Advanced field theory

Matteo Giordano

Eötvös Loránd University (ELTE)
Budapest

ELTE

Lecture 1 or: How I learnt to stop worrying and love renormalisation

Why quantum field theory?

- want a quantum-mechanical description of processes at relativistic energies
- need to take into account the principles of both special relativity (SR) and quantum mechanics (QM)
- SR: locality and Poincaré invariance
- QM: superposition principle, uncertainty principle

Use fields $\phi(x)$, objects associated with spacetime points x

- use local and Poincaré-invariant field interactions \Rightarrow SR satisfied (easier if fields transform in a simple way)
- make fields generally non-commuting linear operators $\Rightarrow \mathrm{QM}$ satisfied

How do we build a quantum field theory? E.g., canonical quantisation
(1) take classical Lagrangian $\quad \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}+V(\phi)$
(2) solve Euler-Lagrange EOM

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \phi} & =\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \\
\pi & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)}
\end{aligned}
$$

(3) identify conjugate momenta
(9) impose canonical commutation relations (CCR) \Rightarrow field operators
$[\hat{\phi}(t, \vec{x}), \hat{\pi}(t, \vec{y})]=i \delta^{(3)}(\vec{x}-\vec{y}) \quad[\hat{\phi}(t, \vec{x}), \hat{\phi}(t, \vec{y})]=[\hat{\pi}(t, \vec{x}), \hat{\pi}(t, \vec{y})]=0$
What do we gain?

- CCR imply locality: observables commute at spacelike separation
- Noether's theorem \Rightarrow conserved charges that generate unitary representations of Poincaré symmetry, and of other symmetries of the classical Lagrangian

Conditions may apply: symmetries can be spontaneously broken or anomalous

Small practical obstacle: cannot generally solve EOM, proceed by approximations - e.g., perturbation theory

Interaction picture: relate interacting (canonical) field $\phi(t)$ to free (canonical) field $\phi_{\mathrm{IP}}(t)$ by unitary transformation $U_{\mathrm{IP}}(t)=e^{i H_{0} t} e^{-i H t}$

$$
\begin{gathered}
H[\phi, \pi]=\int d^{3} x\left(\pi(x) \partial_{0} \phi(x)-\mathcal{L}\left(\phi, \vec{\nabla} \phi, \partial_{0} \phi(\phi, \pi)\right)\right) \\
H[\phi(t), \pi(t)]=H[\phi(0), \pi(0)]=H_{0}[\phi(0), \pi(0)]+V_{\mathrm{I}}[\phi(0), \pi(0)] \\
\phi(t, \vec{x})=e^{i H t} \phi(0, \vec{x}) e^{-i H t} \\
\phi_{\mathrm{IP}}(t, \vec{x})=e^{i H_{0} t} \phi(0, \vec{x}) e^{-i H_{0} t} \\
\phi(x)=U_{\mathrm{IP}}(t)^{\dagger} \phi_{\mathrm{IP}}(x) U_{\mathrm{IP}}(t)
\end{gathered} r \begin{aligned}
& \mathrm{IP}(t, \vec{x})=e^{i H t} \pi(0, \vec{x}) e^{-i H t} \\
& i H_{0} t \pi(0, \vec{x}) e^{-i H_{0} t} \\
& U_{\mathrm{IP}}(t)^{\dagger} \pi_{\mathrm{IP}}(x) U_{\mathrm{IP}}(t)
\end{aligned}
$$

Now solve the theory iteratively in powers of the interaction

$$
\begin{aligned}
H \Psi=E \Psi \Rightarrow\left(H_{0}+V_{l}\right)\left(\Psi_{0}+\Psi_{1}+\ldots\right) & =\left(E_{0}+E_{1}+\ldots\right)\left(\Psi_{0}+\Psi_{1}+\ldots\right) \\
H_{0} \Psi_{0} & =E_{0} \Psi_{0} \\
V_{l} \Psi_{0}+H_{0} \Psi_{1} & =E_{1} \Psi_{0}+E_{0} \Psi_{1}
\end{aligned}
$$

Big practical obstacle: divergences!

