# High-energetic cosmic neutrinos, and the test of fundamental physics

Walter Winter

DESY, Zeuthen, Germany

Department of theoretical physics, seminar Eötvös-Lorand University, Budapest, Hungary

May 25, 2016











#### **Contents**

- > Introduction
- Particle astrophysics of neutrino sources
- > Where do the observed cosmic neutrinos come from?
- > Fundamental physics tests with cosmic neutrinos:
  - Flavor composition
  - Propagation effects over cosmological distances
- Conclusions



## IceCube neutrino observatory at the South Pole



#### **IceCube: Event topologies?**

#### Muon track:

• From  $v_{\mu}$  (mostly)



Better directional info



#### Cascade (shower):

- From  $v_e$
- From  $v_{\tau}$
- [From  $v_e$ ,  $v_{\mu}$ ,  $v_{\tau}$  neutral current interactions]



Better energy info

The ratio between muon tracks and showers  $\sim v_{\mu}/(v_e + v_{\tau})$ , roughly



#### 2015: 54 high energy cosmic neutrinos



IceCube: Science 342 (2013) 1242856; Phys. Rev. Lett. 113, 101101 (2014); Halzen at WIN 2015



#### A simple toy model for the source

If neutrons can escape: Source of cosmic rays

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Neutrinos produced in ratio  $(v_e:v_{\mu}:v_{\tau})=(1:2:0)$ 

$$\pi^{+} \rightarrow \mu^{+} + \underline{\nu_{\mu}},$$

$$\mu^{+} \rightarrow e^{+} + \underline{\nu_{e}} + \overline{\nu_{\mu}}$$

Delta resonance approximation:

$$p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

Cosmic messengers

$$\pi^0 \rightarrow \gamma + \gamma$$

High energetic gamma-rays; typically cascade down to lower E Additional constraints!

(Same process during propagation of cosmic rays in CMB: "cosmogenic neutrinos")



## Particle astrophysics of neutrino sources



#### Cosmic vs. terrestrial particle accelerators

## Lorentz force = centrifugal force → E<sub>max</sub> ~ q B R

- $> E_{max} \sim 300,000,000 \text{ TeV}$
- > B ~ 1 mT 1 T
- > R ~ 100,000 10,000,000,000 km > R ~ 4.3 km



- > B ~ 8 T







#### Acceleration of primaries (protons, nuclei)

Example: Fermi shock acceleration

- Fractional energy gain per cycle: η
- Escape probability per cycle: P<sub>esc</sub>
- > Yields a **power law** spectrum ~  $E^{rac{\ln P_{
  m esc}}{\ln \eta}-1}$
- > In  $P_{esc}/In \eta \sim -1$  (from compression ratio of a strong shock), and  $E^{-2}$  is the typical "textbook" spectrum
- Although theory of acceleration at relativistic shocks challenging, we do observe power law spectra in Nature
- For neutrino production: adopt pragmatic point of view! (we know that it works, somehow ...)



B field



#### **Secondary production: Particle physics 101**

Beam dump picture (particle physics)

Beam of p, A, ... **Target** (p, γ, A, ...)

> Interaction rate  $\Gamma \sim c N [cm^{-3}] \sigma [cm^{2}]$ 

Target density (e.g. N<sub>y</sub>) critical for v production!

- Astrophysical challenges:
  - Feedback between beam and target (e.g. photons from  $\pi^0$  decays); need selfconsistent description called radiation model
  - What you see is, in general, not what you get in the source





#### **Neutrino production (example: pγ interactions)**





#### Kinetic equations for self-consistent treatment (steady state)

> Treat energy losses/escape in continuous limit in radiation zone:

$$Q(E) = \frac{\partial}{\partial E} \left( b(E) N(E) \right) + \frac{N(E)}{t_{\rm esc}}$$

One equation for each particle species!

