Tackling multi-jet background modeling

Precision *Standard Model* tools: electroweak Sudakovs and multi-jet processes

Timea Vitos

ELFT seminar March 5, 2024

Tackling multi-jet background modeling

Tackling multi-jet background modeling

Today's talk

- 1. Combining electroweak Sudakovs and QCD+PS
- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

- 2. Tackling multi-jet background modeling
- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Tackling multi-jet background modeling 000 00000 0000000

Today's talk

- 1. Combining electroweak Sudakovs and QCD+PS
- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

- 2. Tackling multi-jet background modeling
- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

EW sector

Tackling multi-jet background modeling

Today's talk

1. Combining electroweak Sudakovs and QCD+PS

1.1 Motivation and introduction

- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

2. Tackling multi-jet background modeling

- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Tackling multi-jet background modeling 000 00000 0000000

Capturing the high-energy chunk of NLO EW corrections

- Focus on electroweak corrections: automations of NLO EW corrections
- o Current problems:
 - 1. time-consuming computations
 - 2 no automated matching to PS
- Alternative: capture the dominant part of it!

Electroweak Sudakov logarithms (EWSL)

Tackling multi-jet background modeling

The Denner-Pozzorini algorithm

• In usual notation of mixed- (α_S, α) -NLO expansion:

$$LO = LO_1 + LO_2 + \dots + LO_k$$
$$NLO = NLO_1 + \underbrace{NLO_2}_{NLO EW} + \dots + NLO_{k+1}$$

• One-loop leading approximation of NLO EW:

$$\mathcal{O}(\mathsf{EWSL}) \sim \left(\alpha \log^k \left(\frac{s}{M_W^2} \right) \right) \times \mathcal{O}(\mathsf{LO})$$
 (1)

double logarithms (DL) :
$$\sim lpha \log^2\left(rac{s}{M_W^2}
ight)$$
single logarithms (SL) : $\sim lpha \log\left(rac{s}{M_W^2}
ight)$

• EWSL are universal (with simple, closed expressions): worked out originally by Denner and Pozzorini¹

¹A. Denner, S. Pozzorini, arXiv:hep-ph/0010201 Timea Vitos

Combining electroweak Sudakovs and QCD+PS ○○○● ○○○○○ ○○○○○ Tackling multi-jet background modeling

(2)

The Denner-Pozzorini algorithm and MG5_aMC@NLO

o Arise as corrections to the Born-level matrix-element as

$$\mathcal{M}^{\mathrm{LO}+\mathrm{EWSL}} = -\mathcal{M}_{0} + \mathcal{M}_{0} imes \delta^{\mathrm{EWSL}}$$

• Denner-Pozzorini algorithm revised and implemented in MG5²

²D. Pagani, M. Zaro arXiv:2110.03714

Timea Vitos

Precision Standard Model 7 / 32

Tackling multi-jet background modeling

Today's talk

1. Combining electroweak Sudakovs and QCD+PS

- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

2. Tackling multi-jet background modeling

- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Tackling multi-jet background modeling

Reweighting

• For each event $e_i(\Phi)$ with weight w_i :

$$w_i \to R(\Phi) w_i$$
 (3)

• When "new setup" does not depend on initial conditions/generation step

 Combining electroweak Sudakovs and QCD+PS

 ○○○

 ○○●○○

Tackling multi-jet background modeling

Reweighting NLO events with EWSL

Tackling multi-jet background modeling 000 00000 0000000

Reweighting NLO events with EWSL

Problem 1

 Sudakov logarithm expressions not valid in the soft/collinear regions!

Problem 2

• IR cancellation not secured anymore!

Proposed procedure:³

- 1. Check all $r_{kl} = (p_k \pm p_l)^2$
- 2. If all $|r_{kl}| > c_{\mathbb{H} \to \mathbb{S}} M_W^2$: use (n+1)-body Sudakov
- 3. If any $|r_{kl}| < c_{\mathbb{H} \to \mathbb{S}} M_W^2$: merge particles k, l
- 4. If reasonable merged process: use n-body Sudakov of the mapped kinematics, else use the (n+1)-body Sudakov and replace $|r_{kl}| \rightarrow M_W^2$
- 5. Vary $c_{\mathbb{H} \to \mathbb{S}}$ to assess "Sudakov-cut" dependence

³D. Pagani, T. Vitos, M. Zaro arXiv:2309.00452 Timea Vitos

Tackling multi-jet background modeling 000 00000 0000000

Summary of the implementation

1. Reweight all events in the described procedure and shower them:

 $NLO_{QCD} \otimes EWSL + PS$

2. Assign EWSL only to Born events and shower the events:

 $NLO_{QCD+EWSL}+PS$

• Difference between two is roughly:

 $(NLO_{QCD} \otimes EWSL + PS) - (NLO_{QCD + EWSL} + PS) \sim EWSL \times (K_{QCD} - 1)$ (4)

Tackling multi-jet background modeling

Today's talk

1. Combining electroweak Sudakovs and QCD+PS

- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

2. Tackling multi-jet background modeling

- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Precision Standard Model 13 / 32

Combining electroweak Sudakovs and QCD+PS ○○○○ ○○○○○ ○●○○○○ Tackling multi-jet background modeling

Numerical setup

Input • Focus on LHC: $\sqrt{s} = 13$ TeV • Defining jets: anti- k_T algorithm with $p_T^{\min} = 10$ GeV and R = 0.4• Use PYTHIA8 for the parton shower, with hadronization off

No cuts (inclusive)

• Note: Sudakov not valid in all regions here!

