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in collaboration with

▶ more than 30 research groups worldwide from condensed matter
physics, quantum chemistry, nuclear physics, quantum information
theory, applied mathematics and computer science

▶ High-Performance Computing Center Stuttgart, Germany

▶ Pacific Northwest National Laboratory (PNNL), USA

▶ National Energy Research Scientific Computing Center (NERSC),
USA

Our computer program package is used by more than 30 research groups
worldwide for more than two decades.

Recently there is also an interest by industrial partners.

▶ NVIDIA, USA

▶ SandboxAQ, USA (Google startup)

▶ Riverlane LTD, UK

▶ Furukawa Electric Institute of Technology, Japan

▶ Dynaflex LTD, Hungary



Strong correlations between electrons → exotic materials

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
⟨i,j⟩,σ

c†i,σcj,σ +
U

2

∑
σ ̸=σ′

∑
i

ni,σni,σ′

t hopping amplitude
U on-site Coulomb interaction

σ ∈ ↑, ↓ spin index

Classical or quantum computers?



Ultimate need for High Performance Computing

• Simulation of quantum systems on
classical computers scales exponen-
tially with system size.

• Solving the problem is like findig a
star in the galaxy.

Tensor network states novel algorithms can provide efficient simulations
on classical computers, but we need massively parallelized codes on
HPCs.

Main research and algorithmic optimization tasks:

▶ New mathematical models to reduce computational complexity

▶ Connection to quantum information theory to reduce computational
complexity

▶ Applications to strongly correlated quantum systems

▶ New mathematical models for hybrid CPU and GPU parallelization



Motivations, open problems from computational point of view

▶ Open d and f shell electron systems, transition metals, heavy
elements, molecular magnets, extended periodic systems

▶ Efficient treatment of static (strong) and dynamic (weak)
correlations, strongly correlated (multi-reference) systems, reaction
paths, transition states, avoided crossings, embedding methods

▶ Automatic selection of active space

▶ Choice of basis

▶ Efficient treatment of relativistic effects

▶ Efficient treatment of excited states

▶ Dynamics, time evolution
coupling to environment, dissipative systems, entanglement barrier

▶ Finite temperature

▶ Beyond Born-Oppenheimer approximation

▶ Correlation structures, clusterization, chemical bonding, multipartite
entanglement



Discrete basis, configuration space, superposition

Possible states of a person

stands sits squats

Dimension of the local space d = 3

N persons in a room

Dimension of the configuration space: 3N ,
i.e., it scales exponentially

In quantum physics superposition is
possible:
Ex. d=2 (two states allowed)
• Two persons (at position A and
B).
• Four possible configurations.
• At position ”A” person stands or
squats with 50% probability.
• At position ”B” person stands or
squats with 50% probability.

Entangled state → quantum infor-
mation (q-dits)



Entanglement: quantum data processing

▶ Quantum computing: quantum supremacy or quantum advantage
▶ Quantum cryptography: secure communication
▶ Experimental realizations: quantum sensors (biomedical

applications), unprecedented spatial resolution and sensitivity on
atomic length scale



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ⟩ =
n1∑

α1=1

. . .

nd∑
αd=1

U(α1, . . . , αd , γ) |α1⟩ ⊗ · · · ⊗ |αd⟩ ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cni ,

where span{|αi ⟩ : αi = 1 , . . . , ni} = Λi = Cni and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

• α is called ’physical’ leg

• In a spin-1/2 model αi ∈ {↓, ↑}.

• In a spin-1/2 fermionic model αi ∈ {0, ↓, ↑, ↑↓}.

dimHd = O(nd) Curse of dimensionality!

→ need efficient data-sparse representation



Matrix representation of the wave function

• We separate indices αi into two groups (bipartite representation),
so U can be written in matrix form

[U]αi+1,...,αd
α1,...,αi

∈ Cn1···ni ⊗ Cni+1···nd

rows columns

Schmidt-decomposition or
singular value decomposition (SVD)

|Ψγ⟩ =
∑
a

|Ψ⟩ =
m∑

a=1

λa|uaα1,α2,...,αi
⟩|v a

α1,α2,...,αi
⟩,

where Λ is a diagonal matrix (λa) and

m = min(n1 · · · ni , ni+1 · · · nd)

If m = 1 then |Ψ⟩ is a product state, otherwise it is entangled.

