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Special relativity

Newton to Einstein: the problem of causality. Information can’t
be transferred instantaneously.

“Special”: no acceleration. “General”: acceleration ≡ gravity.

HEP can be thought of as the ultimate testbed for SR, since it’s
bread and butter for us (all particles relativistic).

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-kinematics.pdf

Biplab Dey (ELTE) Particle Physics January 9, 2024 2 / 1



Relativistic kinematics: Minkowski space

Relativistic theories are conveniently formulated in Minkowski space

Minkowski space = R4 + Minkowski (pseudo)metric

Euclidean space = R3 + Euclidean metric

Distance between points in E. space: d(~x, ~y) = (~x− ~y )2 = (~x− ~y )i(~x− ~y )jδij

Latin indices 1, . . . , 3, sum over repeated indices understood

Invariant under translations ~x→ ~x+ ~a and rotations ~x→ R~x

Point in Minkowski space (=event): Xµ, µ = 0, 1, 2, 3

Xµ = (ct, ~x) = (t, ~x)

In Minkowski space distances replaced by interval

∆s2 ≡ (X − Y )2 ≡ (X − Y )µ(X − Y )νgµν ≡ (X − Y )µ(X − Y )µ

= (X0 − Y 0)2 − ( ~X − ~Y )2

Minkowski metric tensor: gµν = diag(1,−1,−1,−1)
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Lorentz transformation in Minkowski space

Boost will shift the event along the hyperbolas in Minkowski space.
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The lightcone

Contravariant vectors: Xµ = (X0, ~X)
Covariant vectors: Xµ = gµνX

ν = (X0,− ~X)

Indices lowered by gµν and raised by gµν = diag(1,−1,−1,−1)
gµν defined by gµρgρν = δµν

Minkowski scalar product X · Y ≡ XµY νgµν = XµYµ = X0Y 0 − ~X · ~Y
~X · ~Y : three-dimensional Euclidean scalar product

Interval is not a distance because it is not positive-definite:

∆s2 > 0 timelike interval — X2 > 0 timelike vector

∆s2 < 0 spacelike interval — X2 < 0 spacelike vector

∆s2 = 0 lightlike or null interval — X2 = 0 lightlike or null vector
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The lightcone (contd.)

For a fixed event X

(Y −X)2 = 0, Y 0 −X0 > 0: forward (future) lightcone of X
(Y −X)2 = 0, Y 0 −X0 < 0: backward (past) lightcone of X
(Y −X)2 > 0, Y 0 −X0 > 0: future of X (inside future lightcone)
(Y −X)2 > 0, Y 0 −X0 < 0: past of X (inside past lightcone)
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Timelike vectors, X2 > 0

Causally connected. Can go to a frame where the two events occur
at the same point in space but at two times. Unique time ordering.

This special frame ∆t is called proper time. Eg. decay of an
unstable particle in the particle’s restframe.
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Spacelike vectors, X2 < 0

Can go to a frame where two events at the same time occur at two
places. But this simultaneity is frame-dependent. No unique
time-ordering.
Eg., virtual particles have spacelike 4-momentum
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Lorentz transformations

Principles of special relativity:

homogeneity and isotropy of space

equivalence of all inertial reference frames
= travelling at a relative constant speed

constancy of speed of light

⇒ equivalent frames are related by a Lorentz transformation X ′ = ΛX:
linear transformation that leaves every interval invariant

(X ′ − Y ′)2 = (X − Y )2 ∀X,Y
⇒ X ′ 2 + Y ′ 2 − 2X ′ · Y ′ = X2 + Y 2 − 2X · Y ∀X,Y

⇒ X ′ · Y ′ = X · Y ∀X,Y
In components X ′µ = ΛµαXα

gαβX
αY β = gµνX

′µY ′ν = gµνΛ
µ
αΛ

ν
βX

αY β ∀X,Y
=⇒ gαβ = gµνΛ

µ
αΛ

ν
β
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Lorentz transformations (contd.)

