Improving on accuracy and efficiency for Standard Model theory predictions

Timea Vitos Supervisor: Rikkert Frederix¹

Lund University Theoretical Physics and Astronomy

> ELTE, Budapest September 27, 2022

¹and collaboration with: I. Tsinikos, M. Pellen, R. Poncelet, A. Popescu

Unsolved problems in the successsful theory

- $\circ~$ Baryon-antibaryon asymmetry $\rightarrow~$ Beyond Standard Model
- \circ Neutrino masses \rightarrow Beyond Standard Model
- $\circ~$ Dark matter \rightarrow Beyond Standard Model

o ...

Unsolved problems in the successsful theory

- $\circ~$ Baryon-antibaryon asymmetry $\rightarrow~$ Beyond Standard Model
- Neutrino masses \rightarrow Beyond Standard Model
- $\circ~$ Dark matter \rightarrow Beyond Standard Model

o ...

Figure: Figure from Davide Pagani.

Improving on Standard Model theory predictions

Unsolved problems in the successsful theory

- $\circ~$ Baryon-antibaryon asymmetry $\rightarrow~$ Beyond Standard Model
- Neutrino masses \rightarrow Beyond Standard Model
- $\circ~$ Dark matter \rightarrow Beyond Standard Model

o ...

Figure: Figure from Davide Pagani.

Unsolved problems in the successsful theory

- $\circ~$ Baryon-antibaryon asymmetry $\rightarrow~$ Beyond Standard Model
- Neutrino masses \rightarrow Beyond Standard Model
- $\circ~$ Dark matter \rightarrow Beyond Standard Model

o ...

Figure: Figure from Davide Pagani.

\rightarrow We need high-precision SM phenomenology

Timea Vitos

Improving on the SU(3) group treatment

Today's talk

- 2 Decay coefficients for V+jet
- $_{3}$ Improving on the SU(3) group treatment

Today's talk

1. Spin observables for $t\overline{t}$

Decay coefficients for V+jet

Improving on the SU(3) group treatment

Top quark pair production and spin correlations

- $\circ~t\overline{t}$ pair production at LHC 14 TeV: \sim 950 pb 2
- Top quarks: decay before spin decorrelation

³W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer. arXiv:hep-ph/0304244

Top quark pair production and spin correlations

- $\circ~t\overline{t}$ pair production at LHC 14 TeV: \sim 950 pb 2
- Top quarks: decay before spin decorrelation
- Measure decay products to indirectly measure spin correlation
- Decay $t\overline{t} \rightarrow W^+ bW^-\overline{b} \rightarrow \{e^+e^-, \mu^+\mu^-\} v_l \overline{v_l} b\overline{b}$ (10.5%) has a clear signature

²M. Czakon, P. Fiedler, A. Mitov. arXiv:1303.6254

³W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer. arXiv:hep-ph/0304244

Top quark pair production and spin correlations

- $\circ~t\overline{t}$ pair production at LHC 14 TeV: \sim 950 pb 2
- Top quarks: decay before spin decorrelation
- Measure decay products to indirectly measure spin correlation
- Decay $t\overline{t} \rightarrow W^+ bW^-\overline{b} \rightarrow \{e^+e^-, \mu^+\mu^-\} v_l \overline{v_l} \overline{b} \overline{b}$ (10.5%) has a clear signature
- Spin correlations in the spin-density formalism ³

$$|\mathcal{M}(pp
ightarrow t\overline{t})|^2 \propto \mathrm{Tr}[
ho_t(k_t,s_t)
ho_{\overline{t}}(k_{\overline{t}},s_{\overline{t}})R]$$

with

$$R = A(1 \otimes 1) + B_i^+(1 \otimes \sigma_i) + B_j^-(\sigma_j \otimes 1) + C_{ij}(\sigma_i \otimes \sigma_j)$$
(2)

(1)

²M. Czakon, P. Fiedler, A. Mitov. arXiv:1303.6254

³W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer. arXiv:hep-ph/0304244

8 / 34

Top quark pair production and spin correlations

- $\circ~t\overline{t}$ pair production at LHC 14 TeV: \sim 950 pb ⁴
- Top quarks: decay before spin decorrelation
- Measure decay products to indirectly measure spin correlation
- Decay $t\overline{t} \to W^+ bW^-\overline{b} \to \{e^+e^-, \mu^+\mu^-\} v_l \overline{v_l} b\overline{b}$ (10.5%) has a clear signature
- Expand differential cross section as

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^{i}_{+}\mathrm{d}\cos\theta^{j}_{-}} = \frac{1}{4} \left(1 + B^{i}_{+}\cos\theta^{i}_{+} + B^{j}_{-}\cos\theta^{j}_{-} + C_{ij}\cos\theta^{i}_{+}\cos\theta^{j}_{-} \right)$$
(3)

• A set of 6 *B*-coefficients and 9 *C*-coefficients (frame $\{\hat{r}, \hat{k}, \hat{n}\}$)

$$C_{ij} = -9 \frac{\langle \cos \theta_{\pm}^{i} \cos \theta_{-}^{j} \rangle}{\sigma}, \qquad B_{i}^{\pm} = 3 \frac{\langle \cos \theta_{\pm}^{i} \rangle}{\sigma}$$
(4)

⁴M. Czakon, P. Fiedler, A. Mitov. arXiv:1303.6254

Top quark pair production

 $\,\circ\,$ Expansion to NLO of $pp \,{\to}\, t\overline{t}$ $({\times} {\cal O}(\alpha^4)$ for the leptonic decays)

$$\Sigma_{\text{LO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{2}\Sigma_{2,0}}_{\text{LO}_{1}} + \underbrace{\alpha_{5}\alpha\Sigma_{1,1}}_{\text{LO}_{2}} + \underbrace{\alpha_{2}^{2}\Sigma_{0,2}}_{\text{LO}_{3}}$$

$$\Sigma_{\text{NLO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{3}\Sigma_{3,0}}_{\text{NLO}_{1}} + \underbrace{\alpha_{5}^{2}\alpha\Sigma_{2,1}}_{\text{NLO}_{2}} + \underbrace{\alpha_{5}^{2}\alpha^{2}\Sigma_{1,2}}_{\text{NLO}_{3}} + \underbrace{\alpha_{3}^{3}\Sigma_{0,3}}_{\text{NLO}_{4}}.$$
(5)

• Perturbation lingo:

 $LO=LO_1$, $NLO \ QCD=LO_1+NLO_1$, $NLO \ EW = LO_1(+LO_2)+NLO_2$

⁵M. Czakon, A. Mitov, R. Poncelet, arXiv:2008.11133

⁶W. Bernreuther, D. Heisler, Z-G. Si, arXiv:1508.05271

Top quark pair production

 $\circ~$ Expansion to NLO of $pp \to t \overline{t}~(\times {\cal O}(\alpha^4)$ for the leptonic decays)

$$\Sigma_{\text{LO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{2}\Sigma_{2,0}}_{\text{LO}_{1}} + \underbrace{\alpha_{5}\alpha\Sigma_{1,1}}_{\text{LO}_{2}} + \underbrace{\alpha_{2}^{2}\Sigma_{0,2}}_{\text{LO}_{3}} \\ \Sigma_{\text{NLO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{3}\Sigma_{3,0}}_{\text{NLO}_{1}} + \underbrace{\alpha_{5}^{2}\alpha\Sigma_{2,1}}_{\text{NLO}_{2}} + \underbrace{\alpha_{5}\alpha^{2}\Sigma_{1,2}}_{\text{NLO}_{3}} + \underbrace{\alpha^{3}\Sigma_{0,3}}_{\text{NLO}_{4}}.$$
(5)

