A toy model in $M_n(\mathbb{C})$ for selective measurements in QM

Péter Vecsernyés

Wigner FK, Budapest

ELTE, Budapest 2017.04.19.

A B < A B </p>

Abstract

The non-selective and selective measurements of a self-adjoint observable A in guantum mechanics are interpreted as 'jumps' of the state of the measured system into a decohered or pure state characterized by the spectral projections of A. However, one may try to describe the measurement results as asymptotic states of a dynamical process, where the non-unitarity of time evolution arises as an effective description of the interaction with the measuring device. The dynamics we present is a two-step dynamics: the first step is the non-selective measurement or decoherence, which is known to be described by the linear Lindblad equation, where the generator of the time evolution is the generator of a semigroup of unit preserving completely positive maps. The second step is a process from the resulted decohered state to a pure state, which is described by an effective non-linear toy model dynamics: the pure states arise as asymptotic fixed points, and their emergent probabilities are the relative volumes of their attractor regions.

Content

Non-selective and selective measurements in QM

Two types of effective dynamics in QM

- Completely positive (CP) maps and subsystems in QM
- Lindblad generator of a linear CP₁ dynamics
- The Gross-Pitaevskii nonlinear effective dynamics

3 A two-step effective dynamics for selective measurement

- First step: CP1-dynamics for state decoherence
- Second step: nonlinear effective dynamics for state purification

4 Closing remarks

Measurements in quantum mechanics

- self-adjoint observable $M = \sum_{m \in \sigma(M)} m P_m \in \mathcal{B}(\mathcal{H})$
- prepared state $\omega \colon \mathcal{B}(\mathcal{H}) \to \mathbb{C}$
 - non-selective measurement:

 $\omega \mapsto \omega \circ \Phi_M$, $\Phi_M(A) := \sum_{m \in \sigma(M)} P_m A P_m \in \langle M \rangle'$ (H): "jump" into the commutant $\langle M \rangle' \subset \mathcal{B}(\mathcal{H})$ containing the generated abelian subalgebra $\langle M \rangle$ (S): an $\langle M \rangle$ -decohered repreparation of a state

• selective measurement:

 $\omega \mapsto \omega \circ \Phi_m$, $\Phi_m(A) := P_m A P_m / \omega(P_m)$ with probability $\omega(P_m)$ (H): "jump" into a spectral projecion P_m of M with probability $\omega(P_m)$ (S): "jump" into a pure state of M with probability $\omega(P_m)$ probability $\omega(P_m)$ = relative frequency in repeated experiments with prepared state ω

both measurement "jumps" destroy unitary implemented dynamics
(H): α: (ℝ, +) → Aut B(H), such that α_t(A) := U_t^{*} AU_t, U_t ∈ U(H)
(S): ω_t := ω ∘ α_t, t ∈ ℝ
and are not unitary implementable, selective is not even deterministic
however both Φ_M and Φ_m are completely positive (CP) maps
Φ ⊗ Id_n: B(H) ⊗ M_n → B(H) ⊗ M_n is positive (linear) ∀ n ∈ ℕ

Measurements in quantum mechanics

- self-adjoint observable $M = \sum_{m \in \sigma(M)} m P_m \in \mathcal{B}(\mathcal{H})$
- prepared state $\omega \colon \mathcal{B}(\mathcal{H}) \to \mathbb{C}$
 - non-selective measurement:

 $\omega \mapsto \omega \circ \Phi_M$, $\Phi_M(A) := \sum_{m \in \sigma(M)} P_m A P_m \in \langle M \rangle'$ (H): "jump" into the commutant $\langle M \rangle' \subset \mathcal{B}(\mathcal{H})$ containing the generated abelian subalgebra $\langle M \rangle$ (S): an $\langle M \rangle$ -decohered repreparation of a state

• selective measurement:

 $\omega \mapsto \omega \circ \Phi_m$, $\Phi_m(A) := P_m A P_m / \omega(P_m)$ with probability $\omega(P_m)$ (H): "jump" into a spectral projecion P_m of M with probability $\omega(P_m)$ (S): "jump" into a pure state of M with probability $\omega(P_m)$ probability $\omega(P_m)$ = relative frequency in repeated experiments with prepared state ω

• both measurement "jumps" destroy unitary implemented dynamics (H): α : (\mathbb{R} , +) \rightarrow Aut $\mathcal{B}(\mathcal{H})$, such that $\alpha_t(A) := U_t^* A U_t$, $U_t \in \mathcal{U}(\mathcal{H})$ (S): $\omega_t := \omega \circ \alpha_t$, $t \in \mathbb{R}$

and are not unitary implementable, selective is not even deterministic

• however both Φ_M and Φ_m are completely positive (CP) maps $\Phi \otimes \mathrm{Id}_n \colon \mathcal{B}(\mathcal{H}) \otimes \mathcal{M}_n \to \mathcal{B}(\mathcal{H}) \otimes \mathcal{M}_n$ is positive (linear) $\forall n \in \mathbb{N}$

Measurements in quantum mechanics

- self-adjoint observable $M = \sum_{m \in \sigma(M)} m P_m \in \mathcal{B}(\mathcal{H})$
- prepared state $\omega \colon \mathcal{B}(\mathcal{H}) \to \mathbb{C}$
 - non-selective measurement:

 $\omega \mapsto \omega \circ \Phi_M$, $\Phi_M(A) := \sum_{m \in \sigma(M)} P_m A P_m \in \langle M \rangle'$ (H): "jump" into the commutant $\langle M \rangle' \subset \mathcal{B}(\mathcal{H})$ containing the generated abelian subalgebra $\langle M \rangle$ (S): an $\langle M \rangle$ -decohered repreparation of a state

