50 Years of Quantum Chromodynamics + 1

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

Bolyai Physics Seminars Bolyai Kollégium

Budapest, 20 March 2024

Planetary model of the atom [Rutherford (1911)]

- most of the mass of the atom concentrated in a core *nucleus*, made of positively charged particles *protons*, $q_p = +1e$
- negatively charged particles *electrons*, $q_e = -1e$, orbiting around the nucleus, bound by electromagnetic interactions

Questions:

- how can the proton be bound together in the nucleus despite the strong electromagnetic repulsion?
 ⇒ new force - strong interactions
- why does the nucleus have often more mass than expected from its charge, $m_{\rm nucleus}/m_p \geq q_{\rm nucleus}/q_p$?

 \Rightarrow neutron [Chadwick, 1932]: $m_n pprox m_p, \; q_n = 0$

 \Rightarrow *n* decays into *p* via yet another interaction – weak interaction

Yukawa's Meson

 $\label{eq:particle} Particle \ interactions = exchange \ of \ mediator \ particles \ carrying \ energy, \\ momentum, \ and \ other \ quantum \ numbers \ from \ one \ particle \ to \ another \\ \end{cases}$

What are the properties of the mediator of strong interactions?

$$M_{
m mediator} \sim rac{\hbar}{c \cdot
m range_{
m interaction}}$$

$$\mathsf{range}_\mathsf{interaction} \sim \mathsf{size}_\mathsf{proton} \sim 1\,\mathrm{fm} \Rightarrow \mathit{M}_\mathsf{mediator} \sim 200\,rac{\mathrm{MeV}}{c^2}$$

Mass intermediate between light electron, $m_e = 0.51 \frac{\text{MeV}}{c^2}$ – *lepton*, and heavy protons and neutrons, $m_p = 938 \frac{\text{MeV}}{c^2}$, $m_n = 940 \frac{\text{MeV}}{c^2}$ – *baryons* \Rightarrow Yukawa's *meson* [Yukawa (1934)]

Discovered in cosmic rays [Lattes, Occhialini, Muirhead, Powell (1947)] Three types – pions π^+, π^0, π^- , $m_{\pi^0} = 135 \frac{\text{MeV}}{c^2}$, $m_{\pi^\pm} = 140 \frac{\text{MeV}}{c^2}$

Strange Particles and the Quark Model

The story so far:

elementary nucleons p, n affected by strong interactions = π exchange

New meson discovered – kaon (K), with strange properties: created quickly via strong interactions, decays slowly via weak interactions [Rochester, Butler (1947)]

Many more "strange" particles (both baryons and mesons) discovered afterwards – too many to be elementary?

Quark model [Zweig (1964), Gell-Mann (1964)]: baryons and mesons are bound states of *quarks*

baryons $= q_1 q_2 q_3$ mesons $= q_1 \bar{q}_2$

Three quark *flavours*: *u* (*up*), *d* (*down*), *s* (*strange*)

- + Model correctly reproduces the observed spectrum of *hadrons*, and predicts new ones η meson, Ω baryon
- Individual quarks not observed in experiments

Colour

Problem: quarks are spin $\frac{1}{2}$ fermions, Fermi-Dirac statistics requires antisymmetric wave function

 $\psi=\psi_{\rm space}\psi_{\rm spin}\psi_{\rm flavour}$

For lightest baryons $\Rightarrow \psi_{\text{space}}$ symmetric $\Omega = sss$, $s_{\Omega} = \frac{3}{2} \Rightarrow \psi_{\text{flavour}}$, ψ_{spin} symmetric $\Rightarrow \psi$ symmetric!

Solution: give quarks another degree of freedom - colour [Greenberg (1964)]

- N_c colours \Rightarrow SU(N_c) unitary symmetry
- no degenerate multiplets of hadrons \Rightarrow physical states must be $SU(N_c)$ singlets ("colourless")
- ullet associated wave function ψ_{colour} must be antisymmetric for baryons
- For $N_c = 3$ suitable ψ_{colour} exists

Colour

Problem: quarks are spin $\frac{1}{2}$ fermions, Fermi-Dirac statistics requires antisymmetric wave function

$$\psi=\psi_{\mathsf{space}}\psi_{\mathsf{spin}}\psi_{\mathsf{flavour}}\psi_{\mathsf{colour}}$$

For lightest baryons $\Rightarrow \psi_{\text{space}}$ symmetric $\Omega = sss$, $s_{\Omega} = \frac{3}{2} \Rightarrow \psi_{\text{flavour}}$, ψ_{spin} symmetric $\Rightarrow \psi$ symmetric!