Using matrix notation Λµα = Λµα, gµν = gµν , g−1
µν = gµν = gµν

g = ΛTgΛ

(det Λ)2 = 1 ⇒ det Λ = ±1, Λ invertible

det Λ = 1: proper transformations, leave orientation of space
unchanged
det Λ = −1: improper transformations invert the orientation of
space

Λ−1 = g−1ΛTg still a Lorentz transformation

g = [ΛΛ−1]Tg[ΛΛ−1] = Λ−1T [ΛTgΛ]Λ−1 = Λ−1TgΛ−1

Λ−1
αβ = gαµΛνµgνβ = Λ α

β

From the α = 0, β = 0 component of the defining relation

1 = Λ0
0Λ

0
0 − Λi0Λi0 =⇒ Λ0

0Λ
0
0 = 1 + Λi0Λ

i
0 ≥ 1

Λ0
0 ≥ 1: orthochronous (does not change the sign of time)

Λ0
0 ≤ −1: non-orthochronous (changes the sign of time)

Biplab Dey (ELTE) Particle Physics January 9, 2024 10 / 1



Proper orthochronous Lorentz group

Proper orthochronous Lorentz transformations = three-dimensional
rotations (the SO(3) group) and boosts
Most general transformation: rotation × boost in x direction ×
rotation

Boost along x: Λµν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 β =
v

c
= v < 1

γ =
1√

1− β2

Boost in general direction ~n: rotate ~n to x, boost, rotate back

Coordinates in the new frame:

ct′ = γ(ct− βx) x′ = γ(x− βct)
y′ = y z′ = z

⇒ relates R to R′ moving with speed β in the negative x direction

Nonrelativistic limit β = v/c� 1 ⇒ Galilei transformations
ct′ = ct x′ = x− vt
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Full Lorentz group

Most general Lorentz transformation = proper orthochronous
transformation times P (parity), T (time reversal), or PT

Pµν = diag(1,−1,−1,−1) Tµν = diag(−1, 1, 1, 1)

detΛ = 1 detΛ = −1

Λ0
0 ≥ 1 proper orthochronous ⇒

P
improper orthochronous

⇓T ⇓T
Λ0

0 ≤ −1 proper non-orthochronous ⇒
P

improper non-orthochronous
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Rapidity and pseudorapidity

(
ct′

x′

)
=

[
cosh ζ − sinh ζ
− sinh ζ cosh ζ

](
ct
x

)

tanh ζ ≡ β. ζ = 1
2 ln E+|p|c

E−|p|c is called the rapidity for the boost.

Show that the transformation is eZζ where Z =

(
0 −1
−1 0

)
Use this to show that rapidities are additive for two subsequent
boosts.

At colliders, rapidity is y = 1
2 ln E+pL

E−pL , while pseudorapidity

η = 1
2 ln |p|+pL|p|−pL
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Rapidity and pseudorapidity (contd.)

.Pseudorapidity η = 1
2 ln |p|+pL|p|−pL = − ln [tan(θ/2)] is purely angular

term. Agrees with the usual rapidity definition in the limit
pT � m.

Colliders typically use ∆R ≡
√

(∆η)2 + (∆φ)2 as 3-d angular
separation between particles/jets.

pL = pT sinh η and |p| = pT cosh η
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Point particles: kinematics

Trajectory Xµ(t) of point particle; over infinitesimal dt,
Xµ → Xµ + dXµ

Xµ(t) = (ct, ~x(t)) = (t, ~x(t))

dXµ(t) = (dt, d~x(t)) = dt(1, d~xdt (t)) = dt(1, ~v(t))

Empirical fact: for massive particles ~v 2 < 1, for massless particles
~v 2 = 1

(dX)2 = dXµdXµ = dt2(1− ~v 2) ≥ 0 (timelike)
dXµ

dt (t) = (1, ~v(t))
dXµ

dt not a Lorentz vector: dXµ = vector, dt 6= scalar

Massive particle ~v 2 < 1: ∃ reference frame in which ~v = 0 (rest frame)

Xµ
rest(τ) = (τ,~0)

τ : proper time (time measured in the particle’s rest frame)

(dXrest)
2 = dτ2 = (dX)2 = dt2(1− ~v 2) = dt2

γ2

⇒ τ true scalar, Lorentz-invariant notion of time
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Point particles: kinematics (contd.)

