitz plot is m_{12}^{2} vs. m_{23}^{2}. Phase space is flat in these variables. $d \Phi \sim d m_{12}^{2} d m_{23}^{2}$.

Dalitz plot (cont.)

- Complicated patterns in the Daitz plan reveal multiple interfering (complex) amplitudes.
- 3-body decay of D^{-}meson (contains a charm quark) to the $K^{+} K^{-} \pi^{-}$final state.
- Can include "resonances" in both $\phi(1020) \rightarrow K^{+} K^{-}$and $K^{* 0}(892) \rightarrow K^{+} \pi^{-}$systems.
- Dalitz plot analysis can be used to study these components...

Kinematical Reflections/Shadows

> A Dalitz plot is a 2-D system
$>$ Fake mass peaks can appear in the projections due to kinematic

Temporary page!

LATEX was unable to guess the total number of pages correctl there was some unprocessed data that should have been add final page this extra page has been added to receive it. If you rerun the document (without altering it) this surplus go away, because $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ now knows how many pages to exped document.