- S-matrix, Green's functions (= time-ordered correlation functions) divergent beyond lowest perturbative order

$$
\langle 0| T\left\{\hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{n}\right)\right\}|0\rangle
$$

ϕ^{4} theory:
$+$

0 -loop $\propto g$
1-loop $\propto g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}+m^{2}-i \epsilon} \frac{1}{(p-q)^{2}+m^{2}-i \epsilon} \quad=\infty$

- require renormalisation of field $\phi=Z_{\phi} \phi_{R}$, mass $m=Z_{m} m_{R}$, and coupling $g=Z_{g} g_{R}$ to get finite quantities when removing cutoff \Rightarrow renormalised field is not canonical anymore

Big practical obstacle: divergences!

- S-matrix, Green's functions (= time-ordered correlation functions) divergent beyond lowest perturbative order

$$
\langle 0| T\left\{\hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{n}\right)\right\}|0\rangle
$$

ϕ^{4} theory:
$+$

0-loop $\propto g$
1-loop $\propto g^{2} \int^{\wedge} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}+m^{2}-i \epsilon} \frac{1}{(p-q)^{2}+m^{2}-i \epsilon} \quad \propto g^{2} \log \frac{\Lambda}{\mu}$

- require renormalisation of field $\phi=Z_{\phi} \phi_{R}$, mass $m=Z_{m} m_{R}$, and coupling $g=Z_{g} g_{R}$ to get finite quantities when removing cutoff \Rightarrow renormalised field is not canonical anymore

Big practical obstacle: divergences!

- S-matrix, Green's functions (= time-ordered correlation functions) divergent beyond lowest perturbative order

$$
\langle 0| T\left\{\hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{n}\right)\right\}|0\rangle
$$

ϕ^{4} theory:

0 -loop $\propto g$
1-loop $\propto g^{2} \int^{\wedge} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}+m^{2}-i \epsilon} \frac{1}{(p-q)^{2}+m^{2}-i \epsilon} \quad \propto g^{2} \log \frac{\Lambda}{\mu}$

- require renormalisation of field $\phi=Z_{\phi} \phi_{R}$, mass $m=Z_{m} m_{R}$, and coupling $g=Z_{g} g_{R}$ to get finite quantities when removing cutoff \Rightarrow renormalised field is not canonical anymore

$$
\begin{aligned}
g & =Z_{g} g_{R} \equiv g_{R}-g_{R}^{2} \log \frac{\Lambda}{\mu} \\
\text { 0-loop + 1-loop } & =g+g^{2} \log \frac{\Lambda}{\mu}=g_{R}-g_{R}^{2} \log \frac{\Lambda}{\mu}+g_{R}^{2} \log \frac{\Lambda}{\mu}+O\left(g_{R}^{3}\right)
\end{aligned}
$$

Big practical obstacle: divergences!

- S-matrix, Green's functions (= time-ordered correlation functions) divergent beyond lowest perturbative order

$$
\langle 0| T\left\{\hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{n}\right)\right\}|0\rangle
$$

ϕ^{4} theory:

0 -loop $\propto g$
1-loop $\propto g^{2} \int^{\wedge} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}+m^{2}-i \epsilon} \frac{1}{(p-q)^{2}+m^{2}-i \epsilon} \quad \propto g^{2} \log \frac{\Lambda}{\mu}$

- require renormalisation of field $\phi=Z_{\phi} \phi_{R}$, mass $m=Z_{m} m_{R}$, and coupling $g=Z_{g} g_{R}$ to get finite quantities when removing cutoff \Rightarrow renormalised field is not canonical anymore

$$
\begin{aligned}
g & =Z_{g} g_{R} \equiv g_{R}-g_{R}^{2} \log \frac{\Lambda}{\mu} \\
\text { 0-loop + 1-loop } & =g+g^{2} \log \frac{\Lambda}{\mu}=g_{R} \frac{g_{R}^{2} \log { }_{\mu}}{\mu}+g_{R}^{2} \log \frac{\Lambda}{\mu}+O\left(g_{R}^{3}\right)
\end{aligned}
$$

Is this a problem?