Proper time:

dτ2 = dt2

γ2
⇒ |dt| > |dτ | (time-dilation effect)

determine the elapsed proper time by going over to the
instantaneous rest frame of the particle ⇒ twins’ paradox

τ =
∫
dτ =

∫ t
t0
dt′
√

1− ~v 2(t′) ≤ t− t0

true scalar ⇒ dnXµ

dτn are true vectors

Four-velocity

uµ ≡ dXµ

dτ = ( dtdτ ,
d~x
dτ ) = (γ, γ d~xdt ) = (γ, γ~v) = (γ, γ~β)

Four-momentum (vector uµ times scalar m)

pµ ≡ muµ = (γm, γm~β)

p0 = mγ =
m√

1− ~v 2
= E pi = mγ~β i =

m~v i√
1− ~v 2

= ~p i
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Point particles: four-momentum in the NR
limit

Do E, ~p match their non-relativistic definition when |~v|c �1?
Needs reinstating powers of c

p0 = mc 1√
1−(~vc )

2
= mc

(
1 + 1

2

(
~v
c

)2
+O((vc )4)

)
~p = mc

~v
c√

1−(~vc )
2

= m~v
(

1 +O((vc )2)
)

Second line ok, first line times c

p0c = mc2 + 1
2m~v

2 + . . . = E0 + ENR
K + . . .

⇒ NR kinetic energy ENR
K of a particle plus rest energy E0 = mc2

Biplab Dey (ELTE) Particle Physics January 9, 2024 17 / 1



Point particles: four-momentum for m 6= 0 and
m = 0

Massive particles: p2 = m2 > 0

pµ = mdXµ

dτ =
(
E
c , ~p

)
=
c=1

(E, ~p ) = (p0, ~p )

Mass = relativistic invariant

p2 = m2γ2(1− ~β 2) = m2 > 0 u2 = γ2(1− ~β 2) = 1
Trajectory always inside the forward lightcone

Any constant would do, but m is the constant such that total
momentum

∑
i pi =

∑
imiui of a system of particles is conserved

Also: correct NR limit of pµ=muµ

Energy-momentum relation is called dispersion relation

E2 = ~p 2 +m2

Massless particles: p2 = 0
pµ = (ω,~k)

0 = p2 = ω2 − ~k 2 ⇒ ω= |~k|≥0
Trajectory always on the lightcone
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Kinematics of 2-particle scattering

Two particle → two particle scattering process a b→ c d

Lab frame: one initial particle is at rest (= target)

pa = (EL, ~pL) pb = (mb, 0)

pc = (Ec, ~pc) pd = (Ed, ~pd)

Scattering angle θL in the lab: angle between trajectories of c and a

cos θL = ~pL·~pc
|~pL||~pc|

CM frame: vanishing total spatial momentum

pa = (E∗a, ~p
∗) pb = (E∗b ,−~p ∗)

pc = (E∗c , ~p
′∗) pd = (E∗d ,−~p ′∗)

Scattering angle θ∗ in the CM: angle formed by the trajectories of a
and c

cos θ∗ = ~p ∗·~p ′∗
|~p ∗||~p ′∗|

Total center of mass energy
√
s = Lorentz invariant

s = (pa + pb)
2 = (E∗a + E∗b )2 √

s = E∗a + E∗b = E∗c + E∗d
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Kinematics of 2-particle scattering (contd.)