- Existing NNLO QCD predictions for spin correlation coefficients ⁵
- Existing leading NLO (electro)weak corrections for the coefficients ⁶
- Consider complete-NLO (=:NLO QCD+EW)

$$\underbrace{\alpha_{5}^{3}\Sigma_{3,0}}_{\mathsf{NLO}_{1}} + \underbrace{\alpha_{5}^{2}\alpha\Sigma_{2,1}}_{\mathsf{NLO}_{2}} + \underbrace{\alpha_{5}\alpha^{2}\Sigma_{1,2}}_{\mathsf{NLO}_{3}} + \underbrace{\alpha^{3}\Sigma_{0,3}}_{\mathsf{NLO}_{4}}$$

- ⁵M. Czakon, A. Mitov, R. Poncelet, arXiv:2008.11133
- ⁶W. Bernreuther, D. Heisler, Z-G. Si, arXiv:1508.05271

(6)

Electroweak corrections

• This project: calculate complete NLO QCD+EW in production for spin correlation coefficients

$$\sigma^{\text{NLO QCD}+\text{EW}} \times \Gamma^{\text{LO}}_{t \to l^+ \nu b} \times \Gamma^{\text{LO}}_{\overline{t} \to l^- \nu \overline{b}}$$
(7)

• Uses narrow width approximation: top quarks are produced on-shell

10 / 34

Electroweak corrections

 This project: calculate complete NLO QCD+EW in production for spin correlation coefficients

$$\sigma^{\text{NLO QCD}+\text{EW}} \times \Gamma^{\text{LO}}_{t \to l^+ \nu b} \times \Gamma^{\text{LO}}_{\overline{t} \to l^- \nu \overline{b}}$$
(7)

• Uses narrow width approximation: top quarks are produced on-shell

Spin observables for $t\overline{t}$ 0000000	Decay coefficients for V+jet	Improving on the SU(3) group treatment

• Use decay chain model: MadSpin internal to MadGraph5_aMC@NLO

⁷S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, arXiv:hep-ph/0702198

- Use decay chain model: MadSpin internal to MadGraph5_aMC@NLO
 - 1. Generate production events at NLO QCD+EW (fixed-order)
 - 2. Generate LO decay events
 - 3. Attach the decays to the production events to create fully-decayed events
 - 4. Reweight the events to obtain NLO spin correlation

⁷S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, arXiv:hep-ph/0702198

- Use decay chain model: MadSpin internal to MadGraph5_aMC@NLO
 - 1. Generate production events at NLO QCD+EW (fixed-order)
 - 2. Generate LO decay events
 - 3. Attach the decays to the production events to create fully-decayed events
 - 4. Reweight the events to obtain NLO spin correlation
- With NLO, **previously done** for event generation with **parton shower** ⁷ \rightarrow apply now a similar reweighting strategy for fixed-order NLO

⁷S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, arXiv:hep-ph/0702198

- Use decay chain model: MadSpin internal to MadGraph5_aMC@NLO
 - 1. Generate production events at NLO QCD+EW (fixed-order)
 - 2. Generate LO decay events
 - 3. Attach the decays to the production events to create fully-decayed events
 - 4. Reweight the events to obtain NLO spin correlation
- With NLO, **previously done** for event generation with **parton shower** ⁷ \rightarrow apply now a similar reweighting strategy for fixed-order NLO
- Approximations!
 - No off-shell effects
 - LO in decay
 - Virtual spin correlation approximated by tree-level ones

⁷S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, arXiv:hep-ph/0702198

- Use decay chain model: MadSpin internal to MadGraph5_aMC@NLO
 - 1. Generate production events at NLO QCD+EW (fixed-order)
 - 2. Generate LO decay events
 - 3. Attach the decays to the production events to create fully-decayed events
 - 4. Reweight the events to obtain NLO spin correlation
- With NLO, **previously done** for event generation with **parton shower** ⁷ \rightarrow apply now a similar reweighting strategy for fixed-order NLO

Approximations!

- No off-shell effects
- LO in decay
- Virtual spin correlation approximated by tree-level ones
- Setup:

13 TeV LHC NNPDF3.1NLOluxqed

5-flavour scheme G_{μ} -scheme

⁷S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, arXiv:hep-ph/0702198

Spin observables for $t\overline{t}$ 000000	Decay coefficients for V+jet	Improving on the SU(3) group treatment

Results: C-coefficients

• All except C_{kk}, C_{nn}, C_{rr} and C_{rk+kr} vanish at NLO QCD and complete NLO

Order / [%]	C _{kk}	Cnn	Crr	C _{rk+kr}
$\underline{\text{NLO QCD+EW}} \times \underline{\text{LO (our}^{8})}$	32.69(5)	31.97(3)	4.80(3)	-20.51(6)
NLO QCD $ imes$ LO (our)	32.88(3)	31.89(5)	4.83(5)	-20.48(9)
NLO $ imes$ NLO (Czakon ⁹)	33.0(3)	33.0(2)	5.8(2)	-20.3(2)
NLO \times LO (MCFM)	33.04(4)	33.09(4)	5.96(4)	-20.71(7)

⁹M. Czakon, A. Mitov, R. Poncelet, arXiv:2008.11133

Spin observables for $t\overline{t}$ 000000	Decay coefficients for V+jet	Improving on the SU(3) group treatment

Results: C-coefficients

• All except C_{kk} , C_{nn} , C_{rr} and C_{rk+kr} vanish at NLO QCD and complete NLO

Order / [%]	C _{kk}	Cnn	Crr	C _{rk+kr}
$\underline{\sf NLO~QCD} + \underline{\sf EW} \times \underline{\sf LO~(our^8)}$	32.69(5)	31.97(3)	4.80(3)	-20.51(6)
NLO QCD $ imes$ LO (our)	32.88(3)	31.89(5)	4.83(5)	-20.48(9)
NLO $ imes$ NLO (Czakon 9)	33.0(3)	33.0(2)	5.8(2)	-20.3(2)
NLO \times LO (MCFM)	33.04(4)	33.09(4)	5.96(4)	-20.71(7)

Approximations!

- (No off-shell effects)
- LO in decay
- Virtual spin correlation approximated by tree-level ones
- $\,\circ\,$ Compare to existing NLO \times NLO and NLO \times LO with virtual effects
- NLO in decay is not source of discrepancy (cf. rows 3 and 4)
- Seems to stem from virtual spin correlation effects

⁸R. Frederix, I. Tsinikos, T.Vitos, arXiv:2105.11478

⁹M. Czakon, A. Mitov, R. Poncelet, arXiv:2008.11133

Today's talk

1. Spin observables for $t\overline{t}$

2. Decay coefficients for V+jet

Improving on the SU(3) group treatment

 \circ One of the key processes for measuring EW parameters (m_W) at LHC:

$$pp \rightarrow V + \text{jet} \rightarrow l_1 l_2 + \text{jet}$$

 $(V=Z,W^{\pm})$

 $\,\circ\,$ Total cross section at LHC 13 TeV for V+jet production: \sim 12000 pb

