HOMEWORK N. 2

LSZ reduction

Consider two types of massive spinless particles N and π of masses m_N and m_{π} , associated with interpolating Hermitean scalar fields $\phi_N(x)$ and $\phi_{\pi}(x)$, respectively.

1. Due to translation invariance, the scattering amplitude is proportional to a momentumconserving delta function,

$$S_{N \to N'\pi} = {}_{\text{out}} \langle N(p'_N) \pi(p_\pi) | N(p_N) \rangle_{\text{in}} = (2\pi)^4 \delta^{(4)} (p'_N + p_\pi - p_N) i \mathcal{M}(p_N, p'_N, p_\pi) \,. \tag{*}$$

Show that for momenta satisfying the on-shell condition (i.e., $p_{\alpha}^2 = m_{\alpha}^2$) one can never satisfy the condition of momentum conservation.

2. One can use the LSZ reduction procedure to express $S_{N\to N'\pi}$ in terms of the interpolating fields. Perform explicitly, step by step, the LSZ reduction for the particle π , and write $S_{N\to N'\pi}$ in terms of the matrix element $_{\text{out}}\langle N(p'_N)|\phi_{\pi}(z)|N(p_N)\rangle_{\text{in}}$.

The expression for $S_{N\to N'\pi}$ in terms of the interpolating fields found at point 2 is well defined also for values of the four momentum p_{π} that are not on-shell. This provides a definition of the matrix element $S_{N\to N'\pi}$ off the mass shell. Again due to translation invariance, this quantity has the same form as in equation (*), but momentum conservation can now be satisfied, and so in general $S_{N\to N'\pi}^{\text{off-shell}} \neq 0$. In particular, the on-shell limit of $\mathcal{M}(p_N, p'_N, p_\pi)$ starting from off-shell momenta is a well-defined and generally nonzero quantity.

3. Show that $p'_N + p_\pi - p_N = 0$ can be satisfied with p_N, p'_N on-shell if one takes p_π spacelike (hence unphysical).

4. Use translation invariance of the theory to factor out the delta function from $S_{N\to N'\pi}^{\text{off-shell}}$ and write $\mathcal{M}(p_N, p'_N, p_\pi)$ in terms of the matrix element $_{\text{out}} \langle N(p'_N) | \phi_\pi(0) | N(p_N) \rangle_{\text{in}}$. Using this result, show that the latter quantity has a pole at $(p'_N - p_N)^2 = m_\pi^2$. Is this pole in the region where p_N, p'_N are on-shell?