- canonical procedure not written in stone - if it need to be supplemented by renormalisation, so be it
- canonical procedure useful to enforce locality and Poincaré symmetry, not spoiled by renormalisation if we do it right
- our real purpose is to obtain finite Green's functions with suitable locality and symmetry properties and build the S-matrix, how we do that is irrelevant - after all we still need to check against experiment

Field operators can be reconstructed from their Green's functions (Wightman's theorem)
Need for renormalisation is actually a feature if we are to build an interacting theory

- Haag's theorem: if unitary transformation to interaction picture exists then the interacting field is actually a free field...
- ... but renormalised field ϕ_{R} is not unitarily related to $\phi_{\mathrm{IP}}\left(Z_{\phi} \neq 1\right)$, theorem evaded

Quantisation procedure perturbatively equivalent to canonical procedure: path integral quantisation

Generating functional

$$
Z[J]=\int \mathrm{D} \phi e^{i \int d^{4} x \mathcal{L}[\phi]+i \int d^{4} x J \phi}=\int \mathrm{D} \phi e^{i S[\phi]+i J \cdot \phi} \quad \mathrm{D} \phi=\prod_{x} d \phi(x)
$$

Green's function obtained by functional derivatives

$$
\begin{aligned}
-\left.i \frac{\delta \log Z[J]}{\delta J(x)}\right|_{J=0} & =\langle\phi(x)\rangle=\langle 0| \hat{\phi}(x)|0\rangle \\
\left.(-i)^{2} \frac{\delta^{2} \log Z[J]}{\delta J(x) \delta J(y)}\right|_{J=0} & =\langle\phi(x) \phi(y)\rangle-\langle\phi(x)\rangle\langle\phi(y)\rangle \\
& =\langle 0| T\{\hat{\phi}(x) \hat{\phi}(y)\}|0\rangle-\langle 0| \hat{\phi}(x)|0\rangle\langle 0| \hat{\phi}(y)|0\rangle
\end{aligned}
$$

- [-] Path-integral ill-defined (what is the measure?)
- [=] Perturbative expansion needs regularisation and renormalisation as in canonical procedure
- [+] More intuitive, allows for non-perturbative approaches (lattice)

Renormalisation conceptually independent of divergences

- start with $Z=Z[J ; m, g]$ and regularise by some UV cutoff Λ (momentum cutoff, inverse lattice spacing,...) $\Rightarrow Z=Z[J ; m, g ; \Lambda]$, finite and adequate for $p \ll \Lambda$
- m, g are thought of as mass and coupling - but are they?

We want to describe the collision of particles initially far away from each other (\approx free), so ϕ must describe free particles in some suitable limit

- at $t=\mp \infty$ Green's functions should describe free particles, we need

Fields should be smeared over small regions in time and space

$$
\begin{aligned}
& \left\langle\phi\left(t_{1}, \vec{x}_{1}\right) \phi\left(t_{2}, \vec{x}_{2}\right)\right\rangle \underset{t_{1,2} \rightarrow \mp \infty}{\rightarrow} Z_{\phi}^{2} D_{\text {free }}\left(t_{1}-t_{2}, \vec{x}_{1}-\vec{x}_{2}\right) \\
& \tilde{D}_{\text {free }}(p)=\frac{i}{p^{2}-m_{\text {phys }}^{2}+i \epsilon}
\end{aligned}
$$

- $m_{\text {phys }}$ must be matched to the particles we want to describe
- Z_{ϕ} accounts for interacting field creating also multiparticle states

Is $m_{\text {phys }}=m$? Generally no: what particles are described at asymptotic times is for the theory to decide after interactions are taken into account

Exercise: compute the two-point function exactly for the interaction Lagrangian $\mathcal{L}_{I}=K \phi^{2}$ by resumming diagrams

- and also the other way

For $g: \sigma_{2 \rightarrow 2}^{\text {elastic }} \propto\left|\mathcal{M}_{2 \rightarrow 2}\right|^{2}$, from $\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle$ (LSZ formula)

$$
\begin{aligned}
i \mathcal{M}_{2 \rightarrow 2}=\frac{1}{(2 \pi)^{6} Z_{\phi}^{4}} & \int d^{4} x_{1} \int d^{4} x_{2} \int d^{4} x_{3} \int d^{4} x_{4} e^{i p_{1}^{\prime} \cdot x_{1}} e^{i p_{2}^{\prime} \cdot x_{2}} e^{-i p_{1} \cdot x_{3}} e^{-i p_{2} \cdot x_{4}} \\
& \times\left(\square_{x_{1}}+m_{\text {phys }}^{2}\right)\left(\square_{x_{2}}+m_{\text {phys }}^{2}\right)\left(\square_{x_{3}}+m_{\text {phys }}^{2}\right)\left(\square_{x_{4}}+m_{\text {phys }}^{2}\right) \\
& \times\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle
\end{aligned}
$$

