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Why quantum field theory?

want a quantum-mechanical description of processes at relativistic
energies

need to take into account the principles of both special relativity (SR)
and quantum mechanics (QM)

I SR: locality and Poincaré invariance
I QM: superposition principle, uncertainty principle

Use fields φ(x), objects associated with spacetime points x

use local and Poincaré-invariant field interactions ⇒ SR satisfied
(easier if fields transform in a simple way)

make fields generally non-commuting linear operators ⇒ QM satisfied
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How do we build a quantum field theory? E.g., canonical quantisation

1 take classical Lagrangian L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 + V (φ)

2 solve Euler-Lagrange EOM
∂L
∂φ

= ∂µ
∂L

∂(∂µφ)

3 identify conjugate momenta π =
∂L

∂(∂0φ)

4 impose canonical commutation relations (CCR) ⇒ field operators

[φ̂(t,~x), π̂(t, ~y)] = iδ(3)(~x−~y) [φ̂(t,~x), φ̂(t, ~y)] = [π̂(t,~x), π̂(t, ~y)] = 0

What do we gain?

CCR imply locality: observables commute at spacelike separation

Noether’s theorem ⇒ conserved charges that generate unitary
representations of Poincaré symmetry, and of other symmetries
of the classical Lagrangian

Conditions may apply: symmetries can be spontaneously broken or anomalous
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Small practical obstacle: cannot generally solve EOM, proceed by
approximations - e.g., perturbation theory

Interaction picture: relate interacting (canonical) field φ(t) to free

(canonical) field φIP(t) by unitary transformation UIP(t) = e iH0te−iHt

H[φ, π] =

∫
d3x

(
π(x)∂0φ(x)− L

(
φ, ~∇φ, ∂0φ(φ, π)

))

H[φ(t), π(t)] = H[φ(0), π(0)] = H0[φ(0), π(0)] + VI[φ(0), π(0)]

φ(t,~x) = e iHtφ(0,~x)e−iHt π(t,~x) = e iHtπ(0,~x)e−iHt

φIP(t,~x) = e iH0tφ(0,~x)e−iH0t πIP(t,~x) = e iH0tπ(0,~x)e−iH0t

φ(x) = UIP(t)†φIP(x)UIP(t) π(x) = UIP(t)†πIP(x)UIP(t)

Now solve the theory iteratively in powers of the interaction

HΨ = EΨ⇒ (H0 + VI )(Ψ0 + Ψ1 + . . .) = (E0 + E1 + . . .)(Ψ0 + Ψ1 + . . .)

H0Ψ0 = E0Ψ0

VIΨ0 + H0Ψ1 = E1Ψ0 + E0Ψ1

. . .
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Big practical obstacle: divergences!

S-matrix, Green’s functions (= time-ordered correlation functions)
divergent beyond lowest perturbative order

〈0|T
{
φ̂(x1) . . . φ̂(xn)

}
|0〉

φ4 theory: + + . . .

0-loop ∝ g

1-loop ∝ g2

∫

Λ

d4q

(2π)4

1

q2 + m2 − iε

1

(p − q)2 + m2 − iε
=∞

require renormalisation of field φ = ZφφR , mass m = ZmmR , and
coupling g = ZggR to get finite quantities when removing cutoff
⇒ renormalised field is not canonical anymore

g = ZggR ≡ gR − g2
R log Λ

µ

0-loop + 1-loop = g + g2 log Λ
µ = gR −g2

R log Λ
µ + g2

R log Λ
µ + O(g3

R)
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Is this a problem?

canonical procedure not written in stone — if it need to be
supplemented by renormalisation, so be it

canonical procedure useful to enforce locality and Poincaré symmetry,
not spoiled by renormalisation if we do it right

our real purpose is to obtain finite Green’s functions with suitable
locality and symmetry properties and build the S-matrix, how we do
that is irrelevant — after all we still need to check against experiment

Field operators can be reconstructed from
their Green’s functions (Wightman’s theorem)

Need for renormalisation is actually a feature if we are to build an
interacting theory

Haag’s theorem: if unitary transformation to interaction picture exists
then the interacting field is actually a free field. . .