• selective measurement:

 $\omega \mapsto \omega \circ \Phi_m$, $\Phi_m(A) := P_m A P_m / \omega(P_m)$ with probability $\omega(P_m)$ (H): "jump" into a spectral projecion P_m of M with probability $\omega(P_m)$ (S): "jump" into a pure state of M with probability $\omega(P_m)$ probability $\omega(P_m)$ = relative frequency in repeated experiments with prepared state ω

both measurement "jumps" destroy unitary implemented dynamics
(H): α: (ℝ, +) → Aut B(H), such that α_t(A) := U_t^{*} AU_t, U_t ∈ U(H)
(S): ω_t := ω ∘ α_t, t ∈ ℝ
and are not unitary implementable, selective is not even deterministic
however both Φ_M and Φ_m are completely positive (CP) maps
Φ ⊗ Id_n: B(H) ⊗ M_n → B(H) ⊗ M_n is positive (linear) ∀ n ∈ ℕ

Connection between CP maps and subsystems in QM

S=subsystem and the E=environment in QM: $\mathcal{B}(\mathcal{H}_S \otimes \mathcal{H}_E) \simeq \mathcal{B}(\mathcal{H}_S) \otimes \mathcal{B}(\mathcal{H}_E)$

• full system \rightarrow subsystem

if $U_t \in \mathcal{U}(\mathcal{H}_S \otimes \mathcal{H}_E), t \in \mathbb{R}$ is a unitary dynamics on the full system then

 $\mathcal{B}(\mathcal{H}_S) \ni A \mapsto \Phi_t(A) := \operatorname{Tr}_E \left[(\mathbf{1}_S \otimes \rho_E) U_t^*(A \otimes \mathbf{1}_E) U_t \right] \in \mathcal{B}(\mathcal{H}_S)$

unit preserving CP map on $\mathcal{B}(\mathcal{H}_S) \forall t \in \mathbb{R}$ \Rightarrow one may look for a "CP-dynamics" on the subsystem instead of a unitary one

• subsystem \rightarrow extended (= full) system

If Φ unit preserving σ -weakly continuous CP map on $\mathcal{B}(\mathcal{H}_S) \Rightarrow \exists \mathcal{H}_E$ and V isometry on $\mathcal{H}_S \otimes \mathcal{H}_E$ such that $\forall \rho_E \in \mathcal{S}(\mathcal{H}_E)$

 $\Phi(A) = \operatorname{Tr}_E[(\mathbf{1}_S \otimes \rho_E) V^*(A \otimes \mathbf{1}_E) V], \quad A \in \mathcal{B}(\mathcal{H}_S)$

(*V* can be made unitary by a ρ_E -dependent further extension of \mathcal{H}_E) \Rightarrow every CP map on the subsystem comes from a restriction of a isometric/unitary sandwiching on a full system

< ロ > < 同 > < 三 > < 三 > -

Connection between CP maps and subsystems in QM

S=subsystem and the E=environment in QM: $\mathcal{B}(\mathcal{H}_S \otimes \mathcal{H}_E) \simeq \mathcal{B}(\mathcal{H}_S) \otimes \mathcal{B}(\mathcal{H}_E)$

• full system \rightarrow subsystem

if $U_t \in \mathcal{U}(\mathcal{H}_S \otimes \mathcal{H}_E), t \in \mathbb{R}$ is a unitary dynamics on the full system then

 $\mathcal{B}(\mathcal{H}_{\mathcal{S}}) \ni \mathbf{A} \mapsto \Phi_t(\mathbf{A}) := \operatorname{Tr}_{\mathcal{E}} \left[(\mathbf{1}_{\mathcal{S}} \otimes \rho_{\mathcal{E}}) U_t^* (\mathbf{A} \otimes \mathbf{1}_{\mathcal{E}}) U_t \right] \in \mathcal{B}(\mathcal{H}_{\mathcal{S}})$

unit preserving CP map on $\mathcal{B}(\mathcal{H}_S) \forall t \in \mathbb{R}$ \Rightarrow one may look for a "CP-dynamics" on the subsystem instead of a unitary one

• subsystem \rightarrow extended (= full) system

If Φ unit preserving σ -weakly continuous CP map on $\mathcal{B}(\mathcal{H}_S) \Rightarrow \exists \mathcal{H}_E$ and V isometry on $\mathcal{H}_S \otimes \mathcal{H}_E$ such that $\forall \rho_E \in \mathcal{S}(\mathcal{H}_E)$

 $\Phi(A) = \operatorname{Tr}_E[(\mathbf{1}_S \otimes \rho_E) V^*(A \otimes \mathbf{1}_E) V], \quad A \in \mathcal{B}(\mathcal{H}_S)$

(*V* can be made unitary by a ρ_E -dependent further extension of \mathcal{H}_E) \Rightarrow every CP map on the subsystem comes from a restriction of a isometric/unitary sandwiching on a full system

< ロ > < 同 > < 三 > < 三 > -

Connection between CP maps and subsystems in QM

S=subsystem and the E=environment in QM: $\mathcal{B}(\mathcal{H}_S \otimes \mathcal{H}_E) \simeq \mathcal{B}(\mathcal{H}_S) \otimes \mathcal{B}(\mathcal{H}_E)$

 $\bullet \ \text{full system} \to \text{subsystem}$

if $U_t \in \mathcal{U}(\mathcal{H}_S \otimes \mathcal{H}_E), t \in \mathbb{R}$ is a unitary dynamics on the full system then

