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Abstract

The non-selective and selective measurements of a self-adjoint observable A
in quantum mechanics are interpreted as ‘jumps’ of the state of the measured
system into a decohered or pure state characterized by the spectral
projections of A. However, one may try to describe the measurement results
as asymptotic states of a dynamical process, where the non-unitarity of time
evolution arises as an effective description of the interaction with the
measuring device. The dynamics we present is a two-step dynamics: the first
step is the non-selective measurement or decoherence, which is known to be
described by the linear Lindblad equation, where the generator of the time
evolution is the generator of a semigroup of unit preserving completely
positive maps. The second step is a process from the resulted decohered
state to a pure state, which is described by an effective non-linear toy model
dynamics: the pure states arise as asymptotic fixed points, and their
emergent probabilities are the relative volumes of their attractor regions.
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Measurements in quantum mechanics

• self-adjoint observable M =
∑

m∈σ(M) mPm ∈ B(H)

• prepared state ω : B(H)→ C
non-selective measurement:
ω 7→ ω ◦ ΦM , ΦM (A) :=

∑
m∈σ(M) PmAPm ∈ 〈M〉′

(H): "jump" into the commutant 〈M〉′ ⊂ B(H) containing the generated
abelian subalgebra 〈M〉
(S): an 〈M〉-decohered repreparation of a state

selective measurement:
ω 7→ ω ◦ Φm, Φm(A) := PmAPm/ω(Pm) with probability ω(Pm)
(H): "jump" into a spectral projecion Pm of M with probability ω(Pm)
(S): "jump" into a pure state of M with probability ω(Pm)
probability ω(Pm) = relative frequency in repeated experiments with
prepared state ω

• both measurement "jumps" destroy unitary implemented dynamics
(H): α : (R,+)→ AutB(H), such that αt (A) := U∗t AUt , Ut ∈ U(H)
(S): ωt := ω ◦ αt , t ∈ R
and are not unitary implementable, selective is not even deterministic
• however both ΦM and Φm are completely positive (CP) maps
Φ⊗ Idn : B(H)⊗Mn → B(H)⊗Mn is positive (linear) ∀ n ∈ N
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Connection between CP maps and subsystems in QM

S=subsystem and the E=environment in QM: B(HS ⊗HE ) ' B(HS)⊗B(HE )

full system→ subsystem
if Ut ∈ U(HS ⊗HE ), t ∈ R is a unitary dynamics on the full system then

B(HS) 3 A 7→ Φt (A) := TrE [(1S ⊗ ρE )U∗t (A⊗ 1E )Ut ] ∈ B(HS)

unit preserving CP map on B(HS) ∀ t ∈ R
⇒ one may look for a "CP-dynamics" on the subsystem instead of a
unitary one

subsystem→ extended (= full) system
If Φ unit preserving σ-weakly continuous CP map on B(HS)⇒
∃ HE and V isometry on HS ⊗HE such that ∀ ρE ∈ S(HE )

Φ(A) = TrE [(1S ⊗ ρE )V ∗(A⊗ 1E )V ], A ∈ B(HS)

(V can be made unitary by a ρE -dependent further extension of HE )
⇒ every CP map on the subsystem comes from a restriction of a
isometric/unitary sandwiching on a full system

P. Vecsernyés Toy model for selective measurement
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Generator of a special CP dynamics: Lindblad operator

restriction on CP dynamics: special family of CP maps
• form a semigroup: Φt ◦ Φs = Φt+s; t , s ∈ R+,
• has a bounded generator L: Φt = exp(tL)
latter is not a restriction if B(H) =Mn(C)

Theorem (Lindblad; 1976) on the generator of a CP1 semigroup
Let L : B(H)→ B(H) bounded linear ∗-map.
Φt := exp(tL) ∈ CP1(B(H))σ, t ≥ 0⇔ L has the form

L(A) = i[H,A] +
∑

k

V ∗k AVk −
1
2
{V ∗k Vk ,A}, A ∈ B(H),

where H = H∗; Vk ,
∑

k V ∗k Vk ∈ B(H).

Lindblad equation: generalization of the Schrödinger equation
• ω : B(H)→ C normal state with density matrix ρ: ω(A) = Tr (ρA)
• H ↔ S picture change: Tr (L̂(ρ)A) := Tr (ρL(A))

dρ
dt

= L̂(ρ) := −i[H, ρ] +
∑

k

VkρV ∗k −
1
2
{V ∗k Vk , ρ}.

linear first order differential equation on density matrices
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GP effective one particle state in Bose–Einstein condensation

Trapped interacting N-boson Hamiltonian in 3D: H⊗N ,H := L2(R3)

H̃N =
N∑

j=1

(−∆rj + Vext (rj )) +
N∑

i<j

VN(ri − rj )