. . . but renormalised field φR is not unitarily related to φIP (Zφ 6= 1),
theorem evaded
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Quantisation procedure perturbatively equivalent to canonical procedure:
path integral quantisation

Generating functional

Z [J] =

∫
Dφ e i

∫
d4xL[φ]+i

∫
d4x Jφ =

∫
Dφ e iS[φ]+iJ·φ Dφ =

∏

x

dφ(x)

Green’s function obtained by functional derivatives

−i δ logZ [J]

δJ(x)

∣∣∣∣
J=0

= 〈φ(x)〉 = 〈0|φ̂(x)|0〉

(−i)2 δ
2 logZ [J]

δJ(x)δJ(y)

∣∣∣∣
J=0

= 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉

= 〈0|T
{
φ̂(x)φ̂(y)

}
|0〉 − 〈0|φ̂(x)|0〉〈0|φ̂(y)|0〉

. . .

[−] Path-integral ill-defined (what is the measure?)
[=] Perturbative expansion needs regularisation and renormalisation
as in canonical procedure
[+] More intuitive, allows for non-perturbative approaches (lattice)
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Renormalisation conceptually independent of divergences

start with Z = Z [J;m, g ] and regularise by some UV cutoff Λ
(momentum cutoff, inverse lattice spacing,. . . )
⇒ Z = Z [J;m, g ; Λ], finite and adequate for p � Λ

m, g are thought of as mass and coupling — but are they?

We want to describe the collision of particles initially far away from each
other (≈ free), so φ must describe free particles in some suitable limit

at t = ∓∞ Green’s functions should describe free particles, we need

Fields should be smeared over small regions in time and space

〈φ(t1,~x1)φ(t2,~x2)〉 →
t1,2→∓∞

Z 2
φDfree(t1 − t2,~x1 − ~x2)

D̃free(p) =
i

p2 −m2
phys + iε

mphys must be matched to the particles we want to describe

Zφ accounts for interacting field creating also multiparticle states
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Is mphys = m? Generally no: what particles are described at asymptotic
times is for the theory to decide after interactions are taken into account

Exercise: compute the two-point function exactly for the
interaction Lagrangian LI = Kφ2 by resumming diagrams

— and also the other way

For g : σelastic
2→2 ∝ |M2→2|2, from 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 (LSZ formula)

iM2→2 =
1

(2π)6Z 4
φ

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x4 e

ip′
1·x1e ip

′
2·x2e−ip1·x3e−ip2·x4

× (2x1 + m2
phys)(2x2 + m2

phys)(2x3 + m2
phys)(2x4 + m2

phys)

× 〈φ(x1)φ(x2)φ(x3)φ(x4)〉

Define gphys from M2→2(~pi = 0) = gphys (arbitrary, but reasonable)

σelastic
2→2 (~pi → 0) ∝ g2

phys

m and g must be tuned so that mphys, gphys match experiments

{
mphys = fm(m, g)

gphys = fg (m, g)
=⇒

{
m = Fm(mphys, gphys)

g = Fg (mphys, gphys)
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Divergences complicate the picture technically, not conceptually:

in the regulated theory

{
mphys = fm(m, g ; Λ)

gphys = fg (m, g ; Λ)
, limits Λ→∞ do not exist

If the theory is renormalisable



mphys = fm(m, g ; Λ) = fm(Zm(Λ)mR ,Zg (Λ)gR ; Λ) →
Λ→∞

f
(R)
m (mR , gR)

gphys = fg (m, g ; Λ) = fg (Zm(Λ)mR ,Zg (Λ)gR ; Λ) →
Λ→∞

f
(R)
g (mR , gR)

have finite limits Λ→∞ at mR , gR fixed for suitable Zm,g
{
mR = F

(R)
m (mphys, gphys)

gR = F
(R)
g (mphys, gphys)

— so tune{
m = m(Λ) = Zm(Λ)F

(R)
m (mphys, gphys) = Z̄m(Λ)mphys

g = g(Λ) = Zg (Λ)F
(R)
g (mphys, gphys) = Z̄g (Λ)gphys

last step is a finite renormalisation
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Last step not necessary: mR , gR need not be identified with mphys, gphys,
can be chosen arbitrarily

most physical choice: (mR , gR) = (mphys, gphys)

D̃(p) =
i

p2 −m2 − Σ(p2) + iε
→

p2→m2
phys

iZ 2
φ

p2 −m2
phys + iε

M2→2(~pi = 0) = gphys

in general we can put as much finite part as we want with divergences

p2 −m2 − Σdiv
1 p2 − Σdiv

2 m2 − Σdiv
3 − Σfin(p2)