 $\mathcal{B}(\mathcal{H}_{\mathcal{S}}) \ni \mathbf{A} \mapsto \Phi_t(\mathbf{A}) := \operatorname{Tr}_{\mathcal{E}} \left[(\mathbf{1}_{\mathcal{S}} \otimes \rho_{\mathcal{E}}) U_t^* (\mathbf{A} \otimes \mathbf{1}_{\mathcal{E}}) U_t \right] \in \mathcal{B}(\mathcal{H}_{\mathcal{S}})$

unit preserving CP map on $\mathcal{B}(\mathcal{H}_S) \ \forall t \in \mathbb{R}$

 \Rightarrow one may look for a "CP-dynamics" on the subsystem instead of a unitary one

 $\bullet \ subsystem \rightarrow extended \ (= full) \ system$

If Φ unit preserving σ -weakly continuous CP map on $\mathcal{B}(\mathcal{H}_S) \Rightarrow \exists \mathcal{H}_E$ and V isometry on $\mathcal{H}_S \otimes \mathcal{H}_E$ such that $\forall \rho_E \in \mathcal{S}(\mathcal{H}_E)$

$$\Phi(A) = \operatorname{Tr}_{E}\left[(\mathbf{1}_{S} \otimes \rho_{E})V^{*}(A \otimes \mathbf{1}_{E})V\right], \quad A \in \mathcal{B}(\mathcal{H}_{S})$$

(*V* can be made unitary by a ρ_E -dependent further extension of \mathcal{H}_E) \Rightarrow every CP map on the subsystem comes from a restriction of a isometric/unitary sandwiching on a full system

伺 ト イヨ ト イヨ ト

Generator of a special CP dynamics: Lindblad operator

- restriction on CP dynamics: special family of CP maps
 - form a semigroup: $\Phi_t \circ \Phi_s = \Phi_{t+s}$; $t, s \in \mathbb{R}_+$,
 - has a bounded generator *L*: $\Phi_t = \exp(tL)$ latter is not a restriction if $\mathcal{B}(\mathcal{H}) = \mathcal{M}_n(\mathbb{C})$

• Theorem (Lindblad; 1976) on the generator of a CP_1 semigroup Let $L: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ bounded linear *-map. $\Phi_t := \exp(tL) \in CP_1(\mathcal{B}(\mathcal{H}))_{\sigma}, t \ge 0 \Leftrightarrow L$ has the form

$$L(A) = i[H, A] + \sum_{k} V_k^* A V_k - \frac{1}{2} \{ V_k^* V_k, A \}, \quad A \in \mathcal{B}(\mathcal{H}),$$

where $H = H^*$; V_k , $\sum_k V_k^* V_k \in \mathcal{B}(\mathcal{H})$.

Lindblad equation: generalization of the Schrödinger equation
ω: B(H) → C normal state with density matrix ρ: ω(A) = Tr (ρA)
H ↔ S picture change: Tr (L(ρ)A) := Tr (ρL(A))

$$\frac{d\rho}{dt}=\hat{L}(\rho):=-i[H,\rho]+\sum_{k}V_{k}\rho V_{k}^{*}-\frac{1}{2}\{V_{k}^{*}V_{k},\rho\}.$$

linear first order differential equation on density matrices

伺 ト イヨト イヨト

Generator of a special CP dynamics: Lindblad operator

- restriction on CP dynamics: special family of CP maps
 - form a semigroup: $\Phi_t \circ \Phi_s = \Phi_{t+s}$; $t, s \in \mathbb{R}_+$,
 - has a bounded generator *L*: $\Phi_t = \exp(tL)$ latter is not a restriction if $\mathcal{B}(\mathcal{H}) = \mathcal{M}_n(\mathbb{C})$
- Theorem (Lindblad; 1976) on the generator of a CP_1 semigroup Let $L: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ bounded linear *-map. $\Phi_t := \exp(tL) \in CP_1(\mathcal{B}(\mathcal{H}))_\sigma, t \ge 0 \Leftrightarrow L$ has the form

$$L(A) = i[H, A] + \sum_{k} V_{k}^{*} A V_{k} - \frac{1}{2} \{ V_{k}^{*} V_{k}, A \}, \quad A \in \mathcal{B}(\mathcal{H}),$$

where $H = H^*$; V_k , $\sum_k V_k^* V_k \in \mathcal{B}(\mathcal{H})$.

Lindblad equation: generalization of the Schrödinger equation
 ω: B(H) → C normal state with density matrix ρ: ω(A) = Tr (ρA)
 H ↔ S picture change: Tr (L(ρ)A) := Tr (ρL(A))

$$\frac{d\rho}{dt} = \hat{L}(\rho) := -i[H,\rho] + \sum_{k} V_{k}\rho V_{k}^{*} - \frac{1}{2} \{V_{k}^{*}V_{k},\rho\}.$$

linear first order differential equation on density matrices

Generator of a special CP dynamics: Lindblad operator

- restriction on CP dynamics: special family of CP maps
 - form a semigroup: $\Phi_t \circ \Phi_s = \Phi_{t+s}$; $t, s \in \mathbb{R}_+$,
 - has a bounded generator *L*: $\Phi_t = \exp(tL)$ latter is not a restriction if $\mathcal{B}(\mathcal{H}) = \mathcal{M}_n(\mathbb{C})$
- Theorem (Lindblad; 1976) on the generator of a CP_1 semigroup Let $L: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ bounded linear *-map. $\Phi_t := \exp(tL) \in CP_1(\mathcal{B}(\mathcal{H}))_\sigma, t \ge 0 \Leftrightarrow L$ has the form

$$L(A) = i[H, A] + \sum_{k} V_{k}^{*} A V_{k} - \frac{1}{2} \{ V_{k}^{*} V_{k}, A \}, \quad A \in \mathcal{B}(\mathcal{H}),$$

where $H = H^*$; V_k , $\sum_k V_k^* V_k \in \mathcal{B}(\mathcal{H})$.

