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Elementary particle processes: decays

Elementary processes are of two types: decays and scattering.

Stable particles: proton, electron, neutrinos, photon

All other hadrons and leptons, W±/Z,
and Higgs, decay, i.e., “break up” in
various ways yielding ultimately stable
particles.

.

.

.

Quasi-stable final states, as far as particle detection goes: π±,K±,
µ±

These show up as charged tracks in trackers, but left alone long
enough, they will ultimately undergo weak decay.

Q: check what are the allowed decays for π±,K±, µ± ?

Biplab Dey (ELTE) Particle Physics October 9, 2023 2 / 44



Lifetime

Typical life span of unstable particles:

Half-life, t 1
2
: time in which half of a large sample of unstable

particles of some type decays. Proper lifetime, τ = t 1
2
/ ln 2

Empirically, decay rate (prob. of decay/unit time/particle) is
t-independent

dP = Γdt
dP : probability for a particle to decay over infinitesimal time interval dt

Γ =
∑

i Γi: total decay width, time-independent total decay rate
Γi: partial decay width, decay rate in channel i

Particles decay independently from each other, sample size N(t) obeys

dN(t) = −ΓN(t)dt⇒ N(t) = N(0)e−Γt = N(0)e−
t
τ , τ ≡ Γ−1

Γi/Γ: branching ratio (or fraction) of channel i (relative probability
that the decay will take place through channel i)
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Partial widths

The Particle Data Group (PDG) lists the known decay modes and
their partial widths.

Shown below for the Λ(1115) strange baryon (link):
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https://pdglive.lbl.gov/Particle.action?init=0&node=S018&home=BXXX020


Typical lifetimes

Fundamental particles have a wide range of lifetimes. The proton
lifetime is > age of the universe!

Note: only proper lifetime (τ) is really meaningful. That is, the
lifetime in the particle’s rest frame.
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Typical lifetimes (cntd.)

particle main decay mode lifetime

µ− µ− → e−νµν̄e 2.2 · 10−6s
n n→ pe−ν̄e 8.8 · 102s
p ?? > age of Universe
π+ π+ → µ+νµ 2.6 · 10−8s
π0 π0 → γγ 8.4 · 10−17s
∆0 ∆0 → pπ−, nπ0 5.6 · 10−24s

Long lifetimes: weak coupling or some sort of suppression
(phase-space, Cabibbo, GIM).

EM decays have intermediate lifetimes

Strongly decaying particles have shortest lifetimes and therefore
largest decay widths.
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Lineshapes

Particles don’t have a mass per se, but lineshapes.

Uncertainty principle: lifetime ∝ 1/decay-width

Broad resonance: ρ0(770)→ π+π−: M0 ∼ 770 MeV, Γ0 ∼ 145
MeV.
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Lineshapes (contd.)

Experimentally, what we see are often much more complicated.

Two hadronic resonances “mixing” while decaying to π+π−.

Lineshapes reveal underlying dynamics.

Q: check the properties of the ρ0 and ω0 mesons in PDG
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Elementary particle processes: scattering

High energy collisions are our main tool to produce new heavy
particles. Different colliders for different purposes.

Highest energy collisions today are at the
LHC: two proton beams at 7 TeV.

Fixed-target and beam-dump
experiments: high intensity
photon/proton/pion/kaon beam on
proton target

.

.

.

SuperKEKB (Japan): e+e− collisions at precisely 10.58 GeV mass
to produce only a B-meson pair. Clean environment.

LBNF (Fermilab): protons on graphite → pions → muons +
neutrinos. Intense neutrino beam!
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Collisions to particle detectors

Infer interesting physics from end products.

Detector’s job is to identify and measure energy/momentum of
final state particles (stuff the detector “sees”): charged tracks (π±,
K±, e±, p±, µ±), photons and may be neutrons.

Detector interaction will be non-invasive (charged trackers) or
absorbing (neutral calorimeters)?
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Modern particle detectors: “onion layers”

Collision point cocooned inside layers of detectors.

CMS detector at the LHC:
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Slicing the “onion”

Slice of the CMS detector at the LHC:

Sequence of the onion shells have to be carefully planned: trackers
come first...muon chambers last.
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Early detectors: human eye

The most obvious one. Sensitive and versatile photodetector.

