Probing the Standard Model with flavor physics:

 an exclusive determination of $\left|V_{c b}\right|$ from the $B \rightarrow D^{*} \ell \nu$ semileptonic decay at non-zero recoilAlejandro Vaquero

on behalf of the Fermilab Lattice and MILC collaborations

University of Utah

Sep $14^{\text {th }}, 2021$

The Standard Model (SM)

- The Standard Model is (arguably) the most successful theory describing nature we have ever had
- The theory is not completely satisfactory
- Situation similar to that at the end of the XIX century
- The SM can explain phenomena in a large range of scales

- Yet there is a region where we expect the SM to fail
- The SM is regarded as an effective theory at low energies (low means $E \lesssim v_{E W} \approx 0.1-1 \mathrm{TeV}$)

Where to look for new physics?

Energy frontier

Intensity frontier

Cosmology frontier

The $V_{c b}$ matrix element: Tensions

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \quad \begin{array}{c|c|c|c}
\left|V_{c b}\right|\left(\cdot 10^{-3}\right) & \text { PDG 2016 } & \text { PDG 2018 } & \text { PDG } 2020 \\
\hline \text { Exclusive } & 39.2 \pm 0.7 & 41.9 \pm 2.0 & 39.5 \pm 0.9 \\
\text { Inclusive } & 42.2 \pm 0.8 & 42.2 \pm 0.8 & 42.2 \pm 0.8
\end{array}
$$

- Matrix must be unitary (preserve the norm)
- Inclusive $2021\left|V_{c b}\right|=42.16(59) \times 10^{-3}$

Bordone, Capdevila, Gambino; arXiv:2107.00604

- Current tensions (2021) stand at $\approx 3 \sigma$

Break: Reminder of $\left|V_{u b}\right|$ vs $\mid V_{c b}$

The $V_{c b}$ matrix element: Tensions in lepton universality

- Current $\approx 3 \sigma$ tension with the SM

The $V_{c b}$ matrix element: Measurement from exclusive processes

$$
\underbrace{\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}_{\text {Experiment }}=\underbrace{\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{2}}\left(w^{2}-1\right)^{\frac{1}{2}} P(w)\left|\eta_{e w}\right|^{2}}_{\text {Known factors }} \underbrace{|\mathcal{F}(w)|^{2}}_{\text {Theory }}\left|V_{c b}\right|^{2}
$$

- The amplitude \mathcal{F} must be calculated in the theory
- Extremely difficult task, QCD is non-perturbative
- Can use effective theories (HQET) to say something about \mathcal{F}
- Separate light (non-perturbative) and heavy degrees of freedom as $m_{Q} \rightarrow \infty$
- $\lim _{m_{Q} \rightarrow \infty} \mathcal{F}(w)=\xi(w)$, which is the Isgur-Wise function
- We don't know what $\xi(w)$ looks like, but we know $\xi(1)=1$
- At large (but finite) mass $\mathcal{F}(w)$ receives corrections $O\left(\alpha_{s}, \frac{\Lambda_{Q C D}}{m_{Q}}\right)$
- Reduction in the phase space $\left(w^{2}-1\right)^{\frac{1}{2}}$ limits experimental results at $w \approx 1$
- Need to extrapolate $\left|V_{c b}\right|^{2}\left|\eta_{e w} \mathcal{F}(w)\right|^{2}$ to $w=1$
- This extrapolation is done using well established parametrizations

The $V_{c b}$ matrix element: Calculating $R\left(D^{*}\right)$

$$
\underbrace{\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}_{\text {Experiment }}=[\underbrace{K_{1}\left(w, m_{\ell}\right)}_{\text {Known factors }} \underbrace{|\mathcal{F}(w)|^{2}}_{\text {Theory }}+\underbrace{K_{2}\left(w, m_{\ell}\right)}_{\text {Known factors }} \underbrace{\left|\mathcal{F}_{2}(w)\right|^{2}}_{\text {Theory }}] \times\left|V_{c b}\right|^{2}
$$

- The amplitudes $\mathcal{F}, \mathcal{F}_{2}$ must be calculated in the theory
- Since $K_{2}(w, 0)=0, \mathcal{F}_{2}$ only contributes significantly with the τ
- Knowing these amplitudes, one can extract $\left|V_{c b}\right|$ from experiment
- It is possible to extract $R\left(D^{*}\right)$ without experimental data!