- Lindblad equation: generalization of the Schrödinger equation
 - $\omega : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ normal state with density matrix $\rho : \omega(\mathcal{A}) = \operatorname{Tr}(\rho \mathcal{A})$
 - $H \leftrightarrow S$ picture change: $\operatorname{Tr}(\hat{L}(\rho)A) := \operatorname{Tr}(\rho L(A))$

$$\frac{d\rho}{dt}=\hat{L}(\rho):=-i[H,\rho]+\sum_{k}V_{k}\rho V_{k}^{*}-\frac{1}{2}\{V_{k}^{*}V_{k},\rho\}.$$

linear first order differential equation on density matrices

GP effective one particle state in Bose-Einstein condensation

• Trapped interacting N-boson Hamiltonian in 3D: $\mathcal{H}^{\otimes N}, \mathcal{H} := L^2(\mathbb{R}^3)$

$$\tilde{H}_{N} = \sum_{j=1}^{N} (-\Delta_{\mathbf{r}_{j}} + V_{\text{ext}}(\mathbf{r}_{j})) + \sum_{i < j}^{N} V_{N}(\mathbf{r}_{i} - \mathbf{r}_{j})$$

• 0 <
$$V_{ext}(\mathbf{r}) \rightarrow \infty$$
, $|\mathbf{r}| \rightarrow \infty$
• 0 < $V_{v}(\mathbf{r}) - V_{v}(|\mathbf{r})| = N^2 V(N||\mathbf{r}|)$

smooth with compact support and scattering length
$$a = a_0/N$$

• Conjectured effective one-particle description: Gross–Pitaevskii equation and energy functional in \mathcal{H}

$$\begin{split} i\partial_t \varphi(t) &= -\Delta \varphi(t) + \sigma |\varphi(t)|^2 \varphi(t), \quad \varphi(t) \in \mathcal{H}, \|\varphi\| = 1 \\ E_{GP}(\varphi) &:= \int d^3 r(|\nabla \varphi(\mathbf{r})|^2 + V_{ext}(\mathbf{r})|\varphi(\mathbf{r})|^2 + 4\pi a_0 |\varphi(\mathbf{r})|^4), \ \|\varphi\| = 1 \end{split}$$

• Theorem (Lieb, Seiringer; 2002) on BE-condensation

Let ψ_N be the ground state of \tilde{H}_N and let $\gamma_N^{(k)}$, $1 \le k \le N$ be its *k*-particle marginal density operator. Let $\sigma := 8\pi Na$ in the GP equation and let φ_{GP} be the minimizer of E_{GP} . Then

$$\gamma_N^{(k)} \to |\varphi_{GP}\rangle \langle \varphi_{GP}|^{k\otimes}, \quad N \to \infty$$

pointwise for any fixed k.

> < 三> < 三>

GP effective one particle state in Bose-Einstein condensation

• Trapped interacting N-boson Hamiltonian in 3D: $\mathcal{H}^{\otimes N}, \mathcal{H} := L^2(\mathbb{R}^3)$

$$\tilde{H}_{N} = \sum_{j=1}^{N} (-\Delta_{\mathbf{r}_{j}} + V_{\text{ext}}(\mathbf{r}_{j})) + \sum_{i < j}^{N} V_{N}(\mathbf{r}_{i} - \mathbf{r}_{j})$$

• 0 <
$$V_{ext}(\mathbf{r}) \rightarrow \infty$$
, $|\mathbf{r}| \rightarrow \infty$
• 0 < $V_N(\mathbf{r}) = V_N(|\mathbf{r})| = N^2 V(N|\mathbf{r}|)$

smooth with compact support and scattering length $a = a_0/N$

• Conjectured effective one-particle description: Gross–Pitaevskii equation and energy functional in \mathcal{H}

$$\begin{split} &i\partial_t \varphi(t) = -\Delta \varphi(t) + \sigma |\varphi(t)|^2 \varphi(t), \quad \varphi(t) \in \mathcal{H}, \|\varphi\| = 1 \\ &E_{GP}(\varphi) := \int d^3 r(|\nabla \varphi(\mathbf{r})|^2 + V_{ext}(\mathbf{r})|\varphi(\mathbf{r})|^2 + 4\pi a_0 |\varphi(\mathbf{r})|^4), \ \|\varphi\| = 1 \end{split}$$

• Theorem (Lieb, Seiringer; 2002) on BE-condensation

Let ψ_N be the ground state of \tilde{H}_N and let $\gamma_N^{(k)}$, $1 \le k \le N$ be its *k*-particle marginal density operator. Let $\sigma := 8\pi Na$ in the GP equation and let φ_{GP} be the minimizer of E_{GP} . Then

$$\gamma_N^{(k)} \to |\varphi_{GP}\rangle \langle \varphi_{GP}|^{k\otimes}, \quad N \to \infty$$

pointwise for any fixed k.