Can’t measure the energy and works only at low rates.
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Early detectors: photo plates

X-rays discovered by
Roentgen in 1895.

AgBr/AgCl + energy
⇒ metallic (black)
silver.

Image era: photographs in cloud chambers, emulsions, bubble
chambers. First 30 odd particles discovered this way.
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Cosmic rays as particle source

How to produce new particles when we did not have accelerators?
Cosmics are high;y energetic particles showering through the
atmosphere. Mostly muons at sea level.
Extremely useful source of “free” muons even today.
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Cosmic rays as particle source (cntd.)
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Wilson’ cloud chamber

Super-saturated water vapour. Charged particles traversing
condense the vapour, leaving a trail.

CTR Wilson discovered in 1911. Clean images led to many
discoveries. Nobel Prize in 1927.

Biplab Dey (ELTE) Particle Physics October 9, 2023 17 / 44



Wilson’ cloud chamber (cntd.)

First tracking detector: magnetic could chamber.

Bending tells you the charge ⇒ discovery of antielectron.

Hard to make larger detectors for more penetrating tracks.
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Glaser’s Bubble Chamber (1952)

Same idea, replace medium with superheated liquid (H2, D2).
Charged particles leave tracks of bubbles as liquid boils. Nobel
prize in 1960.

Larger volumes, sharper images and can be reset quickly.

CERN bubble chamber, used to study weak
decays in the ’70’s.

Superconducting solenoidal magnet to bend
tracks. Millions of photos!
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Image era to electronics era: triggers

Bubble chambers could provide ∼ 5µm track resolutions and full
4π hermetic acceptance. But impossibly slow rates (few Hz).

No concept of trigger (selectively retain events) ⇒ mandatory at
LHC rates (> 109 Hz).

Need electronic trigger logic. Since ’70’s, Geiger counters,
scintillators+photomultipliers, spark chambers...
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Trigger: physics in a heartbeat

e+e− colliders (BaBar/Belle): every collision is clean signal.
Detector records (almost) everything.

Hadron colliders (LHC): huge rates, but mostly uninteresting
events. Triggering is key. Need to decide which events to write out
to tape...
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Detector acceptance

Acceptance (or efficiency) = Nreconstructed/Nincident

Uninstrumented regions (holes): invariably lead to loss of
acceptance (c.f. bubble chambers).

Can also be due to geometry (motivated by physics):

Must recover back the full acceptance: simulation of the detector
geometry/material + physics processes (Geant4 toolkit) key.
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Typical signatures of particles

Neutrino ⇒ missing energy @ colliders.
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Typical signatures of particles (cntd.)

Neutral photons leave no hits in the SPD (scintillating pad
detector). Enables separation between EM clusters due to photons
from electrons.
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Charged particle interactions

(Multiple) elastic scattering in the detector material. Nuisance
mostly – degrades resolutions.

Ionisation of electrons inside material atoms producing minuscule
currents that have to be amplified. Basis of tracking detectors
(silicon, drift chambers).

Photon emission:

Bremsstrahlung: fast particles (especially electrons) loses energy by
radiation due to interaction with nuclei. Major problem for electron
tracking, compared to muons.
Cherenkov radiation: charged particle travelling in dense medium a
speeds greater that speed of light in the medium, emits cone of
light. Used for K/π/p separation.
Scintillation light: optical photons emitted (plastic or inorganic)
that are read out and amplified. Fiber trackers, calorimeter
readouts.
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〈dE/dx〉 and Bethe-Bloch

Energy loss by ionisation for m ≥ mµ given by Bethe-Bloch:

Material effectively described by Z/A (Z is atomic number, A is
atomic mass)

Loss is ∝ 1/β2, β = v/c. If the momentum is known (from
tracking), 〈dE/dx〉 gives the mass.

PID: particle identification.
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〈dE/dx〉 dependence on momentum

MIP: minimum ionising particle (relativistic).
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〈dE/dx〉 dependence on Z/A
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〈dE/dx〉 for PID

〈dE/dx〉 measurements from the BaBar drift chambers

Several sub-detectors contribute to multivariate PID
discriminator. In particular, Cherenkov (RICH) detectors...
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Ring Imaging CHerenkov detectors

Just like sonic boom. n is the refractive index of the medium.

Cone angle produces rings, for different momenta.
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RICH PID in action...
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The Silicon revolution

Silicon trackers: Indispensable in almost any modern particle
detector today.

