# HOMEWORK N. 4 

## Gauge theories

1. The Wilson line $W_{\mathcal{C}}$ associated with a path $\mathcal{C}$ connecting $x_{0}$ and $x_{1}$,

$$
\mathcal{C}:[0, T] \rightarrow \mathbb{R}^{4}, \quad s \rightarrow x^{\mu}(s),
$$

$x(0)=x_{0}$ and $x(T)=x_{1}$, is defined as follows

$$
W_{\mathcal{C}} \equiv \operatorname{Texp}\left\{-i g \int_{\mathcal{C}} A_{\mu}(X) d X^{\mu}\right\}=\operatorname{Texp}\left\{-i g \int_{0}^{T} d s A_{\mu}(x(s)) \dot{x}^{\mu}(s)\right\}
$$

where $A_{\mu}=A_{\mu}^{a} t^{a}$ with $t^{a}=t^{a \dagger}$ Hermitean matrices providing a representation of the Lie algebra associated to the gauge group and $A_{\mu}^{a}$ the gauge fields; $\dot{x}^{\mu}=d x^{\mu} / d s$ the four-vector tangent to the path, and Texp the time-ordered exponential,

$$
\begin{aligned}
\operatorname{Texp}\left\{\int_{s_{0}}^{s_{1}} d s f(s)\right\}=\sum_{n=0}^{\infty} & \int_{s_{0}}^{s_{1}} d s_{1} \int_{s_{0}}^{s_{1}} d s_{2} \ldots \int_{s_{0}}^{s_{1}} d s_{n-1} \int_{s_{0}}^{s_{1}} d s_{n} \\
& \times \theta\left(s_{1}-s_{2}\right) \ldots \theta\left(s_{n-1}-s_{n}\right) f\left(s_{1}\right) f\left(s_{2}\right) \ldots f\left(s_{n-1}\right) f\left(s_{n}\right) .
\end{aligned}
$$

where it is understood that the $n=0$ term is just $\mathbf{1}$ (the identity matrix in the appropriate number of dimensions).
1.1. Let $W_{\mathcal{C}}(t)$ denote the Wilson line along $\mathcal{C}$ but only up to $x(t), t<T$,

$$
W_{\mathcal{C}}(t) \equiv \operatorname{Texp}\left\{-i g \int_{0}^{t} d s A_{\mu}(x(s)) \dot{x}^{\mu}(s)\right\} .
$$

Show that $W_{\mathcal{C}}(t)$ obeys the following differential equation,

$$
\begin{equation*}
\frac{d W_{\mathcal{C}}(t)}{d t}=-i g A_{\mu}(x(t)) \dot{x}^{\mu}(t) W_{\mathcal{C}}(t) \tag{*}
\end{equation*}
$$

with initial condition $W_{\mathcal{C}}(0)=\mathbf{1}$. (Hint: use the theta funtions in the definition of the timeordered exponential to explicitly limit the integration ranges over $s_{1}, \ldots, s_{n}$.)
1.2. From Equation $(*)$ obtain a differential equation for $W_{\mathcal{C}}(t)^{\dagger}$. From the relation $W_{\mathcal{C}}(t) W_{\mathcal{C}}(t)^{-1}=$ $\mathbf{1}$ derive a differential equation for $W_{\mathcal{C}}(t)^{-1}$. Compare the two equations and the corresponding initial conditions, and use uniqueness of the solution of the Cauchy problem to conclude that $W_{\mathcal{C}}(t)$ is a unitary matrix.
1.3. Under a finite gauge transformation $U(x)=e^{i \alpha_{a}(x) t^{a}}$, the gauge field $A_{\mu}(x)$ transforms as

$$
A_{\mu}^{U}(x)=U(x) A_{\mu}(x) U(x)^{\dagger}+\frac{1}{i g} U(x) \partial_{\mu} U(x)^{\dagger}
$$

Imposing the axial gauge condition on $A_{\mu}^{U}$, i.e., $A_{3}^{U}=0$, derive a differential equation for $U(x)$, and write its solution in terms of a suitable (family of) Wilson lines.
2. Consider Faddeev-Popov quantisation of a gauge theory using the gauge-fixing functional

$$
f^{a}[A ; x]=n^{\mu} A_{\mu}^{a}
$$

2.1. Derive the Faddeev-Popov determinant corresponding to the above choice of $f^{a}[A ; x]$, and its representation as a Grassmann integral over ghost and antighost fields.
2.2. Show that for the choice $B[f]=\prod_{x} \delta(f[A ; x])$ for the functional implementing the gauge condition in the path integral, the ghosts decouple from the gauge fields.
2.3. Derive the gauge-field propagator in momentum space for the choice $B[f]=e^{\frac{i}{2 \xi} \int d^{4} x f^{a} f^{a}}$. (Hint: the kernel of the quadratic part of the Lagrangean leaves invariant both the subspace spanned by the momentum $p^{\mu}$ and by $n^{\mu}$ and its orthogonal complement, and so must do its inverse. What does this tell you about the most general form of the propagator?)