★ ∃ > < ∃ >

GP effective one particle state in Bose-Einstein condensation

• Trapped interacting N-boson Hamiltonian in 3D: $\mathcal{H}^{\otimes N}, \mathcal{H} := L^2(\mathbb{R}^3)$

$$ilde{\mathcal{H}}_N = \sum_{j=1}^N (-\Delta_{\mathbf{r}_j} + V_{ext}(\mathbf{r}_j)) + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• 0 <
$$V_{ext}(\mathbf{r}) \rightarrow \infty$$
, $|\mathbf{r}| \rightarrow \infty$
• 0 < $V_N(\mathbf{r}) = V_N(|\mathbf{r})| = N^2 V(N|\mathbf{r})$

• 0 < $V_N(\mathbf{r}) = V_N(|\mathbf{r})| = N^2 V(N|\mathbf{r}|)$ smooth with compact support and scattering length $a = a_0/N$

• Conjectured effective one-particle description: Gross–Pitaevskii equation and energy functional in ${\cal H}$

$$\begin{split} &i\partial_t\varphi(t) &= -\Delta\varphi(t) + \sigma|\varphi(t)|^2\varphi(t), \quad \varphi(t) \in \mathcal{H}, \|\varphi\| = 1 \\ &E_{GP}(\varphi) &:= \int d^3r(|\nabla\varphi(\mathbf{r})|^2 + V_{ext}(\mathbf{r})|\varphi(\mathbf{r})|^2 + 4\pi a_0|\varphi(\mathbf{r})|^4), \ \|\varphi\| = 1 \end{split}$$

• Theorem (Lieb, Seiringer; 2002) on BE-condensation

Let ψ_N be the ground state of \tilde{H}_N and let $\gamma_N^{(k)}$, $1 \le k \le N$ be its *k*-particle marginal density operator. Let $\sigma := 8\pi Na$ in the GP equation and let φ_{GP} be the minimizer of E_{GP} . Then

$$\gamma_{\textit{N}}^{(\textit{k})} \rightarrow \left|\varphi_{\textit{GP}}\right\rangle \langle \varphi_{\textit{GP}} \right|^{\textit{k}\otimes}, \quad \textit{N} \rightarrow \infty$$

pointwise for any fixed k.

GP effective nonlinear dynamics after Bose–Einstein condensation

• N-particle Hamiltonian with trap removed

$$H_N = \sum_{j=1}^N -\Delta_{\mathbf{r}_j} + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• Theorem (Erdős, Schlein, Yau; 2007) on GP-dynamics Let $\psi_N(t)$ be the solution of the Schrödinger equation $i\partial_t \psi_N(t) = H_N \psi_N(t)$ with initial condition $\psi_N(0) := \psi_N$ and let $\gamma_N^{(1)}(t)$ be its one-particle marginal density. Then for any $t \ge 0$

 $\gamma_N^{(1)}(t)
ightarrow |\varphi(t)\rangle\langle \varphi(t)|, \quad N
ightarrow \infty$

pointwise for compact operators on \mathcal{H} , where φ_t solves the GP-equation

$$i\partial_t \varphi(t) = -\Delta \varphi(t) + 8\pi a_0 |\varphi(t)|^2 \varphi(t)$$

with initial condition $\varphi(0) := \varphi_{GP}$.

• • • • • • • •

Two types of effective dynamics in selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics caused by the interaction of the measured (sub)system with the measuring device
 - no modification of "fundamental" dynamics of quantum theories
 technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces ⇒ M = M* = ∑_{m∈σ(M)} mP_m ∈ B(H) ≃ M_n(C)
- two types of effective dynamics for density matrices (S-picture)
 ρ(t) ∈ S_n := M_n(ℂ)₊₁ in two asymptotic steps

 linear deterministic CP₁-dynamics with M-decohered asymptotic state (non-selective measurement) :

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m$$

2. "randomly chosen" nonlinear deterministic dynamics with *M*-pure asymptotic states P_m in $S_M := S_{n|\langle M \rangle}$ with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two types of effective dynamics in selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics caused by the interaction of the measured (sub)system with the measuring device
 - no modification of "fundamental" dynamics of quantum theories
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices (S-picture)
 ρ(t) ∈ S_n := M_n(ℂ)₊₁ in two asymptotic steps
 1. linear deterministic CP₁-dynamics with M-decohered asymptotic state (non-selective measurement) :

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m$$

2. "randomly chosen" nonlinear deterministic dynamics with *M*-pure asymptotic states P_m in $S_M := S_{n|\langle M \rangle}$ with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

Two types of effective dynamics in selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics caused by the interaction of the measured (sub)system with the measuring device
 - no modification of "fundamental" dynamics of quantum theories
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices (S-picture)
 ρ(t) ∈ S_n := M_n(ℂ)₊₁ in two asymptotic steps
 1. linear deterministic CP₁-dynamics with M-decohered asymptotic stat (non-selective measurement) :

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m$$

2. "randomly chosen" nonlinear deterministic dynamics with *M*-pure asymptotic states P_m in $S_M := S_{n|\langle M \rangle}$ with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two types of effective dynamics in selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics caused by the interaction of the measured (sub)system with the measuring device
 - no modification of "fundamental" dynamics of quantum theories
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices (S-picture)
 ρ(t) ∈ S_n := M_n(ℂ)₊₁ in two asymptotic steps
 linear deterministic CP₁-dynamics with M-decohered asymptotic state (non-selective measurement) :

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m$$

2. "randomly chosen" nonlinear deterministic dynamics with *M*-pure asymptotic states P_m in $S_M := S_{n|\langle M \rangle}$ with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

Two types of effective dynamics in selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics caused by the interaction of the measured (sub)system with the measuring device
 - no modification of "fundamental" dynamics of quantum theories
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices (S-picture)
 ρ(t) ∈ S_n := M_n(ℂ)₊₁ in two asymptotic steps
 linear deterministic CP₁-dynamics with M-decohered asymptotic state (non-selective measurement) :

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m$$

2. "randomly chosen" nonlinear deterministic dynamics with *M*-pure asymptotic states P_m in $S_M := S_{n|\langle M \rangle}$ with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