 \circ One of the key processes for measuring EW parameters (m_W) at LHC:

$$pp \rightarrow V + \text{jet} \rightarrow l_1 l_2 + \text{jet}$$

 $(V=Z,W^{\pm})$

- $\,\circ\,$ Total cross section at LHC 13 TeV for V+jet production: \sim 12000 pb
- Expansion of process to NNLO:

$$\Sigma_{\text{LO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}\alpha^{2}\Sigma_{1,2}}_{\text{LO}_{1}} + \underbrace{\alpha^{3}\Sigma_{0,3}}_{\text{LO}_{2}}$$

$$\Sigma_{\text{NLO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{2}\alpha^{2}\Sigma_{2,2}}_{\text{NLO}_{1}} + \underbrace{\alpha_{5}\alpha^{3}\Sigma_{1,3}}_{\text{NLO}_{2}} + \underbrace{\alpha^{4}\Sigma_{0,4}}_{\text{NLO}_{3}}$$

$$\Sigma_{\text{NNLO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{3}\alpha^{2}\Sigma_{3,2}}_{\text{NNLO}_{1}} + \underbrace{\alpha_{5}^{2}\alpha^{3}\Sigma_{2,3}}_{\text{NNLO}_{2}} + \underbrace{\alpha_{5}\alpha^{4}\Sigma_{1,4}}_{\text{NNLO}_{3}} + \underbrace{\alpha_{5}^{5}\Sigma_{0,5}}_{\text{NNLO}_{3}}$$
(8)

• Differential cross section (5-dimensional) in V-boson kinematics expanded in real spherical harmonics

$$\frac{d\sigma}{d\rho_{T,Z}dy_Zdm_{II}d\Omega} \propto \left((1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) + A_1 \sin 2\theta \cos\phi + A_2 \frac{1}{2} \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta \right)$$
(9)
+ $A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi$)

with eight angular/decay coefficients $A_i(p_{T,V}, y_V, m_{II})$

- Angles (θ, ϕ) are angles of l^{\pm} in the **Collins-Soper frame**
- This decomposition separates production mechanism and decay part

Decay coefficients for Z+jet: Lam-Tung relation

• Up to order $\alpha^2 \alpha_5$ (LO): Lam-Tung relation $A_0 = A_2$ (if $\Phi_1 = 0$)

$$A_0 = \sin^2 \theta_1 \quad , \quad A_2 = \sin^2 \theta_1 \cos 2\Phi_1 \tag{10}$$

- Lam-Tung relation $A_0 = A_2$ holds up to order $\alpha_5 \alpha^2$ (LO)
- Predictions for Z+jet available at order $\alpha_5^3 \alpha^2$ (NNLO QCD)¹⁰
- $\circ\,$ ATLAS and CMS (and runs at Tevatron) all measured higher violation of Lam-Tung than predicted by NNLO QCD at $p_{T,Z}>20~{\rm GeV}$

¹⁰R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, et al. High Energ. Phys. 2017, 3 (2017) Timea Vitos
Improving on Standard Model theory predictions

Decay coefficients for Z+jet: setup

- This project: Calculate electroweak corrections to the dominant angular coefficients and Lam-Tung relation
- $\circ~$ Fixed-order: $\textit{pp} \rightarrow \{e^+e^-, \mu^+\mu^-\} + \textit{j} \text{ at 8 TeV with MadGraph5}aMC@NLO \text{ at}$

 $\mathsf{NLO}\ \mathsf{QCD} + \mathsf{EW} := \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_1 + \mathsf{NLO}_2$

(11)

Decay coefficients for Z+jet: setup

- **This project**: Calculate electroweak corrections to the dominant angular coefficients and Lam-Tung relation
- Fixed-order: $pp \rightarrow \{e^+e^-, \mu^+\mu^-\} + j$ at 8 TeV with MadGraph5_aMC@NLO at

$$\mathsf{NLO}\ \mathsf{QCD} + \mathsf{EW} := \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_1 + \mathsf{NLO}_2$$

• Introduce **single lepton** p_T **cut** to avoid double IR (2-loop) singularity \rightarrow vary cut to extrapolate to the full phase space of the dilepton pair

• Use moments method for each coefficient in $A_i f(\theta, \Phi)$

$$A_i \propto \frac{\int \mathrm{d}\Omega \mathrm{d}\sigma f(\theta, \Phi)}{\int \mathrm{d}\Omega \mathrm{d}\sigma}$$

 Note! Due to the ratio-nature of the ocefficients, EW Sudakovs are not necessarily expected to show up!

Timea Vitos

Improving on the SU(3) group treatment

Angular coefficients for Z+jet: results

 $\circ\,$ Lam-Tung violation A_0-A_2 (differentially in the Z-boson $p_T)$ at LO and NLO QCD (left) and NLO QCD+EW (right) 11

¹¹R. Frederix, T. Vitos, arXiv:2007.08867

Timea Vitos

Angular coefficients for Z+jet: results

• Lam-Tung violation $A_0 - A_2$ at NNLO QCD with ATLAS data (left) ¹² and NLO QCD+EW (right)

• Electroweak effects move violation towards the data for the low- p_T region

¹²R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, et al, High Energ. Phys. 2017, 3 (2017) Timea Vitos Improving on Standard Model theory predictions

Angular coefficients for W+jet: motivation

- $\,\circ\,$ W^{\pm}+jet more difficult to measure due to the neutrino
- Direct decay coefficient measurements by CDF (1.8 TeV)¹³
- Template fits of distributions to measure W-boson mass
- Improve fluctuations by an unfolding to Z+jet ¹⁴

¹³CDF Collaboration arXiv:hep-ex/0504020

¹⁴ ATLAS Collaboration arXiv:1701.07240

Angular coefficients for W+jet: setup

- **This project**: Calculate and combine NNLO QCD and NLO EW corrections to the angular coefficients
- $\circ~\mbox{Fixed-order:}~pp \rightarrow \{e^+\nu_e\} + j \mbox{ at 13 TeV at:}$

$$\label{eq:NLO_EW} \begin{split} \mathsf{NLO} \ \mathsf{EW} &:= \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_2 \\ \mathsf{NNLO} \ \mathsf{QCD} &:= \mathsf{LO}_1 + \mathsf{NLO}_1 + \mathsf{NNLO}_1 \end{split}$$

MadGraph5_aMC@NLO (for NLO EW) and STRIPPER (for NNLO QCD) ¹⁵

¹⁵M. Czakon arXiv:1005.0274

Angular coefficients for W+jet: setup

- **This project**: Calculate and combine NNLO QCD and NLO EW corrections to the angular coefficients
- Fixed-order: $pp \rightarrow \{e^+v_e\} + j$ at 13 TeV at:

$$\label{eq:NLO_EW} \begin{split} \mathsf{NLO} \ \mathsf{EW} &:= \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_2 \\ \mathsf{NNLO} \ \mathsf{QCD} &:= \mathsf{LO}_1 + \mathsf{NLO}_1 + \mathsf{NNLO}_1 \end{split}$$

- MadGraph5 aMC@NLO (for NLO EW) and STRIPPER (for NNLO QCD) ¹⁵
- Combining NLO EW and NNLO QCD, default way (unexpanded):

$$A_i^{\text{default}} = \frac{N}{D},\tag{12}$$

Expansion in α_s:

$$A_i^{\exp} = A + \alpha_s B + \alpha_s^2 C, \qquad (13)$$

• Inclusion of NLO EW through an overall K-factor (avoids $p_T(I)$ cut dependence)

$$A_{i,\text{QCD}+\text{EW}} = K_{\text{NLO EW}} \times A_i, \tag{14}$$

Timea Vitos

¹⁵M. Czakon arXiv:1005.0274

Angular coefficients for W+jet: results, inclusive rapidity

 $\,\circ\,$ The coefficients A_0 (left) and A_4 (right) for W^- signature, inclusive in rapidity 16

¹⁶M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394

Improving on Standard Model theory predictions

Angular coefficients for W+jet: results, A₀ rapidity dependence

- $\circ~$ The coefficients A_0 in various rapidity bins
- No rapidity dependence (same for A₂)

