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Why quantum field theory?

@ want a quantum-mechanical description of processes at relativistic
energies

@ need to take into account the principles of both special relativity (SR)
and quantum mechanics (QM)

» SR: locality and Poincaré invariance
» QM: superposition principle, uncertainty principle
Use fields ¢(x), objects associated with spacetime points x

@ use local and Poincaré-invariant field interactions = SR satisfied
(easier if fields transform in a simple way)

@ make fields generally non-commuting linear operators = QM satisfied
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How do we build a quantum field theory? E.g., canonical quantisation

O take classical Lagrangian L = %(O,Lgb)(@“qb) - %ngbz + V(9)

oL oL
@ solve Euler-Lagrange EOM — =0
eran 96— " 0(9,9)
© identify conjugate momenta T = oL
yconite 9(09)

© impose canonical commutation relations (CCR) =- field operators

(62, %), 4, )] = 69 (Z=7)  [(t,%),d(t,7)] = [}(t, %), #(t, 7)] = 0

What do we gain?
@ CCR imply locality: observables commute at spacelike separation

@ Noether's theorem =- conserved charges that generate unitary
representations of Poincaré symmetry, and of other symmetries
of the classical Lagrangian

Conditions may apply: symmetries can be spontaneously broken or anomalous
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Small practical obstacle: cannot generally solve EOM, proceed by
approximations - e.g., perturbation theory

Interaction picture: relate interacting (canonical) field ¢(t) to free
(canonical) field ¢rp(t) by unitary transformation Upp(t) = e'Hote=/Ht

Hio.m) = [ dx (=(:)060(x) ~ £(6. 96.000(0.7)))
HIg () w(2)] = HIp(0), (0)] = Hol(0), x(0)] + Vilp(0). w(0)]

o(t, %) = e p(0,X)e Mt m(t, %) = eMtr(0,%)e "t
¢Ip(t,)_(') = eiH0t¢(0’)—<»)efngt 7T1p(t, )?) = eiHOtW(O,)_(')eiiHot
¢(x) = Urp(t) rp (x) Urp (1) m(x) = Urp(t)"mp (x) Urp(t)

Now solve the theory iteratively in powers of the interaction
HY = E\U:>(H0+ V/)(\Uo—i-\lll-f—...):(E0+E1+...)(\|/0+W1+...)
HoWo = EgVo
ViVo + HoWy = E1 Vo + EqWV,y
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Big practical obstacle: divergences!

@ S-matrix, Green's functions (= time-ordered correlation functions)
divergent beyond lowest perturbative order

O T{d(x1) ... d(xa) }|0)

¢* theory: >< + >C>< + ...

0-loop x g
d*q 1 1

1-1 2 —
oopocg/ 2m)* 2+ m? —ie(p—q)2+m? —ie o0

@ require renormalisation of field ¢ = Zy¢r, mass m = Z,,mg, and

coupling g = Zzgr to get finite quantities when removing cutoff
= renormalised field is not canonical anymore
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Is this a problem?

@ canonical procedure not written in stone — if it need to be
supplemented by renormalisation, so be it

@ canonical procedure useful to enforce locality and Poincaré symmetry,
not spoiled by renormalisation if we do it right

@ our real purpose is to obtain finite Green's functions with suitable
locality and symmetry properties and build the S-matrix, how we do
that is irrelevant — after all we still need to check against experiment

Field operators can be reconstructed from
their Green's functions (Wightman's theorem)

Need for renormalisation is actually a feature if we are to build an
interacting theory

@ Haag's theorem: if unitary transformation to interaction picture exists
then the interacting field is actually a free field. ..

@ ...but renormalised field ¢ is not unitarily related to ¢1p (Z, # 1),
theorem evaded
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Quantisation procedure perturbatively equivalent to canonical procedure:

path integral quantisation

Generating functional

Z[J] = / D el [ 4 5Ll [ dxJo / D¢ Pl e Dy =TT do(x)

Green's function obtained by functional derivatives
. log Z[J] A
—— = (¢6(x)) = (0|p(x)|0

509 | (9(x)) = (0]&(x)]0)
(=) 62 log Z[J]
6J(x)6J(y) | =

= (0(x)e(y)) = (¢(x))(e(y))
= (0| T{(x)d(y)}10) — (0$(x)I0) (0| (»)I0)

o [—] Path-integral ill-defined (what is the measure?)