Define $g_{\text {phys }}$ from $\mathcal{M}_{2 \rightarrow 2}\left(\vec{p}_{i}=0\right)=g_{\text {phys }}$ (arbitrary, but reasonable)

$$
\sigma_{2 \rightarrow 2}^{\text {elastic }}\left(\vec{p}_{i} \rightarrow 0\right) \propto g_{\text {phys }}^{2}
$$

m and g must be tuned so that $m_{\text {phys }}, g_{\text {phys }}$ match experiments

$$
\left\{\begin{array} { r l }
{ m _ { \text { phys } } } & { = f _ { m } (m , g) } \\
{ g _ { \text { phys } } } & { = f _ { g } (m , g) }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{c}
m=F_{m}\left(m_{\text {phys }}, g_{\text {phys }}\right) \\
g=F_{g}\left(m_{\text {phys }}, g_{\text {phys }}\right)
\end{array}\right.\right.
$$

Divergences complicate the picture technically, not conceptually:
in the regulated theory $\left\{\begin{aligned} m_{\text {phys }} & =f_{m}(m, g ; \Lambda) \\ g_{\text {phys }} & =f_{g}(m, g ; \Lambda)\end{aligned}\right.$, limits $\Lambda \rightarrow \infty$ do not exist
If the theory is renormalisable

$$
\left\{\begin{array}{l}
m_{\text {phys }}=f_{m}(m, g ; \Lambda)=f_{m}\left(Z_{m}(\Lambda) m_{R}, Z_{g}(\Lambda) g_{R} ; \Lambda\right) \underset{\Lambda \rightarrow \infty}{\rightarrow} f_{m}^{(R)}\left(m_{R}, g_{R}\right) \\
g_{\text {phys }}=f_{g}(m, g ; \Lambda)=f_{g}\left(Z_{m}(\Lambda) m_{R}, Z_{g}(\Lambda) g_{R} ; \Lambda\right) \underset{\Lambda \rightarrow \infty}{\rightarrow} f_{g}^{(R)}\left(m_{R}, g_{R}\right)
\end{array}\right.
$$

have finite limits $\Lambda \rightarrow \infty$ at m_{R}, g_{R} fixed for suitable $Z_{m, g}$

$$
\left\{\begin{aligned}
m_{R} & =F_{m}^{(R)}\left(m_{\mathrm{phys}}, g_{\mathrm{phys}}\right) \\
g_{R} & =F_{g}^{(R)}\left(m_{\mathrm{phys}}, g_{\mathrm{phys}}\right)
\end{aligned}\right.
$$

- so tune

$$
\left\{\begin{array}{l}
m=m(\Lambda)=Z_{m}(\Lambda) F_{m}^{(R)}\left(m_{\text {phys }}, g_{\text {phys }}\right)=\bar{Z}_{m}(\Lambda) m_{\text {phys }} \\
g=g(\Lambda)=Z_{g}(\Lambda) F_{g}^{(R)}\left(m_{\text {phys }}, g_{\text {phys }}\right)=\bar{Z}_{g}(\Lambda) g_{\text {phys }}
\end{array}\right.
$$

last step is a finite renormalisation

Last step not necessary: m_{R}, g_{R} need not be identified with $m_{\text {phys }}, g_{\text {phys }}$, can be chosen arbitrarily

- most physical choice: $\left(m_{R}, g_{R}\right)=\left(m_{\text {phys }}, g_{\text {phys }}\right)$

$$
\begin{aligned}
\tilde{D}(p) & =\frac{i}{p^{2}-m^{2}-\Sigma\left(p^{2}\right)+i \epsilon} \underset{p^{2} \rightarrow m_{\text {phys }}^{2}}{\rightarrow} \frac{i Z_{\phi}^{2}}{p^{2}-m_{\text {phys }}^{2}+i \epsilon} \\
\mathcal{M}_{2 \rightarrow 2}\left(\vec{p}_{i}=0\right) & =g_{\text {phys }}
\end{aligned}
$$