Injection

**Energy losses** 

Escape

b(E)=-E t<sup>-1</sup><sub>loss</sub> Q(E,t) [GeV<sup>-1</sup> cm<sup>-3</sup> s<sup>-1</sup>] injection per time frame (e. g. from acc. zone) N(E,t) [GeV<sup>-1</sup> cm<sup>-3</sup>] particle spectrum including spectral effects

#### Need N(E) to compute particle interactions

- > Simple case: No energy losses b=0:  $N(E) = Q(E) t_{\rm esc}$
- > Special cases:
  - t<sub>esc</sub> ~ R/c (free-streaming, aka "leaky box")
  - $t_{esc} \sim E^{-\alpha}$  . Consequence: N(E)  $\sim Q_{inj}(E) E^{-\alpha}$ , Escape:  $Q_{esc}(E) = N(E)/t_{esc} \sim Q_{inj}$

(Neutrino spectrum from N(E) can have a break which is not present in escaping primaries  $Q_{\rm esc}(E)$ )



#### In the presence of strong B: Secondary cooling

**Example: GRB** 

Secondary spectra ( $\mu$ ,  $\pi$ , K) losssteepend above critical energy

$$E_c' = \sqrt{\frac{9\pi\epsilon_0 m^5 c^7}{\tau_0 e^4 B'^2}}$$

- E'<sub>c</sub> depends on particle physics only (m,  $\tau_0$ ), and **B**'
- ➤ Leads to characteristic flavor composition and shape

Decay/cooling: charged  $\mu$ ,  $\pi$ , K



Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508; also: Kashti, Waxman, 2005; Lipari et al, 2007; ...



#### Neutrino propagation: From source to detector

In environments with high densities (e.g. jets choked in envelope): neutrino oscillations in matter

If E >> 10 TeV and passage through Earth: Absorption/regeneration (typically included in A<sub>eff</sub>)

The typical case: decoherent neutrino oscillations/flavor mixing

$$P_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Source  $v_e: v_{\mu}: v_{\tau} = 1:2:0$   $\rightarrow$  Detector 1:1:1 + redshift of energy if cosmological distance

## On the signal interpretation



## Guaranteed contribution (one example): Neutrinos from cosmic ray interactions in the Milky Way?

- Cosmic rays interact with hydrogen in our Galaxy (pp)
- Production region can be inferred from diffuse gamma-ray observations (very narrow around Galactic plane)
- > Complications:
  - CR composition changes in relevant range
  - Neutrino flux dominated by components sub-leading in cosmic rays
  - CR distribution and hydrogen halo extension in Milky Way disputed (may lead to higher rates)
- From local cosmic ray density and observed cosmic ray flux: about 0.6 events expected Joshi, Winter, Gupta, MNRAS, 2014

(see discussions in Evoli, Grasso, Maccione, 2007; Ahlers, Murase, 2014; Joshi, Winter, Gupta, 2014; Kachelrieß, Ostapchenko, 2014; Neronov, Semikoz, Tchernin, 2014; Ahlers, Bai, Barger, Lu, 2015; ...)





Gaisser, Staney, Tilay, 2013

#### Source candidates: Starburst galaxies?

arXiv.org > astro-ph > arXiv:1511.00815

Astrophysics > High Energy Astrophysical Phenomena

#### The origin of IceCube's neutrinos: Cosmic ray accelerators embedded in star forming calorimeters

E. Waxman

arXiv.org > astro-ph > arXiv:1511.00688

(Submitted on 3 Nov 2015)

Astrophysics > High Energy Astrophysical Phenomena

VS. Evidence against star-forming galaxies as the dominant source of IceCube neutrinos

Keith Bechtol, Markus Ahlers, Mattia Di Mauro, Marco Ajello, Justin Vandenbroucke

(Submitted on 2 Nov 2015)

For pp interactions: π<sup>+</sup>, π<sup>-</sup>, and π<sup>0</sup> produced together; secondary spectra follow primary cosmic ray spectrum

- Constraints from Fermi diffuse extragalactic background flux Murase, Ahlers, Lacki, PRD88 (2013) 121301
- A large fraction of that can be attributed to AGN blazars; pp sources challenged



#### Source candidates: So, how about AGN blazars?

- AGN blazar search with 2<sup>nd</sup> Fermi-LAT catalogue
- Contribution to diffuse flux small

(Thorsten Glüsenkamp, arXiv:1502.03104; IceCube paper to appear)





#### Source candidates: Gamma-Ray Bursts?

Idea: Use timing and directional information to suppress atm. BGs



(e.g. Fermi, Swift, etc)



Neutrino observations (e.g. IceCube, ...)

