Particle physics: lecture 1

Biplab Dey

Eötvös Loránd University (ELTE) 13^{th} September 2022

Biplab Dey (ELTE)

Particle Physics

13th Sept. 2022 1 / 30

LECTURER AND COORDINATES

- I am a high energy particle experimentalist working at the Large Hadron Collider (LHC) at CERN, near Geneva.
- Email: biplab.dey@ttk.elte.hu
- Office: Dept. of Atomic Physics, 3.81

Schedule and references

• Course page:

http://bodri.elte.hu/~giordano/partphys/index.html

• This week's schedule:

- Lecture 1 (13th Sept): introduction to elementary particles
- Lecture 2 (15th Sept): introduction to particle detectors
- Lecture 3 (16th Sept): relativistic kinematics and exercises
- Introductory books:
 - D. Griffiths, Introduction to Elementary Particles
 - D. H. Perkins, Introduction to High Energy Physics

WHAT IS ELEMENTARY PARTICLE PHYSICS?

- Fundamental/indivisible constituents of matter.
- Understand their interactions \Rightarrow biology, chemistry (in principle!).

Biplab Dey (ELTE)

Particle Physics

Scales and elementarity

- What is "elementary" depends on the energy/length scale you are probing. Uncertainty principle: $\Delta x \sim \hbar/\Delta p$
 - Newtonian planetary motion: earth is point-like
 - Nuclear physics (NP): protons and neutrons
 - High energy physics (HEP): quarks and leptons (no known sub-structure yet)
- We will revisit the concept of effective-elementarity/range-of-interaction/degrees-of-freedom several times during this course.
- Nice website for a perspective: https://scaleofuniverse.com

NATURAL UNITS

• In HEP, it's convenient to use *natural units*, that set the values of physical constants to unity:

$$\hbar=c=\varepsilon_0=k=1$$

- Redefine all other units in terms of energy.
- Electron volt (eV): energy acquired by an electron accelerated over a potential of 1V. (MeV, GeV, TeV, ...).
- Mass and momentum $\propto E \ (E = mc^2)$.
- Length and time $\propto E^{-1}$ $(E = h\nu)$.

NATURAL UNITS (CONT.)

- Connection with SI units: $\hbar c \sim 197$ MeV-fm.
- 1 Fermi (proton radius) ~ 10^{-15} m ~ $\frac{1}{5}$ GeV⁻¹.
- Proton/neutron masses ~ 1 GeV.
- Electron mass is ~ 0.5 MeV.
- Charge (Coulomb) is redefined by choosing $\varepsilon_0 = 1$.
- Fine-structure constant $\alpha = \frac{1}{137} = \frac{e^2}{4\pi\varepsilon_0\hbar c} = \frac{e^2}{4\pi}$. Charge is dimensionless $(e = \sqrt{4\pi\alpha} \sim 0.3)$.
- Temperature: kT = E (Boltzmann const.). 1 GeV ~ 1.16×10^{16} K.

BRIEF HISTORY: BIRTH OF PARTICLE PHYSICS

- What are we made of: a philosophical question for the ages.
- First scientific breakthrough was early 19th century chemist, John Dalton's "law of multiple proportions".
- One unit carbon and one unit oxygen makes CO. Two units of oxygen makes CO₂, ... theory of atoms ("indivisible" in Greek).

PERIODIC TABLE

• Mendelev's periodic table (1869): each element has an integral atomic number (Z) and non-integral atomic weight (A).

• Pattern linked to the fact that atoms are very much "divisible", with internal structure.

Biplab Dey (ELTE)

Particle Physics

ELECTRON: FIRST SUB-ATOMIC PARTICLE

- Using perpendicular crossed electric and magnetic fields, tuned so that the stream was undeflected, v/c = E/B
- From the deflection in the presence of the electric field only, determined their charge-to-mass ratio
- Further, m/e less than thousand times smaller than hydrogen ions.

INSIDE THE NUCLEUS

- 1908-1917: proton (p), E. Rutherford, H. Geiger, E. Marsden et al.
- planetary model of the atom: electrons orbiting around a positively charged *nucleus* containing almost all the mass
- each positive charge = one hydrogen nucleus = proton
- 1932: neutron(n), J. Chadwick
- mismatch between mass and charge of the nucleus
- fixed by neutron: neutral but essentially same mass as proton

Biplab Dey (ELTE)

Particle Physics

13th Sept. 2022

1905: photons (γ) , M. Planck, A. Einstein, et al.