Hard cuts

- *p_T* > 400 GeV cut on all heavy final particles
- ΔR > 0.5 for any two final particles

 Gray curve: NLO_{QCD}+PS Blue curve: EWSL with reweighting Red curve: EWSL only on Born events

Tackling multi-jet background modeling

Example results: $t\overline{t}H$

$$pp
ightarrow t \overline{t} H$$

Combining electroweak Sudakovs and QCD+PS ○○○○ ○○○○ ○○○○ ○○○○

Tackling multi-jet background modeling

Results for $t\overline{t}H$: $m(t\overline{t})$

- \circ Almost completely independent of $c_{\mathbb{H} o \mathbb{S}}$
- Scale band differences: EWSL on top of NLO events (blue) and LO events (red)

Tackling multi-jet background modeling

Results for $t\overline{t}H$: $p_T(j_1)$

• High- p_T range: additive approach converges to NLO_{QCD}+PS

Timea Vitos

Precision Standard Model 17 / 32

Tackling multi-jet background modeling 000 00000 0000000

Conclusions and outlook

Summary

✓ Combined EWSL implementation and reweight module in MG5_aMC@NLO for obtaining NLO_{QCD} ⊗ EWSL+PS precision

Outlook: phenomenological analyses

- Processes of interest jet-associated processes, $t\overline{t} + X$
- Quantitative comparison to fixed-order NLO EW
- Comparison to data: include hadronization

Outlook: merging

• Combine with multi-jet merging in the FxFx formalism

Tackling multi-jet background modeling ●OO ○○○○○ ○○○○○○

Today's talk

- Combining electroweak Sudakovs and QCD+PS
- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

2. Tackling multi-jet background modeling

2.1 Background

- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Tackling multi-jet background modeling O●O ○○○○ ○○○○

High-multiplicity processes: why bother?

- $\circ\,$ Hadronic decays of Standard Model background: leads to multi-jet signatures $\rightarrow\geq 5$ well-separated final-state jets in the detector
- (Almost) any new physics search includes decays leading to such signatures.

These are the processes

$$pp \rightarrow g|uons + quarks (+ colour singlets)$$
 (5)

• Colour singlets contribute to phase space but not to colour interaction

Tackling multi-jet background modeling OO● ○○○○ ○○○○

High-multiplicity processes in matrix element generators

• Current colour treatment: colour decomposition of amplitudes:

$$\langle |\mathcal{M}|^2 \rangle \propto \sum_{\sigma_k, \sigma_l} \underbrace{\mathcal{C}(\sigma_k, \sigma_l)}_{\text{colour matrix}} \underbrace{\mathcal{A}(\sigma_k)(\mathcal{A}(\sigma_l))^*}_{\text{dual amplitudes}}$$
(6)

where $\sigma_{k,l}$ are some permutations of external particles (each dual amplitude corresponds to a **colour order**)

- Colour matrix size for *n* final state particles: $\sim n! \times n!$ \rightarrow We hit a wall for high-multiplicity QCD processes! Up to $2 \rightarrow 5(6)$ in MadGraph5 currently
- Bottleneck already at LO

Tackling multi-jet background modeling

Today's talk

- Combining electroweak Sudakovs and QCD+PS
- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

2. Tackling multi-jet background modeling

- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Tackling multi-jet background modeling ○○○ ○○○○○

Reducing the colour matrix complexity

• Recall colour decomposition

$$\langle |\mathcal{M}|^2 \rangle \propto \sum_{\sigma_k, \sigma_l} C(\sigma_k, \sigma_l) \mathcal{A}(\sigma_k) (\mathcal{A}(\sigma_l))^*$$
 (7)

• Expand in N_c^{-2} (large- N_c limit)

$$C(\sigma_k, \sigma_l) = \underbrace{a_0 N_{\mathsf{C}}^{\mathsf{x}}}_{\text{Leading colour (LC)}} + \underbrace{a_1 N_{\mathsf{C}}^{\mathsf{x}-2}}_{\text{Next-to-leading colour (NLC)}} + \mathcal{O}(N_{\mathsf{C}}^{\mathsf{x}-4}) \quad \forall k, l \quad (8)$$

keeping all terms yields full colour (FC)

$$C(\sigma_k, \sigma_l) = \begin{pmatrix} LC & 0 & 0 & 0 & 0 & NLC \\ 0 & LC & 0 & NLC & 0 & 0 \\ 0 & 0 & LC & 0 & 0 & 0 \\ 0 & NLC & 0 & LC & 0 & 0 \\ 0 & 0 & 0 & 0 & LC & 0 \\ NLC & 0 & 0 & 0 & 0 & NLC \end{pmatrix}$$

• As we will see later: we will propose a NLC truncation

Timea Vitos

Precision Standard Model 23 / 32

⁴ R. Frederix, T. Vitos, arXiv:2109.10377

Tackling multi-jet background modeling ○○○ ○○●○ ○○○○○

Proposal for a fully fledged integration in MadGraph5

In the following: only all-(n)-gluon case !