= Z−2
φ (p2 −m2

R)− Σfin
R (p2)

Z−2
φ = 1− Σdiv

1 − C1 Z−2
φ m2

R = (1 + Σdiv
2 )Z 2

mm
2
R + C0 + Σdiv

3

Σfin
R (p2) = Σfin(p2)− C0 − C1p

2

C0,C1 arbitrary, fixed by conditions on Σfin
R (p2) at p2 = µ2 for some

renormalisation scale µ — similarly with g

renormalised quantities depend on µ: “running” mR , gR
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Renormalisation is not bad — but still a big nuisance for symmetries

classical Lagrangian has a set of symmetries

regulator required for quantisation may break one or more of them
I momentum cutoff → breaks Lorentz symmetry, gauge symmetries
I lattice → breaks Lorentz and translation symmetry, gauge symmetries

can be preserved
discrete subgroups of Poincaré symmetry are preserved

I dimensional regularisation → all spacetime symmetries are fine, gauge
symmetries are fine

but internal chiral symmetry of massless fermions is spoiled

must make sure that desired symmetries spoiled by regulator are
recovered after renormalisation but hard
— better not to spoil them in the first place
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Perturbatively most convenient renormalisation scheme:
dimensional regularisation + minimal subtraction (MS) scheme

4 dimensions → d dimensions, dimensionless “cutoff” ε = 4− d
divergences = poles in ε, renormalised by subtracting them only

MS scheme includes also a fixed constant

generally, divergences must be polynomial in momenta and masses,
and polynomial or logarithmic in (physical) cutoff
in dimensional regularisation, only logarithmic divergences appear
(= poles in ε), independent of masses

g = µcεZg (gR , ε)gR m = Zm(gR , ε)mR

[g ] = 0 in d = 4 ⇒ [g ] = cε in dimension d
mass scale µ required to account for this

at fixed physical gphys,mphys, bare g ,m depend on ε but not on µ

g = g(ε; gphys,mphys) m = m(ε; gphys,mphys)

⇒ running gR(µ),mR(µ), with µ dependence determined by

µ
dg

dµ
= 0 µ

dm

dµ
= 0
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When is a theory renormalisable?

Take

S =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 +

∑

i

Vi (φ, ∂φ)

with vertices Vi = gi∂
ki
µ φ

ni , quantise perturbatively

redefining φ = ZφφR , m = ZmmR , gi = ZgigiR

S(φ;m, g) = S(φR ;mR , gR) + δS(φR ;mR , gR)

with δS containing Z 2
φ − 1, Z 2

m − 1, Zgi − 1

at every gi order new divergences are polynomial in m and momenta

Example: I =

∫
d4p

(2π)4

1

(p + q)2 −m2 + iε

1

p2 −m2 + iε
∼ log Λ

dI

dqµ
=

∫
d4p

(2π)4

−2(p + q)µ

[(p + q)2 −m2 + iε]2

1

p2 −m2 + iε
→ convergent

⇒ equivalent to contribution of local vertices Vi with (divergent)
coefficient δZi ; if not contained in S , they must be added

choose Zgi − 1 = δZi ⇒ contributions from δS cancel the
divergences, finite result
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General case: divergences appear if the integral is not convergent for large
momenta

overall divergence: when scaling pi → κpi , κ→∞
subdivergences: when pi → κpi , κ→∞ with certain linear
combination ∆p of momenta kept fixed

other possible large-momentum limits (e.g., rescaling pi → κipi ) can
be reduced to the two above

if no ∆p is fixed, taking sufficiently many derivatives w.r.t. masses
and/or external momenta the integrand is made better behaved

integrand = P(p)
∏

i

1

(pi + qi )2 −m2 + iε

∏

j

1

(pj + ∆qj)2 −m2 + iε

∂ integrand

∂qµ
∼ −2pµ integrand

p2

∂ integrand

∂m
∼ −2m integrand

p2

⇒ overall divergence is local (= polynomial in qµ → ∂µ and m)
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Example: 3-loop diagram

no constraint ∼ new overall divergence
one of p1, p2, p3, p1 + p2 − p3 fixed ∼ same div. as 2-loop diagram
(contains subdivs. → 1-loop diagram)

two of them fixed ∼ same div. as 1-loop diagram
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What can possibly go wrong?

combinatorics of terms and counterterms always match, not a problem

overall divergences always local, not a problem if enough terms are
present in the Lagrangian. . .