$$
R\left(D^{*}\right)=\frac{\int_{1}^{w_{\mathrm{Max}, \tau}} d w\left[K_{1}\left(w, m_{\tau}\right)|\mathcal{F}(w)|^{2}+K_{2}\left(w, m_{\tau}\right)\left|\mathcal{F}_{2}(w)\right|^{2}\right] \times D \mathbb{D}^{2}}{\int_{1}^{w_{\mathrm{Max}}} d w\left[K_{1}(w, 0)|\mathcal{F}(w)|^{2}\right] \times \operatorname{Dot}^{2}}
$$

- $\left|V_{c b}\right|$ cancels out

The $V_{c b}$ matrix element: The parametrization issue

All the parametrizations perform an expansion in the z parameter

$$
z=\frac{\sqrt{w+1}-\sqrt{2 N}}{\sqrt{w+1}+\sqrt{2 N}}
$$

- Boyd-Grinstein-Lebed (BGL)

$$
f_{X}(w)=\frac{1}{B_{f_{X}}(z) \phi_{f_{X}}(z)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

Phys.Rev. D56 (1997) 6895-6911
Nucl.Phys. B461 (1996) 493-511

- $B_{f_{X}}$ Blaschke factors, includes contributions from the poles
- $\phi_{f_{X}}$ is called outer function and must be computed for each form factor
- Weak unitarity constraints $\sum_{n}\left|a_{n}\right|^{2} \leq 1$
- Caprini-Lellouch-Neubert (CLN)

$$
\mathcal{F}(w) \propto 1-\rho^{2} z+c z^{2}-d z^{3}, \quad \text { with } c=f_{c}(\rho), d=f_{d}(\rho)
$$

- Relies strongly on HQET, spin symmetry and (old) inputs
- Tightly constrains $\mathcal{F}(w)$: four independent parameters, one relevant at $w=1$

The $V_{c b}$ matrix element: The parametrization issue

- CLN seems to underestimate the slope at low recoil
- The BGL value of $\left|V_{c b}\right|$ is compatible with the inclusive one

$$
\left|V_{c b}\right|=41.7 \pm 2.0\left(\times 10^{-3}\right)
$$

From Phys. Lett. B769 (2017) 441-445 using Belle data from
arXiv:1702.01521 and the Fermilab/MILC'14 value at zero recoil

- Latest Belle dataset and Babar analysis seem to contradict this picture
- From Babar's paper PRL 123, 091801 (2019) BGL is compatible with CLN and far from the inclusive value
- Belle's paper PRD 100, 052007 (2019) finds similar results in its last revision
- The discrepancy inclusive-exclusive is not well understood
- Data at $w \gtrsim 1$ is urgently needed to settle the issue
- Experimental measurements perform badly at low recoil

We would benefit enormously from a high precision lattice calculationat $w_{\equiv} \gtrsim 1$

Break: Introduction to Lattice QCD

$$
\mathcal{L}_{Q C D}=\sum_{f} \bar{\psi}_{f}\left(\gamma^{\mu} D_{\mu}+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- Discretize space-time in a computer
- Finite lattice spacing a
- Finite spatial volume L
- Finite time extent T
- Perform simulations in an unphysical setup and approach the physical limit
- Enlarge the volume and reduce a
- Quark masses \Longrightarrow Pion masses (hadrons are matched)
- Number of sea quarks $n_{f}=2+1, \quad 2+1+1, \quad 1+1+1+1 \ldots$

Break: Introduction to Lattice QCD

The systematic error analysis is based on EFT descriptions of QCD The EFT description:

- provides functional form for different extrapolations (or interpolations)
- can be used to construct improved actions
- can estimate the size of the systematic errors

In order to keep the systematic errors under control we must repeat the calculation for several lattice spacings, volumes, light quark masses... and use the EFT to extrapolate to the physical theory