• The colour-summed and averaged matrix element using the colour decomposition

$$\langle |\mathcal{M}|^2 \rangle \propto \sum_{\{c\},\{h\}} \sum_{\sigma_k,\sigma_l} C(\sigma_k,\sigma_l) \mathcal{A}(\sigma_k,\{h\}) (\mathcal{A}(\sigma_l,\{h\}))^*$$
(9)

• Expansion in $N_{\rm C}^{-2}$:

$$\langle |\mathcal{M}|^2 \rangle = \frac{N_{\mathsf{C}}^{n-2}(N_{\mathsf{C}}^2 - 1)}{2^n} \sum_{\sigma_k} \left(\underbrace{|\mathcal{A}(\sigma_k, \{h\})}_{\mathrm{LC}}|^2 + \mathcal{O}(N_{\mathsf{C}}^{-2}) \right)$$
(10)

• LC-amplitude interferences of MHV-type have peak structure

$$\mathcal{A}(\sigma_k, h)(\mathcal{A}(\sigma_k, h))^* \sim \frac{1}{s_{\sigma_k(1)\sigma_k(2)}s_{\sigma_k(2)\sigma_k(3)}\cdots s_{\sigma_k(n)\sigma_k(1)}} \tag{11}$$
with $s_{\sigma(i)\sigma(j)} = (p_{\sigma(i)} + p_{\sigma(j)})^2$

Timea Vitos

Tackling multi-jet background modeling ○○○ ○○○● ○○○●

Proposal for a fully fledged integration in MadGraph5

• Re-write the integrated cross section as:

$$\int \sum_{\{c\}} |\mathcal{M}|^2 d\Phi_n = \sum_{\sigma_k} \int |\mathcal{A}_{\sigma_k}|^2 \underbrace{\frac{\sum_{\{c\}} \sum_{\sigma_k, \sigma_l} \mathcal{A}_{\sigma_k} C_{\sigma_k, \sigma_l} \mathcal{A}_{\sigma_l}^*}{\sum_{\sigma_k} |\mathcal{A}_{\sigma_k}|^2}}_{\text{reweight factor}} d\Phi_n$$
(12)

- Generate FC-accurate events in two steps:
 - 1. Integration: generate LC events according to known peak structure
 - 2. Reweighting: reweight LC events to FC with reweight factor

Tackling multi-jet background modeling

Today's talk

- Combining electroweak Sudakovs and QCD+PS
- 1.1 Motivation and introduction
- 1.2 Combining with QCD+PS
- 1.3 Pheno application (for LHC)

2. Tackling multi-jet background modeling

- 2.1 Background
- 2.2 Proposing a new colour-aware generator
- 2.3 Going forward

Tackling multi-jet background modeling ○○○ ○●○○○○○

Integration Phase-space integration

• Use an integration technique based on this LC-interference peak structure:

$$d\Phi_n = \prod_{i=1}^n \frac{d^3 p}{(2\pi)^3 2E}$$
(13)

various options for variable choice in integration:

HAAG (hierarchical antenna generation) 5, $2 \rightarrow 3\text{-integration}^6$

• Combination with VEGAS optimization

⁵A. van Hameren, C.G. Papadopoulos arXiv:hep-ph/0204055

⁶E. Byckling, K. Kajantie 10.1103/PhysRev.187.2008

Timea Vitos

Precision Standard Model 27 / 32

Tackling multi-jet background modeling 000 0000 00€0000

Reweighting

Reweighting the LC events to FC

- Obtaining NLC- and FC-accurate predictions from the LC events can be done in several ways:
 - 1. Perform FC sum (sum over colour configurations)
 - 2. Pick subset of permutations (using phase space symmetry)
 - a) Pick specific colour configuration randomly (consistent with colour ordering) or
 b) use an average of all colour configurations
- Reweight time for FC reweighting of (10⁴) LC events:

n	reweight 1	reweight 3a
4	0.4	0.4
5	0.6	0.6
6	1.7	1.0
7	24	4.3
8	1040	273

Tackling multi-jet background modeling 000 000000000

Reweighting

Reweighting the LC events to FC

• Two main aspects:

how fast is the reweighting? how spread are the new weights?

 $\circ\,$ Secondary unweighting efficiency of a LC sample to FC reweighting revealed by the FC/LC ratio plot

Timea Vitos

Tackling multi-jet background modeling

Reweighting

Reweighting the LC events to NLC

• Reweight with reweight approach 1 using the NLC-accurate colour sum of the reweight factor

$$\frac{\sum_{\{c\}} \sum_{\sigma_{k},\sigma_{l}} \mathcal{A}_{\sigma_{k}} C_{\sigma_{k}} \sigma_{l} \mathcal{A}_{\sigma_{l}}^{*}}{\sum_{\sigma_{k}} |\mathcal{A}_{\sigma_{k}}|^{2}} = \frac{1}{\sum_{\sigma_{k}} |\mathcal{A}_{\sigma_{k}}|^{2}} \left(\sum_{\{c\}} \sum_{\sigma_{k}} \mathcal{A}_{\sigma_{k}} \times \left[\sum_{w} C_{w} \mathcal{A}_{w}^{*} \right] \right)$$
(14)

for a subset of permutations w that have C_w of NLC accuracy (N_c^{n-2})