@ [=] Perturbative expansion needs regularisation and renormalisation
as in canonical procedure

@ [+] More intuitive, allows for non-perturbative approaches (lattice)
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Renormalisation conceptually independent of divergences

e start with Z = Z[J; m, g] and regularise by some UV cutoff A
(momentum cutoff, inverse lattice spacing,...)
= Z = Z[J; m, g; ], finite and adequate for p < A
@ m, g are thought of as mass and coupling — but are they?
We want to describe the collision of particles initially far away from each
other (= free), so ¢ must describe free particles in some suitable limit
@ at t = Foo Green's functions should describe free particles, we need
Fields should be smeared over small regions in time and space
(p(t1, %1)p(t2, X2)) o Z5 Dpee(ty — 02, X1 — %)

o~ i
Dfree(p) =

2 _ 2 :
p Mehys + 1€
@ mphys Must be matched to the particles we want to describe

@ Z, accounts for interacting field creating also multiparticle states
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Is mphys = m? Generally no: what particles are described at asymptotic
times is for the theory to decide after interactions are taken into account

Exercise: compute the two-point function exactly for the
interaction Lagrangian £; = K¢? by resumming diagrams
— and also the other way

For g: aglisztlc oc | Moz, from (p(x1)d(x2)p(x3)d(xa)) (LSZ formula)

iMo_p = 624 /d X1/d4X2/d4X3/d4X P11 giPrx2 g —ip1 s g i
(Dxl + mphys)(DXZ + mphys)(DX3 + mphys)(DXA + mphys)
X (d(x1)d(x2)P(x3)(xa))
Define gpnys from Moa_o(p5; = 0) = gphys (arbitrary, but reasonable)

elastic( z. 2
0535 (Pi — 0) &ohys

m and g must be tuned so that mpyys, gphys Match experiments‘

Mphys = fm(mag) — m= Fm(mphySagphys)

8phys = fg(m’g) g = Fg(mphy37gphys)
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Divergences complicate the picture technically, not conceptually:

Mphys = fm(mag; A)

, limits A — oo do not exist
8phys = fg(m7g; A)

in the regulated theory {

If the theory is renormalisable
R
Mphys = fm(ma g /\) = fm(Zm(A)mRa Zg(A)gR; A) /\joo fn(7 )(mRv gR)

Gotys = fy(m. & N) = f(Zn(N)me. Zg(NgriN) > f5" (mr. gr)

o0

have finite limits A — oo at mg, gr fixed for suitable Z,,

{mR = Fr(nR)(mphySa gphys)

R
8rR = Fg(‘ )(mphysagphys)
— so tune

{m = m(/\) = Zm(A)FrSﬂR)(mphysagphys) = Zm(/\)mphys
R -
g = 8(N) = Ze(NFE™ (Mphys: 8oiys) = Ze(Ngohys

last step is a finite renormalisation
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Last step not necessary: mg, gr need not be identified with mpys, gphys.
can be chosen arbitrarily

@ most physical choice: (mg, gr) = (Mphys; &phys)
B(p) = 55— - %
p? —m? —¥(p?) +ie prsm2,  p*—
Mo_2(Bi = 0) = gphys

phys + i€

@ in general we can put as much finite part as we want with divergences
p?— m?— Zdiv 2 Zdiv 2 zgiv
=Z;%(p* — mg) — Z§*(p?)
Z7P=1-3{" -G Z, % my
TR (p?) =M (p%) - Co — Gip?

— £™(p?)
=(1+XIMZ2m% + C + X3V

@ (p, C; arbitrary, fixed by conditions on Z%,n(p2) at p? = ;? for some
renormalisation scale y — similarly with g

@ renormalised quantities depend on pu: *

running” mg, gr
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Renormalisation is not bad — but still a big nuisance for symmetries

@ classical Lagrangian has a set of symmetries
@ regulator required for quantisation may break one or more of them

» momentum cutoff — breaks Lorentz symmetry, gauge symmetries
> lattice — breaks Lorentz and translation symmetry, gauge symmetries

can be preserved
discrete subgroups of Poincaré symmetry are preserved

» dimensional regularisation — all spacetime symmetries are fine, gauge

symmetries are fine
but internal chiral symmetry of massless fermions is spoiled

@ must make sure that desired symmetries spoiled by regulator are
recovered after renormalisation but hard
— better not to spoil them in the first place
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Perturbatively most convenient renormalisation scheme:
dimensional regularisation + minimal subtraction (MS) scheme

4 dimensions — d dimensions, dimensionless “cutoff’ ¢ =4 — d

divergences = poles in ¢, renormalised by subtracting them only
MS scheme includes also a fixed constant

generally, divergences must be polynomial in momenta and masses,
and polynomial or logarithmic in (physical) cutoff

in dimensional regularisation, only logarithmic divergences appear
(= poles in €), independent of masses

g =n“Zs(gr.c)gr M= Zm(gr,c)mr

[g] =0in d =4 = [g] = ce in dimension d
mass scale u required to account for this

at fixed physical gpnys, Mpnys, bare g, m depend on € but not on 1

g = g(e; 8phys> mphys) m = m(f':; 8phys> mphys)
= running gr(1), mg(), with p dependence determined by
dg dm

MTM_O MTMZO
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When is a theory renormalisable?
Take i 1
= 5(0u0)(9"0) — 5m*¢* + > Vi(0,00)

with vertices V; = g;@ﬁ"gé”", quantise perturbatively
o redefining ¢ = Zypr, m = Znmg, g = Zg8ir
S(¢;m,g) = S(¢r; MR, gr) + S(PR; MR, &R)
with 65 containing Z3 — 1, Z3, — 1, Zg —
@ at every g; order new divergences are polynomial in m and momenta
1