- In subatomic processes, EM radiation comprises neutral, massless particles.
- Birth of quantum theory: $E \propto$ radiation frequency (photons)
- Only way to explain photoelectric effect (Einstein, 1905) and the scattering of light on particles at rest (Compton, 1926)
- *EM interaction* \sim exchange of a stream of photons between electrically charged objects.

STRONG INTERACTIONS: π -MESON OR PION

• Recall: Rutherford's gold-foil experiments showed a densely packed nuclear core.

Q. How do protons (and neutrons) stay together in nuclei?A. *Strong interaction*: strong (overcome EM repulsion among protons), short-ranged (no macroscopic effects)

1934, H. Yukawa: strong interaction mediated by a new particle – the π -meson – in analogy with EM and the photon

- proton and neutron \in baryons; baryons and mesons \in hadrons
- estimate of mass from range of force $\sim 1/6$ of proton mass

1936: new particle, right mass found in cosmic rays by Anderson & Neddermeyer...but *not* Yukawa's meson!...

MUONS: "WHO ORDERED THAT?"

1946-47 Powell, Lattes, Occhialini: two new particles in cosmic rays

- heavier one, shorter lifetime, disintegrated almost entirely in the upper atmosphere the *pion* (π) , the true Yukawa meson
- lighter one, longer lifetime, originally identified with the meson but interacts little with nuclei the muon (μ) , into which the pion decays
- muon was not expected (I. Rabi: "Who ordered that?"): sort of heavier electron, grouped with it in the family of *leptons*

ANTIPARTICLES

Theory:

1928-1931, P. A. M. Dirac: relativistic quantum mechanics predicts that to each particle corresponds its *antiparticle*: same mass but opposite electrical (and other) charge(s). 1928-1931, W. Pauli: AHAHAHAH LOL

Experiment:

- 1932: positron, C. D. Anderson
- 1955: antiproton, E. Segrè & O. Chamberlain
- 1955: antineutron, B. Cork

Some particles, like the photon, are their own antiparticles; electric neutrality is however a necessary but not sufficient condition

WEAK DECAYS: THE GHOSTLY NEUTRINO(S)

- Unstable nuclei undergo radioactive β -decay: $n \to p + e^{-}(+X)$.
- Problem was, this seemed to break momentum conservation.
- W. Pauli in 1930: additional neutral, very weakly interacting, almost massless particle is also emitted \Rightarrow neutrino.
- Very hard to detect. 1956 Reines & Cowan: first observation
- 1950s-1960s: several experiments show
 - neutrino $(\nu) \neq$ antineutrino $(\bar{\nu})$
 - two types of neutrinos, one corresponding to the electron (ν_e) , one corresponding to the muon (ν_{μ}) , and respective antineutrinos $(\bar{\nu}_e, \bar{\nu}_{\mu})$

STRANGENESS AND THE HADRON "ZOO"

1947: kaon (K), G. D. Rochester & C. C. Butler

- Hadron of the meson subfamily, mass intermediate between π and p
- "Strange" particle: created via strong interactions, decays slowly via weak interactions
- pre-1960: Hundreds of strongly interacting hadrons (strange and non-strange) found experimentally in the following years: the hadron "zoo"
- Clear that they were not all elementary, but underlying pattern unclear.

THE QUARK MODEL

1964, Gell-Mann, Zweig: quark model

- Mesons and baryons not elementary but bound states of *quarks* and antiquarks - "more fundamental" particles
 - meson = quark+antiquark,
 - baryon = three quarks, antibaryon = three antiquarks
- spectra, predicts the Ω^- baryon (obs. 1964).

• Quarks as real objects (and not just a model) accepted only after discovery of the fourth quark: 1974, J/ψ meson and *charm* quark (c), B. Richter et al.; S. Ting et al.

Biplab Dey (ELTE)

Particle Physics

The Standard Model: matter

From here on:

- 1975: tau lepton (τ) , M. Perl *et al.*, corresponding neutrino immediately theorised
- 1977: *bottom* or *beauty* quark (b), L. Lederman *et al.*, sixth quark immediately theorised
- 1995: top or truth (t) quark, CDF and DØ experiments at Fermilab
- 2000: ν_{τ} , DONUT experiment at Fermilab

Six quarks, six leptons and corresponding antiparticles = matter particles

The Standard Model: interactions

Weak and strong interactions modeled like the photon for EM.