In practice we keep m < min(n1 · · · ni , ni+1 · · · nd) based on a priory set
error margin, thus truncation leads to an approximate solution.

It is a major task to determine the scaling of m (for example area law).



Tensor product representation
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A general tensor network representation of a tensor of order 5.
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An arbitrary example of a tensor tree (loop free).



Matrix product state (MPS) representation of DMRG

The tensor U is given element-wise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

We get d component tensors of order 2 or 3.

α1

m1

A1

α2

m2

A2

α3

m3

A3

α4

m4

A4

α5

A5

A tensor of order 5 in Matrix Product State (MPS) representation also
know as Tensor Train (TT). This yields a chain of matrix products:

U(α1, . . . , αd) = A1(α1)A2(α2) · · ·Ad−1(αd−1)Ad(αd)

with [Ai (αi )]mi−1,mi := Ai (mi−1, αi ,mi ) ∈ Cri−1×ri .

Controlled truncation on mi .

Redundancy:
U(α1, . . . , αd) = A1(α1)GG−1A2(α2) · · ·Ad−1(αd−1)Ad(αd)

Affleck, Kennedy, Lieb Tagasaki (87); Fannes, Nachtergale, Werner (91), White(92),
Römmer & Ostlund (94), Vidal (03); Verstraete(04); Oseledets & Tyrtyshnikov, 2009



Novel TNS algorithms for simulations on HPC architectures

1D MPS
Matrix-product state

White, Östlund, Rommer

1D MERA
Multi-scale entanglement

renormalization ansatz
1D TTNS
Tree tensor net-

work state

Vidal, Corboz

2D PEPS

Verstraete, Cirac Jordan,

Orus, Vidal

2D Mera

Vidal, Evenbly

2D Tree-
TNS

Vidal, Corboz,

Verstraete,

Murg, Legeza,

Noack



Deep learning, AI, ML, robotic

New sensors: machines begin to interact with our world!



TNS/DMRG provide state-of-the-art results in many fields

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ ,

▶ Tij kinetic and on-mode terms, Vijkl two-particle scatterings
▶ We consider usually lattice models in real space (DMRG)
▶ In quantum chemistry modes are electron orbitals (QC-DMRG)
▶ In UHF QC spin-dependent inetractions (UHF-QCDMRG)
▶ In relativistic quantum chemistry modes are spinors (4c-DMRG)
▶ In nuclear problems modes are proton/neutron orbitals (JDMRG)
▶ In k-space modes are momentum eigenstates (k-DMRG)
▶ For particles in confined potential modes → Hermite polynoms
▶ Major aim: to obtain the desired eigenstates of H.

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

• # of block states: 1 000 – 60 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 100 electrons on 100 orbitals.

• 1-BRDM and 2-BRDM, finite temperature, dynamics

• Massively parallel implementations CPU/GPU→ exascale on HPC



Main properties and questions

▶ Polynomial scaling (DMRG): O(M3d3) +O(M2d4)

▶ CAS-like multireference method suitable for strongly correlated els.

▶ Variational

▶ Size-consistent (with appropriate choice of active space)

▶ DMRG can be combined with standard methods
→ DMRG-TCCSD, DMRG-NEVPT2
to optimize orbitals → DMRG-SCF

Three main questions
▶ How to choose optimal rank?

→ Dynamic Block State Selection (DBSS) (2003)

▶ How to choose active space and optimal network structure?
→ Based on the entanglement and correlation patterns (2003,2015)

▶ How to choose optimal basis?
→ Fermionic mode transformation (2016)

→ concepts of quantum information theory



One- (ρi) and two-mode (ρi ,j) reduced density matrix

|ψ⟩ =
∑

α1,...,αN

Cα1,...,αN
|α1...αN⟩ ,

▶ ρi,j is calculated by taking the trace of |Ψ⟩⟨Ψ| over all local bases
except for αi and αj , the bases of modes i and j , i.e.,

ρi,j([αi , αj ], [α
′
i , α

′
j ]) =

∑
α1,...,�αi ,...,

�αj ,...,αN

Cα1,...,αi ,...,αj ,...,αN
C∗
α1,...,α′

i ,...,α
′
j ,...,,αN

.