Break: Heavy quarks in Lattice QCD

Heavy quark treatment in Lattice QCD

- For light quarks $\left(m_{l} \lesssim \Lambda_{Q C D}\right)$, leading discretization errors $\sim \alpha_{s}^{k}\left(a \Lambda_{Q C D}\right)^{n}$
- For heavy quarks $\left(m_{Q}>\Lambda_{Q C D}\right)$, discretization errors grow as $\sim \alpha_{s}^{k}\left(a m_{Q}\right)^{n}$
- In this work $a m_{c} \sim 0.15-0.6$, but $a m_{b}>1$

Need special actions and ETs to describe the bottom quark

- Relativistic HQ actions (this work \rightarrow FermiLab)
- Non-Relativistic QCD (NRQCD)

If the action is improved enough, one can treat the bottom as a light quark

- Highly improved action AND small lattice spacing
- Use unphysical values for m_{b} and extrapolate

The discretization errors needn't disappear as long as we keep them under control

Break: Lattice workflow

Calculating $\left|V_{c b}\right|$ on the lattice: Formalism

- Form factors

$$
\begin{gathered}
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{V}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{1}{2} \epsilon^{\epsilon^{*}} \varepsilon_{\rho \sigma}^{\mu \nu} v_{B}^{\rho} v_{D^{*}}^{\sigma} \boldsymbol{h}_{\boldsymbol{V}}(w) \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{A}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}= \\
\frac{i}{2} \epsilon^{\nu *}\left[g^{\mu \nu}(1+w) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w)-v_{B}^{\nu}\left(v_{B}^{\mu} \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{2}}}(w)+v_{D^{*}}^{\mu} \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{3}}}(w)\right)\right]
\end{gathered}
$$

- \mathcal{V} and \mathcal{A} are the vector/axial currents in the continuum
- The h_{X} enter in the definition of \mathcal{F}
- We can calculate $h_{A_{1,2,3}, V}$ directly from the lattice

Calculating $\left|V_{c b}\right|$ on the lattice: Formalism

- Helicity amplitudes

$$
H_{ \pm}=\sqrt{m_{B} m_{D^{*}}}(w+1)\left(\boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w) \mp \sqrt{\frac{w-1}{w+1}} \boldsymbol{h}_{\boldsymbol{V}}(w)\right)
$$

$$
H_{0}=\sqrt{m_{B} m_{D^{*}}}(w+1) m_{B}\left[(w-r) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w)-(w-1)\left(r \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{2}}}(w)+\boldsymbol{h}_{\boldsymbol{A}_{\mathbf{3}}}(w)\right)\right] / \sqrt{q^{2}}
$$

$$
H_{S}=\sqrt{\frac{w^{2}-1}{r\left(1+r^{2}-2 w r\right)}}\left[(1+w) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{1}}}(w)+(w r-1) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{2}}}(w)+(r-w) \boldsymbol{h}_{\boldsymbol{A}_{\mathbf{3}}}(w)\right]
$$

- Form factor in terms of the helicity amplitudes

$$
\chi(w)|\mathcal{F}|^{2}=\frac{1-2 w r+r^{2}}{12 m_{B} m_{D^{*}}(1-r)^{2}}\left(H_{0}^{2}(w)+H_{+}^{2}(w)+H_{-}^{2}(w)\right)
$$

Introduction: Available data and simulations

- Using $15 N_{f}=2+1$ MILC ensembles of sea asqtad quarks
- The heavy quarks are treated using the Fermilab action

Introduction: The asqtad ensembles

- The asqtad data is being superseded by newer data with improved actions
- $2^{\text {nd }}$ generation $N_{f}=2+1$ HISQ and Fermilab charm/bottom quarks
- $3^{\text {rd }}$ generation $N_{f}=2+1+1$ HISQ and a HISQ bottom quark
- Some results from the asqtad ensembles are still competitive today

PRD93, (2016) 113016, arXiv:1602.03560

PRD92, (2015) 014024, arXiv:1503.07839
This is the last analysis done with asqtad data