Angular coefficients for W+jet: results, A1 rapidity dependence

- $\circ~$ The coefficients A_1 in various rapidity bins
- Note: different y-scales!
- Heavily rapidity-dependent (same for A_3 and A_4)

Decay coefficients for V+jet

Improving on the SU(3) group treatment

Angular coefficients for W+jet: EW non-closure effect¹⁷

• The expansion to spherical harmonics is no longer valid when EW splittings are allowed $(1 \rightarrow 3 \text{ kinematics})$

¹⁷M. A. Ebert, et al.. arXiv:2006.11382

Decay coefficients for V+jet

Improving on the SU(3) group treatment

Angular coefficients for W+jet: EW non-closure effect¹⁷

- The expansion to spherical harmonics is no longer valid when EW splittings are allowed $(1 \rightarrow 3 \text{ kinematics})$
- Reproduce lepton distribution $(p_T(l^+))$ with angular coefficients with reweighting
- Correct for binning effects
- Correct for NWA effects (from LO)
- NLO EW (off-shell) versus eweighted with A_i show good agreement (except first few beins)

¹⁷M. A. Ebert, et al., arXiv:2006.11382

Today's talk

Spin observables for $t\bar{t}$

2 Decay coefficients for V+jet

3. Improving on the SU(3) group treatment

Decay coefficients for V+jet

Why do we bother about high-multiplicity?

- Measurements of multi-jet processes (ATLAS and CMS)
- Measurements of final states with >6 jets
- As detectors get better, predictions must get better!
- At the **future HL-LHC**, multi-jet processes will be even more abundant

Bottleneck for theory predictions

 $\frac{\mathsf{SU(3)}_{\textit{C}}}{\times}\,\mathsf{SU(2)}_{\textit{w}}\,\times\,\mathsf{U(1)}_{\textit{Y}}$

High-multiplicity processes in matrix-element generators

• Current colour treatment: colour decomposition of amplitudes:

$$|\mathcal{M}|^2 \propto \sum_{\sigma_k, \sigma_l} \underbrace{\mathcal{C}(\sigma_k, \sigma_l)}_{\text{colour matrix}} \underbrace{\mathcal{A}(\sigma_k)(\mathcal{A}(\sigma_l))^*}_{\text{dual amplitudes}}$$
(15)

where $\sigma_{k,l}$ some permutation of final state particles

High-multiplicity processes in matrix-element generators

• Current colour treatment: colour decomposition of amplitudes:

$$|\mathcal{M}|^2 \propto \sum_{\sigma_k, \sigma_l} \underbrace{\mathcal{C}(\sigma_k, \sigma_l)}_{\text{colour matrix}} \underbrace{\mathcal{A}(\sigma_k)(\mathcal{A}(\sigma_l))^*}_{\text{dual amplitudes}}$$
(15)

where $\sigma_{k,l}$ some permutation of final state particles

- Colour matrix: basis-dependent (fundamental, colour-flow, multiplet basis...)
- Colour factors: either T^a (fundamental) or f^{abc} (adjoint)

$$[T^a, T^b] = i f^{abc} T^c \tag{16}$$

or δ_b^a (colour-flow)

• Colour matrix size for *n* final state particles: $\sim n! \times n!$ \rightarrow We hit a wall for high-multiplicity QCD processes!

The large- N_c limit

- First introduced by Gerard 't Hooft (1974) ¹⁸
- Use the model

$$SU(3)_C \rightarrow SU(N_c)$$

and then $N_{\mathbf{C}} \rightarrow \infty$

- Observables are expanded in terms of $\frac{1}{N_{C}} \rightarrow$ colour expansion
- $\,\circ\,$ In the Standard Model, $\textit{N}_{\textbf{C}}=3:$ expansion in ~0.3
- $\circ\,$ Effectively, an expansion in $\left(\frac{1}{N_{C}}\right)^{2}\rightarrow \sim\,10\%$ accuracy at second order!

18G. 't Hooft. Nucl. Phys. B72 (1974) 461 - 473

Reducing the complexity: our take on it

- One possible solution: make the colour matrix sparse!
- Expand in $N_{\rm c}^{-2}$ (large- $N_{\rm c}$ limit)

$$C(\sigma_{k},\sigma_{l}) = \underbrace{a_{0}N_{C}^{\times}}_{\text{Leading colour (LC)}} + \underbrace{a_{1}N_{C}^{\times-2}}_{\text{Next-to-leading colour (NLC)}} + \mathcal{O}(N_{C}^{\times-4}) \quad \forall k,l \quad (17)$$

Reducing the complexity: our take on it

- One possible solution: make the colour matrix sparse!
- Expand in $N_{\rm c}^{-2}$ (large- $N_{\rm c}$ limit)

$$C(\sigma_{k},\sigma_{l}) = \underbrace{a_{0}N_{C}^{\times}}_{\text{Leading colour (LC)}} + \underbrace{a_{1}N_{C}^{\times-2}}_{\text{Next-to-leading colour (NLC)}} + \mathcal{O}(N_{C}^{\times-4}) \quad \forall k,l \quad (17)$$

$$C(\sigma_k, \sigma_l) = \begin{pmatrix} LC & 0 & 0 & 0 & 0 & NLC \\ 0 & LC & 0 & NLC & 0 & 0 \\ 0 & 0 & LC & 0 & 0 & 0 \\ 0 & NLC & 0 & LC & 0 & 0 \\ 0 & 0 & 0 & 0 & LC & 0 \\ NLC & 0 & 0 & 0 & 0 & NLC \end{pmatrix}$$

• + use symmetry for identical final state particles

Reducing the complexity: our take on it

- One possible solution: make the colour matrix sparse!
- Expand in $N_{\rm c}^{-2}$ (large- $N_{\rm c}$ limit)

$$C(\sigma_{k},\sigma_{l}) = \underbrace{a_{0}N_{C}^{\times}}_{\text{Leading colour (LC)}} + \underbrace{a_{1}N_{C}^{\times-2}}_{\text{Next-to-leading colour (NLC)}} + \mathcal{O}(N_{C}^{\times-4}) \quad \forall k,l \quad (17)$$

$$C(\sigma_k, \sigma_l) = \begin{pmatrix} LC & 0 & 0 & 0 & 0 & NLC \\ 0 & LC & 0 & NLC & 0 & 0 \\ 0 & 0 & LC & 0 & 0 & 0 \\ 0 & NLC & 0 & LC & 0 & 0 \\ 0 & 0 & 0 & 0 & LC & 0 \\ NLC & 0 & 0 & 0 & 0 & NLC \end{pmatrix}$$

• + use symmetry for identical final state particles

Where do we find the NLC terms, how sparse does the matrix get, In R. Frederix, T. Vitos arXiv:2109.10377. and how accurate is this approximation? Current work in progress

Results for gg initiated processes¹⁹

- For external particles $n_{\text{ext}} \in [4, 14]$
- Blue: full colour Green: NLC Red: LC

 $gg \to n_{\rm ext} - 2$

¹⁹R. Frederix, T. Vitos arXiv:2109.10377

Timea Vitos

Improving on Standard Model theory predictions 31

31 / 34

Decay coefficients for V+jet

Current status in MadGraph5_aMC@NLO

• Recall the exact colour decomposition

$$|\mathcal{M}|^2 \propto \sum_{\sigma_k, \sigma_l} \underbrace{\mathcal{C}(\sigma_k, \sigma_l)}_{\text{colour matrix}} \mathcal{A}(\sigma_k) (\mathcal{A}(\sigma_l))^*$$
(18)