・四・・ヨ・・ヨ・

1. *CP*₁ dynamics with specific Lindblad generator in SM

Describing *M*-decoherence, that is a non-selective measurement of $M = M^* = \sum_{m \in \sigma(M)} mP_m \in M_n(\mathbb{C})$, one can rely on previous works: Baumgartner, Narnhofer; 2008, Weinberg; 2016

• Proposition The set of asymptotic states of a Lindblad evolution

$$\frac{d\rho}{dt}=\hat{L}(\rho):=-i[H,\rho]+\sum_{k}V_{k}\rho V_{k}^{*}-\frac{1}{2}\{V_{k}^{*}V_{k},\rho\}.$$

is equal to $\Phi_M(S_n)$ iff $\{H, V_k, V_k^*\}'' = \langle M \rangle$. Moreover,

$$\lim_{t\to\infty}\exp(t\hat{L})(\rho_0)=:\rho_{\infty}=\Phi_M(\rho_0):=\sum_{m\in\sigma(M)}P_m\rho_0P_m$$

Proof hint:

• *P* projection is 'conserved', $P = \exp(tL)(P), t \ge 0$ iff $P \in \{H, V_k, V_k^*\}' \Rightarrow \{H, V_k, V_k^*\}' = \Phi_M(M_n(\mathbb{C})) = \langle M \rangle'$, i.e. the choice $\{H, V_k, V_k^*\}'' = \langle M \rangle$ leads to the required set of possible asymptotic states (the invariant states) • $\{H, V_k, V_k^*\}'' = \langle M \rangle$ is abelian, hence $\hat{L} = \tilde{L}(-H, V_k^*)$ is a generator of CP_1 maps $\Rightarrow \hat{\Phi}_t, t \ge 0$ are norm one maps

白マシュロシュロシー

1. *CP*₁ dynamics with specific Lindblad generator in SM

Describing *M*-decoherence, that is a non-selective measurement of $M = M^* = \sum_{m \in \sigma(M)} mP_m \in M_n(\mathbb{C})$, one can rely on previous works: Baumgartner, Narnhofer; 2008, Weinberg; 2016

• Proposition The set of asymptotic states of a Lindblad evolution

$$\frac{d\rho}{dt}=\hat{L}(\rho):=-i[H,\rho]+\sum_{k}V_{k}\rho V_{k}^{*}-\frac{1}{2}\{V_{k}^{*}V_{k},\rho\}.$$

is equal to $\Phi_M(S_n)$ iff $\{H, V_k, V_k^*\}'' = \langle M \rangle$. Moreover,

$$\lim_{t\to\infty}\exp(t\hat{L})(\rho_0)=:\rho_{\infty}=\Phi_M(\rho_0):=\sum_{m\in\sigma(M)}P_m\rho_0P_m$$

Proof hint:

• *P* projection is 'conserved', $P = \exp(tL)(P), t \ge 0$ iff $P \in \{H, V_k, V_k^*\}' \Rightarrow \{H, V_k, V_k^*\}' = \Phi_M(M_n(\mathbb{C})) = \langle M \rangle'$, i.e. the choice $\{H, V_k, V_k^*\}'' = \langle M \rangle$ leads to the required set of possible asymptotic states (the invariant states) • $\{H, V_k, V_k^*\}'' = \langle M \rangle$ is abelian, hence $\hat{L} = \tilde{L}(-H, V_k^*)$ is a generator of CP_1 maps $\Rightarrow \hat{\Phi}_t, t \ge 0$ are norm one maps

A B M A B M

1. CP1 dynamics with specific Lindblad generator in SM

Proof hint continued:

• $\hat{L}: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is not selfadjoint (or normal in general wrt the scalar product on $M_n(\mathbb{C})$ given by the trace), but the generalized eigenvalue problem $(\hat{L} - \lambda)^k = 0$ (in Jordan blocks), hence the time evolution can be solved: Re $\lambda \leq 0$ for k = 1 and Re $\lambda < 0$ for k > 1, because $\hat{\Phi}_t$ is a norm one map • nontrivial *H*-eigenvalues, Re $\lambda = 0$, Im $\lambda \neq 0$ are excluded, because $\{H, V_k, V_k^*\}'' = \langle M \rangle$ is abelian \Rightarrow all initial states lead to asymptotic states, which should be invariant states

P. Vecsernyés Toy model for selective measurement

Aim: "randomly chosen" nonlinear deterministic dynamics on $S_M := S_{n|\langle M \rangle}$ which results *M*-pure asymptotic states P_m with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \mu_0 := \rho_{\infty|\langle M \rangle} \to \lim_{t \to \infty} \mu(t) =: \mu_{\infty} = P_m$$

- S_M , states on $\langle M \rangle$: convex combinations of spectral projections of Mnon-selective measurement preserves probability p_m $\operatorname{Tr}(\mu_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) := \sum_{m' \in \sigma(M)} \operatorname{Tr}(P_{m'}\rho_0 P_{m'}P_m) = \operatorname{Tr}(\rho_0 P_m) =: p_m$ \Rightarrow two-step dynamics is consistent with experiment, second step initial state: $\mu_0 = \sum_{m \in \sigma(M)} p_m P_m$
- "randomly chosen" $\mu_{ext} \in S_M$ dependent dynamics: $d\mu/dt = F(\mu, \mu_{ext})$ $F(-, \mu_{ext}): M_n(\mathbb{C}) \to M_n(\mathbb{C})$

• unique effective GP-dynamics: uniquely given initial state $|\psi_N\rangle\langle\psi_N|$ of the full system in the inverse image of the initial state $\gamma_N^{(1)} \simeq |\varphi_{GP}\rangle\langle\varphi_{GP}|$ of the 'measured' subsystem