▶ In the MPS representation, calculation of ρij corresponds to the
contraction of the network except at modes i and j .

▶ von Neumann quantum information entropy, s = −
∑
α λ

2
α lnλ

2
α.

▶ Mutual information, I = si + sj − sij .



Selection of active space, multiply connected networks
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LiF at r=3.05 LiF at r=13.7
Ö.L., Sólyom (2003), Rissler, White, Noack, ECP (2006), Murg, Verstraete, Schneider, Nagy, Ö.L. (2013)

Stein, Reiher (2016), Golub, Antalik, Veis, Brabec (Machine Learning, 2020)



Redefinition of the fermionic modes by a linear transformation
Krumnow, Veis, Ö.L., Eisert, 2014-2016

• Linear transformations of a set of fermionic annihilation operators {ci}
to a new set {di} satisfying the canonical anti-commutation relations:

ci =
Np∑
j=1

Ui,jdj , p denotes the number of different fermion species

• Under this change of basis a state vector |ψ(U)⟩ = G (U)|ψ(1)⟩
A[1] A[2] A[3] . . . A[n]

g(U) · · ·

· · ·

• Denoting the Hamiltonian written in terms of the transformed modes
by H(U) = G (U)†HG (U), we are interested in the solutions of

(Uopt, |ψopt⟩) = argmin U∈U(Np),
|ψ⟩∈MDmax

⟨ψ|H(U)|ψ⟩.

• The global basis change is composed of local unitaries solutions of

U loc
opt = argminU∈V fj

(
|ψ(1j ⊕ U ⊕ 1N−j−2)⟩

)
,

cost function f
(1)
j (|ψ⟩) = ||Σj

ψ||1 where Σj
ψ denotes the Schmidt

spectrum of |ψ⟩ for a bipartiting cut between sites j and j + 1.



Interactions, entanglement and correlations

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ ,

Applications in condensed matter physics, quantum chemistry,
nuclear physics, relativistic effects, etc

(a) [Fe(NO)2+]

  

  

  

  

  

  

   O

 N
Fe  O

    

 N

  

  

 N

  

  

 O

  

  

(b) FeL(NO)

[Fe(NO)2+]

 

 

1

3

5

7

9

11

13
15

17

19

21

23

25

27

29

2

4

6

8

10

12

1416

18

20

22

24

26

28

A

10
−1

10
−2

10
−3

(a) Mutual information

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Orbital index

s
(1

)

 

 

(b) Single orbital entropy

Strongly correlated system

Effect of environment
Boguslawski, Tecmer, Ö.L., Reiher (2012)
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(b) Single orbital entropy



Chemical bond forming and breaking vs Entanglement
Boguslawski, Tecmer, Barcza, Ö.L., Reiher, 2013



Multiorbital correlations Sz. Szalay (2015)
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Π({1, 2, 3, 4}):

▶ partitions of the system:
ξ = {X1,X2, . . . ,X|ξ|} ≡ X1|X2| . . . |X|ξ| ∈ Π(L)

▶ refinement: υ ⪯ ξ def.: ∀Y ∈ υ,∃X ∈ ξ : Y ⊆ X
▶ ξ-correlation (ξ-mutual information):

Cξ(ϱ) = min
σ∈Dξ−uncorr

D(ϱ||σ) =
∑
X∈ξ

S(ϱX )− S(ϱ)

▶ multipartite monotonicity: υ ⪯ ξ ⇔ Cυ ≥ Cξ
k-partitionability-correlation and k ′-producibility correlation:

Ck-part(ϱL) = Cµk
(ϱL) = min

|µ|≥k
Cµ(ϱL), Ck′-prod(ϱL) = Cνk′ (ϱL) = min

∀N∈ν:|N|≤k′
Cν(ϱL)



Example (aromatic system): C6H6 (benzene)
Szalay, Barcza, Szilvási, Veis, Ö.L (2017)

“atoms”: α = A1|A2| . . . |A|α|, “bonds”: β = B1|B2| . . . |B|β|∑
A∈α

C⊥,A(ϱA) + Cα(ϱM) =
∑
B∈β

C⊥,B(ϱB) + Cβ(ϱM) = C⊥(ϱM)
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Example on graphene nanoribbons I. Hagymási, Ö.L (2016)

• Flat bands disappear
when interaction is
switched on

• Need TNS due to strong
quantum fluctuations
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• DMRG D = 20000, U = 2

Problem revisited with modetrans-
formation, monitoring emerging
modes for zigzag, armchair, periodic
BC etc.. Fraction of D is needed

Mate, Vizkeleti, Szalay, Hagymasi, Ö.L.

