HOMEWORK N. 1

Källén-Lehmann representation of the two-point function

Consider a Hermitian scalar field $\phi(x)$. Assume that the spectrum of the theory contains only a single scalar particle of mass m : a complete set of asymptotic states contains the one particle states $|p\rangle$, with $p=\left(p^{0}, \vec{p}\right)$ where the energy is given by $p^{0}(\vec{p})=\sqrt{\vec{p}^{2}+m^{2}}$, and the many particles states $\left|p_{1}, \ldots, p_{n}\right\rangle_{\text {in,out }}$. Under translations and Lorentz transformations,

$$
\begin{aligned}
U(a)\left|p_{1}, \ldots, p_{n}\right\rangle & =e^{-i \sum_{j} p_{j} \cdot a}\left|p_{1}, \ldots, p_{n}\right\rangle_{\text {in,out }} \\
U(\Lambda)\left|p_{1}, \ldots, p_{n}\right\rangle & =\left|\Lambda p_{1}, \ldots, \Lambda p_{n}\right\rangle_{\text {in,out }}
\end{aligned}
$$

Relativistic normalisation is assumed. Assume finally that

$$
\langle 0| \phi(x)|0\rangle=0 .
$$

1. What is the minimal energy of the many-particle states?
2. Consider the two-point function

$$
\langle 0| \phi(x) \phi(0)|0\rangle .
$$

Inserting between the two operators a complete set of states,

$$
\mathbf{1}=|0\rangle\langle 0|+\int d \Omega_{p}|p\rangle\langle p|+\frac{1}{2} \int d \Omega_{p_{1}} \int d \Omega_{p_{2}}\left|p_{1} p_{2}\right\rangle\left\langle p_{1} p_{2}\right|+\ldots \equiv \sum_{n}|n\rangle\langle n|,
$$

(the last equality just defines the short-hand notation) with $d \Omega_{p}$ the usual invariant phase-space measure, and exploiting translation and Lorentz invariance show that

$$
\langle 0| \phi(x) \phi(0)|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} f\left(p^{2}\right),
$$

where f depends only on p^{2}, has support only on $p^{0} \geq m \geq 0$, and is positive,

$$
f\left(p^{2}\right)=2 \pi \theta\left(p^{0}\right) \rho\left(p^{2}\right), \quad \rho\left(p^{2}\right) \geq 0
$$

(The factor of 2π is conventional.)
3. Inserting the identity in the form

$$
1=\int_{-\infty}^{\infty} d s \delta\left(s-p^{2}\right)
$$

and exchanging order of integration show that

$$
\langle 0| \phi(x) \phi(0)|0\rangle=\int_{m^{2}}^{\infty} d s \rho(s) \int d \Omega_{p^{(s)}} e^{-i p^{(s)} \cdot x}
$$

where

$$
d \Omega_{p^{(s)}}=\frac{d^{3} p}{(2 \pi)^{3} 2 p^{(s) 0}}, \quad p^{(s)}=\left(\sqrt{\vec{p}^{2}+s}, \vec{p}\right)
$$

is the invariant phase-space measure for a particle of mass squared s.
4. Using translation invariance show that

$$
\langle 0| \phi(0) \phi(x)|0\rangle=\int_{m^{2}}^{\infty} d s \rho(s) \int d \Omega_{p^{(s)}} e^{i p^{(s)} \cdot x}
$$

5. Use the results above to show that

$$
\langle 0|\left[i \partial_{0} \phi(x), \phi(0)\right]|0\rangle=\int_{m^{2}}^{\infty} d s \rho(s) \int \frac{d^{3} p}{2(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}}\left(e^{-i p^{(s) 0} x^{0}}+e^{i p^{(s) 0} x^{0}}\right)
$$

and in particular that

$$
\left.\langle 0|\left[i \partial_{0} \phi(x), \phi(0)\right]|0\rangle\right|_{x^{0}=0}=\delta^{(3)}(\vec{x}) \int_{m^{2}}^{\infty} d s \rho(s) .
$$

6. Assuming now that the scalar field is obtained via canonical quantisation from a Lagrangian of the form

$$
\mathcal{L}=\frac{1}{2} \mathcal{Z} \partial_{\mu} \phi \partial^{\mu} \phi+\mathcal{U}(\phi)
$$

show that one must have

$$
\mathcal{Z} \int_{m^{2}}^{\infty} d s \rho(s)=1
$$

Assuming that the integral is convergent, what does this imply for the sign of \mathcal{Z} ?
7. Using points 3 and 4 it is trivial to show that

$$
\langle 0| T\{\phi(x) \phi(0)\}|0\rangle=\int_{m^{2}}^{\infty} d s \rho(s) \int d \Omega_{p^{(s)}}\left(\theta\left(x^{0}\right) e^{-i p^{(s)} \cdot x}+\theta\left(-x^{0}\right) e^{i p^{(s)} \cdot x}\right) .
$$

Using the residue theorem show that

$$
\int \frac{d p^{0}}{2 \pi} \frac{i}{\left(p^{0}\right)^{2}-\vec{p}^{2}-s+i \epsilon} e^{-i p^{0} x^{0}}=\frac{1}{2 \sqrt{\vec{p}^{2}+s}}\left(\theta\left(x^{0}\right) e^{-i p^{(s)} \cdot x}+\theta\left(-x^{0}\right) e^{i p^{(s)} \cdot x}\right)
$$

Use this to conclude that

$$
\langle 0| T\{\phi(x) \phi(0)\}|0\rangle=\int_{m^{2}}^{\infty} d s \rho(s) \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{i}{p^{2}-s+i \epsilon}=\int_{m^{2}}^{\infty} d s \rho(s) \Delta_{\mathrm{F}}(x ; s),
$$

where $\Delta_{\mathrm{F}}(x ; s)$ denotes the Feynman propagator for a scalar particle of mass squared s. This is the Källén-Lehmann representation of the scalar propagator.
8. Using what you know about the spectrum, show that

$$
\rho(s)=Z \delta\left(s-m^{2}\right)+\sigma(s) \theta\left(s-4 m^{2}\right),
$$

with positive Z and $\sigma(s)$, and so

$$
\langle 0| T\{\phi(x) \phi(0)\}|0\rangle=Z \Delta_{\mathrm{F}}\left(x ; m^{2}\right)+\int_{4 m^{2}}^{\infty} d s \sigma(s) \Delta_{\mathrm{F}}(x ; s) .
$$

Using the result obtain above at point 6 , show that for $\mathcal{Z}=1$

$$
Z+\int_{4 m^{2}}^{\infty} d s \sigma(s)=1
$$

and conclude that

$$
0 \leq Z \leq 1
$$

Can you think of a case in which $Z=1$?
9. Using the explicit form of $\rho(s)$ found in the previous point, show that the momentum-space propagator,

$$
G_{2}(p)=\int d^{4} x e^{i p \cdot x}\langle 0| T\{\phi(x) \phi(0)\}|0\rangle,
$$

has a pole at $p^{2}=m^{2}$.