Huge improvements, closely tied to the semi-conductor industry

Cost-effective, high granularity (pixels, microstrips), high
resolution (µm), radiation-hard, low material budget: effectively
the only solution close to the collision point.

Cons: needs cooling (often < −40◦ C), and gets expensive for very
large areas. Large number of readout channels (107 at
ATLAS/CMS Si trackers).
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Precision vertexing

VeLo sits just 7 mm away from the LHC beam! Femtosecond
decay-time resolution
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Silicon technology

Silicon is a semiconductor and can be doped. p-type and n-type.
p-n junction is depleted of charge carriers.

Reverse bias (p-type to −, and n-type to +) further increases this
depletion region.

Ionization due to charged particle creates e−-h+ pairs and a
current (3.6 eV/pair, 80 pairs/µm).
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Towards the future: timing info (LGAD)

High-luminosity LHC: pp bunch crossing every 25 ns. Pileup
(interactions/bunch crossing) > 200.

Just high spatial granularity won’t do: primary vertices (pp
collision point) are also separated in time. Need O(20)ps res.

Biplab Dey (ELTE) Particle Physics October 9, 2023 35 / 44



Calorimeters

Till now we wanted the detector material to be as less invasive as
possible, to limit loss of resolution.

Calorimeters: opposite. Ensure that all the energy is absorbed
(and measured) inside detector. Resolution improves with energy.

σE
E

=
a√
E
⊗ b

E
⊗ c

a: σE
E ∼ 1/

√
n ∼ 1/

√
E. Stochastic term, intrinsic property. For

sampling calorimeters, 5-20%.

b: noise term. Electronic noise from readout chain ∼ 1%.

c: constant term. Non-uniformities in the material/readout.

Note: energy resolution (σE) improves with energy, unlike trackers
where the momentum resolution is poorer at high momentum.
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shower propagation: ECAL and HCAL

Shower shape: photon/electron (EM, ECal) vs proton/pion/kaon
(nuclear, HCAL). Different calorimeters to “catch” the particles.
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Radiation length for EM showers

Dominant processes at high
energies. σpair

γ = 7/9σbrem
e .

σpair
γ = 7/9σbrem

e

≈ 7

9
4αr2eZ

2 ln
183

Z1/3
=

7

9

A

NAX0

Brem energy loss: E = E0e
−x/X0 . X0 ∼ 180A/Z2 [g/cm−2]

High Z material for EM calorimetery. For Pb, X0 ∼ 5.6 mm.

Critical energy Ec: bream + pair prod
dominates E > Ec. Below, ionisation,
Compton eff. and photo el. eff.

Ec = 610/(Z + 1.24) MeV. For Pb,
Ec = 7.3 MeV.
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Shower propagation and shapes

Depth is in units of X0

Longitudinal: tmax = lnE0/Ec
ln2 where

the profile peaks.

Transverse size given by
RM = 21MeV

Ec
X0.

Smaller RM is preferred ⇒ compact
showers

Radial shower containment:
90%(95%) at RM (2RM )
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Examples of calorimeters: homogenous

Primarily two types: homogenous and sampling.

Homogenous detector: single medium, both absorber and detector.
Entire energy absorbed. Excellent resolutions.

Liq. Ar/Xe/Kr. Dense crystals (PbWO4, CsI(TI)), or organic
scintillators.

CMS PbWO4

Almost entirely for ECal.

3-d shower profile not
accessible (important for
shower effective position).
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Examples of calorimeters: sampling type

LHCb ECal

Sandwich absorbers
(Pb/W/Cu) by active
detectors like scintillators

Poorer resolutions since only
part of the full energy
sampled.

Used in both ECal and HCal.

Rule of thumb: at least 25X0

thick absorbers needed.
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Nuclear interaction length

Similar to X0, but for hadronic interactions, nuclear interaction
length, λn ∼ A1/3.

For the same material, λn > 6X0. Therefore, hadronic showers
start much later, than EM showers.

Typically > 9λn of material to fully contain the showers. HCal’s
are always sampling type.
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LHCb ECal/HCal comparison

Schematic comparison between ECal/HCal at the LHCb
experiment:
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Next paradigm: 5d calorimetry

At HiLumi-LHC, tracker + calorimeter + timing: detailed jet
reconstruction.
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