(left) Sz
i for the ground state in the

presence of a pinning magnetic field
at the bottom zigzag



Topologically protected, correlated end spin formation in

carbon nanotubes Moca, Izumida, Dóra, Ö.L., Asboth, Zaránd (2019)
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▶ S1 = S2 =
Nedge

2
▶ Topological nanotubes spontaneously form double dot devices,

which may provide a platform for quantum computation.
▶ Sign of the interaction can be changed by changing the dielectric

constant of the environment.
▶ Coupling between ferromagnetic edge states is length and chirality

dependent



Long time evolution Krumnow, Eisert, Ö.L. (2019)

▶ At time t = 0 we perturb the system.
▶ After the quench the quasiparticles collide with each other.
▶ There are different time-evolution methods for MPS which are

currently in use to solve the time-dependent Schrödinger equation
(TDSE).

▶ application of Û(δt) = e−iδt Ĥ , i.e. , |ψ(t)⟩ → |ψ(t + δt)⟩
▶ time-evolving block decimation (TEBD), MPOW I,II, Krylov,

time-dependent variational principle (TDVP)
▶ each has advatages and disadvateges.
▶ TDVP → general non-local Hamiltonians (quantum chemsitry)



Coupled cluster method with single and double excitations

tailored by matrix product state wave functions
Kinoshita, Hino, Bartlett, JCP (2005), Veis, Antalik, Neese, Ö.L., Pittner (2016)

▶ Formally single reference theory, Fermi vacuum is a single
determinant

▶ Split-amplitude ansatz

|ΨTCC⟩ = eT |Ψref⟩ = eT
ext+T CAS

|Ψref⟩

▶ T CAS

▶ amplitudes extracted from
DMRG (CASCI) calculation

▶ frozen during CC calculation

▶ account for static correlation

▶ T ext

▶ determined through the usual
CC

▶ account for dynamic
correlation

|ΨTCCSD⟩ = e

(
T ext
1 +T ext

2

)
e

(
T CAS
1 +T CAS

2

)
|Ψref⟩

≈ e

(
T ext
1 +T ext

2

)
|ΨCASCI⟩

▶ Requires only small modifications of the CC code



Chromium dimer – correlation energies

▶ Single-point calculation at 1.5 Å
▶ One-particle basis: RHF with Ahlrichs’ SV basis set → (48e,42o)
▶ DMRG space selected based on S (1) profile
▶ DMRG performed with DBSS (ϵtr ≈ 10−7)
▶ Extrapolated DMRG by Olivares-Amaya et al. JCP 142, 034102,

2015 serves as a FCI benchmark

• DMRG-TCC has a quadratic error bound, Faulstich, Laestadius, Ö.L.,

Schneider, Kvaal(2019) but optimal CAS-EXT split only numerically
• Extensions: similarity transformed TCCSD, LPNO-TCCSD,
DLPNO-TCCSD, TCCSDtq, 4c-DMRG-TCCSD, excited states.



Restricted active space DMRG Barcza,Werner,Zaránd,Ö.L.,Szilvási(2021)

a)

ΦA

Φcore

b)

ΦA

ΦV

ΦC

Φcore′

Schematic illustration of the
CAS and RAS concepts.

DMRG-RAS scheme

• In the RAS scheme, in addition to active orbitals some virtual (V) and
core (C) orbitals can also be excited with restrictions: the maximal
number of particle excitations in these orbitals is r .