Subdivergences are taken care of by lower-order counterterms

. . . but number of required terms may be increasing with the
perturbative order!

Power counting: given diagram G

internal bosonic/fermionic line → p−dB , p−dF , integral d4p
(usually dB = 2, dF = 1)

vertex → δ(
∑

p), one used for overall momentum conservation

i-th type of vertex (schematic): ∂kiµ φ
nBi ψ̄ōFiψnFi−ōFi → pki

DG = (4− dB)IB + (4− dF )IF + 4− 4
∑

i

Vi +
∑

i

Viki

Degree of overall divergence of G is ωG ≤ DG (cancellations may happen)

Dimension of i-th coupling dgi = 4− ki − nBi − 3
2nFi < 4
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Topological relations: EB,F + 2IB,F =
∑

i VinB,Fi

DG =
4− dB

2

(∑

i

VinBi − EB

)
+

4− dF
2

(∑

i

VinFi − EF

)

+ 4− 4
∑

i

Vi +
∑

i

Viki

= 4− 4− dB
2

EB −
4− dF

2
EF

+
∑

i

Vi

(
ki − 4 +

4− dB
2

nBi +
4− dF

2
nFi

)

= f (EB ,EF ) +
∑

i

Vi (ki − f (nBi , nFi ))

f (nB , nF ) = 4− 4− dB
2

nB −
4− dF

2
nF

If ki ≤ f (nBi , nFi ) ∀i ⇒ ωG ≤ f (EB ,EF )
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If ki ≤ f (nBi , nFi ) ∀i ⇒ ωG ≤ f (EB ,EF )

If all the interactions satisfying ki ≤ f (nBi , nFi ) are included in the action
then the required counterterm must be of the same form of one of them
⇒ all divergences can be cancelled by renormalisation as outlined above

k ≤ 4− 4− dB
2

nB −
4− dF

2
nF

2− dB
2

nB +
1− dF

2
nF ≤ 4− k − nB −

3

2
nF = dg < 4

In the standard case if dB = 2, dF = 1 ⇒ dg ≥ 0 is required

⇒ renormalisable theory (by power counting)

If kı̄ > f (nB ı̄, nF ī ), increasing Vı̄ any ωG is possible, and in general new
types of vertices are required at each perturbative order
⇒ non-renormalisable theory
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Example 1: real scalar field φ

V (φ) =
∑

gnφ
n +

∑

k≥1,n≥1

gk,n(∂µφ∂
µφ)kφn

dgn = 4− n ≥ 0 if n ≤ 4

dgk,n = 4− 4k − n < 0 if both n, k > 1

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + hφ+

c

3!
φ3 +

λ

4!
φ4

If h = c = 0 counterterms odd in φ are forbidden by symmetry φ→ −φ
If h = 0, c 6= 0 (resp. h 6= 0, c = 0) counterterm linear (resp. cubic) in φ
can (almost certainly will) be generated by the renormalisation procedure

Example 2: Fermi theory

LI =
∑

i

Gi (ψ̄Γµψ)(ψ̄Γµψ)

Since dGi
= 4− 4 3

2 = −2, the theory is non-renormalisable
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Example 3: Proca field Aµ (massive vector field)

Propagator:

DProca
µν (p) =

−i(ηµν − pµpν
m2 )

p2 −m2 + iε
⇒ dB = 0⇒ nB ≤ dg < 4

nB = 1 requires one derivative for Lorentz invariance

g∂µA
µ ⇒ dg = 2 > 1 = nB

JµA
µ ⇒ nB = 1 ≤ dJ = 3

nB = 2 are the kinetic and mass terms

nB = 3 requires one derivative for Lorentz invariance

g(∂µA
ν)AνA

µ, g(∂µA
µ)AνA

ν

⇒ dg = 0 < 3 = nB forbidden

No renormalisable self-interaction exists
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Addendum: topological relation for diagrams

❆
❆
❆

❆
❆

❆

✂
✂
✂
✂
✂
✂✂

�
�
�
�
�
✁
✁
✁
✁
✁
✁

✟✟✟✟

❅
❅

❅
❅

❅
❅

❅
❅

❅

❍❍❍❍❍

rrrr
r rrr r

rrr
N• =

∑
i niVi = E + 2I

Dots can be counted in two ways: as a property of vertices, or as a
property of internal and external lines
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