Modeling atmospheric and ocean dynamics in the lab

Miklós Vincze

(von Kármán Laboratory for Environmental Flows; ELKH-ELTE Theoretical Physics Research Group)

Tamás Bozóki (SZTE), Mátyás Herein (ELKH-ELTE), Uwe Harlander (BTU), Costanza Rodda (BTU), Cathrine Hancock (FSU), Kevin Speer (FSU)

Particle Physics Seminar 10/18/2022

The test of all knowledge is experiment. Experiment is the sole judge of scientific truth.

— Richard P. Feynman —

The minimal model of the weather system/ ocean circulation (mid-latitudes)

Rotation +
meridional temperature
difference = weather
(or ocean circulation)

• Idea: Let's construct minimalistic laboratory analogs to better understand the basic underlying dynamics

• A differentially heated cylindrical tank, mounted on a turntable. "Rotating annulus"

Dimensions (Cottbus):

- a = 45 mm
- b = 120 mm
- d = 135 mm

• A differentially heated cylindrical tank, mounted on a turntable. "Rotating annulus"

Dimensions (Cottbus):

- a = 45 mm
- b = 120 mm
- d = 135 mm

• A differentially heated cylindrical tank, mounted on a turntable. "Rotating annulus"

Dimensions (Budapest):

- a = 45 mm
- $b = 150 \, mm$
- d = 40 mm

• A differentially heated cylindrical tank, mounted on a turntable. "Rotating annulus"

Dimensions (Tallahassee):

- a = 160 mm
- $b = 610 \ mm$
- d = 80 mm

"Sideways convection" – no threshold in ΔT (i.e. No 'critical Rayleigh number')

Any temperature difference can initiate the flow

cooling

heating

"Sideways convection" – no threshold in ΔT (i.e. No 'critical Rayleigh number')

Any temperature difference can initiate the flow

cooling

heating

cooling

heating

Rotation!

Baroclinic instability

cooling

heating

Zonal flow (thermal wind) Geostrophic theory: Tilted density surfaces

 $-2\Omega \vec{e_z} \times \vec{u}$

Baroclinic instability

KOTATION Zonal flow

(thermal wind) Geostrophic theory: Tilted density surfaces

Baroclinic instability

(thermal wind) Geostrophic theory: Tilted density surfaces

Baroclinic waves

control parameters:

- rotation rate, radial temperature difference
- Different planetary atmospheres can be modelled
- <u>Venus:</u> slow rotation, zonal flow
- <u>Earth:</u> fast rotation → Coriolis effect, cyclones ("weather")

Baroclinic waves

control parameters:

- rotation rate, radial temperature difference
- Different planetary atmospheres can be modelled
- <u>Venus:</u> slow rotation, zonal flow
- <u>Earth:</u> fast rotation → Coriolis effect, cyclones ("weather")

The regime diagram (after Fultz)

- Large annulus → very small Rossby numbers (quasigeostrophic turbulence)
- Temperature time series from fixed locations

• Question: How do the statistical properties of extreme events in this model weather (and climate) depend on the meridional temperature contrast?

• The distribution of fluctuations widens with the increasing temperature contrast \rightarrow increasing Rossby number (~ Δ T).

• The distribution of fluctuations widens with the increasing temperature contrast \rightarrow increasing Rossby number (~ Δ T).

Taking the histograms of the (smoothed)

time derivatives

of the temperature fluctuation time series, and their "width" based on the Q0.05 and Q0.95 quantiles

→ data collapse via *advective scaling* (dT/dt ~ $U \cdot \nabla T \sim \Delta T^2/(\Omega L)$)

Question: How do the statistical properties of extreme events in weather and climate depend on the meridional temperature contrast?