LAB

pa = (EL, ~pL) pb = (mb, 0)

pc = (Ec, ~pc) pd = (Ed, ~pd)

CM

pa = (E∗a, ~p
∗) pb = (E∗b ,−~p ∗)

pc = (E∗c , ~p
′∗) pd = (E∗d ,−~p ′∗)
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Kinematics of 2-particle scattering (contd.)

pa + pb = pc + pd

Four-momentum conservation implies E∗c,d, |~p∗c,d| = |~p′∗|
determined uniquely in the CM, independent of θ∗

Ec,d, |~pc,d| and θL in the lab by Lorentz transf., depend on θ∗

pb = pc + pd − pa
p2
b = (pc + pd)

2 + p2
a − 2pa · (pc + pd)

m2
b = s+m2

a − 2E∗a
√
s

E∗a =
s+m2

a −m2
b

2
√
s

⇒
a↔b

E∗b =
s+m2

b −m2
a

2
√
s

CM energy squared s Lorentz invariant ⇒ E∗a from EL in the lab:

s = (pa+pb)
2 = m2

a+m2
b+2pa ·pb = m2

a+m2
b+2ELmb ⇒ EL =

s−m2
a−m

2
b

2mb

Exchanging a, b↔ c, d

E∗c =
s+m2

c −m2
d

2
√
s

E∗d =
s+m2

d −m2
c

2
√
s
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Kinematics of 2-particle scattering: CM

Center of mass energies:

E∗a =
s+m2

a −m2
b

2
√
s

E∗b =
s+m2

b −m2
a

2
√
s

E∗c =
s+m2

c −m2
d

2
√
s

E∗d =
s+m2

d −m2
c

2
√
s

Center of mass momentum magnitude |~p ∗|:

|~p ∗|2 = E∗2a −m2
a =

(s+m2
a−m2

b)
2−4sm2

a

4s =
s2+(m2

a−m2
b)

2−2s(m2
a+m2

b)
4s

=
(s−m2

a−m2
b)

2−4m2
am

2
b

4s = [s−(ma+mb)
2][s−(ma−mb)2]
4s =

λ(s,m2
a,m

2
b)

4s

|~p ′∗|2 = E∗2c −m2
c =

(s+m2
c−m2

d)2−4sm2
c

4s =
s2+(m2

c−m2
d)2−2s(m2

c+m
2
d)

4s

=
(s−m2

c−m2
d)2−4m2

cm
2
d

4s = [s−(mc+md)2][s−(mc−md)2]
4s =

λ(s,m2
c ,m

2
d)

4s

Källén function: λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx
Biplab Dey (ELTE) Particle Physics January 9, 2024 22 / 1



Kinematics of 2-particle scattering: lab

Lab kinematics recovered from CM kinematics

Given ~plab,CM, Elab,CM total spatial momentum/total energy in lab/CM

|~pCM| = 0 = γCM(|~plab| − βCMElab) = γCM(|~pL| − βCM(mb + EL))

=⇒ βCM =
|~pL|

EL +mb

Inverse Lorentz transformation from CM to lab

Ec,lab = γCM(E∗c + βCM|~p ′∗| cos θ∗) ,

|~pc,lab| cos θL = γCM(|~p ′∗| cos θ∗ + βCME
∗
c ) ,

|~pc,lab| sin θL = |~p ′∗| sin θ∗ ,

Transverse directions unaffected by Lorentz transformation, azimuthal
angle transforms trivially
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Example: proton-antiproton scattering

For pp̄ scattering in circular collider, Ep = Ep̄ = 270 GeV

⇒
√
s = 540 GeV

Let now p be at rest in the lab.

Q. What should be the energy EL of p̄ in the lab to obtain the same s?

A. CM energy square s is a relativistic invariant, can be evaluated in
any reference frame; in the lab

s = (pp + pp̄)
2 = 2(m2

p + ELmp) = 2mp(mp + EL)

Solve for EL and impose
√
s = 540 GeV (� mp)

EL =
s− 2m2

p

2mp
' s

2mp
' (540)2

2
GeV ' 30

2
· 104 GeV = 150 TeV (!!!)

In general total CM energy ECM '
√

2mpEL
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Mandelstam variables (cont.)