- in general we can put as much finite part as we want with divergences

$$
\begin{aligned}
& p^{2}-m^{2}-\Sigma_{1}^{\mathrm{div}} p^{2}-\Sigma_{2}^{\mathrm{div}} m^{2}-\Sigma_{3}^{\mathrm{div}}-\Sigma^{\mathrm{fin}}\left(p^{2}\right) \\
& =Z_{\phi}^{-2}\left(p^{2}-m_{R}^{2}\right)-\Sigma_{R}^{\mathrm{fin}}\left(p^{2}\right) \\
& Z_{\phi}^{-2}=1-\Sigma_{1}^{\mathrm{div}}-C_{1} \quad Z_{\phi}^{-2} m_{R}^{2}=\left(1+\Sigma_{2}^{\mathrm{div}}\right) Z_{m}^{2} m_{R}^{2}+C_{0}+\Sigma_{3}^{\mathrm{div}} \\
& \Sigma_{R}^{\mathrm{fin}}\left(p^{2}\right)=\Sigma^{\mathrm{fin}}\left(p^{2}\right)-C_{0}-C_{1} p^{2}
\end{aligned}
$$

- C_{0}, C_{1} arbitrary, fixed by conditions on $\sum_{R}^{\mathrm{fin}}\left(p^{2}\right)$ at $p^{2}=\mu^{2}$ for some renormalisation scale μ - similarly with g
- renormalised quantities depend on μ : "running" m_{R}, g_{R}

Renormalisation is not bad - but still a big nuisance for symmetries

- classical Lagrangian has a set of symmetries
- regulator required for quantisation may break one or more of them
- momentum cutoff \rightarrow breaks Lorentz symmetry, gauge symmetries
- lattice \rightarrow breaks Lorentz and translation symmetry, gauge symmetries can be preserved
discrete subgroups of Poincaré symmetry are preserved
- dimensional regularisation \rightarrow all spacetime symmetries are fine, gauge symmetries are fine but internal chiral symmetry of massless fermions is spoiled
- must make sure that desired symmetries spoiled by regulator are recovered after renormalisation but hard
- better not to spoil them in the first place

Perturbatively most convenient renormalisation scheme: dimensional regularisation + minimal subtraction (MS) scheme

- 4 dimensions $\rightarrow d$ dimensions, dimensionless "cutoff" $\varepsilon=4-d$
- divergences $=$ poles in ε, renormalised by subtracting them only
$\overline{\mathrm{MS}}$ scheme includes also a fixed constant
- generally, divergences must be polynomial in momenta and masses, and polynomial or logarithmic in (physical) cutoff
- in dimensional regularisation, only logarithmic divergences appear ($=$ poles in ε), independent of masses

$$
g=\mu^{c \varepsilon} Z_{g}\left(g_{R}, \varepsilon\right) g_{R} \quad m=Z_{m}\left(g_{R}, \varepsilon\right) m_{R}
$$

$$
[g]=0 \text { in } d=4 \Rightarrow[g]=c \varepsilon \text { in dimension } d
$$

$$
\text { mass scale } \mu \text { required to account for this }
$$

- at fixed physical $g_{\text {phys }}, m_{\text {phys }}$, bare g, m depend on ε but not on μ

$$
g=g\left(\varepsilon ; g_{\mathrm{phys}}, m_{\mathrm{phys}}\right) \quad m=m\left(\varepsilon ; g_{\mathrm{phys}}, m_{\mathrm{phys}}\right)
$$

\Rightarrow running $g_{R}(\mu), m_{R}(\mu)$, with μ dependence determined by

$$
\mu \frac{d g}{d \mu}=0 \quad \mu \frac{d m}{d \mu}=0
$$

When is a theory renormalisable?
Take

$$
S=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}+\sum_{i} V_{i}(\phi, \partial \phi)
$$

with vertices $V_{i}=g_{i} \partial_{\mu}^{k_{i}} \phi^{n_{i}}$, quantise perturbatively

- redefining $\phi=Z_{\phi} \phi_{R}, m=Z_{m} m_{R}, g_{i}=Z_{g_{i}} g_{i R}$

$$
S(\phi ; m, g)=S\left(\phi_{R} ; m_{R}, g_{R}\right)+\delta S\left(\phi_{R} ; m_{R}, g_{R}\right)
$$

with δS containing $Z_{\phi}^{2}-1, Z_{m}^{2}-1, Z_{g_{i}}-1$

- at every g_{i} order new divergences are polynomial in m and momenta

Example:

$$
\begin{aligned}
I & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{(p+q)^{2}-m^{2}+i \epsilon} \frac{1}{p^{2}-m^{2}+i \epsilon} \sim \log \Lambda \\
\frac{d I}{d q_{\mu}} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{-2(p+q)_{\mu}}{\left[(p+q)^{2}-m^{2}+i \epsilon\right]^{2}} \frac{1}{p^{2}-m^{2}+i \epsilon} \rightarrow \text { convergent }
\end{aligned}
$$