 $\circ\,$ Presently computes all dual amplitudes $\mathcal{A}(\sigma)$

²⁰A. van Hameren, C.G. Papadopoulos. arXiv:hep-ph/0204055

Current status in MadGraph5_aMC@NLO

· Recall the exact colour decomposition

$$|\mathcal{M}|^2 \propto \sum_{\sigma_k, \sigma_l} \underbrace{\mathcal{C}(\sigma_k, \sigma_l)}_{\text{colour matrix}} \mathcal{A}(\sigma_k) (\mathcal{A}(\sigma_l))^*$$
(18)

- Presently computes all dual amplitudes $\mathcal{A}(\sigma)$
- With a sparse matrix, only a subset of these need to be computed!
- Image: Second strain
 Image: Second strain

$$d\hat{\sigma}(a+b \to x) \sim \underbrace{d\Phi_n}_{\text{kinematics}} |\underbrace{\mathcal{M}(a+b \to x)}_{\text{amplitude}}|^2$$
 (19)

needs to be revised (following antenna structure poles ²⁰)

Werify accuracy of NLC expansion with recent Berends-Giele implementations

²⁰A. van Hameren, C.G. Papadopoulos. arXiv:hep-ph/0204055

Improving on Standard Model theory predictions

Summary and outlook

Top pair spin correlations

• Examine further off-shell effects + virtual spin correlations

V+jet decay coefficients

 \circ Low-p_T predictions for the coefficients for ATLAS

NLC approximation in ME generators

- Extend beyond NLC (NNLC?)
- Extend to NLO computations (colour treatment in loops)

Thank you for listening!

Köszönöm a figyelmüket!

Timea Vitos

Improving on Standard Model theory predictions 34 / 34

(22)

Top spin correlations: reweighting

• Unweighting procedure for all events using the upper-boundedness:

$$\frac{d\sigma}{d(\Phi_{full})} < B_{max} \frac{d\sigma}{d(\Phi_{prod})}$$
(20)

for a constant B_{max} (in principle calculable)

- Let event weights be: $d_{B/R} = r_{B/R} p_{B/R}$
- Use instead the decomposition

$$\sigma_{\rm dec} = \sum_{i=1}^{N} (d_B^i + d_R^i) = r_{\rm max} \sum_{i=1}^{N} \frac{r_B^i}{r_{\rm max}} \left(p_B^i + \frac{r_R^i}{r_B^i} p_R^i \right)$$
(21)

1. Attach the decay with the unweighting probability $\frac{r'_B}{r_{max}}$ to Born event i

2. Reweight corresponding real event i with

$$\frac{r_{R}^{i}}{r_{B}^{i}} \text{ with } r_{B/R}^{i} = \frac{|\mathcal{M}_{\text{full},B/R}^{i}|^{2}}{|\mathcal{M}_{\text{prod},B/R}^{i}|^{2}|\mathcal{M}_{\text{dec}}^{i}|^{2}}$$

 $\circ\,$ Include only tree-level matrix-elements in the reweighting $\rightarrow\,$ virtual spin correlation is approximated by tree-level

Top spin correlations: B-coefficients

	Unexpanded		
	NLO QCD [%]	NLO QCD+EW [%]	
B_k^+	$-0.001(20)^{+0\%}_{-0\%}$ $^{+0\%}_{-0\%}$	$-0.10(3)^{+12.0\%}_{-11.9\%}$ $^{+2.8\%}_{-2.8\%}$	
B_n^+	$^{-0.03(2)}_{-31.5\%}^{+42.4\%}$ $^{+1.6\%}_{-1.6\%}$	0.07(4) ^{+73.0%} +2.5% -47.6% -2.5%	
B_r^+	-0.04(2) ^{+55.4%} +4.2% -62.5% -4.2%	$-0.11(4)^{+14.5\%}_{-18.3\%}$ $^{+2.0\%}_{-2.0\%}$	
B_k^-	0.04(2) ^{+47.9%} +4.7% -31.5% -4.7%	-0.13(3) ^{+9.4%} +7.3% -11.3% -7.3%	
B_n^-	-0.05(2) ^{+23.3%} +2.5% -18.6% -2.5%	$-0.05(4)^{+35.9\%}_{-49.1\%}$ $^{+2.2\%}_{-2.2\%}$	
B_r^-	-0.02(2) ^{+26.9%} +3.0% -32.5% -3.0%	$-0.13(4)^{+13.5\%}_{-26.1\%}$ $+2.6\%$	

- Errors: statistical, PDF error
- All B-coefficients vanish at NLO QCD
- Some obtain non-zero corrections at complete-NLO
- Largest corrections: B_k^- and B_r^-

Top spin correlations: B-coefficients

• How are the corresponding distributions for B_k^- and B_r^- ?

$$C_{ij} = -9 \frac{\langle \cos \theta^i_+ \cos \theta^j_- \rangle}{\sigma}, \qquad B_i^{\pm} = 3 \frac{\langle \cos \theta^i_{\pm} \rangle}{\sigma}$$

Decay coefficients: Collins-Soper frame

 $\circ~pp \rightarrow Z/\gamma + X \rightarrow l^+ l^- + X$ 7: in Collins-Soper frame

 $\circ~$ Introduce polar and azmuthal angles θ_1, Φ_1 of quark compared to the hadron plane

• Angles θ, Φ are the angles of the (negatively charged) lepton I^-

⁷J.-C. Peng et al., arXiv:1511.08932

Decay coefficient for Z+jet: results

- Distributions for A_0
- Negligible electroweak corrections

Decay coefficient for Z+jet: results

- Distributions for A1
- Negligible electroweak corrections

Decay coefficients for Z+jet: results

• Distributions for A_2

Decay coefficients for Z+jet: results

- Distributions for A_3
- $\circ~$ Same -10% electroweak corrections

Decay coefficients for Z+jet: results

- Distributions for A_4
- $\circ~$ Same -10% electroweak corrections

Decay coefficients for W+jet: results

• The coefficients A₂ in various rapidity bins

Decay coefficients for W+jet: results

• The coefficients A₃ in various rapidity bins

Decay coefficients for W+jet: results

• The coefficients A₄ in various rapidity bins

Colour matrix: useful identities

• Recall: Fierz identity

$$(T^{a})_{ij}(T^{a})_{kl} = T_{R}\left(\delta_{il}\delta_{jk} - \frac{1}{N_{\mathsf{C}}}\delta_{ij}\delta_{kl}\right)$$
(23)

set group index $T_R = 1$

Notation

Use $\mathcal{R}, \mathcal{Q}, \mathcal{S}, \mathcal{P}...$ to denote strings of fundamental generators

$$\mathcal{R} = T^{a_1} T^{a_2} \dots T^{a_r} \quad , \quad \tilde{\mathcal{R}} = T^{a_r} T^{a_{r-1}} \dots T^{a_1} \quad , \quad \operatorname{len}(\mathcal{R}) = r \tag{24}$$

Colour matrix: useful identities

• Recall: Fierz identity

$$(T^{a})_{ij}(T^{a})_{kl} = T_{R}\left(\delta_{il}\delta_{jk} - \frac{1}{N_{\mathsf{c}}}\delta_{ij}\delta_{kl}\right)$$
(23)

set group index $T_R = 1$

Notation

Use $\mathcal{R}, \mathcal{Q}, \mathcal{S}, \mathcal{P}...$ to denote strings of fundamental generators

$$\mathcal{R} = T^{a_1} T^{a_2} \dots T^{a_r} \quad , \quad \tilde{\mathcal{R}} = T^{a_r} T^{a_{r-1}} \dots T^{a_1} \quad , \quad \operatorname{len}(\mathcal{R}) = r \tag{24}$$