Analysis: Extracting the form factors

Calculated ratios

$$
\begin{aligned}
& \frac{\left\langle D^{*}(p)\right| \mathbf{V}\left|D^{*}(0)\right\rangle}{\left\langle D^{*}(p)\right| V_{4}\left|D^{*}(0)\right\rangle} \rightarrow x_{f}, \quad w=\frac{1+x_{f}^{2}}{1-x_{f}^{2}} \\
& \frac{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle\langle\bar{B}(0)| \mathbf{A}\left|D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right\rangle^{*}}{\left\langle D^{*}(0)\right| V_{4}\left|D^{*}(0)\right\rangle\langle\bar{B}(0)| V_{4}|\bar{B}(0)\rangle} \rightarrow R_{A_{1}}^{2}, \quad h_{A_{1}}=\left(1-x_{f}^{2}\right) R_{A_{1}} \\
& \frac{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\perp}\right)\right| \mathbf{V}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle} \rightarrow X_{V}, \quad h_{V}=\frac{2}{\sqrt{w^{2}-1}} R_{A_{1}} X_{V} \\
& \frac{\left\langle D^{*}\left(p_{\|}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle} \rightarrow R_{1}, \quad h_{A_{3}}=\frac{2}{w^{2}-1} R_{A_{1}}\left(w-R_{1}\right) \\
& \frac{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| A_{4}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle} \rightarrow R_{0}, \\
& h_{A_{2}}=\frac{2}{w^{2}-1} R_{A_{1}}\left(w R_{1}-\sqrt{w^{2}-1} R_{0}-1\right)
\end{aligned}
$$

* Phys.Rev. D66, 01503 (2002)

Analysis: Systematics in the two-point function fits

- Heavy quark discretization effects break the dispersion relation
- The Fermilab action uses tree-level matching, discretization errors $O(\alpha m)$
$a^{2} E^{2}\left(p_{\mu}\right)=\left(a m_{1}\right)^{2}+\frac{m_{1}}{m_{2}}(\mathbf{p} a)^{2}+\frac{1}{4}\left[\frac{1}{\left(a m_{2}\right)^{2}}-\frac{a m_{1}}{\left(a m_{4}\right)^{3}}\right]\left(a^{2} \mathbf{p}^{2}\right)^{2}-\frac{a m_{1} w_{4}}{3} \sum_{i=1}^{3}\left(a p_{i}\right)^{4}+O\left(p_{i}^{6}\right)$
- Deviations from the continuum expression measure the size of the discretization errors
- As long as the discretization errors are within expected bounds, this is all right
- Data for B meson only at rest $\longrightarrow \mathrm{Ok}$ in the past

Analysis: Current renormalization

- In the coefficients of the terms of our effective theory a dependence arises with the scale (i.e. a)
- The renormalization tries to account for the right dependence
- The scheme we employ is called Mostly non-perturbative renormalization of results

$$
Z_{V^{1,4, A^{1,4}}}=\underbrace{\rho_{V^{1,4, A^{1,4}}}}_{\text {Perturbative factor }} \times \underbrace{\sqrt{Z_{V_{b b}} Z_{V_{c c}}}}_{\text {Non-perturbative piece }}
$$

- The (relatively large) non-perturbative piece cancels in our ratios
- The (close to one) perturbative piece (matching factor ρ) is calculated at one-loop level for $w=1$ and $m_{c}=0$
- The errors for $w \neq 1$ and $m_{c} \neq 0$ are estimated and added to the factor
- We calculate $\rho_{A_{1}}$ and ratios of $\rho_{X} / \rho_{A_{1}}$ for the other form factors
- $\rho_{A_{1}}$ is blinded during analysis, hence all the form factors are multiplied by the same blinding factor
- The results shown here are unblinded

Analysis: Chiral-continuum fits

- Our data represents the form factors at non-zero a and unphysical m_{π}
- Extrapolation to the physical pion mass described by EFTs
- The EFT describe the a and the m_{π} dependence
- Functional form explicitly known