> Strong constraints from GRB stacking IceCube, Nature 484 (2012) 351; see arXiv:1412.6510 for update

- > Not the dominant source of observed diffuse v flux!
- Current limit close to prediction from gamma-rays; however: many assumptions (e.g. baryonic loading f<sub>e</sub>-1, Γ, z)



(from: Hümmer, Baerwald, Winter, PRL 108 (2012) 231101)



#### Observational search strategies (examples)

- Clustering of signal events?
   (e.g. in IceCube, Phys. Rev. Lett. 113 (2014) 101101)
- Anisotropies, point source searches? (e.g. IceCube, arXiv:1408.0634; ANTARES, arXiv:1402.6183)
- Correlations with known objects/ events in gamma-ray catalogues?
   (e. g. Padovani, Resconi, arXiv:1406.0376 for BL Lacs and Pulsar Wind Nebulae)
- ➤ Use constraints on event multiplets to constrain source density (from Kowalski, arXiv:1411.4385; see also Ahlers, Halzen, arXiv:1406.2160)
- Multi-messenger triggers and offline analyses for transients (e.g. supernova explosions, GRBs, etc)







## Flavor composition for tests of fundamental physics



#### Flavor composition at source from numerical simulations

Example: py, target photons from synchrotron emission of co-accelerated electrons





#### Parameter space scan of Hillas plot

- > All relevant regions recovered
- Some dependence on injection index
- > Flavor composition is, in all realistic cases, a function of energy!

1 Neutron stars 7 Colliding galaxies

8 Clusters

9 Galactic disk

10 Galactic halo

11 SNRs





Hümmer, Maltoni, Winter, Yaguna, **Astropart. Phys. 34 (2010) 205** 

Walter Winter | Eötvös university | May 25, 2016 | Page 24

2 White dwarfs

Active galaxies:

3 nuclei

4 jets

5 hot–spots

6 lobes

#### Measuring flavor? (experimental viewpoint)

- In principle, flavor information can be obtained from different event topologies:
  - Muon tracks  $\nu_{\mu}$
  - Cascades (showers) CC: ν<sub>e</sub>, ν<sub>τ</sub>, NC: all flavors
  - $\blacksquare$  Glashow resonance (6.3 PeV): bar  $\nu_e$
  - Double bang/lollipop:  $v_{\tau}$  (sep. tau track) —

(Learned, Pakvasa, 1995; Beacom et al, 2003)



> Early theoretical approaches:

Use flux ratios which take into account detector properties and unknown flux normalization, e.g. muon tracks/cascades:

$$\hat{R} = \frac{\phi_{\mu}^{\text{Det}}}{\phi_{e}^{\text{Det}} + \phi_{\tau}^{\text{Det}}}$$

(for flavor mixing and decay only until about 2011: Beacom et al 2002+2003; Farzan and Smirnov, 2002; Kachelriess, Serpico, 2005; Bhattacharjee, Gupta, 2005; Serpico, 2006; Winter, 2006; Majumar and Ghosal, 2006; Rodejohann, 2006; Xing, 2006; Meloni, Ohlsson, 2006; Blum, Nir, Waxman, 2007; Majumar, 2007; Awasthi, Choubey, 2007; Hwang, Siyeon, 2007; Lipari, Lusignoli, Meloni, 2007; Pakvasa, Rodejohann, Weiler, 2007; Quigg, 2008; Maltoni, Winter, 2008; Donini, Yasuda, 2008; Choubey, Niro, Rodejohann, 2008; Xing, Zhou, 2008; Choubey, Rodejohann, 2009; Esmaili, Farzan, 2009; Bustamante, Gago, Pena-Garay, 2010; Mehta, Winter, 2011; many others ...)