Convenient set of relativistic invariant variables for 2→ 2 scattering

s ≡ (pa + pb)
2 = (pc + pd)

2

t ≡ (pa − pc)2 = (pb − pd)2

u ≡ (pa − pd)2 = (pb − pc)2

Biplab Dey (ELTE) Particle Physics January 9, 2024 25 / 1



Mandelstam variables (cont.)

Convenient set of relativistic invariant variables for 2→ 2 scattering

s ≡ (pa + pb)
2 = (pc + pd)

2

t ≡ (pa − pc)2 = (pb − pd)2

u ≡ (pa − pd)2 = (pb − pc)2

s = total CM energy squared

t = square of four-momentum transfer from a to c

t = p2
a + p2

c − 2pa · pc = m2
a +m2

c − 2(E∗aE
∗
c − |~p ∗||~p ′∗| cos θ∗)

u = square of four-momentum transfer from a to d

u = p2
a + p2

d − 2pa · pd = m2
a +m2

d − 2(E∗aE
∗
d + |~p ∗||~p ′∗| cos θ∗)

u obtained from t after mc → md and cos θ∗ → − cos θ∗

Energies and magnitudes of momenta entirely determined by s and
particle masses ⇒ t = t(s, θ∗), or instead θ∗ = θ∗(s, t) and use s, t
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Mandelstam variables (contd.)

Only two independent Mandelstam variables:

s+ t+ u = (pa + pb)
2 + (pa − pc)2 + (pa − pd)2

= m2
a +m2

b +m2
c +m2

d + 2pa · (pa + pb − pc − pd)
= m2

a +m2
b +m2

c +m2
d

Bounds on Mandelstam variables determine physical region for s, t, u

s ≥ max((ma +mb)
2, (mc +md)

2)

t = (pa − pc)2 = m2
a +m2

c − 2pa · pc = 2(m2
a +m2

c)− (pa + pc)
2

≤ 2(m2
a +m2

c)− (ma +mc)
2 = (ma −mc)

2

Similarly using pb and pd; same approach for u

t ≤ min((ma −mc)
2, (mb −md)

2) u ≤ min((ma −md)
2, (mb −mc)

2)

Lower bound from this and t|u = m2
a +m2

b +m2
c +m2

d − s− u|t

t ≥ max(m2
b +m2

c + 2mamd,m
2
a +m2

d + 2mbmc)− s
u ≥ max(m2

a +m2
c + 2mbmd,m

2
b +m2

d + 2mamc)− s
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Mandelstam variables (contd.)

Simplification if ma = mb, mc = md ⇒ E∗a = E∗b = E∗c = E∗d =
√
s

2

t = m2
a +m2

c − s
2

(
1− cos θ∗

√
1− 4m2

a
s

√
1− 4m2

c
s

)
If also ma = mc ≡ m

t = 2m2 − s
2

(
1− cos θ∗

(
1− 4m2

s

))
= −

(
s− 4m2

)
sin2 θ∗

2

s ≥ 4m2 −
(
s− 4m2

)
≤ t ≤ 0

Upper limit: at threshold s = 4m2 or when θ∗ = 0 (fwd scatter)

Lower limit: when θ∗ = π (backscattering)

In this case u(s, θ∗) = t(s, π − θ∗) ⇒ same bound applies to u; role
of θ∗ = 0 and θ∗ = π exchanged

Relevant for

elastic processes involving only one type of particles/antiparticles

very high energy limit (masses negligible, particles ≈ massless)
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Example: proton-proton scattering

Elastic pp scattering,
√
s = 53 GeV

Differential cross section dσ
dt (t) has a peak at −t = t0 = 1.81 GeV2

E. Nagy et al., Nucl. Phys. B150 (1979) 221

Q. What is the corresponding scattering angle in the CM?

A. Elastic scattering of identical particles, s/m2
p � 1

−t = (s− 4m2
p) sin2 θ∗

2 ' s sin2 θ∗

2

sin2 θ∗

2 = − t
s−4m2

p
= 1.81

532−4·0.9382
= 1.81

2805 = 6.45 · 10−4

sin2 θ∗

2 '
(θ∗)2

4 =⇒ θ∗ ' 2
√

5 · 10−2 ' 5 · 10−2
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Mandelstam plane

