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The test of all knowledge is
experiment. Experiment is the sole
judge of scientific truth.

— Richard P. Feynman —




The minimal model of the weather system/
ocean circulation (mid-latitudes)

* Rotation +
meridional temperature
difference = weather

(or ocean circulation)

* Idea: Let’s construct
minimalistic laboratory
analogs to better
understand the basic

underlying dynamics




A minimal model

* A differentially heated cylindrical tank, mounted on a
turntable. “Rotating annulus”

Dimensions (Cottbus):

a =45 mm
b=120 mm
d= 135 mm
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A minimal model

* A differentially heated cylindrical tank, mounted on a
turntable. “Rotating annulus”

Dimensions (Budapest):

a =45 mm
b=150mm
d =40 mm




A minimal model

* A differentially heated cylindrical tank, mounted on a
turntable. “Rotating annulus™

Dimensions (Tallahassee):
a =160 mm

b =610 mm

d = 80 mm




Basics: baroclinic instability

cooling heating



Basics: baroclinic instability

“Sideways convection” — no threshold
in AT
(i.e. No ‘critical Rayleigh number?’)

Any temperature difference can initiate
the flow

cooling heating
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Rotation!




Baroclinic instability

cooling heating
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Baroclinic waves

control parameters:

* rotation rate, radial
temperature difference

Different planetary

atmospheres can be
modelled

* Venus: slow rotation,
zonal flow

 Earth: fast rotation =2
Coriolis effect, cyclones
(“weather”)




Baroclinic waves

control parameters:

* rotation rate, radial
temperature difference

Different planetary
atmospheres can be

modelled

* Venus: slow rotation,
zonal flow

* Earth: fast rotation 2>
Coriolis effect, cyclones
(“weather”)







The regime diagram (after Fultz)




“Meridional” temperature contrast vs.
temperature fluctuations

* Large annulus — very small Rossby numbers (quasigeostrophic
turbulence)

* Temperature time series from fixed locations

* Question: How do the statistical properties of extreme events 1n this
model weather (and climate) depend on the meridional temperature
contrast?



“Meridional” temperature contrast vs.
temperature fluctuations

* The distribution of fluctuations widens with the increasing
temperature contrast — increasing Rossby number (~ AT).
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“Meridional” temperature contrast vs.
temperature fluctuations

* The distribution of fluctuations widens with the increasing
temperature contrast — increasing Rossby number (~ AT).
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“Meridional” temperature contrast vs.
temperature fluctuations

Taking the histograms
of the (smoothed)

time derivatives

of the temperature
fluctuation time series,
and their “width” based

on the Q0.05 and Q0.95
quantiles

— data collapse via
advective scaling

dT/dt~ UV T~
AT2/(QL))
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“Meridional” temperature contrast vs.
temperature fluctuations

Question: How do the statistical properties of extreme events in weather
and climate depend on the meridional temperature contrast?

Partial answers:

If only Rossby wave dynamics was involved (minimum mid-latitude
atmosphere), a marked polar amplification would yield

* a narrower distribution of temperature fluctuations,
whose width scales with ~ AT
* generally smaller “jumps” in temperature, scaling with ~ AT?

* the correlation timescale (“persistence’) of the weather would
significantly increase, scaling with ~ 1/AT



The present-day ACC: temperature field
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Ocean Surface Temperature (degC) 06/11/2018

The “minimalistic approach” to the

Large meridional SST gradient, lateral thermal boundary conditions —

accompanying the eastward ditferential heating (in reality the scale
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Motivation: The eocene-oligocene transition (EOT)
~ 34 Mya

O Closing gateway

OOpening gateway Greenlands
Scotland Ridge
A

M. Rebesco et al., Marine Geology 352 (2014)



Motivation: The eocene-oligocene transition (EOT)

. Rapid onset of glaciation of Antarctica ca. Mya (Coxall et al., 2005)

. Kennett (1977): this major cooling episode was triggered by the opening of
Drake Passage. (DP opening — ACC — isolating Antarctica)

« This has been challenged since then: maybe long-term decrease in atmospheric

CO2 level was the main driver of Antarctic glaciation (DeConto and Pollard,
2003, Pearson et al., 2009)

. Impact events! (Ivany et al., 2000)

« What do we do? Experimental minimal modeling (“toy model”) of the pre-
EOT overturning of the Southern hemisphere.
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Steerman et al., Syst. Biol. 58(6):573-585, 2009



“Closing the Drake Passage” with a removable radial barrier

R, T
AT, = 1T, — T
1
Rl =4.5cm
Ry =12cm, 15 cm
H=5cm
Q =2.0rad/s
removable

0 obstacle




Surface temperature patterns (IR)
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Scaling properties

A linear scaling between the
azimuthal and radial temperature
contrast for the closed experiment
runs.

(ATB> ~ (ATT>

no = 0.22

- slope: 0.22
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Bozoki, T. et al. (2019), Deep Sea Res. I1., 160, 16-24.
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Increasing mean “SST” in the Southern ocean following the opening —
an apparent contradiction with paleoclimate. Why?

Control experiments with thermometers (Cottbus tank)

Larger thermal separation between the surface and the
bulk 1n the open configuration!
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Increasing mean “SST” in the Southern ocean following the opening —
an apparent contradiction with paleoclimate. Why?

Control experiments with thermometers (Cottbus tank)

[Larger thermal separation between the surface and the
bulk in the open configuration!
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Increasing mean “SST” in the Southern ocean following the opening —
an apparent contradiction with paleoclimate. Why? — NUMERICS!

* T21 PlaSim + LSG (“large scale geostrophic”) ocean module (22 layers,
resolution: 4°x 4°)

* 1000 years of simulation

* Topography, orography and ocean topography modietied (not real
paleogeography, only a ca. 100 km-wide meridional “dam” mnserted into the
Drake passage for the “closed” runs)

4 runs (Drake passage open/closed x two different configurations):
* CO,: 750 ppm (as 34 Mya) & sea ice + land ice ON
* CO,: 750 ppm (as 34 Mya) & sea ice + land ice OFF

PlaSim (UH Met. Institute) — a “medium complexity” GCM

https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html




Significant cooling in the Southern ocean — only when the sea ice
module (albedo teedback) 1s ON!

0.16 T T T T 0.16 T T
closed : closed =1 :
ol OPR 1 g ice module off | ol oPen— : ice module on
032} 8 012 I E
0.1 0.1 1 a
g 5y I -
<] | e
Q 008+ D o8l
= =] {1 THTE
& o i
[0 [0
d:: K d:: 0.06 =
0.04 -
0.02 - TH]
0 A d ‘ ‘
15 -10 -5 0 S 10 15
a) b) temperature relative to closed mean [°C]
ice module on
open — closed surface temperature difference [°C] open — closed surface temperature difference [°C]

c) <F _‘P d) 4_4‘_.2 QFZ_AP

1 1



Summary & Conclusions

Minimalistic laboratory “toy model” of the closed Drake
passage setting before and after EOT (very conceptual).

In the closed case a temperature contrast can develop
between the ‘Atlantic” and ‘Pacific’ side, that 1s ca. /4 of the
meridional temperature difference 1in the domain

After opening the passage, mean SST in the set-up slightly
tnereases, and the cold extremes (long left tail) disappear.

Turns out (from PlaSim simulations) that without active sea-
ice dynamics, the Souther Ocean’s mean SST would not
decrease either, pointing to the importance of ice albedo

feedback 1in the EO'T.




Thank you for your attention!.
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