Example: I = ~ log A
xamp /(27r)4(p+q)2—m2+lep 2 —m2 + e €
dl -2 1
= p4 (P+ )y 55 35— — convergent
day ) (2n)" [(p+ q)2 — m? + e PP — m? + e

= equivalent to contribution of local vertices V; with (divergent)
coefficient 0Z;; if not contained in S, they must be added

@ choose Z;, — 1 = 0Z; = contributions from 05 cancel the
divergences, finite result
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General case: divergences appear if the integral is not convergent for large
momenta

@ overall divergence: when scaling p; — kp;j, K — 00

@ subdivergences: when p; — kp;, kK — 0o with certain linear
combination Ap of momenta kept fixed

@ other possible large-momentum limits (e.g., rescaling p; — k;p;) can
be reduced to the two above

e if no Ap is fixed, taking sufficiently many derivatives w.r.t. masses
and/or external momenta the integrand is made better behaved

1 1
int d=P
e (p)H (pi +qi)? — m? + ie I:I (pj + Agy)? — m? + ie

Ointegrand  —2p,, integrand Ointegrand  —2mintegrand
G, p? om p?

= overall divergence is local (= polynomial in g, — J,, and m)
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Example: 3-loop diagram

Ptp—ps -0

@ no constraint ~ new overall divergence
@ one of p1, p2, p3, p1 + p2 — p3 fixed ~ same div. as 2-loop diagram
(contains subdivs. — 1-loop diagram)
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What can possibly go wrong?
@ combinatorics of terms and counterterms always match, not a problem

@ overall divergences always local, not a problem if enough terms are
present in the Lagrangian. ..
Subdivergences are taken care of by lower-order counterterms
@ ... but number of required terms may be increasing with the
perturbative order!
Power counting: given diagram G

—dF integral d*p

e internal bosonic/fermionic line — p~%, p
(usually dg = 2, dp = 1)
e vertex — 0(>_ p), one used for overall momentum conservation

@ i-th type of vertex (schematic): aﬁ"qb”BM/_J‘_’F’w”Ff_‘_’F" — pki
De=(4—dp)lg+(4—de)lF+4—4> Vi+> Vik
i i
Degree of overall divergence of G is wg < D¢ (cancellations may happen)

Dimension of i-th coupling dg; = 4 — ki — ngj — %np,- <4
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Topological relations: Eg r+2lg Fr = > ; Ving Fi

D¢ = 4_2dB <Z Ving; — EB) + 4_2dF (Z Ving; — EF)
tA—4Y Vit Vik

4 dg 4 dr
—4— Eg — E
2 B 2 F

4—d 4—d
+Z\/,‘<k,'—4+ 2BI'IB,'+ 5 Fn;:,-)

= f(Eg, EF) + ) _ Vi (ki — f(ngi, nFi))

f(nB, nF) =4 —

|If ki < f(ngi, ni) Vi = we < f(Ep, EF)|
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‘H: ki < f(nB,-, n[:,') Vi = we < f(EB, EF)‘

If all the interactions satisfying k; < f(ng;, nr;) are included in the action

then the required counterterm must be of the same form of one of them

= all divergences can be cancelled by renormalisation as outlined above
4 —dg 4 — dp

k<4-— -
> 2 ng

2-dg  1-df
2 B 2

3
nF§4—k—nB—§nF:dg<4

‘In the standard case if dg =2, dp =1 = dgy > 0 is required

= renormalisable theory (by power counting)

If k; > f(ngz, ng;), increasing V4 any wg is possible, and in general new
types of vertices are required at each perturbative order
= non-renormalisable theory
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Example 1: real scalar field ¢

V(@)= &nd"+ O 8n(0u00"¢) e"
k>1,n>1
dg,=4—-—n2=>0 if n<4
dg,=4—4k—n<0 ifbothnk>1

1 1 c A
_ o 22 3 4
L 5 L, pOH 2qu5 +hgb+3!¢ +4!¢
If h=c = 0 counterterms odd in ¢ are forbidden by symmetry ¢ — —¢

If h=10, c # 0 (resp. h # 0, ¢ = 0) counterterm linear (resp. cubic) in ¢
can (almost certainly will) be generated by the renormalisation procedure

Example 2: Fermi theory

L= Y G ) (0r)

Since dg, =4 — 4% = —2, the theory is non-renormalisable
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Example 3: Proca field A* (massive vector field)

Propagator:

DEoes(p) = e P ) g g g < gy < 4
w \P)= p? — m? + ie B B="e

ng =1 requires one derivative for Lorentz invariance
gOUA" = dg =2>1=np
JAY=np=1<d;=3
=2 are the kinetic and mass terms
ng =3 requires one derivative for Lorentz invariance
g(0,A")A LAY, g(0,A")A AY
= d, = 0<3=ng forbidden

No renormalisable self-interaction exists
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References:
@ D. Anselmi, “Renormalization”
@ J. Collins, “Renormalization”
@ M.E. Peskin and D.V. Schroeder, “An Introduction to Quantum Field
Theory”

Addendum: topological relation for diagrams

Ne=>nVi=FE+2I

Dots can be counted in two ways: as a property of vertices, or as a
property of internal and external lines
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