• Implementation through the dynamically extended active space (DEAS)
procedure. ÖL, J. Sólyom, 2003, (similar appr. by Larsson et al 2022)

Ml = q q q Mr := 16 ≪ 4
3

ML = Mlq MR = qMr



Ground state energy of C2 frozen-core cc-pVTZ (L=58)

• DMRG-RAS is an embedding methodi, i.e.,

H = PHP︸︷︷︸
HCAS→CAS

+ QHP︸ ︷︷ ︸
HCAS→RAS

+ PHQ︸ ︷︷ ︸
HRAS→CAS

+ QHQ︸ ︷︷ ︸
HRAS→RAS

method energy (Ha) ∆E (%)

CI-SDTQ -75.7765 97.8
CC-SDa -75.7496 90.8
CC-SD(T)a -75.7832 99.5
CC-SDTa -75.7810 99.0
CC-SDTQa -75.7845 99.9
NEVPT2(8)a -75.7540 91.9
RAS-SD-DMRG(8,M = 5051) -75.7704 96.2
RAS-SD-DMRG(14,χ = 10−6) -75.7809 99.0
RAS-SD-DMRG(18,χ = 10−6) -75.7836 99.6
CAS-DMRG(χ = 10−6) -75.7849 99.9
CAS-DMRG(M = 4096) -75.7850 100.0

• Similar performance measured along the PES for d ≤ 5.
• Spectroscopic constants agree with FCIQMC data up to 3 digits.



Method Ground state energy
i-FCIQMC-RDME -13482.17495(4)
i-FCIQMC-PT2 -13482.17845(40)
sHCI-VAR -13482.16043
sHCI-PT2 -13482.17338
DMRG -13482.17681
DMRG(D=8192) -13482.1718
DMRG(D=10240,NO) -13482.1754
RAS(23) -13482.1421
RAS(23,NO) -13482.1544

Non-
extrapolated
ground state
energies ob-
tained by various
methods for
the FeMoco
in CAS(54,54)
orbital space.
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(a) Result of the DMRG-
RAS-X for the FeMoco
for the model space taken
from Ref. Reiher(2007).

(b) The same but for the
natural orbital basis.

Produced on CPU-GPU
for less than one day
Friesecke, Barcza, ÖL (2023)



Ab initio theory of negatively charged boron vacancy qubit in

hBNIvády, Barcza, Thiering,Li, Hamdi, Chou, Ö.L., Gali (2019)

• Novel combiation of DFT and DMRG for extended systems to treat
excited states
• DMRG on top of plane-wave Kohn-Sham orbitals
• ab initio results explain magneto-optical properties of VB in hBN.

Highly tunable magneto-optical response from MgV color centers in
diamond Pershin, Barcza, Ö.L., Gali (2021)

• Potential of magnesium-vacancy (MgV) in diamond to operate as a
qubit by computing the key electronic and spin properties with robust
theoretical methods: Unprecedented control over the magneto-optical
response from a qubit by modulating the operational conditions.



Towards exascale computaions on supercomputers

GPU: MPS and TNS
on kilo-processor architectures:
Nemes, Barcza, Nagy, Ö.L., Szolgay, 2014

Massive parallelization
Brabec, Brandejs, Kowalski

Xanntheas, Ö.L., Veis (2020)

FeMoco cluster
[CAS(113,76)]



Centralized scheduling: unideal society
• Set of workers to generate tasks
• Set of workers to transfer tasks
• Set of workers to execute tasks

→ Workers are threads
→ Transfer: IO communication
→ CPU, GPU, FPGA units

▶ Central scheduler has to organize the full workflow, measure
complexity of tasks, distribute tasks, check execution etc

▶ Central scheduler envisions the global aim & wants to accomplish it
▶ Tasks: several millions of independent tensor and matrix operations



Centralized scheduling: Huge overhead, units can be idle

• Central scheduler performs lot of measurements, estimations,
communication to rearrange tasks and workers → huge overhead

▶ Central scheduler cannot see everything in a given moment
→ workers can be idle

▶ Too much workload on scheduler → inefficient scheduling, tasks can
pile up partially



Self motivated workers → ideal ”team-like” society
• Central unit: Contractor, contract book (only meta-data
communicated, boolean-like bookkeeping flags)
• Everybody is motivated to achieve global aim



Efficient task processig: Maze-Runners Menczer, ÖL (2023)

Nemes, Barcza, Nagy, Ö.L., Szolgay (2014)

▶ In traditional producer-consumer models threads are casted into
disjoint sets labeled as producers and consumers.