Solution: give quarks another degree of freedom - colour [Greenberg (1964)]

- N_c colours \Rightarrow SU(N_c) unitary symmetry
- no degenerate multiplets of hadrons \Rightarrow physical states must be $SU(N_c)$ singlets ("colourless")
- ullet associated wave function ψ_{colour} must be antisymmetric for baryons
- For $N_c = 3$ suitable ψ_{colour} exists

Quark model generally not accepted as describing physical reality

Probe nucleons by deep inelastic scattering with electrons

[Taylor, Friedman, Kendall (1968)]

- inelastic: $e^-N \rightarrow e^-X_1 \dots X_k$
- ullet deep: large transferred momentum $q^2=(p_e^\prime-p_e)^2$

Results:

- Bjorken scaling of cross section [Bjorken (1968)] \Rightarrow nucleons made of pointlike constituents
- Callan-Gross relation [Callan, Gross (1968)] \Rightarrow constituents have $s = \frac{1}{2}$
- constituents partons behave as almost free at short distances [Feynman (1968)]

What theory can reproduce these properties?

Quantum ElectroDynamics - I

QED: quantum relativistic theory of electromagnetic interactions [Completed by Tomonaga (1946), Schwinger (1948), Feynman (1948, 1949), Dyson (1949)]

A Quantum Field Theory: all particles described in terms of fields $\phi(x)$, interacting locally as $\partial_{\mu}\phi(x)\partial^{\mu}\phi(x)$, $\phi(x)^{n}$, ...

Based on symmetry principle (gauge principle [Weyl (1929)]) :

changing the phase of the electron field *locally* should not affect any physical phenomenon

The phase of the electron wave function is unobservable - but for physics to be truly local it should be arbitrary at every point

Free electrons:

$$\mathcal{L}_{\mathsf{Dirac}} = \bar{\psi}(x)(i\partial \!\!\!/ - m)\psi(x) \neq \bar{\psi}(x)e^{-i\varphi(x)}(i\partial \!\!\!/ - m)e^{i\varphi(x)}\psi(x)$$

 $\partial = \partial_{\mu} \gamma^{\mu}$

Dirac Lagrangian is not gauge invariant

Quantum ElectroDynamics - II

Add gauge field A_{μ} , use covariant derivative D_{μ}

 $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - i e_0 A_{\mu} \qquad \mathcal{L}_{\mathsf{Dirac}} \rightarrow \bar{\psi}(x) (i \not D - m) \psi(x)$

Invariance under gauge transformations

$$\psi(x) \to e^{i\varphi(x)}\psi(x) \qquad A_{\mu}(x) \to A_{\mu}(x) - \frac{i}{e_0}\partial_{\mu}\varphi(x)$$

Request of gauge invariance forces the introduction of gauge fields mediating an interaction between electrons

Dynamics for gauge fields must also be (Lorentz- and) gauge-invariant:

$$\mathcal{L}_{\mathsf{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}(x) (i \not D - m) \psi(x)$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Predictions verified experimentally to 10^{-8} accuracy

Non-Abelian Yang-Mills theories

Gauge transformation in QED:

$$\psi(x) \to U(x)\psi(x) \qquad A_{\mu}(x) \to U(x)^*A_{\mu}(x)U(x) - \frac{1}{e}U(x)^*\partial_{\mu}U(x)$$

with $U(x) = e^{i\varphi(x)} \in \mathrm{U}(1)$, Abelian group

Generalise to non-Abelian groups, e.g., special unitary groups $\mathrm{SU}(N_c)$

$$\psi(x) \to U(x)\psi(x) \qquad A_{\mu}(x) \to U(x)^{\dagger}A_{\mu}(x)U(x) + \frac{1}{g_0}U(x)^{\dagger}\partial_{\mu}U(x)$$

Non-Abelian gauge fields $A_{\mu} = A^{a}_{\mu}t_{a}$, $U(x) = e^{i\alpha^{a}t_{a}} \in \mathrm{SU}(N_{c})$ $t^{\dagger}_{a} = t_{a}$, $\mathrm{tr} t_{a} = 0$, $\mathrm{tr} t_{a}t_{b} = \frac{1}{2}\delta_{ab}$

Invariant Lagrangian [Yang, Mills (1954), Shaw (1956)]:

$$\begin{aligned} \mathcal{L}_{\text{Yang-Mills}} &= -\frac{1}{2} \text{tr} \, F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \not D - m) \psi \\ D_{\mu} &= \partial_{\mu} + i g_0 A_{\mu} \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + i g_0 [A_{\mu}, A_{\nu}] \end{aligned}$$