• Variations of the Fierz identity:

Rule I:
$$\operatorname{Tr}[\mathcal{T}^{a}\mathcal{R}]\operatorname{Tr}[\mathcal{T}^{a}\mathcal{S}] = \operatorname{Tr}[\mathcal{R}\mathcal{S}] - \frac{1}{N_{\mathbf{C}}}\operatorname{Tr}[\mathcal{R}]\operatorname{Tr}[\mathcal{S}],$$
 (25)

Rule II:
$$\operatorname{Tr}[\mathcal{R}T^{a}\Omega T^{a}S] = \operatorname{Tr}[\Omega]\operatorname{Tr}[\mathcal{R}S] - \frac{1}{N_{c}}\operatorname{Tr}[\mathcal{R}\Omega S],$$
 (26)

Rule IIb:
$$\operatorname{Tr}[\mathcal{R}T^{a}T^{a}S] = N_{\mathbf{C}}\operatorname{Tr}[\mathcal{R}S] + \mathcal{O}(1/N_{\mathbf{C}})$$
 (27)

Colour matrix: fundamental decomposition

For *n*-gluon amplitudes

• Matrix-element

$$\mathcal{M} = g^{n-2} \sum_{\sigma \in S_{n-1}} \operatorname{Tr}[T^{a_1} T^{a_{\sigma(1)}} ... T^{a_{\sigma(n-1)}}] \mathcal{A}(1, \sigma(1), ..., \sigma(n-1))$$
(28)

Not a minimal set

Dual amplitudes are related by the Kleiss-Kuijf relation (dual Ward identity)

$$\mathcal{A}(1,2,3,4,...,n) + \mathcal{A}(2,1,3,4,...,n) + ... + \mathcal{A}(2,3,4,...,1,n) = 0$$
⁽²⁹⁾

• Squared matrix-element

$$|\mathcal{M}|^2 = (g^2)^{n-2} \sum_{k,l=1}^{(n-1)!} C_{kl} \mathcal{A}(1,\sigma_k(1),\ldots,\sigma_k(n-1)) (\mathcal{A}(1,\sigma_l(1),\ldots,\sigma_l(n-1)))^{n-2}$$

• Colour matrix (size $(n-1)! \times (n-1)!$):

$$C_{kl} = \sum_{\text{col.}} \text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_k(1)}} \dots \mathcal{T}^{a_{\sigma_k(n-1)}}] \left(\text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_l(1)}} \dots \mathcal{T}^{a_{\sigma_l(n-1)}}]\right)^*$$
(30)

Colour matrix: fundamental decomposition

• Colour matrix

$$C_{kl} = \sum_{\text{col.}} \text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_k}(\mathbf{1})} \dots \mathcal{T}^{a_{\sigma_k(n-1)}}] \left(\text{Tr}[\mathcal{T}^{a_1} \mathcal{T}^{a_{\sigma_l}(\mathbf{1})} \dots \mathcal{T}^{a_{\sigma_l(n-1)}}] \right)^*$$
(31)

• LC:
$$\mathcal{O}(N_{\mathbf{C}}^{n})$$
, NLC: $\mathcal{O}(N_{\mathbf{C}}^{n-2})$

• Leading-colour in all diagonal elements $\sigma_k = \sigma_l$

$$\left(N_{\mathsf{c}} - \frac{1}{N_{\mathsf{c}}}\right)^{n} + \left(N_{\mathsf{c}}^{2} - 1\right)\left(\frac{-1}{N_{\mathsf{c}}}\right)^{n} = N_{\mathsf{c}}^{n} + \mathcal{O}(N_{\mathsf{c}}^{n-2})$$
(32)

• Diagonal colour factors contain also NLC contribution

Colour matrix: fundamental decomposition For *n*-gluon amplitudes

NLC: for permutations which are related by a block interchange:⁸

$$\sigma_k \sim \Re \mathfrak{Q}_1 \mathfrak{S} \mathfrak{Q}_2 \mathfrak{P} \quad , \quad \sigma_l \sim \Re \mathfrak{Q}_2 \mathfrak{S} \mathfrak{Q}_1 \mathfrak{P} \tag{33}$$

with special cases if S = 1

- If $len(\mathfrak{Q}_1) = len(\mathfrak{Q}_2) = 1: -N_{\mathbf{C}}^{n-2} + \mathcal{O}(N_{\mathbf{C}}^{n-4}).$
- If $\operatorname{len}(\mathfrak{Q}_1) = 1$ or $\operatorname{len}(\mathfrak{Q}_2) = 1$: $-N_{\mathsf{C}}^{n-2} + \mathcal{O}(N_{\mathsf{C}}^{n-4})$ if $\operatorname{len}(\mathfrak{R}) = 1$ and $\operatorname{len}(\mathfrak{P}) = 0$, otherwise not NLC
- If $len(\mathfrak{Q}_{1,2}) > 1$: $+N_{C}^{n-2} + \mathcal{O}(N_{C}^{n-4})$ if $len(\mathfrak{R}) \neq 1$ and $len(\mathfrak{P}) \neq 0$, otherwise not NLC

⁸A. Labane, aXiv:2008.13640

Colour matrix: results For *n*-gluon amplitudes

Including the adjoint decomposition: matrix size $(n-2)! \times (n-2)!$

all-gluon				
п	Fundamental	Colour-flow	Adjoint	
4	6 (6)	6 (6)	2 (2)	
5	11 (24)	16 (24)	5 (6)	
6	24 (120)	36 (120)	18 (24)	
7	50 (720)	71 (720)	93 (120)	
8	95 (5040)	127 (5040)	583 (720)	
9	166 (40320)	211 (40320)	4162 (5040)	
10	271 (362880)	331 (362880)	31649 (40320)	
11	419 (3628800)	496 (3628800)	0	
12	620 (39916800)	716 (39916800)		
13	885 (479001600)	1002 (479001600)		
14	1226 (6227020800)	1366 (6227020800)	Vo Xee	

Adjoint decomposition For *n*-gluon amplitudes

• The amplitude is now

$$\mathcal{M} = \sum_{\sigma \in S_{n-2}} \left(F^{\mathfrak{a}_{\sigma(2)}} \dots F^{\mathfrak{a}_{\sigma(n-1)}} \right)_{\mathfrak{a}_{1}\mathfrak{a}_{n}} \mathcal{A}(1, \sigma(1), \dots, \sigma(n), n),$$
(34)

with $(F^a)_{bc} = if^{abc}$

- Minimal basis: (n-2)! independent dual amplitudes
- Smaller colour matrix: but LC not only on diagonal!
- No found algorithm (yet) to get NLC elements

Colour-flow decompositions

For one quark line plus *n*-gluon amplitudes: the full projection of U(1) gluons
For two distinct flavour quark pairs plus n-gluon amplitudes

- \circ Now we have two single colour lines ightarrow internal U(1) gluon
- The internal gluon is decomposed into $U(N_c)$ and U(1) part

• The two "quark-ordered" amplitudes

$$\mathcal{M}_{2qq} = \mathcal{M}_1 - \frac{1}{N_{\mathsf{C}}} \mathcal{M}_2 \tag{36}$$

Decomposed as

$$\mathcal{M}_1 = \sum_{\sigma \in S_n} \sum_{n_1=0}^n c_1(\sigma, n_1) \mathcal{A}_1(\sigma, n_1) \quad , \quad \mathcal{M}_2 = \sum_{\sigma \in S_n} \sum_{n_1=0}^n c_2(\sigma, n_1) \mathcal{A}_2(\sigma, n_1)$$