• Choice of colour basis might play a role:

 \rightarrow colour-flow produces monomial colour factors ($N_{\mathbf{C}}^{\times}$)

• Ratio full/NLC:

Precision Standard Model 30 / 32

Tackling multi-jet background modeling ○○○ ○○○○ ○○○○ ○○○○

Summary and outlook

NLC approximation in ME generators

- Finalize implementation of gluon+quarks+singlets and interface to MG5 \rightarrow In the coming \sim half year
- Extend to NLO computations (colour treatment in loops)
 → Project with Zoltán Trócsányi
- Combining with beyond-LC parton shower evolution
 - \rightarrow Project with Simon Plätzer
- Extend beyond NLC in colour expansion? NNLO colour treatment?
 - ightarrow Future plans

Tackling multi-jet background modeling

Appendix

Precision Standard Model 1 / 40

Timea Vitos

	Adding parton showers				
NLO QCD:	$\mathcal{O}(\alpha_S) \xrightarrow{QCD PS} \mathcal{O}(\alpha_S^n)$	n > 1			
\rightarrow matching needed!					
NLO QCD+EWSL:	$\mathcal{O}(\alpha_{S}\alpha) \xrightarrow{QCD PS} \mathcal{O}(\alpha_{S}^{n}\alpha)$	n > 1			
\rightarrow no additional matching needed!					
NLO QCD+EWSL:	$\mathcal{O}(\alpha_{S}\alpha) \xrightarrow{QCD PS + QED PS} \mathcal{O}(\alpha_{S}^{n}\alpha_{QE}^{m})$	(D) $n > 1, m > 1$			
\rightarrow matching needed!					
Turn off QED in the Sudakov! (SDK _{weak})					
• NLO QCD+EWSL:					
$\mathcal{O}(\alpha_{S} \alpha_{\text{(weak)}}) \xrightarrow{\text{QCD PS}+\text{QED PS}} \mathcal{O}(\alpha_{S}^{n} \alpha_{\text{(weak)}} \alpha_{\text{(QED)}}^{m}), n > 1, m > 0 \text{UNIVERS}$					

Timea Vitos

Results for $t\overline{t}H$: $p_T(t)$

- Similar positive corrections in low- p_T range
- Stable agreement to FO NLO EW
- Again, small difference between multiplicative and additive approaches

Example results: ZZZ

$$pp \rightarrow ZZZ$$

Results for ZZZ: $p_T(j_1)$

Results for ZZZ: $m(Z_1, Z_2, Z_3)$

Precision Standard Model 6 / 40

Results for ZZZ: $p_T(Z_1)$

- \circ Smaller scale uncertainty bands: no LO $\sim lpha_S$
- Larger EWSL effects + larger QCD K-factor

Results for ZZZ: $m(Z_1, Z_2)$

 $\circ~$ At \leq 700 GeV, dominated by hard events \rightarrow red converges to grey

Example results: ZZZ with decays

Example results: ZZZ with decays

- First perform EWSL reweighting on ZZZ sample, then decay with MadSpin
- Lepton classification with jet algorithm (accepted event if 6 charged jets found):

$$p_T(|epton) > 25 \text{ GeV}$$
 (15)

• To catch correct BW shapes: label positrons e_i^+ such that they minimize

$$\sum_{i} |m(e_{i}^{-}e_{i}^{+}) - M_{Z}|^{2}$$
(16)

 Final-state QED radiation: investigate its effect by turning it off/on, including only photon radiation:

Results for ZZZ with decays: $m(e_i^-e_i^+)$

- \circ EWSL: red and blue $\sim -5\%$
- Assess QED radiation effects: around peak region only!

Timea Vitos

Precision Standard Model 11 / 40

Results for ZZZ with decays: $p_T(e_1)$

Results for ZZZ with decays: $p_T(e_2)$

Results for ZZZ with decays: $p_T(e_3)$

Integration

Amplitude evaluation

- Each of the \mathcal{A}_{σ_k} computed in a recursive fashion \rightarrow recycle parts of the amplitudes
- For a fixed colour-ordering (example for n = 6):

$$\{1,2\} \{2,3\} \{3,4\} \{4,5\} \\ \{(1,2),(2,3)\} \{(2,3),(3,4)\} \{(3,4),(4,5)\} \\ \{((1,2),(2,3)),((2,3),(3,4))\} \{((2,3),(3,4)),((3,4),(4,5))\} \\ \{(((1,2),(2,3)),((2,3),(3,4))),(((2,3),(3,4)),((3,4),(4,5)))\}$$
(18)

• Example: same current (4,5) appears in the two colour-orderings $\sigma = (1,2,3,4,5,6)$ and $\sigma = (1,3,4,5,2,6)$