- Mediator role of pion taken over by *gluons* (g), interactions described by Quantum Chromodynamics (QCD)
- Weak interactions mediated by *intermediate vector bosons*: W (charged) and Z (neutral), (1983, UA1 and UA2 experiments at CERN)
- Remaining problems fixed by *Higgs boson* (H), (2012, ATLAS and CMS experiments at CERN)
- Weak interactions unified with EM: Glashow-Salam-Weinberg model
- GSW+QCD= *Standard Model* of particle physics

SPIN AND PARITY

- What properties uniquely identify particles both elementary (electron) or composite (proton).
- Mass, type of interaction (strong, weak, EM) and charge
- + need several other "quantum numbers", in particular spin and parity. Lead to selection rules for decays.

SPIN AND PARITY

- Spin (\vec{S}) : rotational symmetry; Parity (P): mirror symmetry.
- Note: weak interaction breaks parity symmetry. Strong interaction preserves parity.
- Half-integer spin particles are called fermions (quarks + leptons).
- Spin-statistic theorem, 1940, W. Pauli: no two identical fermions can occupy the same quantum state. Holds up neutrons stars.
- Integer-spin particles are called bosons (photons). Identical particles can form Bose-Einstein Condensates.

• Other than gravity (a big problem!)...SM includes everything we currently understand about Nature.

MATTER PARTICLES: FLAVOR SECTOR

- All spin- $\frac{1}{2}$ fermions: quarks (interact strongly) and leptons (e, μ, τ) and neutrinos, do not interact strongly)
- $\bullet\,$ To each particle \rightarrow antiparticle with same mass and spin, and
 - opposite charge for charged particles (quarks, e, μ, τ)
 - opposite helicities (spin component in the direction of motion) for ν
- Three families (or generations): hierarchical from lighter to heavier $[(u, d); (e, \nu_e)], [(c, s); (\mu, \nu_\mu)], [(t, b); (\tau, \nu_\tau)]$
- Masses span five orders of magnitude: $m_e = 0.5$ MeV, $m_t = 170$ MeV (and possibly more, since m_{ν} are small but yet unknown)
- Understanding *why* we have this structure: "flavor problem"

INTERACTION PARTICLES: GAUGE SECTOR

- All spin-1 bosons
- photon, γ : $m_{\gamma} = 0$, electrically neutral (i.e., it does not self-interact); mediates the electromagnetic interactions
- IVB, W[±] and Z: m ≠ 0, Ws electrically charged while Z neutral; mediate the weak interactions;
- gluons, $g: m_g = 0$, electrically neutral; mediate the strong interactions
- IVB interact with each other and self-interact; g interact with each other and self-interact; IVB and g do not interact with each other

Bonus particle: Higgs boson ${\cal H}$

- spin 0, massive, electrically neutral
- essentially provides mass to all other elementary particles
- interacts with IVB but not with the photon or with the gluons (hence these are massless)

 $Graviton \ (G):$ hypothetical quantum of gravitational interactions, not observed yet

Particle Physics

13th Sept. 2022

22 25 / 30

Building up hadronic matter

- Quarks are coloured objects. So $|u\rangle \Rightarrow |u\rangle + |u\rangle + |u\rangle$.
- Color confinement: stable objects (hadrons) are colour neutral. We never see free quarks in Nature.
- Note: antiquarks have opposite colour and parity, as quarks. Quark-antiquark \Rightarrow colorless.
- Multi-particle system also has an orbital angular momentum (\vec{L}) .
- Total angular momentum $\vec{J} = \vec{L} + \vec{S}$.
- All hadrons will have some value of J^P that identifies it.