Aim: "randomly chosen" nonlinear deterministic dynamics on $S_M := S_{n|\langle M \rangle}$ which results *M*-pure asymptotic states P_m with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \mu_0 :=
ho_{\infty|\langle M
angle} o \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

- S_M , states on $\langle M \rangle$: convex combinations of spectral projections of Mnon-selective measurement preserves probability p_m $\operatorname{Tr}(\mu_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) := \sum_{m' \in \sigma(M)} \operatorname{Tr}(P_{m'}\rho_0 P_{m'}P_m) = \operatorname{Tr}(\rho_0 P_m) =: p_m$ \Rightarrow two-step dynamics is consistent with experiment, second step initial state: $\mu_0 = \sum_{m \in \sigma(M)} p_m P_m$
- "randomly chosen" $\mu_{ext} \in S_M$ dependent dynamics: $d\mu/dt = F(\mu, \mu_{ext})$ $F(-, \mu_{ext}): M_n(\mathbb{C}) \to M_n(\mathbb{C})$

• unique effective GP-dynamics: uniquely given initial state $|\psi_N\rangle\langle\psi_N|$ of the full system in the inverse image of the initial state $\gamma_N^{(1)} \simeq |\varphi_{GP}\rangle\langle\varphi_{GP}|$ of the 'measured' subsystem

Aim: "randomly chosen" nonlinear deterministic dynamics on $S_M := S_{n|\langle M \rangle}$ which results *M*-pure asymptotic states P_m with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \mu_0 :=
ho_{\infty|\langle M
angle} o \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

- S_M , states on $\langle M \rangle$: convex combinations of spectral projections of Mnon-selective measurement preserves probability p_m $\operatorname{Tr}(\mu_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) := \sum_{m' \in \sigma(M)} \operatorname{Tr}(P_{m'}\rho_0 P_{m'}P_m) = \operatorname{Tr}(\rho_0 P_m) =: p_m$ \Rightarrow two-step dynamics is consistent with experiment, second step initial state: $\mu_0 = \sum_{m \in \sigma(M)} p_m P_m$
- "randomly chosen" $\mu_{ext} \in S_M$ dependent dynamics: $d\mu/dt = F(\mu, \mu_{ext})$ $F(-, \mu_{ext}): M_n(\mathbb{C}) \to M_n(\mathbb{C})$

• unique effective GP-dynamics: uniquely given initial state $|\psi_N\rangle\langle\psi_N|$ of the full system in the inverse image of the initial state $\gamma_N^{(1)} \simeq |\varphi_{GP}\rangle\langle\varphi_{GP}|$ of the 'measured' subsystem

Aim: "randomly chosen" nonlinear deterministic dynamics on $S_M := S_{n|\langle M \rangle}$ which results *M*-pure asymptotic states P_m with probability $p_m := \text{Tr}(\rho_0 P_m)$

$$S_M \ni \mu_0 :=
ho_{\infty|\langle M
angle} o \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

- S_M , states on $\langle M \rangle$: convex combinations of spectral projections of Mnon-selective measurement preserves probability p_m $\operatorname{Tr}(\mu_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) := \sum_{m' \in \sigma(M)} \operatorname{Tr}(P_{m'}\rho_0 P_{m'}P_m) = \operatorname{Tr}(\rho_0 P_m) =: p_m$ \Rightarrow two-step dynamics is consistent with experiment, second step initial state: $\mu_0 = \sum_{m \in \sigma(M)} p_m P_m$
- "randomly chosen" $\mu_{ext} \in S_M$ dependent dynamics: $d\mu/dt = F(\mu, \mu_{ext})$ $F(-, \mu_{ext}): M_n(\mathbb{C}) \to M_n(\mathbb{C})$

• unique effective GP-dynamics: uniquely given initial state $|\psi_N\rangle\langle\psi_N|$ of the full system in the inverse image of the initial state $\gamma_N^{(1)} \simeq |\varphi_{GP}\rangle\langle\varphi_{GP}|$ of the 'measured' subsystem

2. Nonlinear toy model dynamics for state purification

• nonlinar dynamics on $S_M = \{\sum_{i=1}^n p_i P_i \mid 0 \le p_i \le 1, \sum p_i = 1\}$

$$\frac{d\mu}{dt} = F(\mu, \mu_{ext}) := f(\mu, \mu_{ext}) - \mu \operatorname{Tr} f(\mu, \mu_{ext}), \quad \mu \in S_M$$
$$f(\mu, \mu_{ext}) := \alpha \mu (\lambda \mu - \mu_{ext})$$
(1)

- $\alpha > 0$ "evolution strength"
- $\lambda = \lambda(\mu, \mu_{ext}) := \max\{\kappa \in [0, 1] | \mu_{ext} \kappa \mu \ge 0\},\$ that is $\mu_{ext} \equiv \sum_i s_i P_i$ is the convex combinition $\mu_{ext} = \lambda \mu + \sum_{i \neq j} \lambda_i P_i$
- Theorem on the fixpoint structure of the dynamics (1) If the external density matrix $\mu_{ext} \in S_M$ is chosen uniformly with respect to the Lebesgue measure on S_M then the asymptotic state $\mu_{\infty} := \lim_{t\to\infty} \mu(t)$ of the dynamics (1) on S_M with initial condition $\mu_0 = \sum_{i=1}^n p_i P_i$ is equal to P_i with probability p_i .