Reweighting the LC events to FC

Colour matrix: useful identities

• Recall: Fierz identity

$$(T^{a})_{ij}(T^{a})_{kl} = T_{R}\left(\delta_{il}\delta_{jk} - \frac{1}{N_{\mathsf{c}}}\delta_{ij}\delta_{kl}\right)$$
(19)

set group index $T_R = 1$

Notation

Use $\mathcal{R}, \Omega, \mathcal{S}, \mathcal{P}...$ to denote strings of fundamental generators

$$\mathcal{R} = T^{a_1} T^{a_2} \dots T^{a_r} \quad , \quad \tilde{\mathcal{R}} = T^{a_r} T^{a_{r-1}} \dots T^{a_1} \quad , \quad \operatorname{len}(\mathcal{R}) = r$$
(20)

• Variations of the Fierz identity:

Rule I:
$$Tr[\mathcal{T}^{a}\mathcal{R}]Tr[\mathcal{T}^{a}S] = Tr[\mathcal{R}S] - \frac{1}{N_{c}}Tr[\mathcal{R}]Tr[\mathcal{S}],$$
(21)Rule II: $Tr[\mathcal{R}\mathcal{T}^{a}\mathcal{Q}\mathcal{T}^{a}S] = Tr[\mathcal{Q}]Tr[\mathcal{R}S] - \frac{1}{N_{c}}Tr[\mathcal{R}\mathcal{Q}S],$ (22)Rule IIb: $Tr[\mathcal{R}\mathcal{T}^{a}\mathcal{T}^{a}S] = N_{c}Tr[\mathcal{R}S] + \mathcal{O}(1/N_{c})$ for $\mathcal{O}(1/N_{c})$

Colour matrix: fundamental decomposition For n-gluon amplitudes

Matrix-element

$$\mathcal{M} = g^{n-2} \sum_{\sigma \in S_{n-1}} \text{Tr}[T^{a_1} T^{a_{\sigma(1)}} ... T^{a_{\sigma(n-1)}}] \mathcal{A}(1, \sigma(1), ..., \sigma(n-1))$$
(24)

Not a minimal set

Dual amplitudes are related by the Kleiss Kuijf relation (dual Ward identity)

$$\mathcal{A}(1,2,3,4,...,n) + \mathcal{A}(2,1,3,4,...,n) + ... + \mathcal{A}(2,3,4,...,1,n) = 0$$
⁽²⁵⁾

Squared matrix-element

$$|\mathcal{M}|^{2} = (g^{2})^{n-2} \sum_{k,l=1}^{(n-1)!} C_{kl} \mathcal{A}(1,\sigma_{k}(1),\ldots,\sigma_{k}(n-1)) (\mathcal{A}(1,\sigma_{l}(1),\ldots,\sigma_{l}(n-1)))^{*}$$

• Colour matrix (size
$$(n-1)! \times (n-1)!$$
):

Ir matrix (size
$$(n-1)! \times (n-1)!$$
):

$$C_{kl} = \sum_{\text{col.}} \text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_k}(1)} \dots \mathcal{T}^{a_{\sigma_k}(n-1)}] \left(\text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_l}(1)} \dots \mathcal{T}^{a_{\sigma_l}(n-1)}] \right)^* (26)$$

Colour matrix: fundamental decomposition For *n*-gluon amplitudes

• Colour matrix

$$C_{kl} = \sum_{\text{col.}} \text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_k}(1)} \dots \mathcal{T}^{a_{\sigma_k}(n-1)}] \left(\text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_l}(1)} \dots \mathcal{T}^{a_{\sigma_l}(n-1)}] \right)^*$$
(27)

- LC: $\mathcal{O}(N_{\mathbf{C}}^{n})$, NLC: $\mathcal{O}(N_{\mathbf{C}}^{n-2})$
- \circ Leading-colour in all diagonal elements $\sigma_k = \sigma_l$

$$\left(N_{\rm C} - \frac{1}{N_{\rm C}}\right)^n + \left(N_{\rm C}^2 - 1\right) \left(\frac{-1}{N_{\rm C}}\right)^n = N_{\rm C}^n + \mathcal{O}(N_{\rm C}^{n-2})$$
(28)

• Diagonal colour factors contain also NLC contribution

Colour matrix: fundamental decomposition For *n*-gluon amplitudes

• NLC: for permutations which are related by a block interchange:⁷

$$\sigma_k \sim \Re \mathfrak{Q}_1 \mathfrak{S} \mathfrak{Q}_2 \mathfrak{P} \quad , \quad \sigma_l \sim \Re \mathfrak{Q}_2 \mathfrak{S} \mathfrak{Q}_1 \mathfrak{P} \tag{29}$$

with special cases if $\mathbb{S} = \mathbb{W}$

• If
$$\operatorname{len}(\mathfrak{Q}_1) = \operatorname{len}(\mathfrak{Q}_2) = 1: -N_{\mathsf{C}}^{n-2} + \mathcal{O}(N_{\mathsf{C}}^{n-4}).$$

- If $len(\mathfrak{Q}_1) = 1$ or $len(\mathfrak{Q}_2) = 1$: $-N_{\mathsf{C}}^{n-2} + \mathcal{O}(N_{\mathsf{C}}^{n-4})$ if $len(\mathfrak{R}) = 1$ and $len(\mathfrak{P}) = 0$, otherwise not NLC
- If $len(\mathfrak{Q}_{1,2}) > 1$: $+N_{\mathsf{C}}^{n-2} + \mathcal{O}(N_{\mathsf{C}}^{n-4})$ if $len(\mathfrak{R}) \neq 1$ and $len(\mathfrak{P}) \neq 0$, otherwise not NLC