• 0 < Vext (r)→∞, |r| → ∞
• 0 < VN(r) = VN(|r)| = N2V (N|r|)
smooth with compact support and scattering length a = a0/N
Conjectured effective one-particle description: Gross–Pitaevskii
equation and energy functional in H

i∂tϕ(t) = −∆ϕ(t) + σ|ϕ(t)|2ϕ(t), ϕ(t) ∈ H, ‖ϕ‖ = 1

EGP(ϕ) :=

∫
d3r(|∇ϕ(r)|2 + Vext (r)|ϕ(r)|2 + 4πa0|ϕ(r)|4), ‖ϕ‖ = 1

Theorem (Lieb, Seiringer; 2002) on BE-condensation
Let ψN be the ground state of H̃N and let γ(k)

N , 1 ≤ k ≤ N be its k -particle
marginal density operator. Let σ := 8πNa in the GP equation and let ϕGP

be the minimizer of EGP . Then

γ
(k)
N → |ϕGP〉〈ϕGP |k⊗, N →∞

pointwise for any fixed k .
P. Vecsernyés Toy model for selective measurement
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GP effective nonlinear dynamics after Bose–Einstein condensation

N-particle Hamiltonian with trap removed

HN =
N∑

j=1

−∆rj +
N∑

i<j

VN(ri − rj )

Theorem (Erdős, Schlein, Yau; 2007) on GP-dynamics
Let ψN(t) be the solution of the Schrödinger equation
i∂tψN(t) = HNψN(t) with initial condition ψN(0) := ψN

and let γ(1)
N (t) be its one-particle marginal density. Then for any t ≥ 0

γ
(1)
N (t)→ |ϕ(t)〉〈ϕ(t)|, N →∞

pointwise for compact operators on H, where ϕt solves the GP-equation

i∂tϕ(t) = −∆ϕ(t) + 8πa0|ϕ(t)|2ϕ(t)

with initial condition ϕ(0) := ϕGP .
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Two types of effective dynamics in selective measurements (SM)

Instead of "jumps" try a "very fast" dynamical description of SM:
SM result should be an asymptotic state of an effective dynamics
caused by the interaction of the measured (sub)system
with the measuring device
• no modification of "fundamental" dynamics of quantum theories
• technical restriction: measured (sub)systems live in finite dimensional
Hilbert spaces⇒ M = M∗ =

∑
m∈σ(M) mPm ∈ B(H) ' Mn(C)

two types of effective dynamics for density matrices (S-picture)
ρ(t) ∈ Sn := Mn(C)+1 in two asymptotic steps
1. linear deterministic CP1-dynamics with M-decohered asymptotic state
(non-selective measurement) :

ρ0 → lim
t→∞

ρ(t) =: ρ∞ =
∑

m∈σ(M)

Pmρ0Pm

2. "randomly chosen" nonlinear deterministic dynamics with M-pure
asymptotic states Pm in SM := Sn|〈M〉 with probability pm := Tr (ρ0Pm)

SM 3 ρ∞|〈M〉 =: µ0 → lim
t→∞

µ(t) =: µ∞ = Pm

P. Vecsernyés Toy model for selective measurement
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1. CP1 dynamics with specific Lindblad generator in SM

Describing M-decoherence, that is a non-selective measurement of
M = M∗ =

∑
m∈σ(M) mPm ∈ Mn(C), one can rely on previous works:

Baumgartner, Narnhofer; 2008, Weinberg; 2016

Proposition The set of asymptotic states of a Lindblad evolution

dρ
dt

= L̂(ρ) := −i[H, ρ] +
∑

k

VkρV ∗k −
1
2
{V ∗k Vk , ρ}.

is equal to ΦM (Sn) iff {H,Vk ,V ∗k }′′ = 〈M〉. Moreover,

lim
t→∞

exp(t L̂)(ρ0) =: ρ∞ = ΦM (ρ0) :=
∑

m∈σ(M)

Pmρ0Pm

Proof hint:
• P projection is ‘conserved’, P = exp(tL)(P), t ≥ 0 iff P ∈ {H,Vk ,V ∗k }′
⇒ {H,Vk ,V ∗k }′ = ΦM (Mn(C)) = 〈M〉′, i.e. the choice {H,Vk ,V ∗k }′′ = 〈M〉
leads to the required set of possible asymptotic states (the invariant states)
• {H,Vk ,V ∗k }′′ = 〈M〉 is abelian, hence L̂ = L̃(−H,V ∗k ) is a generator of CP1

maps⇒ Φ̂t , t ≥ 0 are norm one maps
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1. CP1 dynamics with specific Lindblad generator in SM
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k
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1
2
{V ∗k Vk , ρ}.
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1. CP1 dynamics with specific Lindblad generator in SM

Proof hint continued:
• L̂ : Mn(C)→ Mn(C) is not selfadjoint (or normal in general wrt the scalar
product on Mn(C) given by the trace), but the generalized eigenvalue problem
(L̂− λ)k = 0 (in Jordan blocks), hence the time evolution can be solved:
Reλ ≤ 0 for k = 1 and Reλ < 0 for k > 1, because Φ̂t is a norm one map
• nontrivial H-eigenvalues, Reλ = 0, Imλ 6= 0 are excluded, because
{H,Vk ,V ∗k }′′ = 〈M〉 is abelian
⇒ all initial states lead to asymptotic states, which should be invariant states
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2. Nonlinear effective dynamics in selective measurements