BUILDING UP HADRONS: MESONS

 $\mathrm{Meson}\approx q\bar{q}$

- lightest mesons (also lightest hadrons): pions π^-, π^0, π^+
 - $m_{\pi} \approx 140 \text{ MeV} (m_{\pi^0} < m_{\pi^{\pm}})$
 - built from lightest quarks and antiquarks: u, d, \bar{u} and d
 - bound states with total quark spin $S_q = 0$ and orbital angular momentum $L_q = 0 \rightarrow$ pion spin J = 0
- meson state depends on S_q and L_q of $q\bar{q}$, so same quark content \implies same meson
 - ρ mesons have the same quark content of the pions, but in a combination with $S_q = 1$ and $L_q = 0 \rightarrow \rho$ spin J = 1
- meson state depends on quark content
 - kaons K (contain a strange quark)
 - $J/\psi~(|c\bar{c}\rangle$ state)

Building up hadrons: baryons

Baryon $\approx qqq$

- lightest baryons: proton (*uud*), neutron (*udd*)
 - $m_{p,n} \approx 1$ GeV, $m_n > m_p$, with $|m_n m_p|/m_p \ll 1$
 - n decays into p via β decay, p is stable
- p is stable since lightest baryon: *baryon number* (number of baryons minus number of antibaryons) is conserved, p cannot decay into anything \rightarrow stability of ordinary matter
- no conserved meson number; in fact, even the pion is not stable and decays (mostly) into a muon and a muonic antineutrino
- heavier baryons exist with the same quark content but in different spin/orbital angular momentum states, and/or with different quark content
 - Δ^+ and Δ^0 have same quark content as p and n but $J = \frac{3}{2}$
 - $\Lambda = |uds\rangle$

meson	quark content	$_{\rm spin}$	charge	mass
π^+	$u \bar{d}$	0	+1	$135 \mathrm{MeV}$
π^{-}	$dar{u}$	0	-1	$140 \mathrm{MeV}$
π^0	$uar{u}, dar{d}$	0	0	$140 \mathrm{MeV}$
ρ^+	$u ar{d}$	1	+1	$775 \mathrm{MeV}$
ρ^{-}	$dar{u}$	1	$^{-1}$	$775 \mathrm{MeV}$
$ ho^0$	$uar{u}, dar{d}$	1	0	$775 \mathrm{MeV}$
K^+	$u\bar{s}$	0	+1	$494 \mathrm{MeV}$
K^{-}	$sar{u}$	0	-1	$494 \mathrm{MeV}$
K^0	$d\bar{s}$	0	0	$498 \mathrm{MeV}$
\bar{K}^0	$sar{d}$	0	0	$498 \mathrm{MeV}$
J/ψ	$c\bar{c}$	1	0	$3.1 \mathrm{GeV}$
barvon	quark content	spin	charge	mass
p	uud	<u>1</u>	+1	0.938GeV
n	udd	$\frac{1}{2}$	$^{+1}$	$0.940 \mathrm{GeV}$
Δ^+	uud	$\frac{\frac{2}{3}}{2}$	+1	$1.232 \mathrm{GeV}$
Δ^0	udd	$\frac{3}{2}$	+1	$1.232 \mathrm{GeV}$
Λ	uds	$\frac{1}{2}$	0	$1.1 \mathrm{GeV}$
LTE)	Particle Physics			13^{th} Sept.

Biplab Dey (ELTE)

PARTICLE DATA GROUP (PDG)

• Most up-do-date reference: https://pdglive.lbl.gov

Gauge & Higgs Bosons reviews	Leptons revie	A3 Quarks reviews
γ gluon graviton W Z R^0 Neutral Higgs Bosons, Searches for Charged Higgs Bosons $(H^\pm, H^{\pm\pm})$ Heavy Bosons Axions	e μ τ Heavy Charged Lepton Neutrino Properties Number of Neutrino Types Double β-Decay Neutrino Mixing Heavy Neutral Leptons	Light quarks (u, d, a) c b t Y F Free quark
Mesons reviews	Baryons rovie	v3 Other Searches reviews
Light Unflavored Strange Charmed	NBaryons A Baryons	Magnetic Monopole Supersymmetric Particles
Charmed, Strange (incl. possibly non-qq states) Bottom Bottom, Strange Bottom, Charmed cc fincl nossibly non-qq states)	A baryons ∑ Baryons ⊆ Baryons Ø Baryons Charmed Baryons Double-Charmed	Technicolor Quark and Lepton Compositeness Extra Dimensions WIMPs Other Particle Searches

Biplab Dey (ELTE)

Particle Physics

13th Sept. 2022 30 / 30