\Rightarrow equivalent to contribution of local vertices V_{i} with (divergent) coefficient δZ_{i}; if not contained in S, they must be added

- choose $Z_{g_{i}}-1=\delta Z_{i} \Rightarrow$ contributions from δS cancel the divergences, finite result

General case: divergences appear if the integral is not convergent for large momenta

- overall divergence: when scaling $p_{i} \rightarrow \kappa p_{i}, \kappa \rightarrow \infty$
- subdivergences: when $p_{i} \rightarrow \kappa p_{i}, \kappa \rightarrow \infty$ with certain linear combination Δp of momenta kept fixed
- other possible large-momentum limits (e.g., rescaling $p_{i} \rightarrow \kappa_{i} p_{i}$) can be reduced to the two above
- if no Δp is fixed, taking sufficiently many derivatives w.r.t. masses and/or external momenta the integrand is made better behaved

$$
\begin{aligned}
& \text { integrand }=P(p) \prod_{i} \frac{1}{\left(p_{i}+q_{i}\right)^{2}-m^{2}+i \epsilon} \prod_{j} \frac{1}{\left(p_{j}+\Delta q_{j}\right)^{2}-m^{2}+i \epsilon} \\
& \frac{\partial \text { integrand }}{\partial q_{\mu}} \sim \frac{-2 p_{\mu} \text { integrand }}{p^{2}} \quad \frac{\partial \text { integrand }}{\partial m} \sim \frac{-2 m \text { integrand }}{p^{2}}
\end{aligned}
$$

\Rightarrow overall divergence is local ($=$ polynomial in $q_{\mu} \rightarrow \partial_{\mu}$ and m)

Example: 3-loop diagram

- no constraint \sim new overall divergence
- one of $p_{1}, p_{2}, p_{3}, p_{1}+p_{2}-p_{3}$ fixed \sim same div. as 2-loop diagram (contains subdivs. \rightarrow 1-loop diagram)

- two of them fixed \sim same div. as 1-loop diagram

What can possibly go wrong?

- combinatorics of terms and counterterms always match, not a problem
- overall divergences always local, not a problem if enough terms are present in the Lagrangian...

Subdivergences are taken care of by lower-order counterterms

- ... but number of required terms may be increasing with the perturbative order!
Power counting: given diagram G
- internal bosonic/fermionic line $\rightarrow p^{-d_{B}}, p^{-d_{F}}$, integral $d^{4} p$ (usually $d_{B}=2, d_{F}=1$)
- vertex $\rightarrow \delta\left(\sum p\right)$, one used for overall momentum conservation
- i-th type of vertex (schematic): $\partial_{\mu}^{k_{i}} \phi^{n_{B i}} \bar{\psi}^{\bar{o}_{F i}} \psi^{n_{F i}-\bar{o}_{F i}} \rightarrow p^{k_{i}}$

$$
D_{G}=\left(4-d_{B}\right) I_{B}+\left(4-d_{F}\right) I_{F}+4-4 \sum_{i} V_{i}+\sum_{i} V_{i} k_{i}
$$

Degree of overall divergence of G is $\omega_{G} \leq D_{G}$ (cancellations may happen)
Dimension of i-th coupling $d_{g_{i}}=4-k_{i}-n_{B i}-\frac{3}{2} n_{F i}<4$

Topological relations: $E_{B, F}+2 I_{B, F}=\sum_{i} V_{i} n_{B, F i}$

$$
\begin{aligned}
D_{G}= & \frac{4-d_{B}}{2}\left(\sum_{i} V_{i} n_{B i}-E_{B}\right)+\frac{4-d_{F}}{2}\left(\sum_{i} V_{i} n_{F i}-E_{F}\right) \\
& +4-4 \sum_{i} V_{i}+\sum_{i} V_{i} k_{i} \\
= & 4-\frac{4-d_{B}}{2} E_{B}-\frac{4-d_{F}}{2} E_{F} \\
& +\sum_{i} V_{i}\left(k_{i}-4+\frac{4-d_{B}}{2} n_{B i}+\frac{4-d_{F}}{2} n_{F i}\right) \\
= & f\left(E_{B}, E_{F}\right)+\sum_{i} V_{i}\left(k_{i}-f\left(n_{B i}, n_{F i}\right)\right) \\
f\left(n_{B}, n_{F}\right)= & 4-\frac{4-d_{B}}{2} n_{B}-\frac{4-d_{F}}{2} n_{F} \\
& \text { If } k_{i} \leq f\left(n_{B i}, n_{F i}\right) \forall i \Rightarrow \omega_{G} \leq f\left(E_{B}, E_{F}\right)
\end{aligned}
$$

$$
\text { If } k_{i} \leq f\left(n_{B i}, n_{F i}\right) \forall i \Rightarrow \omega_{G} \leq f\left(E_{B}, E_{F}\right)
$$