Self-interacting field – expect very different behaviour Consistent QFT ['t Hoof, Veltman (1972)]

Non-Abelian Yang-Mills theories

Gauge transformation in QED:

$$\psi(x) \to U(x)\psi(x) \qquad A_{\mu}(x) \to U(x)^*A_{\mu}(x)U(x) - \frac{1}{e}U(x)^*\partial_{\mu}U(x)$$

with $U(x) = e^{i\varphi(x)} \in \mathrm{U}(1)$, Abelian group

Generalise to non-Abelian groups, e.g., special unitary groups $\mathrm{SU}(N_c)$

$$\psi(x) \to U(x)\psi(x) \qquad A_{\mu}(x) \to U(x)^{\dagger}A_{\mu}(x)U(x) + \frac{1}{g_0}U(x)^{\dagger}\partial_{\mu}U(x)$$

Non-Abelian gauge fields $A_{\mu} = A^{a}_{\mu}t_{a}$, $U(x) = e^{i\alpha^{a}t_{a}} \in \mathrm{SU}(N_{c})$ $t^{\dagger}_{a} = t_{a}$, $\mathrm{tr} t_{a} = 0$, $\mathrm{tr} t_{a}t_{b} = \frac{1}{2}\delta_{ab}$

Invariant Lagrangian [Yang, Mills (1954), Shaw (1956)]:

$$\begin{aligned} \mathcal{L}_{\text{Yang-Mills}} &= -\frac{1}{2} \text{tr} \, F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \not D - m) \psi \\ D_{\mu} &= \partial_{\mu} + i g_0 A_{\mu} \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + i g_0 [A_{\mu}, A_{\nu}] \end{aligned}$$

Self-interacting field – expect very different behaviour Consistent QFT ['t Hoof, Veltman (1972)]

Perturbation Theory

How does a Quantum Field Theory behave at short distances?

Perturbation theory:

- expand physical quantities in powers of a (hopefully) small parameter controlling the strength of the interaction
- in QFT not a single parameter but a function of the energy scale at which you are looking at the theory

$$\sigma(E) = \sum_{n} a_n(E;\mu)g(\mu)^n = S(E,\mu,g(\mu))$$

For $\mu \approx E$, $a_n(E; \mu) \approx O(1)$, so if g(E) is small one can trust PT, and interactions are weak at that scale

Physics does not depend on $\mu \Rightarrow$ Renormalisation Group equations

$$0 = \mu \frac{d}{d\mu} S(E, \mu, g(\mu)) = \left(\mu \frac{\partial}{\partial \mu} + \mu \frac{dg}{d\mu} \frac{\partial}{\partial g} \right) S(E, \mu, g(\mu))$$

[Stückelberg, Petermann (1953), Gell-Mann, Low (1954)]

Asymptotic Freedom

 β -function of YM theory with $N_{f,s}$ fundamental fermions and scalars:

$$\begin{split} \mu \frac{d}{d\mu} g(\mu) &= \beta(g(\mu)) = \beta_0 \frac{g(\mu)^3}{(4\pi)^2} + \dots \\ \beta_0 &= -\frac{11}{3} N_c + \frac{2}{3} N_f + \frac{1}{6} N_s = -b_0 \\ N_c &= 0, \ b_0^{\text{QED}} < 0 \\ N_c &\neq 0, \ b_0^{\text{QCD}} > 0 \text{ if } N_{f,s} \text{ small} \\ N_c &= 3, \ N_f = 6, \ N_s = 0 \text{ in the real world} \end{split}$$

$$\alpha_{\text{QED}} = \frac{e^2}{4\pi} = \frac{1}{\frac{1}{\alpha_0^{\text{QED}} - \frac{b_0^{\text{QED}}}{2\pi} \ln \frac{\mu_0}{\mu}}} = \frac{1}{-\frac{b_0^{\text{QED}}}{2\pi} \ln \frac{\Lambda^{\text{QED}}}{\mu}} \xrightarrow{\to} 0$$