IceCube results actually contain more information IceCube, Astrophys. J. 809 (2015) 1, 98 Needs ways to represent all information simultaneously: Concept of "flavor triangles" Barenboim, Quigg, 2003



#### Flavor triangles

#### > Measurement

#### Standard Model expectation



IceCube measurement Astrophys. J. 809 (2015) 1, 98 Bustamante, Beacom, Winter, PRL 115 (2015) 16, 161302

(there is a marginal tension ...)



#### **Higher precision from IceCube – Generation Two?**

Plans for upgrade of IceCube experiment

Instrumented volume O(10) km³, string spacing 240-300m

Purpose: "deliver substantial increases in the astrophysical neutrino sample for all flavors"

PINGU-infill for oscillation physics (about 40 strings for lower threshold in DeepCore region).

Neutrino mass ordering!

Similar ideas in sea water (KM3NeT, ORCA)





#### The future: SM expectations vs. measurement?



(shaded regions: current  $3\sigma$  range for mixing params)

Bustamante, Beacom, Winter, PRL 115 (2015) 16, 161302

- IceCube-Gen2 could exclude the current best-fit point
- If best-fit moves, flavor composition at source can be constrained



#### What if there is physics beyond the Standard Model?

Effective operators (CPT violation) changing Hamiltonian at high E

"Known models" (e.g. neutrino decays)



#### Recall that flavor ratios are energy-dependent!

- Example: Pion beam to muon damped source
- > Example: Decays of  $v_2$  and  $v_3$ , competing with energy-dep. flavor composition at source





Bustamante, Beacom, Winter, PRL 115 (2015) 161302; right example from Mehta, Winter, JCAP 03 (2011) 041



## Can astrophysical measurements constrain $\delta_{CP}$ ?

- Assume that all other oscillation parameters were perfectly known →
- Need to assume that type of source known
- For pion beam sources, and sources within SM, in general, challenging
- > Best if only  $v_1$  stable (but this is new physics, and in tension with data already ...)

  Beacom, Bell, Hooper, Pakvasa,

  Weiler, 2004

But: expect composition for muon tracks/showers for IC-Gen2 better than ~ 10%



**Bustamante, Beacom, Winter, PRL 115 (2015) 161302** 



## Propagation effects over cosmological distances

Example: Neutrino lifetime
... but generic thoughts apply to other classes
of new physics as well ...



#### **Neutrino lifetime: Basics**

- > If neutrino mass eigenstates decay: Decay rate  $\lambda_i = 1/(\tau_{0,i} \gamma) = m_i/(\tau_{0,i} E)$
- $\triangleright$  Rest frame lifetime  $\tau_0$  cannot be measured. Describe by

$$\kappa^{-1} \left[ \frac{\text{s}}{\text{eV}} \right] \equiv \frac{\tau \, [\text{s}]}{m \, [\text{eV}]} \simeq 10^2 \, \frac{L \, [\text{Mpc}]}{E \, [\text{TeV}]}$$

(last term: estimate for sensitive L/E-range)

- Naively: need long distances and low energies to test decay!
- Best bounds from SN 1987A neutrinos: τ/m > 10<sup>5</sup> s/eV
- Caveat: large uncertainty in neutrino flux normalization and only electron flavor measured; bound must apply to either m<sub>1</sub> or m<sub>2</sub> (or both)
- Can one obtain better bounds over cosmological distances, such as from high-z gamma-ray burst neutrinos (GRBs)?
- Have to face subtleties of new physics over cosmological distances!