Sides of eq. triangle: s = 0, t = 0 and u = 0 axes

For appropriate side length s+ t+ u = m2
a +m2

b +m2
c +m2

d

Physical region for the a+ b→ c+ d process (equal masses) =
wedge defined by the prolongation of the u and t axes
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Crossing symmetry

QFT result: scattering amplitudes for a+ b→ c+ d, a+ c̄→ b̄+ d,
a+ d̄→ c+ b̄ are part of a single analytic function extending beyond
physical momenta, and related to each other

Aab→cd(pa, pb; pc, pd)=Aac̄→b̄d(pa,−pc;−pb, pd)=Aad̄→cb̄(pa,−pd; pc,−pb)
Use Mandelstam variables

a+ b→ c+ d As(s, t, u) = Aab→cd(pa, pb; pc, pd) s-channel

a+ c̄→ b̄+ d At(st, tt, ut) = Aac̄→b̄d(pa, pc̄; pb̄, pd) t-channel

a+ d̄→ c+ b̄ Au(su, tu, uu) = Aad̄→cb̄(pa, pd̄; pc, pb̄) u-channel

s = (pa + pb)
2 t = (pa − pc)2 u = (pa − pd)2

st = (pa + pc̄)
2 tt = (pa − pb̄)2 ut = (pa − pd)2

su = (pa + pd̄)
2 tu = (pa − pc)2 uu = (pa − pb̄)2

Crossing-symmetry relations

As(s, t, u) = At(t, s, u) = Au(u, t, s)
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Crossing symmetry (contd.)

As(s, t, u) = At(t, s, u) = Au(u, t, s)

If s, t, u take physical values for
the s-channel process a b→ c d,
crossing relations involve At and
Au at unphysical values of their
arguments

Relations fully meaningful if As can be analytically continued
outside the physical domain

For equal masses, physical regions of At and Au are
st ≥ 4m2, tt ≤ 0 and su ≥ 4m2, tu ≤ 0, but t ≤ 0 and s ≥ 4m2

Physical regions = wedges outside Mandelstam triangle
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Invariant phase space

States of spinless particle, mass m are characterised by four-momenta pµ with
p2 = m2 and positive energy p0 ≥ m > 0

One-particle phase space:

{p ∈ R4|p2 −m2 = 0 , p0 > 0} ⊂ R4

Measure of infinitesimal element of phase space

dΦ(1) =
d4p

(2π)4
2πδ(p2 −m2)θ(p0)

Manifestly invariant under orthochronous Lorentz transformations:
p2 invariant, sign(p0) invariant under orthochronous transformations

Overall scale appropriate for relativistic normalisation of one-particle
states: 〈~p ′|~p 〉 = (2π)32p0δ(3)(~p ′ − ~p )
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Invariant phase space (contd.)

Recast dΦ(1) in more convenient form: for any f with simple zeros {xn}

δ(f(x)) =
∑

xn,f(xn)=0

1

|f ′(xn)|
δ(x− xn)

multiply both sides by some function h(x), integrate over R, show
that one gets the same result
divide R = (−∞,+∞) = ∪kIk with f(x) monotonic in Ik
⇒ f invertible in Ik and vanishes at most once (|f ′| 6= 0 there)
set y = f(x)→ x = f−1(y) in each Ik∫ +∞

−∞
dx δ(f(x))h(x) =

∑
k

∫
Ik

dx δ(f(x))h(x)

=
∑
k

∫
f(Ik)

dy
1

|f ′(f−1(y))|
δ(y)h(f−1(y))

=
∑
k

∫
0∈f(Ik)

dy
1

|f ′(f−1(0))|
δ(y)h(f−1(0)) =

∑
n

1

|f ′(xn)|
h(xn)
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Invariant phase space (contd.)

dΦ(1) =
d4p

(2π)3
δ(p2 −m2)θ(p0) =

d4p

(2π)3
δ(p0 2 − ~p 2 −m2)θ(p0)