If all the interactions satisfying $k_{i} \leq f\left(n_{B i}, n_{F i}\right)$ are included in the action then the required counterterm must be of the same form of one of them \Rightarrow all divergences can be cancelled by renormalisation as outlined above

$$
\begin{gathered}
k \leq 4-\frac{4-d_{B}}{2} n_{B}-\frac{4-d_{F}}{2} n_{F} \\
\frac{2-d_{B}}{2} n_{B}+\frac{1-d_{F}}{2} n_{F} \leq 4-k-n_{B}-\frac{3}{2} n_{F}=d_{g}<4
\end{gathered}
$$

In the standard case if $d_{B}=2, d_{F}=1 \Rightarrow d_{g} \geq 0$ is required
\Rightarrow renormalisable theory (by power counting)
If $k_{\bar{\imath}}>f\left(n_{B \bar{\imath}}, n_{F \bar{i}}\right)$, increasing $V_{\bar{\imath}}$ any ω_{G} is possible, and in general new types of vertices are required at each perturbative order \Rightarrow non-renormalisable theory

Example 1: real scalar field ϕ

$$
\begin{gathered}
V(\phi)=\sum g_{n} \phi^{n}+\sum_{k \geq 1, n \geq 1} g_{k, n}\left(\partial_{\mu} \phi \partial^{\mu} \phi\right)^{k} \phi^{n} \\
d_{g_{n}}=4-n \geq 0 \quad \quad \text { if } n \leq 4 \\
d_{g_{k, n}}=4-4 k-n<0 \quad \text { if both } n, k>1 \\
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}+h \phi+\frac{c}{3!} \phi^{3}+\frac{\lambda}{4!} \phi^{4}
\end{gathered}
$$

If $h=c=0$ counterterms odd in ϕ are forbidden by symmetry $\phi \rightarrow-\phi$ If $h=0, c \neq 0$ (resp. $h \neq 0, c=0$) counterterm linear (resp. cubic) in ϕ can (almost certainly will) be generated by the renormalisation procedure

Example 2: Fermi theory

$$
\mathcal{L}_{I}=\sum_{i} G_{i}\left(\bar{\psi} \Gamma_{\mu} \psi\right)\left(\bar{\psi} \Gamma^{\mu} \psi\right)
$$

Since $d_{G_{i}}=4-4 \frac{3}{2}=-2$, the theory is non-renormalisable

Example 3: Proca field A^{μ} (massive vector field)
Propagator:

$$
\begin{aligned}
& D_{\mu \nu}^{\text {Proca }}(p)=\frac{-i\left(\eta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{m^{2}}\right)}{p^{2}-m^{2}+i \epsilon} \Rightarrow d_{B}=0 \Rightarrow n_{B} \leq d_{g}<4 \\
& \\
& \begin{array}{ll}
n_{B}=1 & \text { requires one derivative for Lorentz invariance } \\
& g \partial_{\mu} A^{\mu} \Rightarrow d_{g}=2>1=n_{B} \\
& J_{\mu} A^{\mu} \Rightarrow n_{B}=1 \leq d_{J}=3 \\
n_{B}=2 & \text { are the kinetic and mass terms } \\
n_{B}=3 & \text { requires one derivative for Lorentz invariance } \\
& g\left(\partial_{\mu} A^{\nu}\right) A_{\nu} A^{\mu}, g\left(\partial_{\mu} A^{\mu}\right) A_{\nu} A^{\nu} \\
& \Rightarrow d_{g}=0<3=n_{B} \quad \text { forbidden }
\end{array}
\end{aligned}
$$

No renormalisable self-interaction exists

References:

- D. Anselmi, "Renormalization"
- J. Collins, "Renormalization"
- M.E. Peskin and D.V. Schroeder, "An Introduction to Quantum Field Theory"

Addendum: topological relation for diagrams

Dots can be counted in two ways: as a property of vertices, or as a property of internal and external lines