🗇 🕨 🖉 🖻 🕨 🖉 🗖

2. Nonlinear toy model dynamics for state purification

• nonlinar dynamics on $S_M = \{\sum_{i=1}^n p_i P_i \mid 0 \le p_i \le 1, \sum p_i = 1\}$

$$\frac{d\mu}{dt} = F(\mu, \mu_{ext}) := f(\mu, \mu_{ext}) - \mu \operatorname{Tr} f(\mu, \mu_{ext}), \quad \mu \in S_M$$
$$f(\mu, \mu_{ext}) := \alpha \mu (\lambda \mu - \mu_{ext})$$
(1)

• $\alpha > 0$ "evolution strength"

• $\lambda = \lambda(\mu, \mu_{ext}) := \max\{\kappa \in [0, 1] \mid \mu_{ext} - \kappa \mu \ge 0\},\$ that is $\mu_{ext} \equiv \sum_i s_i P_i$ is the convex combination $\mu_{ext} = \lambda \mu + \sum_{i \neq j} \lambda_i P_i$

• Theorem on the fixpoint structure of the dynamics (1) If the external density matrix $\mu_{ext} \in S_M$ is chosen uniformly with respect to the Lebesgue measure on S_M then the asymptotic state $\mu_{\infty} := \lim_{t \to \infty} \mu(t)$ of the dynamics (1) on S_M with initial condition $\mu_0 = \sum_{i=1}^n p_i P_i$ is equal to P_i with probability p_i .

🗇 🕨 🔺 🖻 🕨 🔺 🖻

2. Fixpoint structure of the nonlinear toy model dynamics

Proof hint

• Picard–Lindelöf theorem on first order differential equations on a region with Lipschitz continuity

$$\|F(\mu,\mu_{\textit{ext}})-F(\tilde{\mu},\mu_{\textit{ext}})\|_{\infty} \leq (4+\frac{6}{s_j})\|\mu-\tilde{\mu}\|_{\infty}, \ \mu,\tilde{\mu}\in \textit{K}_{j}(\mu_{\textit{ext}})\cap\textit{S}_{\textit{M}}$$

 \Rightarrow unique integral curves within $K_j(\mu_{ext}) \cap S_M$

• for $\mu_{ext} = \lambda \mu + \sum_{i \neq j} \lambda_i P_i$ (with $0 \neq \lambda \lambda_1 \dots \lambda_{j-1} \lambda_{j+1} \dots \lambda_n$) the tangent vector

$$m{F}(\mu,\mu_{ext}) = \sum_{i
eq j} m{p}_i \lambda_i (\mu - m{P}_i) \in m{K}_j(\mu)$$

⇒ integral curves remain in S_M and tends to the fixpoint P_j as $t \to \infty$ • uniform choice of μ_{ext} within S_M with 'repeated' initial state $\mu_0 = \sum_i p_i P_i$ ⇒ probability (= relative frequency in 'repeated experiments') of the asymptotic state P_j is the relative volume of the simplices $S_j(\mu_0)$ and S_M :

$$\frac{V(S_j(\mu_0))}{V(S_M)} \equiv \frac{V(\langle \mu_0, P_1, \dots, P_{j-1}, P_{j+1}, \dots, P_n \rangle)}{V(\langle P_1, \dots, P_n \rangle)} = p_j$$

伺 と く ヨ と く ヨ と

Closing remarks

- Unbounded or continuous spectra $M = \int_{\sigma(M)} mdE(m)$ (e.g. position operator Q in \mathbb{R}) Write $\mathbb{R} \supseteq \sigma(M)$ as a partition of finitely many spectral intervals: $P_1 := E(m_1), \dots, P_i := E(m_i) - E(m_{i-1}), \dots, P_n := \mathbf{1} - E(m_{n-1})$
- Joint measurements of commuting operators M⁽¹⁾ and M⁽²⁾ (e.g. position operators Q₁, Q₂, Q₃ in ℝ³) Products of commuting spectral projections: P⁽¹⁾_{m1}P⁽²⁾_{m2}, m_i ∈ σ(M⁽ⁱ⁾)
- Experimental verification of the dynamical nature of measurements: slow measuring process and quick swith-in/swith-off possibility of the measuring device are needed instead of the distribution map between t = 0 to $t = \infty$: μ_0 and uniform μ_{ext} on $S_M \mapsto \mu_{\infty} = P_i$ with probability p_i make a swith-off and a swith-in at an intermediate time $0 < T < \infty$ \Rightarrow intermediate final distribution of μ_T as initial distribution μ_T with (new) uniform μ_{ext} may lead to a different (numerically calculable) asymptotic distibution of μ_{∞}
- one may try one-step dynamics: $d\rho/dt = \hat{L}(\rho) + F(\rho, \mu_{ext})$

A > + = + + =

Literature

- G. Lindblad: On the generators of quantum dynamical semigroups Commun.Math.Phys. 48, 119–130 (1976)
- E.H. Lieb and R. Seiringer: Proof of Bose–Einstein condensation for dilute trapped gases
 Phys.Rev.Lett. 88, 170409 (2002)
- L. Erdős, B. Schlein and H-T. Yau: Rigorous derivation of the Gross-Pitaevskii Equation Phys.Rev.Lett. 98, 040404 (2007)
- B. Baumgartner and H. Narnhofer: Analysis of quantum semigroups with GKS-Lindblad generators: II. General
 Deve A: Math. Theor. 41, 005000 (0000)
 - J. Phys.A: Math. Theor. 41, 395303 (2008)
- S. Weinberg: What happens in a measurement arXiv: 1603.06008v1 (2016)
- T. Geszti: Quantum mechanics and the opium of linearity Talk given at the *Physics meets philosophy* workshop on *Quantum states and linearity*, Budapest (2016) http://physicsmeetsphilosophy.tumblr.com/page/3
- P. Vecsernyés: An effective toy model in M_n(C) for selective measurements in quantum mechanics arXiv: (submitted to J.Math.Phys.) (2017)