=
d4p

(2π)3

1

2|p0|
[
δ(p0 − ε(~p )) + δ(p0 + ε(~p ))

]
θ(p0)

=
d4p

(2π)3

1

2ε(~p )
δ(p0 − ε(~p ))θ(p0) =

d3p

(2π)32ε(~p )
≡ dΩp

ε(~p ) ≡
√
~p 2 +m2

n-particle phase space ⊂ R4n corresponding to four-momenta of n
particles subjected to a constraint on the total four-momentum
Measure of infinitesimal element:

dΦ(n) =
∏n
j=1 dΩpj (2π)4δ(4)

(
ptot −

∑n
j=1 pj

)
Lorentz invariant: dΩpj Lorentz invariant

δ(4)(ΛP ) = |detΛ|−1δ(4)(P ) = δ(4)(P )
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Invariant phase space: 2-particle case

Total momentum ptot = (Etot, ~ptot), particle energies

εi(~p ) =
√
~p 2 +m2

i

dΦ(2) =
d3p1

(2π)32ε1(~p1 )

d3p2

(2π)32ε2(~p2 )
(2π)4δ(4)(ptot − p1−p2)

=
1

(2π)2

d3p1

2ε1(~p1 )

d3p2

2ε2(~p2 )
δ(3)(~ptot−~p1−~p2)δ(Etot−ε1(~p1 )−ε2(~p2 ))

Integrate trivially over ~p2, setting it equal to ~p2 = ~ptot − ~p1

dΦ(2) =
1

(2π)2

d3p1

2ε1(~p1 )

1

2ε2(~ptot − ~p1 )
δ(Etot − ε1(~p1 )− ε2(~ptot − ~p1 ))

To further integrate over |~p1| requires changing variables, most easily
done working in the CM

~ptot,CM = 0⇒ ~p1 CM = −~p2 CM, |~p1 CM| = |~p2 CM| = p

Dropping “CM” in the following
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Invariant phase space: 2-particle case (contd.)

Delta function depends on Etot − ε1(p)− ε2(p)
Dropped vector sign on ±~p∣∣∣ ∆E

∆Ep
[Etot−ε1(p)−ε2(p)]

∣∣∣ =

[
p

ε1(p)
+

p

ε2(p)

]
=

p

ε1(p)ε2(p)
[ε1(p)+ε2(p)]

Changing variables to d3p1 = dpp2d cos θ∗dφ∗ = dpp2dΩ∗

dΦ(2) =
1

(2π)2

dpp2dΩ∗

2ε1(p)

1

2ε2(p)

ε1(p)ε2(p)

p
[ε1(p) + ε2(p)]

−1
δ(p− p∗)︸ ︷︷ ︸

δ(Etot−ε1(p)−ε2(p))

=
dΩ∗

(2π)2

p∗

4(ε1(p∗) + ε2(p∗))
=

dΩ∗

(2π)2

p∗

4E∗tot

=
dΩ∗

16π2

p∗√
s

=
dΩ∗

32π2

√
λ(s,m2

1,m
2
2)

s

For equal masses λ(s,m2,m2) = s(s− 4m2)⇒ dΦ(2) = dΩ∗

32π2

√
s−4m2

s
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n-body phase-space

.

.

.

Build sequentially. First combine m1 and m2. Then combine m12

with m3, ...

k12 is the breakup momentum of m12, etc.
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Dalitz plot

3-body decay of M → m1m2m3. Dalitz plot is m2
12 vs. m2

23. Phase
space is flat in these variables. dΦ ∼ dm2

12dm
2
23.
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Dalitz plot (cont.)

Complicated patterns in the Daitz plan reveal multiple interfering
(complex) amplitudes.

3-body decay of D− meson (contains a charm quark) to the
K+K−π− final state.

Can include “resonances” in both φ(1020)→ K+K− and
K∗0(892)→ K+π− systems.

Dalitz plot analysis can be used to study these components...
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