Timea Vitos

For two distinct flavour quark pairs plus n-gluon amplitudes

• The colour factors

$$c_{1}(\sigma) = \left(T^{a_{\sigma(1)}} \dots T^{a_{\sigma(n_{1})}}\right)_{i_{1}j_{2}} \left(T^{a_{\sigma(n_{1}+1)}} \dots T^{a_{\sigma(n)}}\right)_{i_{2}j_{1}}$$
(38)
$$c_{2}(\sigma) = \left(T^{a_{\sigma(1)}} \dots T^{a_{\sigma(n_{1})}}\right)_{i_{1}j_{1}} \left(T^{a_{\sigma(n_{1}+1)}} \dots T^{a_{\sigma(n)}}\right)_{i_{2}j_{2}}$$
(39)

• The squared amplitude

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n+2} \sum_{\sigma_{k},\sigma_{l}\in S_{n+1}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k})) \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{*} & -c_{1}(\sigma_{k})c_{2}(\sigma_{l})^{*}/\mathcal{N}_{c} \\ -c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{*}/\mathcal{N}_{c} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{*}/\mathcal{N}_{c}^{2} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \end{pmatrix}$$
(40)

Timea Vitos

For two distinct flavour quark pairs plus n-gluon amplitudes

- Note: not all diagonal elements the same type now!
- Leading-colour $\mathcal{O}(N_{\mathbf{C}}^{n+2})$:

$$\begin{aligned} |\mathcal{M}_{2qq}|^2 &= (g^2)^{n+2} \sum_{\sigma_k, \sigma_l \in S_{n+1}} \\ (\mathcal{A}_1(\sigma_k) \quad \mathcal{A}_2(\sigma_k)) \begin{pmatrix} \mathbf{c_1}(\sigma_k) \mathbf{c_1}(\sigma_l)^* & -\mathbf{c_1}(\sigma_k) \mathbf{c_2}(\sigma_l)^* / N_{\mathbf{c}} \\ -\mathbf{c_2}(\sigma_k) \mathbf{c_1}(\sigma_l)^* / N_{\mathbf{c}} & \mathbf{c_2}(\sigma_k) \mathbf{c_2}(\sigma_l)^* / N_{\mathbf{c}}^2 \end{pmatrix} \begin{pmatrix} \mathcal{A}_1(\sigma_l)^* \\ \mathcal{A}_2(\sigma_l)^* \end{pmatrix} \end{aligned}$$

$$\text{ if } \sigma_k = \sigma_l \\$$

• NLC terms $\mathcal{O}(N_{\mathbf{C}}^{n})$, investigate block-by-block: appears in each block

For two same flavour quark pairs plus n-gluon amplitudes

• Both a t- and s-channel contribution

$$\mathcal{M}_{2qq}(\overline{q}q\overline{q}q+ng) = \hat{\mathcal{M}}(\overline{q}_1q_1\overline{q}_2q_2+ng) - \hat{\mathcal{M}}(\overline{q}_1q_2\overline{q}_2q_1+ng)$$
(41)

(minus sign from Fermi statistics)

Decomposed

For two same flavour quark pairs plus n-gluon amplitudes

• So then

$$\mathcal{M}_{2qq} = \left(1 + \frac{1}{N_{c}}\right) (\mathcal{M}_{1} - \mathcal{M}_{2}).$$
(43)

• Squared-matrix:

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n+2} \left(1 + \frac{1}{N_{c}}\right)^{2} \sum_{\sigma_{k},\sigma_{l} \in S_{n+1}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k})) \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{1}(\sigma_{k})c_{2}(\sigma_{l})^{*} \\ c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{*} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \end{pmatrix}$$
(44)

• Colour factors include an extra factor $\left(1+\frac{1}{N_{C}}\right)^{2}$ here \rightarrow LC: $\mathcal{O}(N_{C}^{n+2})$, non-zero $\mathcal{O}(N_{C}^{n+1})$

For two same flavour quark pairs plus n-gluon amplitudes

• Note: diagonal elements symmetrized now!

• Leading-colour $\mathcal{O}(N_{\mathbf{c}}^{n+2})$:

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n+2} \left(1 + \frac{1}{N_{c}}\right)^{2} \sum_{\sigma_{k},\sigma_{l} \in S_{n+1}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k})) \begin{pmatrix} c_{1}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{1}(\sigma_{k})c_{2}(\sigma_{l}) \\ c_{2}(\sigma_{k})c_{1}(\sigma_{l})^{*} & c_{2}(\sigma_{k})c_{2}(\sigma_{l})^{*} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}(\sigma_{l})^{*} \end{pmatrix}$$
(45)

if $\sigma_k = \sigma_l$

• NLC terms $\mathcal{O}(N_c^{n+1}) + \mathcal{O}(N_c^n)$, investigate block-by-block: appears in every block

(48)

Colour decompositions

For two distinct flavour quark pairs plus n-gluon amplitudes

o Same set of dual amplitudes as for fundamental decomposition

$$\mathcal{M}_{2qq} = \mathcal{M}_1 - \frac{1}{N_{\mathsf{C}}}\mathcal{M}_2 \tag{46}$$

· Once again, external gluons are projected out

$$\mathcal{M}_{1} \to \mathcal{M}_{1} - \frac{1}{N_{\mathsf{c}}} \sum_{\bar{\sigma} \in \bar{S}_{n+1}} c_{1}^{1}(\bar{\sigma}) \mathcal{A}_{1}^{1}(\bar{\sigma}), \tag{47}$$

- For NLC, it turns out that a single U(1) projection is enough
- · Colour factor for this dual amplitude

$$c_1^1(\bar{\sigma}) = \delta_{j_{\sigma(1)}}^{i_{q_1}} \dots \delta_{j_{q_1}}^{i_{\sigma(n)}} \delta_{j_{\sigma(n+1)}}^{i_{\sigma(n+1)}},$$

with colourless external U(1) indices

Timea Vitos

Colour decompositions

For two distinct flavour quark line plus n-gluon amplitudes

• Matrix element

$$\mathcal{M}_{2qq} = \sum_{\sigma \in S_{n+1}} c_1(\sigma) \mathcal{A}_1(\sigma) - \frac{1}{N_{\mathsf{C}}} \sum_{\sigma \in S_{n+1}} c_2(\sigma) \mathcal{A}_2(\sigma) - \frac{1}{N_{\mathsf{C}}} \sum_{\bar{\sigma} \in \bar{S}_{n+1}} c_1^1(\bar{\sigma}) \mathcal{A}_1^1(\bar{\sigma}),$$

• Squared matrix-element

$$\begin{split} |\mathcal{M}_{2qq}|^2 &= (g^2)^{n-2} \sum_{\sigma_k,\sigma_l} \left(\mathcal{A}_1(\sigma_k) \quad \mathcal{A}_2(\sigma_k) \quad \mathcal{A}_1^1(\bar{\sigma}_k) \right) \\ \begin{pmatrix} \mathbf{c}_1(\sigma_k) \mathbf{c}_1(\sigma_l)^{\dagger} & -\mathbf{c}_1(\sigma_k) \mathbf{c}_2(\sigma_l)^{\dagger} / N_{\mathsf{C}} & -\mathbf{c}_1(\sigma_k) \mathbf{c}_1^1(\bar{\sigma}_l)^{\dagger} / N_{\mathsf{C}} \\ -\mathbf{c}_2(\sigma_k) \mathbf{c}_1(\sigma_l)^{\dagger} / N_{\mathsf{C}} & \mathbf{c}_2(\sigma_k) \mathbf{c}_2(\sigma_l)^{\dagger} / N_{\mathsf{C}}^2 & \mathbf{c}_2(\sigma_k) \mathbf{c}_1^1(\bar{\sigma}_l)^{\dagger} / N_{\mathsf{C}}^2 \\ -\mathbf{c}_1^1(\bar{\sigma}_k) \mathbf{c}_1(\sigma_l)^{\dagger} / N_{\mathsf{C}} & \mathbf{c}_1^1(\bar{\sigma}_k) \mathbf{c}_2(\sigma_l)^{\dagger} / N_{\mathsf{C}}^2 & \mathbf{c}_1^1(\bar{\sigma}_k) \mathbf{c}_1^1(\bar{\sigma}_l)^{\dagger} / N_{\mathsf{C}}^2 \\ \end{pmatrix} \begin{pmatrix} \mathcal{A}_1(\sigma_l)^* \\ \mathcal{A}_2(\sigma_l)^* \\ \mathcal{A}_1^1(\bar{\sigma}_l)^* \end{pmatrix}, \end{split}$$