⁷A. Labane, aXiv:2008.13640

Colour matrix: results For n-gluon amplitudes

Including the adjoint decomposition: matrix size $(n-2)! \times (n-2)!$

all-g	gluon					
п	Fundamental	Colour-flow	Adjoint			
4	6 (6)	6 (6)	2 (2)			
5	11 (24)	16 (24)	5 (6)			
6	24 (120)	36 (120)	18 (24)			
7	50 (720)	71 (720)	93 (120)			
8	95 (5040)	127 (5040)	583 (720)			
9	166 (40320)	211 (40320)	4162 (5040)			
10	271 (362880)	331 (362880)	31649 (40320)			
11	419 (3628800)	496 (3628800)	-			
12	620 (39916800)	716 (39916800)	<u> </u>			
13	885 (479001600)	1002 (479001600)	$(\Rightarrow FI'$			
14	1226 (6227020800)	1366 (6227020800)				

Adjoint decomposition For *n*-gluon amplitudes

• The amplitude is now

$$\mathcal{M} = \sum_{\sigma \in S_{n-2}} \left(F^{a_{\sigma(2)}} \dots F^{a_{\sigma(n-1)}} \right)_{a_1 a_n} \mathcal{A}(1, \sigma(1), \dots, \sigma(n), n),$$
(30)

with $(F^a)_{bc} = if^{abc}$

- Minimal basis: (n-2)! independent dual amplitudes
- Smaller colour matrix: but LC not only on diagonal!
- No found algorithm (yet) to get NLC elements

Colour-flow decompositions

For one quark line plus n-gluon amplitudes: the full projection of U(1) gluons

Fundamental decompositions For two distinct flavour guark pairs plus *n*-gluon amplitudes

- $\circ\,$ Now we have two single colour lines $\rightarrow\,$ internal U(1) gluon
- The internal gluon is decomposed into $U(N_c)$ and U(1) part

• The two "quark-ordered" amplitudes

$$\mathcal{M}_{2qq} = \mathcal{M}_1 - \frac{1}{N_c} \mathcal{M}_2 \tag{32}$$

Decomposed as

$$\mathcal{M}_1 = \sum_{\sigma \in S_n} \sum_{n_1=0}^n c_1(\sigma, n_1) \mathcal{A}_1(\sigma, n_1) \quad , \quad \mathcal{M}_2 = \sum_{\sigma \in S_n} \sum_{n_1=0}^n c_2(\sigma, n_1) \mathcal{A}_2(\sigma, n_1) \prod_{\text{forward}} C_2(\sigma, n_1) \mathcal{A}_2(\sigma, n_1) \prod_{n_1=0}^{n_1} C_2(\sigma, n_1) \prod_{n_1=0$$

For two distinct flavour quark pairs plus n-gluon amplitudes

• The colour factors

$$c_{1}(\sigma) = \left(T^{a_{\sigma(1)}} \dots T^{a_{\sigma(n_{1})}}\right)_{i_{1}j_{2}} \left(T^{a_{\sigma(n_{1}+1)}} \dots T^{a_{\sigma(n)}}\right)_{i_{2}j_{1}}$$
(34)

$$c_2(\sigma) = \left(T^{a_{\sigma(1)}} \dots T^{a_{\sigma(n_1)}}\right)_{i_1 j_1} \left(T^{a_{\sigma(n_1+1)}} \dots T^{a_{\sigma(n)}}\right)_{i_2 j_2}$$
(35)

• The squared amplitude

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n+2} \sum_{\sigma_{k},\sigma_{l} \in S_{n+1}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k})) \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{*} & -c_{1}(\sigma_{k})c_{2}(\sigma_{l})^{*}/N_{c} \\ -c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{*}/N_{c} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{*}/N_{c}^{*} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \end{pmatrix}$$
(36)

For two distinct flavour quark pairs plus n-gluon amplitudes

- o Note: not all diagonal elements the same type now!
- Leading-colour $\mathcal{O}(N_{C}^{n+2})$:

$$\begin{split} |\mathcal{M}_{2qq}|^2 &= (g^2)^{n+2} \sum_{\sigma_k, \sigma_l \in S_{n+1}} \\ (\mathcal{A}_1(\sigma_k) - \mathcal{A}_2(\sigma_k)) \begin{pmatrix} c_1(\sigma_k) c_1(\sigma_l)^* & -c_1(\sigma_k) c_2(\sigma_l)^* / N_c \\ -c_2(\sigma_k) c_1(\sigma_l)^* / N_c & c_2(\sigma_k) c_2(\sigma_l)^* / N_c^2 \end{pmatrix} \begin{pmatrix} \mathcal{A}_1(\sigma_l)^* \\ \mathcal{A}_2(\sigma_l)^* \end{pmatrix} \end{split}$$

 $\text{if } \sigma_k = \sigma_l \\$

• NLC terms $\mathcal{O}(N_{C}^{n})$, investigate block-by-block: appears in each block

