
HOMEWORK N. 1

Källén–Lehmann representation of the two-point function

Consider a Hermitian scalar field φ(x). Assume that the spectrum of the theory contains only
a single scalar particle of mass m: a complete set of asymptotic states contains the one particle
states |p〉, with p = (p0, ~p) where the energy is given by p0(~p) =

√
~p 2 +m2, and the many

particles states |p1, . . . , pn〉in,out. Under translations and Lorentz transformations,

U(a)|p1, . . . , pn〉 = e−i
∑

j pj ·a|p1, . . . , pn〉in,out ,
U(Λ)|p1, . . . , pn〉 = |Λp1, . . . ,Λpn〉in,out .

Relativistic normalisation is assumed. Assume finally that

〈0|φ(x)|0〉 = 0 .

1. What is the minimal energy of the many-particle states?

2. Consider the two-point function
〈0|φ(x)φ(0)|0〉 .

Inserting between the two operators a complete set of states,

1 = |0〉〈0|+
∫
dΩp |p 〉〈p|+ 1

2

∫
dΩp1

∫
dΩp2 |p1p2 〉〈p1p2|+ . . . ≡

∑
n

|n〉〈n| ,

(the last equality just defines the short-hand notation) with dΩp the usual invariant phase-space
measure, and exploiting translation and Lorentz invariance show that

〈0|φ(x)φ(0)|0〉 =

∫
d4p

(2π)4
e−ip·xf(p2) ,

where f depends only on p2, has support only on p0 ≥ m ≥ 0, and is positive,

f(p2) = 2πθ(p0)ρ(p2) , ρ(p2) ≥ 0 .

(The factor of 2π is conventional.)

3. Inserting the identity in the form

1 =

∫ ∞
−∞

ds δ(s− p2)
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and exchanging order of integration show that

〈0|φ(x)φ(0)|0〉 =

∫ ∞
m2

ds ρ(s)

∫
dΩp(s) e

−ip(s)·x ,

where

dΩp(s) =
d3p

(2π)32p(s)0
, p(s) = (

√
~p 2 + s, ~p )

is the invariant phase-space measure for a particle of mass squared s.

4. Using translation invariance show that

〈0|φ(0)φ(x)|0〉 =

∫ ∞
m2

ds ρ(s)

∫
dΩp(s) e

ip(s)·x .

5. Use the results above to show that

〈0|[i∂0φ(x), φ(0)]|0〉 =

∫ ∞
m2

ds ρ(s)

∫
d3p

2(2π)3
ei~p·~x

(
e−ip

(s)0x0 + eip
(s)0x0

)
,

and in particular that

〈0|[i∂0φ(x), φ(0)]|0〉
∣∣
x0=0

= δ(3)(~x)

∫ ∞
m2

ds ρ(s) .

6. Assuming now that the scalar field is obtained via canonical quantisation from a Lagrangian
of the form

L = 1
2Z∂µφ∂

µφ+ U(φ) ,

show that one must have

Z
∫ ∞
m2

ds ρ(s) = 1 .

Assuming that the integral is convergent, what does this imply for the sign of Z?

7. Using points 3 and 4 it is trivial to show that

〈0|T{φ(x)φ(0)}|0〉 =

∫ ∞
m2

ds ρ(s)

∫
dΩp(s)

(
θ(x0)e−ip

(s)·x + θ(−x0)eip(s)·x
)
.

Using the residue theorem show that∫
dp0

2π

i

(p0)2 − ~p 2 − s+ iε
e−ip

0x0 =
1

2
√
~p 2 + s

(
θ(x0)e−ip

(s)·x + θ(−x0)eip(s)·x
)
.

Use this to conclude that

〈0|T{φ(x)φ(0)}|0〉 =

∫ ∞
m2

ds ρ(s)

∫
d4p

(2π)4
e−ip·x

i

p2 − s+ iε
=

∫ ∞
m2

ds ρ(s)∆F(x; s) ,

where ∆F(x; s) denotes the Feynman propagator for a scalar particle of mass squared s. This is
the Källén–Lehmann representation of the scalar propagator.
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8. Using what you know about the spectrum, show that

ρ(s) = Zδ(s−m2) + σ(s)θ(s− 4m2) ,

with positive Z and σ(s), and so

〈0|T{φ(x)φ(0)}|0〉 = Z∆F(x;m2) +

∫ ∞
4m2

ds σ(s)∆F(x; s) .

Using the result obtain above at point 6, show that for Z = 1

Z +

∫ ∞
4m2

ds σ(s) = 1 ,

and conclude that
0 ≤ Z ≤ 1 .

Can you think of a case in which Z = 1?

9. Using the explicit form of ρ(s) found in the previous point, show that the momentum-space
propagator,

G2(p) =

∫
d4x eip·x〈0|T{φ(x)φ(0)}|0〉 ,

has a pole at p2 = m2.
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