Aim: "randomly chosen" nonlinear deterministic dynamics on SM := Sn|〈M〉
which results M-pure asymptotic states Pm with probability pm := Tr (ρ0Pm)

SM 3 µ0 := ρ∞|〈M〉 → lim
t→∞

µ(t) =: µ∞ = Pm

SM , states on 〈M〉: convex combinations of spectral projections of M
non-selective measurement preserves probability pm

Tr (µ0Pm) = Tr (ρ∞Pm) :=
∑

m′∈σ(M) Tr (Pm′ρ0Pm′Pm) = Tr (ρ0Pm) =: pm

⇒ two-step dynamics is consistent with experiment,
second step initial state: µ0 =

∑
m∈σ(M) pmPm

"randomly chosen” µext ∈ SM dependent dynamics: dµ/dt = F (µ, µext )
F (−, µext ) : Mn(C)→ Mn(C)
• unique effective GP-dynamics: uniquely given initial state |ψN〉〈ψN | of
the full system in the inverse image of the initial state γ(1)

N ' |ϕGP〉〈ϕGP |
of the ‘measured’ subsystem
• effective description of the interaction change between the measuring
device and the measured system caused by the choice of the initial state
of the full system in the inverse image of the initial state µ0 of the
measured system: uniform distribution of µext ∈ SM with respect to the
Lebesgue measure in Rn (simplest choice)
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2. Nonlinear toy model dynamics for state purification

nonlinar dynamics on SM = {
∑n

i=1 piPi | 0 ≤ pi ≤ 1,
∑

pi = 1}

dµ
dt

= F (µ, µext ) := f (µ, µext )− µTr f (µ, µext ), µ ∈ SM

f (µ, µext ) := αµ(λµ− µext ) (1)

• α > 0 ”evolution strength”
• λ = λ(µ, µext ) := max{κ ∈ [0, 1] |µext − κµ ≥ 0},
that is µext ≡

∑
i siPi is the convex combintion µext = λµ+

∑
i 6=j λiPi

Theorem on the fixpoint structure of the dynamics (1)
If the external density matrix µext ∈ SM is chosen uniformly with respect
to the Lebesgue measure on SM then the asymptotic state
µ∞ := limt→∞ µ(t) of the dynamics (1) on SM with initial condition
µ0 =

∑n
i=1 piPi is equal to Pi with probability pi .
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2. Fixpoint structure of the nonlinear toy model dynamics

Proof hint
• Picard–Lindelöf theorem on first order differential equations on a region
with Lipschitz continuity

‖F (µ, µext )− F (µ̃, µext )‖∞ ≤ (4 +
6
sj

)‖µ− µ̃‖∞, µ, µ̃ ∈ Kj (µext ) ∩ SM

⇒ unique integral curves within Kj (µext ) ∩ SM

• for µext = λµ+
∑

i 6=j λiPi (with 0 6= λλ1 . . . λj−1λj+1 . . . λn) the tangent vector

F (µ, µext ) =
∑
i 6=j

piλi (µ− Pi ) ∈ Kj (µ)

⇒ integral curves remain in SM and tends to the fixpoint Pj as t →∞
• uniform choice of µext within SM with ‘repeated’ initial state µ0 =

∑
i piPi

⇒ probability (= relative frequency in ‘repeated experiments’) of the
asymptotic state Pj is the relative volume of the simplices Sj (µ0) and SM :

V (Sj (µ0))

V (SM )
≡ V (〈µ0,P1, . . . ,Pj−1,Pj+1, . . . ,Pn〉)

V (〈P1, . . . ,Pn〉)
= pj
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Closing remarks

Unbounded or continuous spectra M =
∫
σ(M)

mdE(m)

(e.g. position operator Q in R)
Write R ⊇ σ(M) as a partition of finitely many spectral intervals:
P1 := E(m1), . . . ,Pi := E(mi )− E(mi−1), . . . ,Pn := 1− E(mn−1)

Joint measurements of commuting operators M(1) and M(2)

(e.g. position operators Q1,Q2,Q3 in R3)
Products of commuting spectral projections: P(1)

m1
P(2)

m2
,mi ∈ σ(M(i))

Experimental verification of the dynamical nature of measurements:
slow measuring process and quick swith-in/swith-off possibility of the
measuring device are needed
instead of the distribution map between t = 0 to t =∞:
µ0 and uniform µext on SM 7→ µ∞ = Pi with probability pi

make a swith-off and a swith-in at an intermediate time 0 < T <∞
⇒ intermediate final distribution of µT as initial distribution µT with (new)
uniform µext may lead to a different (numerically calculable) asymptotic
distibution of µ∞
one may try one-step dynamics: dρ/dt = L̂(ρ) + F (ρ, µext )
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