For two same flavour quark pairs plus n-gluon amplitudes

• Both a t- and s-channel contribution

$$\mathcal{M}_{2qq}(\overline{q}q\overline{q}q+ng) = \hat{\mathcal{M}}(\overline{q}_1q_1\overline{q}_2q_2+ng) - \hat{\mathcal{M}}(\overline{q}_1q_2\overline{q}_2q_1+ng)$$
(37)

(minus sign from Fermi statistics)

Decomposed

For two same flavour quark pairs plus n-gluon amplitudes

So then

$$\mathcal{M}_{2qq} = \left(1 + \frac{1}{N_{\mathsf{C}}}\right) (\mathcal{M}_1 - \mathcal{M}_2). \tag{39}$$

• Squared-matrix:

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n+2} \left(1 + \frac{1}{N_{c}}\right)^{2} \sum_{\sigma_{k},\sigma_{l} \in S_{n+1}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k})) \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{1}(\sigma_{k})c_{2}(\sigma_{l})^{*} \\ c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{*} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \end{pmatrix}$$
(40)

• Colour factors include an extra factor $\left(1+\frac{1}{N_{C}}\right)^{2}$ here \rightarrow LC: $\mathcal{O}(N_{C}^{n+2})$, non-zero $\mathcal{O}(N_{C}^{n+1})$

For two same flavour quark pairs plus n-gluon amplitudes

- Note: diagonal elements symmetrized now!
- Leading-colour $\mathcal{O}(N_{\mathsf{C}}^{n+2})$:

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n+2} \left(1 + \frac{1}{N_{c}}\right)^{2} \sum_{\sigma_{k},\sigma_{l} \in S_{n+1}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k})) \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{1}(\sigma_{k})c_{2}(\sigma_{l})^{*} \\ c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{*} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \end{pmatrix}$$
(41)

 $\text{if } \sigma_k = \sigma_l$

• NLC terms $\mathcal{O}(N_{c}^{n+1}) + \mathcal{O}(N_{c}^{n})$, investigate block-by-block: appears in every block

Colour decompositions For two distinct flavour quark pairs plus *n*-gluon amplitudes

o Same set of dual amplitudes as for fundamental decomposition

$$\mathcal{M}_{2qq} = \mathcal{M}_1 - \frac{1}{N_{\mathsf{C}}} \mathcal{M}_2 \tag{42}$$

• Once again, external gluons are projected out

$$\mathcal{M}_{1} \to \mathcal{M}_{1} - \frac{1}{N_{\mathsf{c}}} \sum_{\bar{\sigma} \in \bar{S}_{n+1}} c_{1}^{1}(\bar{\sigma}) \mathcal{A}_{1}^{1}(\bar{\sigma}), \tag{43}$$

- For NLC, it turns out that a single U(1) projection is enough
- Colour factor for this dual amplitude

$$c_1^1(\bar{\sigma}) = \delta_{j_{\sigma(1)}}^{i_{q_1}} \dots \delta_{j_{q_1}}^{i_{\sigma(n)}} \delta_{j_{\sigma(n+1)}}^{i_{\sigma(n+1)}},$$

with colourless external U(1) indices

Colour decompositions

For two distinct flavour quark line plus n-gluon amplitudes

• Matrix element

$$\mathcal{M}_{2qq} = \sum_{\sigma \in S_{n+1}} c_1(\sigma) \mathcal{A}_1(\sigma) - \frac{1}{N_{\mathsf{C}}} \sum_{\sigma \in S_{n+1}} c_2(\sigma) \mathcal{A}_2(\sigma) - \frac{1}{N_{\mathsf{C}}} \sum_{\bar{\sigma} \in \bar{S}_{n+1}} c_1^1(\bar{\sigma}) \mathcal{A}_1^1(\bar{\sigma}),$$

o Squared matrix-element

$$\begin{split} |\mathcal{M}_{2qq}|^{2} &= (g^{2})^{n-2} \sum_{\sigma_{k},\sigma_{l}} \left(\mathcal{A}_{1}(\sigma_{k}) \quad \mathcal{A}_{2}(\sigma_{k}) \quad \mathcal{A}_{1}^{1}(\bar{\sigma}_{k}) \right) \\ & \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{\dagger} & -c_{1}(\sigma_{k})c_{2}(\sigma_{l})^{\dagger}/N_{c} & -c_{1}(\sigma_{k})c_{1}^{1}(\bar{\sigma}_{l})^{\dagger}/N_{c} \\ -c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{\dagger}/N_{c} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{\dagger}/N_{c}^{2} & c_{2}(\sigma_{k})c_{1}^{1}(\bar{\sigma}_{l})^{\dagger}/N_{c}^{2} \\ -c_{1}^{1}(\bar{\sigma}_{k})c_{1}(\sigma_{l})^{\dagger}/N_{c} & c_{1}^{1}(\bar{\sigma}_{k})c_{2}(\sigma_{l})^{\dagger}/N_{c}^{2} & c_{1}^{1}(\bar{\sigma}_{k})c_{1}^{1}(\bar{\sigma}_{l})^{\dagger}/N_{c}^{2} \\ \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \\ \mathcal{A}_{1}^{1}(\bar{\sigma}_{l})^{*} \end{pmatrix}, \end{split}$$