 \Rightarrow $e(\mu)$ small at low energy/large distance

For For

Asymptotic Freedom

 β -function of YM theory with $N_{f,s}$ fundamental fermions and scalars:

$$\mu \frac{d}{d\mu} g(\mu) = \beta(g(\mu)) = \beta_0 \frac{g(\mu)^3}{(4\pi)^2} + \dots$$
$$\beta_0 = -\frac{11}{3} N_c + \frac{2}{3} N_f + \frac{1}{6} N_s = -b_0$$
For $N_c = 0$, $b_0^{\text{QED}} < 0$ For $N_c \neq 0$, $b_0^{\text{QCD}} > 0$ if $N_{f,s}$ small $N_c = 3$, $N_f = 6$, $N_s = 0$ in the real world

$$\alpha_{\rm QCD} = \frac{g^2}{4\pi} = \frac{1}{\frac{1}{\frac{1}{\alpha_0^{\rm QCD}} + \frac{b_0^{\rm QCD}}{2\pi} \ln \frac{\mu}{\mu_0}}} = \frac{1}{\frac{b_0^{\rm QCD}}{2\pi} \ln \frac{\mu}{\Lambda^{\rm QCD}}} \xrightarrow{\mu \to \infty} 0$$

 \Rightarrow $g(\mu)$ small at high energy/short distance – *asymptotic freedom* [Gross, Wilczek (1973), Politzer (1973)]

Asymptotic Freedom

 β -function of YM theory with $N_{f,s}$ fundamental fermions and scalars:

$$\mu \frac{d}{d\mu} g(\mu) = \beta(g(\mu)) = \beta_0 \frac{g(\mu)^3}{(4\pi)^2} + \dots$$
$$\beta_0 = -\frac{11}{3} N_c + \frac{2}{3} N_f + \frac{1}{6} N_s = -b_0$$
For $N_c = 0$, $b_0^{\text{QED}} < 0$ For $N_c \neq 0$, $b_0^{\text{QCD}} > 0$ if $N_{f,s}$ small $N_c = 3$, $N_f = 6$, $N_s = 0$ in the real world

$$\alpha_{\text{QCD}} = \frac{g^2}{4\pi} = \frac{1}{\frac{1}{\frac{1}{\alpha_0^{\text{QCD}}} + \frac{b_0^{\text{QCD}}}{2\pi} \ln \frac{\mu}{\mu_0}}} = \frac{1}{\frac{b_0^{\text{QCD}}}{2\pi} \ln \frac{\mu}{\Lambda^{\text{QCD}}}}} \xrightarrow{\mu \to \infty} 0$$

 \Rightarrow $g(\mu)$ small at high energy/short distance – *asymptotic freedom* [Gross, Wilczek (1973), Politzer (1973)]

... but infrared slavery – $g(\mu)$ large at large distances, PT not working

Non-Abelian gauge theories can describe interactions getting weak at short distance - which one do we choose?

• Use quarks
$$(s = \frac{1}{2} \text{ partons})$$

• Make colour dynamical, allowing it to be exchanged between quarks \Rightarrow SU(N_c) gauge theory with non-Abelian *gluon* fields

•
$$N_c = 3$$
 colours $\Rightarrow N_c^2 - 1 = 8$ gluon fields

\Rightarrow Quantum ChromoDynamics (QCD)

[Fritzsch, Gell-Mann, Leutwyler (1973)]

Is it the right theory?

- Incorporates quark model
- Explains DIS
- Through PT, successful description of high-E, high-q processes

If QCD is the right theory for strong interactions, it must be rich in nonperturbative phenomena in order to explain

- hadron spectrum
- matrix elements governing weak hadronic decays $(n \rightarrow p e^- \bar{\nu}_e, \pi^+ \rightarrow \mu^+ \nu_\mu, K^0 \rightarrow 2\pi, 3\pi, ...)$
- confinement of quarks and gluons

Main approaches:

- symmetries (+ effective theories)
- Iattice QCD

Isospin symmetry: $m_p \simeq m_n \Rightarrow$ two states of the same particle (*nucleon*) [Heisenberg (1932)]

 $SU(2)_V$ isospin symmetry: can "rotate" protons into neutrons

Phenomenological consequences:

- hadron multiplets (nucleons, pions, kaons, ...)
- relations between matrix elements, scattering amplitudes

Origin of symmetry: $m_u \simeq m_d$, two states of the same *light quark* particle

Since $m_{u,d} \ll \Lambda_{QCD} \approx$ massless particles \Rightarrow extended, chiral symmetry

$$\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R \sim \mathrm{SU}(2)_V imes \mathrm{SU}(2)_A$$

Can rotate "left-handed" and "right-handed" components of $\psi=\psi_L+\psi_R$ independently

Spontaneous Breaking of Chiral Symmetry

 $\mathrm{SU}(2)_A$ is spontaneously broken: vacuum state $\underline{not}~\mathrm{SU}(2)_A\text{-symmetric}$

Goldstone theorem: SSB of a continuous symmetry \Rightarrow massless spinless excitations (*Goldstone bosons*), one per broken symmetry generator

[Goldstone (1961), Goldstone, Salam, Weinberg (1962)]

Three $\mathrm{SU}(2)_A$ broken generators \Rightarrow three massless pseudoscalars – pions!