▶ Ideally, producer and consumer threads can run in parallel

▶ Instead of implementing high-complexity dynamic scheduling
systems relying on task specific optimizations.

Idle Maze-Runner NO

YES

Maze available?

YES

NO

Task Found? TAKE

Found
Tasks

PUTPut Task into
Database

Solve Task

Search Maze

Life Cycle of a Maze-Runner Thread.

▶ Threads can be fed with
tasks from any level of
recursion.

▶ This ensures a magni-
tude of thread utiliza-
tion not feasable with
classical producer-
consumer based
pipelines.



Memory management: Data Dependency Trees

▶ Naive solution to memory management is to store all required data
in memory at all times

▶ Usually datasets exceed the size of allocatable memory.

▶ Aim: IO to be hideable behind the parallely running computation
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Buffering while Traversing
the Data Dependency Tree.

The numbers represent the
order in which the vertices
are visited.

The arrays show the buffer’s
content for each step.

▶ Gap-free, sequential write and read operations, no allocations and
deallocations are required in the traditional sense.



Strided Batched Matrix Multiplication for Summation

▶ SIMD workloads have a tendency to perform poorly when
bombarded with a high amount of small jobs.

▶ For aggregation of matrix multiplications, both Intel and NVIDIA
has implemented solutions: Batched GEMM.

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

a1 a2 a3 a4b1 b2 b3 b4c1 c2 c3 c4

Sequential Vector Placement

Interleaved Vector Placement

Vectorized output of a Strided Batched
GEMM operation.

Normally, output vectors
belonging to the same ma-
trix are in a sequential order
(top).

Interleaving the vectors of
different matrices (bottom)
is possible by altering the
leading dimensions and
stride values of the output
matrices.

▶ We can perform batched type chained matrix multiplications without
sum reduction at the end.



CPU only limit (for CAS(113,76) dimH = 2.88× 1036)
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(113,76), Maze-R + MKL seq.

(54,54), Maze-R + MKL seq.

(18,18), Maze-Runner + MKL seq.

(18,18), OpenMP + MKL seq.

(18,18), MKL Threaded

Performance measured in TFLOPS for the F2 and FeMoco chemical
systems for CAS(18,18) and CAS(54,54) orbitals spaces, respectively, as
a function of the DMRG bond dimension on a dual Intel(R) Xeon(R)
Gold 5318Y CPU system with 2× 24 physical cores running at 2.10 Ghz.



Boosting the effective performance via non-Abelian symmetries
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A. Menczer, Ö.L (2023), CAS(18,18)

• New mathematical model for parallelization → felxibe scaling

• DSU(2) = 24576 → DU(1) = 216 → FCI solution



Utilization of highly specialized tensor core units (TCU)
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• Large CAS spaces A. Menczer, Ö.L (2023), FeMoco(113,76)

• We reached 116 TFLOPS > 76 TFLOPS of the FP64 limit of NVIDIA
→ utilization of highly specialized tensor core units (TCU)



Reducing D3 scaling to linear scaling
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• New model to utilize NVIDIA D2D links. A. Menczer ÖL (unpublished 2023)

• NVIDIA DGX H100 and Grace Hopper GH200:
Testing performance up to ∼ 240 TFLOPS in collab with NVIDIA and
SandboxAQ M. van Damme, A. Menczer, M. Ganahl, J. Hammond, Ö.L

• Combination of our MPI and GPU kernels:
multiNode-multiGPU → petascale computing. A. Menczer ÖL (unpublished

2023)



Maximum computational complexity for 2D t − t ′ − V model
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model at U = 4 on a torus ge-
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• Performance in TFLOPS
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Our TNS/DMRG code will be used as one of the benchmarks





Conclusion

▶ Tensor topologies together with proper basis representations are
important for efficient data sparse representaion of the wavefunction

▶ Local mode transformation: MPS/TNS based black-box tool to
improve basis

▶ Long time evolution with adaptive mode transformation is a
promising direction

▶ Combination of TNS with other (conventional) methods can exploit
benefits of the individual methods

▶ Massive Parallelization

▶ → Simulation of realistic material properties
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