HOMEWORK N. 3

Path integral methods

Consider a theory of a neutral scalar field ¢ defined by the generating functional

Z[J] = /D¢ei5[¢1+“'¢, J- ¢ = /d4x J(x)p(x) .
Let us denote correlation functions as
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1. Exploit invariance of the measure of integration in the definition of Z[.J] under the change of
variables

¢(z) = ¢(x) + c(x)

for an arbitrary function ¢(x), to derive the following relation,
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2. By taking functional derivatives with respect to J and then setting J = 0, show that
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This relation shows that the insertion into a generic correlation function of the equations of
motion, %, gives zero up to contact terms (i.e., terms proportional to delta functions).

3. For a generic local action S, % = S'[¢(z)] is a special type of functional of ¢(x), one which
is a function only of ¢(z) and its derivatives at x. Show that for a general functional F,
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one can write
(Flglo(ar) ... d(ea)e” ) = F [15] Z[[‘g] |

Specialise to F[¢] = S'[¢(z)] to convert equation (x) into an equation for Z[J]. This is the
Schwinger-Dyson equation for the generating functional.



4. Specialise now to the A¢* theory with action
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Using either point 2 or point 4 above, derive a differential equation for the two-point function,

or propagator,
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