Partial answers:

If only Rossby wave dynamics was involved (minimum mid-latitude atmosphere), a marked polar amplification would yield

- a narrower distribution of temperature fluctuations, whose width scales with $\sim \Delta T$
- generally smaller "jumps" in temperature, scaling with $\sim \Delta T^2$
- the correlation timescale ("persistence") of the weather would significantly increase, scaling with $\sim 1/\Delta T$

The present-day ACC: temperature field

Large meridional SST gradient, accompanying the eastward geostrophic current.

The "minimalistic approach" to the lateral thermal boundary conditions – differential heating (in reality the scale of the ACC jet is set by the β-effect: Rhines scale)

Motivation: The eocene-oligocene transition (EOT) $\sim 34~{\rm Mya}$

M. Rebesco et al., Marine Geology 352 (2014)

Motivation: The eocene-oligocene transition (EOT)

• Rapid onset of glaciation of Antarctica ca. Mya (Coxall et al., 2005)

• Kennett (1977): this major cooling episode was triggered by the opening of Drake Passage. (DP opening \rightarrow ACC \rightarrow isolating Antarctica)

• This has been challenged since then: maybe long-term decrease in atmospheric CO2 level was the main driver of Antarctic glaciation (DeConto and Pollard, 2003, Pearson et al., 2009)

• Impact events! (Ivany et al., 2000)

• What do we do? Experimental minimal modeling ("toy model") of the pre-EOT overturning of the Southern hemisphere.

Steerman et al., Syst. Biol. 58(6):573-585, 2009

"Closing the Drake Passage" with a removable radial barrier

Surface temperature patterns (IR)

Bozóki, T. et al. (2019), Deep Sea Res. II., 160, 16-24.

Scaling properties

A linear scaling between the azimuthal and radial temperature contrast for the closed experiment runs.

$$\langle \Delta T_B \rangle \sim \langle \Delta T_r \rangle$$

$$\eta(t) = \Delta T_B / \Delta T_r$$
$$\eta_0 = 0.22$$

Bozóki, T. et al. (2019), Deep Sea Res. II., 160, 16-24.

The effect of opening on the zonal spatio-temporal variability

The effect of opening on the zonal spatio-temporal variability

Increasing mean "SST" in the Southern ocean following the opening – an apparent contradiction with paleoclimate. Why?

Control experiments with thermometers (Cottbus tank)

Larger thermal separation between the surface and the bulk in the open configuration!

Increasing mean "SST" in the Southern ocean following the opening – an apparent contradiction with paleoclimate. Why?

Control experiments with thermometers (Cottbus tank)

Larger thermal separation between the surface and the bulk in the open configuration!

Increasing mean "SST" in the Southern ocean following the opening – an apparent contradiction with paleoclimate. Why? – NUMERICS!

- T21 PlaSim + LSG ("large scale geostrophic") ocean module (22 layers, resolution: 4°×4°)
- 1000 years of simulation
- Topography, orography and ocean topography modiefied (not real paleogeography, only a ca. 100 km-wide meridional "dam" inserted into the Drake passage for the "closed" runs)

4 runs (Drake passage open/closed × two different configurations):

- CO_2 : 750 ppm (as 34 Mya) & sea ice + land ice ON
- CO₂: 750 ppm (as 34 Mya) & sea ice + land ice OFF

PlaSim (UH Met. Institute) – a "medium complexity" GCM

https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html

Significant cooling in the Southern ocean – only when the sea ice module (albedo feedback) is ON!

Summary & Conclusions

- Minimalistic laboratory "toy model" of the closed Drake passage setting before and after EOT (*very* conceptual).
- In the closed case a temperature contrast can develop between the 'Atlantic' and 'Pacific' side, that is ca. ¹/₄ of the meridional temperature difference in the domain
- After opening the passage, mean SST in the set-up slightly *increases*, and the cold extremes (long left tail) disappear.
- Turns out (from PlaSim simulations) that without active seaice dynamics, the Souther Ocean's mean SST would not decrease either, pointing to the importance of ice albedo feedback in the EOT.