#### Propagation effects over cosmologial distances

What is the "clock" for the decay of the neutrinos? Light-travel distance

$$L(z) = L_H \int_0^z \frac{dz'}{(1+z')h(z')}$$

$$h(z) \equiv H(z)/H_0$$

- The light-travel distance is limited by the Hubble length
- Consequence: Time/distance dependent new physics effects in the propagation (including oscillations) cannot be tested for arbitrarily large distances!

e. g. Weiler, Simmons, Pakvasa, Learned, 1994; Wagner, Weiler, 1997; Beacom et al., 2004; Esmaili, Farzan, 2012; Baerwald, Bustamante, Winter, 2012

$$H(z) \equiv H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$



> Invisible decays

$$P_{\alpha\beta}(E_0,z) = \sum_i |U_{\alpha i}|^2 \, |U_{\beta i}|^2 \, \frac{N_i(E_0,z)}{\hat{N}_i(E_0)} = \sum_i |U_{\alpha i}|^2 \, |U_{\beta i}|^2 \, D_i(E_0,z) \, ,$$
 Damping factor

- > Ansatz for decays:  $N_i(z) = \hat{N}_i e^{-\lambda_i L(z)}$
- > Correct decay rate for redshift:  $\lambda_i = \lambda_i\left(z\right) = \frac{\kappa_i}{E_0\left(1+z\right)}$
- > Damping factor  $D_i(E_0,z) = \exp\left(-\frac{\kappa_i}{E_0}\frac{L(z)}{(1+z)}\right)$
- > Re-write as  $D_i(E_0,z)=\left[\mathcal{Z}_1\left(z\right)\right]^{-rac{\kappa_i L_H}{E_0}}$   $\mathcal{Z}_1\left(z\right)\equiv \exp\left(rac{L(z)}{L_H\cdot(1+z)}
  ight)$

For  $z \rightarrow \infty$ : L  $\rightarrow$  L<sub>H</sub> and Z<sub>1</sub>  $\rightarrow$  1 Thus: D  $\rightarrow$  1 and neutrinos from extremely high z are stable! Stability paradox! What is wrong?

#### **Proper solution**

> Start with differential equation, re-written in terms of redshift

$$\frac{dN_i(E_0,z)}{dz} = -\frac{\kappa_i}{E_0} \frac{dL}{dz} \frac{N_i(E_0,z)}{1+z}$$

> Result

$$D_{i}(E_{0}, z) = \exp\left(-\frac{\kappa L_{H}}{E_{0}} \int_{0}^{z} \frac{dz'}{(1+z')^{2} h(z')}\right) = \left[\mathcal{Z}_{2}(z)\right]^{-\frac{\kappa L_{H}}{E_{0}}}$$



Neutrinos from high z decay now!

NB: Complete decays are a matter of energy, not distance! In general, the statement "the further away the better" does not apply here!

Baerwald, Bustamante, Winter, JCAP 1210 (2012) 020



#### Test case: Gamma-ray bursts (GRBs)

- Most energeric electromagnetic (gamma-ray) outburst class
- Several populations, such as
  - Long-duration bursts (~10 100s), from collapses of massive stars?
  - Short-duration bursts (~ 0.1 1 s), from neutron star mergers?
- Observed in light curves come in large variety
- Long GRBs mostly from redshifts z ~ 1-2



#### **Decays of GRB neutrinos?**

#### Interesting implications:

- >  $v_{\mu}$  from GRBs may be suppressed (current stacking analyses based on  $v_{\mu}$ !). Need GRB-cascade searches
- Flavor composition depends on energy





#### **Summary and conclusions**

- Important clues on the neutrino signal will come from multi-messenger interpretations. This is a challenge for theory, as basically any multimessenger relationship has to rely on a source model
- Origin of cosmic neutrinos yet unclear; possibly different components; partially contradictory information (also in data, not touched). Need more statistics: IceCube-Gen2?
- The observation of high-E cosmic neutrinos opens new possibilities for tests of SM and BSM fundamental physics
- The flavor composition of astrophysical neutrinos is relatively sensitive to physics beyond the Standard Model
- Propagation effects over cosmological distances require a dedicated treatment; naïve assumptions do not apply