- Leading-colour (N_{c}^{n+2}) for $\sigma_{k} = \sigma_{l}$
- NLC (N_c^n) needs a careful analysis block-by-block

Colour decompositions

For two same flavour quark line plus n-gluon amplitudes

 $\circ\,$ Very similar to the distinct flavour case, but we also need to U(1) project the \mathcal{M}_2 amplitude

$$\mathcal{M}_{2} \to \mathcal{M}_{2} - \frac{1}{N_{\mathsf{c}}} \sum_{\bar{\sigma} \in \bar{S}_{n+1}} c_{2}^{1}(\bar{\sigma}) \mathcal{A}_{2}^{1}(\bar{\sigma}), \tag{49}$$

o 2: Squared matrix-element

$$|\mathcal{M}_{2qq}|^{2} = (g^{2})^{n-2} \left(1 + \frac{1}{N_{c}}\right)^{2}$$

$$\sum_{\sigma_{k},\sigma_{l}} (\mathcal{A}_{1}(\sigma_{k}) - \mathcal{A}_{2}(\sigma_{k}) - \mathcal{A}_{1}^{1}(\bar{\sigma}_{k}) - \mathcal{A}_{2}^{1}(\bar{\sigma}_{k})) \mathbb{C} \begin{pmatrix} \mathcal{A}_{1}(\sigma_{l})^{*} \\ \mathcal{A}_{2}^{1}(\sigma_{l})^{*} \\ \mathcal{A}_{1}^{1}(\bar{\sigma}_{l})^{*} \\ \mathcal{A}_{2}^{1}(\bar{\sigma}_{l})^{*} \end{pmatrix}$$
(50)

(Again, colourr factors no longer monomials in $N_{\rm C}$)

Colour decompositions

For two same flavour quark line plus n-gluon amplitudes

• Colour matrix

$$\mathbb{C} = \begin{pmatrix} \mathbf{c_1}(\sigma_k)\mathbf{c_1}(\sigma_j)^{\dagger} & -\mathbf{c_1}(\sigma_k)\mathbf{c_2}(\sigma_j)^{\dagger} & -\mathbf{c_1}(\sigma_k)\mathbf{c_1}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}} & \mathbf{c_1}(\sigma_k)\mathbf{c_2}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}} \\ -\mathbf{c_2}(\sigma_k)\mathbf{c_1}(\sigma_j)^{\dagger} & \mathbf{c_2}(\sigma_k)\mathbf{c_2}(\sigma_j)^{\dagger} & -\mathbf{c_2}(\sigma_k)\mathbf{c_1}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}} & -\mathbf{c_2}(\sigma_k)\mathbf{c_2}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}} \\ -\mathbf{c_1}^2 (\tilde{\sigma}_k)\mathbf{c_1}(\sigma_j)^{\dagger}/N_{\mathbf{C}} & \mathbf{c_1}^2 (\tilde{\sigma}_k)\mathbf{c_2}(\sigma_j)^{\dagger}/N_{\mathbf{C}} & \mathbf{c_2}^2 (\tilde{\sigma}_k)\mathbf{c_1}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}} \\ \mathbf{c_2}^2 (\tilde{\sigma}_k)\mathbf{c_1}(\sigma_j)^{\dagger}/N_{\mathbf{C}} & -\mathbf{c_2}^2 (\tilde{\sigma}_k)\mathbf{c_1}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}} & \mathbf{c_2}^2 (\tilde{\sigma}_k)\mathbf{c_1}^2 (\tilde{\sigma}_j)^{\dagger}/N_{\mathbf{C}}^2 \end{pmatrix}.$$
(51)

- Leading-colour: $\mathcal{O}(N_{c}^{n+1})$ on first two block diagonal elements
- NLC $\mathcal{O}(N_c^n)$ is examined block-by-block

Non-zero elements without phase-space symmetrisation

$q\overline{q}Q\overline{Q} + ng$							Fu	Fundamental:		$\mathcal{A}_1 \mid \mathcal{A}_2$ types		
n						$\min(n_1, n - n_1)$						
	0		1		2		3		4		5	
0	2	2										(2)
1	3	3										(4)
2	7	4	6	5								(12)
3	15	5	15	7								(48)
4	31	6	32	9	33	10						(240)
5	60	7	62	11	64	13						(1440)
6	108	8	111	13	114	16	115	17				(10080)
7	182	9	186	15	190	19	192	21				(80640)
8	290	10	295	17	300	22	303	25	304	26		(725760)
9	441	11	447	19	453	25	457	29	459	31		(7257600)
10	645	12	652	21	659	28	664	33	667	36	668 37	(79833600)

Table: Number of non-zero elements in a single row of the colour matrix for $q\bar{q}Q\bar{Q} + ng$ (distinct flavours) up to NLC accuracy, $O(N_c^n)$ in the fundamental representation.

Non-zero elements without phase-space symmetrisation

qq Q	$\overline{Q} + ng$				Colour-flow:	$\mathcal{A}_1, \mathcal{A}_1^1 \mid \mathcal{A}_2$ types
			min(n	1 , <i>n</i> - <i>n</i> 1)		-
"	0	1	2	3	4	5
0	2, - 2					(2)
1	5,3 3					(6)
2	11,44	12, - 5				(22)
3	23,5 5	25,5 7				(98)
4	45,66	48,6 9	49, - 10			(522)
5	82,777	86,7 11	88,7 13			(3262)
6	140,8 8	145,8 13	148,8 16	149, - 17		(23486)
7	226,99	232, 9 15	236,9 19	238,9 21		(191802)
8	348,10 10	355,10 17	360,10 22	363,10 25	364 , - 25	(1753618)
9	515,11 11	523,11 19	529,11 25	533,11 29	535,11 31	(17755382)
10	737 , 12 12	746 , 12 21	753,12 28	758,12 33	761,12 36 76	2,- 37 (197282022)

Table: Number of non-zero elements in a single row of the colour matrix for $q\overline{q} Q\overline{Q} + ng$ (distinct flavours) up to NLC accuracy in the colour-flow representation

Colour matrix: results for qg initiated

• Blue: full colour

Green: NLC

Red: LC

• Factorial growth for full-colour

• Polynomial scaling with $n_{\rm ext}$ for both LC and NLC ($\sim n_{\rm ext}^4$)

Colour matrix: results for $q\overline{q}$ initiated

o Colour-flow very slightly less efficient than fundamental decomposition

Colour matrix: results for $qQ/q\overline{Q}$ initiated

 $\,\circ\,$ Already a good efficiency improvement for NLC at $n_{\rm ext}\sim 6$

Colour matrix: results for qq/\overline{qq} initiated

 Same-flavour case has slightly more elements to consider because of symmetrisation of M_{1,2} amplitudes