[Nambu, Jona-Lasinio (1961)]

 $S\chi SB$ explains lightness of pions, $m_{\pi} \ll m_{p}$ Effective theory $+ m_{u,d} \neq 0$ corrections \Rightarrow correct low-energy physics

Gauge Field Topology

Gauge field configurations can be classified in disjoint topological sectors

Cannot continuously deform configurations from different sectors into one another

Topological charge Q, topological charge density q

$$Q = \int d^4 x \, q(x) \qquad q(x) \propto \epsilon_{\mu
u
ho\sigma} {
m tr} \, F_{\mu
u}(x) F_{
ho\sigma}(x)$$

Nontrivial topology depends on spacetime dimension d and gauge group G, e.g., d = 2, G = U(1); d = 4, $G = SU(N_c)$

Anomalous $U(1)_A$ Symmetry

Full symmetry group for $m_{u,d} = 0$

 $\mathrm{SU}(2)_L\times\mathrm{SU}(2)_R\times\mathrm{U}(1)_L\times\mathrm{U}(1)_R\sim\mathrm{SU}(2)_V\times\mathrm{SU}(2)_A\times\mathrm{U}(1)_V\times\mathrm{U}(1)_A$

Continuous global symmetry \Rightarrow conserved current, $\partial_{\mu} j^{\mu} = 0$ [Noether (1918)] Ex.: U(1) in QED \Rightarrow conserved electric current

 ${\rm U}(1)_V \Rightarrow$ baryon number conservation ${\rm U}(1)_A \Rightarrow$ anomalous symmetry [Adler (1969); Bell, Jackiw (1969)]

Classical symmetry that does not survive quantisation

$$\partial_{\mu}j^{\mu}_{\mathrm{U}(1)_{\mathcal{A}}} \propto q$$

Explains heavy η' meson, $m_{\eta'} \gg m_{\pi}$ [Witten (1979), Veneziano (1979)] Topology crucial for anomaly (also important role in explaining S χ SB)

Path Integral

DOF of QCD are quarks and gluons, but the spectrum consist of hadrons Cannot get it from perturbation theory, need nonperturbative approach Path integral quantisation [Feynman (1948)]:

$$Z = \int DA \int D\psi \int Dar{\psi} \, e^{iS_{ extsf{QCD}}[A,\psi,ar{\psi}]}$$

... but mathematically ill-defined quantity

Lattice QCD

Replace continuum with a discrete, finite Euclidean lattice

$$Z_{\rm lat} = \int DU \int D\psi \int D\bar{\psi} e^{-S_{\rm lat}[U,\psi,\bar{\psi}]}$$

[Wilson, 1974]

- Fields associated with lattice elements: fermions \rightarrow sites, gauge fields \rightarrow edges
- Just a high-dimensional integral, can put on a computer
- Eventually thermodynamic $(V \to \infty)$ and continuum $(a \to 0)$ limits
- Continuum limit (likely) exists, thanks to asymptotic freedom
- "Rotate" back to Minkowski spacetime (very tricky, often not needed)

NP Physics on the Lattice - I

What physics can we study?

• extract hadron masses and hadronic matrix elements

$$\langle O(t)O(0)\rangle \underset{t>0}{=} \langle 0|\hat{O}(t)\hat{O}(0)|0\rangle = \sum_{n} e^{-E_{n}t} |\langle n|\hat{O}(0)|0\rangle|^{2}$$
$$\xrightarrow[t\to\infty]{} e^{-E_{n_{0}}t} |\langle n_{0}|\hat{O}(0)|0\rangle|^{2}$$

 n_0 : lightest state with $\hat{O}(0)$ quantum numbers

confinement

$$e^{-TV_{qar{q}}(R)} = \langle \mathcal{W}(T,R)
angle o iggl\{ e^{-\kappa P} \ e^{-\sigma A} iggr\}$$

perimeter law \rightarrow no confinement

area law \rightarrow confinement

 $\mathcal{W}(\mathcal{T}, R)$: Wilson loop – product of links around $\mathcal{T} \times R$ rectangular path