- Leading-colour (N_{C}^{n+2}) for $\sigma_k = \sigma_l$
- NLC (Nⁿ_C) needs a careful analysis block-by-block

-

Colour decompositions For two same flavour quark line plus *n*-gluon amplitudes

 $\circ\,$ Very similar to the distinct flavour case, but we also need to U(1) project the \mathcal{M}_2 amplitude

$$\mathcal{M}_{2} \to \mathcal{M}_{2} - \frac{1}{N_{\mathsf{C}}} \sum_{\bar{\sigma} \in \bar{\mathsf{S}}_{n+1}} c_{2}^{1}(\bar{\sigma}) \mathcal{A}_{2}^{1}(\bar{\sigma}), \tag{45}$$

• 2: Squared matrix-element

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n-2} \left(1 + \frac{1}{Nc}\right)^{2}$$

$$\sum_{\sigma_{k},\sigma_{l}} (\mathcal{A}_{1}(\sigma_{k}) \quad \mathcal{A}_{2}(\sigma_{k}) \quad \mathcal{A}_{1}^{1}(\bar{\sigma}_{k}) \quad \mathcal{A}_{2}^{1}(\bar{\sigma}_{k})) \mathbb{C} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \\ \mathcal{A}_{1}^{1}(\bar{\sigma}_{l})^{*} \\ \mathcal{A}_{2}^{1}(\bar{\sigma}_{l})^{*} \end{pmatrix}$$

$$(46)$$

(Again, colourr factors no longer monomials in $N_{\rm C}$)

Colour decompositions For two same flavour quark line plus *n*-gluon amplitudes

• Colour matrix

Leading-colour: O(Nⁿ⁺¹_C) on first two block diagonal elements
 NLC O(Nⁿ_C) is examined block-by-block

Non-zero elements without phase-space symmetrisation

q q Q	$\overline{Q} + n$	g							Fu	ında	mental:	$\mathcal{A}_1 \mid \mathcal{A}_2$ types
n	_				-	min(<i>I</i>	n - n	1)			_	
	0		1		2		3		4		5	
0	2	2										(2)
1	3	3										(4)
2	7	4	6	5								(12)
3	15	5	15	7								(48)
4	31	6	32	9	33	10						(240)
5	60	7	62	11	64	13						(1440)
6	108	8	111	13	114	16	115	17				(10080)
7	182	9	186	15	190	19	192	21				(80640)
8	290	10	295	17	300	22	303	25	304	26		(725760)
9	441	11	447	19	453	25	457	29	459	31		(7257600)
10	645	12	652	21	659	28	664	33	667	36	668 37	7 (79833600)

Table: Number of non-zero elements in a single row of the colour matrix for $q\overline{q} Q\overline{Q} + ng$ (distinct flavours) up to NLC accuracy, $\mathcal{O}(N_c^n)$ in the fundamental representation.

ELF

Non-zero elements without phase-space symmetrisation

$q\overline{q}$	$\overline{Q} + ng$				Colour-flow:	\mathcal{A}_1 , $\mathcal{A}_1^1 \mid \mathcal{A}_2$ types
-			min(n 1	, n – n ₁)		
п	0	1	2	3	4	5
0	2 2					(2)
1	5,3 3					(6)
2	11,4 4	12, - 5				(22)
3	23,5 5	25,57				(98)
4	45,6 6	48,69	49, - 10			(522)
5	82,77	86 7 11	88,7 13			(3262)
6	140,8 8	145,8 13	148,8 16	149 - 17		(23486)
7	226,99	232,9 15	236,9 19	238,9 21		(191802)
8	348,10 10	355,10 17	360,10 22	363,10 25	364 - 25	(1753618)
9	515,11 11	523,11 19	529,11 25	533,11 29	5 35 , 11 31	(17755382)
10	737,12 12	746,12 21	753,12 28	758,12 33	761,12 36 762	- 37 (197282022)

Table: Number of non-zero elements in a single row of the colour matrix for $q\overline{q} Q\overline{Q} + ng$ (distinct flavours) up to NLC accuracy in the colour-flow representation

Results for gg initiated processes⁸

• For external particles $n_{\text{ext}} \in [4, 14]$ • Blue: full colour Green: NLC Red: LC $qq \rightarrow n_{\rm ext} - 2$ 10^{12} all-q, full -× Fundamental $1q\overline{q}$, full — 2qq DF, full → 10^{10} 2qq SF, full -+-- $1q\overline{q}$, NLC — 2qq DF, NLC non-zero elements 10^{8} $2q\overline{q}$ SF, NLC \longrightarrow all-q, LC -× 1qq, LC ---2qq DF, LC ____ 10^{6} $2q\overline{q}$ SF, LC \rightarrow adjoint. NLC - 10^{4} 10^{2} 10^{0} 8 10 1214 6 4 $n_{\rm ext}$

⁸R. Frederix, T. Vitos arXiv:2109.10377

Colour matrix: results for qg initiated

Colour matrix: results for $q\overline{q}$ initiated

Green: NLC

Red: LC

Colour matrix: results for $qQ/q\overline{Q}$ initiated

Colour matrix: results for qq/\overline{qq} initiated