Area law \Rightarrow linearly rising potential $V_{q\bar{q}}(R) = \sigma R$ Effective string description (not fully understood)

Matteo Giordano (ELTE)

50 Years of Quantum Chromodynamics + 1

NP Physics on the Lattice - II

- topology:
 - ► measure topological susceptibility (Q²)/V (important for axion cosmology)
 - properties of instantons and other topologically nontrivial configurations (monopoles, fractional instantons,...)
- thermodynamics:
 - finite-temperature transition to quark-gluon plasma (QGP)
 - properties of the QGP, equation of state of hadronic matter

[Budapest-Wuppertal collaboration (2010)]

low-energy scattering phase shifts
...a lot, but not everything

Lattice not always the best choice (but often the only first-principles one)

- 1. Sometimes lattice approach can be used, but is inefficient:
 - QCD at finite baryon density
 - relevant to QGP, early universe, neutron stars
 - lattice integration measure not positive-definite, cannot use standard numerical methods (sign problem)
 - QCD with a topological term S
 ightarrow S i heta Q
 - ► allowed by gauge symmetry, but experimental bounds on $\theta < 10^{-10}$ why? (strong *CP* problem)
 - complex action, sign problem again
- 2. Sometimes lattice approach has serious theoretical uncertainties:
 - reconstruction of spectral functions and transport coefficients of QGP
 - reconstruction of real-time (Minkowski) dynamics

3. Lattice good for long-distance physics, PT for short-distance physics, but mixed settings are hard to deal with - e.g., high-E, low-q scattering (**rising total cross sections**, Pomeron and Odderon physics)

4. Lattice mostly numerical, analytic understanding of NP physics needed (e.g., confinement, hadronisation, \dots)

Other NP (analytic) tools:

- Dyson-Schwinger equations
- Functional Renormalisation Group
- Effective Lagrangians

Summary and Outlook

- QCD successfully describes strong-interaction phenomena
- Very rich theory, but hard to study
- Important problems still open after 50+1 years

Open issues studied in our group (Katz, Kovács, Nógrádi, Pásztor, MG):

- Finite-temperature properties of QCD
- QCD transition and quark localisation
- Topology, chiral symmetry restoration, and deconfinement
- Finite-density QCD and the sign problem
- QCD in a magnetic field
- QCD in the chiral limit

- Exhaustive list of references in F. Gross, E. Klempt, et al., "50 Years of Quantum Chromodynamics," <u>Eur. Phys. J. C</u> 83 (2023), 1125 [arXiv:2212.11107 [hep-ph]]
- Figure on slide 16: adapted from https://commons.wikimedia.org/w/index.php?curid=94348813 by Sachin48 sps - Own work, CC BY-SA 4.0
- Figure on slide 14: https://commons.wikimedia.org/w/index.php?curid=37318233 by Salix alba at the English-language Wikipedia, CC BY-SA 3.0

- Recent papers from our group
- S. Borsányi, Z. Fodor, M. Giordano, S. D. Katz, D. Nógrádi, A. Pásztor and C. H. Wong, "Lattice simulations of the QCD chiral transition at real baryon density," Phys. Rev. D 105 (2022) L051506 [arXiv:2108.09213 [hep-lat]].
- ▶ H. S. Chung and D. Nógrádi, " f_{ϱ}/m_{ϱ} and f_{π}/m_{ϱ} ratios and the conformal window," Phys. Rev. D **107** (2023) 074039 [arXiv:2302.06411 [hep-ph]].
- ▶ G. Baranka and M. Giordano, "Localization of Dirac modes in the SU(2) Higgs model at finite temperature," Phys. Rev. D **108** (2023) 114508 [arXiv:2310.03542 [hep-lat]].
- T. G. Kovács, "The fate of chiral symmetries in the quark-gluon plasma," [arXiv:2311.04208 [hep-lat]]
- C. Bonanno and M. Giordano, "Continuum limit of the mobility edge and taste-degeneracy effects in high-temperature lattice QCD with staggered quarks," [arXiv:2312.02857 [hep-lat]]
- S. Borsányi, Z. Fodor, J. N. Guenther, S. D. Katz, P. Parotto, A. Pásztor, D. Pesznyák, K. K. Szabó and C. H. Wong, "Continuum extrapolated high order baryon fluctuations," [arXiv:2312.07528 [hep-lat]]
- S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, P. Parotto, A. Pásztor and C. H. Wong, "Finite volume effects near the chiral crossover," [arXiv:2401.01169 [hep-lat]]