$$
\begin{gathered}
h_{A_{1}}(w)=\underbrace{\left[1+\frac{X_{A_{1}}\left(\Lambda_{\chi}\right)}{m_{c}^{2}}+\frac{g_{D^{*} D \pi}^{2}}{48 \pi^{2} f_{\pi}^{2} r_{1}^{2}} \operatorname{logs}_{\mathrm{SU} 3}\left(a, m_{l}, m_{s}, \Lambda_{Q C D}\right)\right.}_{\mathrm{NLO} \chi \mathrm{PT}+\mathrm{HQET}} \\
\underbrace{+c_{1} x_{l}+c_{a 1} x_{a^{2}}}_{\mathrm{NLO} \chi \mathrm{PT}} \underbrace{-\rho_{A_{1}}^{2}(w-1)+k_{A_{1}}(w-1)^{2}}_{w \text { dependence }} \underbrace{\left.+c_{2} x_{l}^{2}+c_{a 2} x_{a^{2}}^{2}+c_{a, m} x_{l} x_{a^{2}}\right]}_{\text {NNLO } \chi \mathrm{PT}} \times \\
\underbrace{(1+\beta_{11}^{A_{1}} \alpha_{s} a \Lambda_{\mathrm{QCD}}+\underbrace{A_{1}}_{\beta_{02}}{ }^{2} A_{\mathrm{QCD}}^{2}}_{\text {HQ discretization errors }}+\beta_{03}^{\left.A_{1} a^{3} \Lambda_{\mathrm{QCD}}^{3}\right)}
\end{gathered}
$$

with

$$
x_{l}=B_{0} \frac{m_{l}}{\left(2 \pi f_{\pi}\right)^{2}}, \quad x_{a^{2}}=\left(\frac{a}{4 \pi f_{\pi} r_{1}^{2}}\right)^{2}
$$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{A_{1}}(1)=0.909(17)$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{V}(1)=1.270(46)$

Analysis: Chiral-continuum fits

- Combined fit $p-$ value $=0.96$
- $h_{A_{2}}(1)=-0.624(85)$

Analysis: Chiral-continuum fits

- Combined fit p - value $=0.96$
- $h_{A_{3}}(1)=1.259(79)$

Analysis: Error budget

Source	$h_{V}(\%)$	$h_{A_{1}}(\%)$	$h_{A_{2}}(\%)$	$h_{A_{3}}(\%)$
Chiral-continuum fit error	4.2	2.0	17.4	6.9
(Statistics)	(3.7)	(1.2)	(16.9)	(6.3)
(Chiral-continuum extrapolation)	(0.8)	(0.9)	(1.7)	(0.5)
(LQ and HQ discretization)	(2.6)	(1.3)	(9.7)	(4.4)
(Matching)	(0.3)	(0.2)	(1.7)	(0.5)
(HQ mistuning)	(0.0)	(0.0)	(1.7)	(0.0)
LQ mistuning	0.0	0.0	0.1	0.0
Scale settings	0.0	0.0	0.3	0.1
Isospin effects	0.1	0.2	1.2	0.5
Finite volume	-	-	-	-
Total error	4.2	2.0	17.4	6.9

Errors at $w=1.11$

- The discretization errors are one of the most important contributions to the final error

Results: Stability of chiral-continuum fits

Base

	Base	W/o NNLO	W/o large w	W/o $a=0.15 \mathrm{fm}$
$\chi^{2} /$ dof	$\mathbf{8 5 . 5 / 1 1 0}$	$86.1 / 111$	$71.5 / 93$	$79.7 / 101$
		W/o $a=0.045 \mathrm{fm}$	W/o HQ O $\left(a^{3}\right)$	
$\chi^{2} /$ dof		$81.9 / 101$	$85.6 / 111$	

Results: Stability of chiral-continuum fits

Base

	Base	W/o NNLO	W/o large w	W/o $a=0.15 \mathrm{fm}$
$\chi^{2} /$ dof	$\mathbf{8 5 . 5 / 1 1 0}$	$86.1 / 111$	$71.5 / 93$	$79.7 / 101$
		W/o $a=0.045 \mathrm{fm}$	W/o HQ O $\left(a^{3}\right)$	
$\chi^{2} /$ dof		$81.9 / 101$	$85.6 / 111$	

Analysis: z-Expansion

- The BGL expansion is performed on different (more convenient) form factors

$$
\begin{aligned}
g & =\frac{h_{V}(w)}{\sqrt{m_{B} m_{D^{*}}}} \\
f & =\sqrt{m_{B} m_{D^{*}}}(1+w) h_{A_{1}}(w) \\
\mathcal{F}_{1} & =\sqrt{q^{2}} H_{0} \\
\mathcal{F}_{2} & =\frac{\sqrt{q^{2}}}{m_{D^{*}} \sqrt{w^{2}-1}} H_{S}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\phi_{g}(z) B_{g}(z)} \sum_{j} a_{j} z^{j} \\
& =\frac{1}{\phi_{f}(z) B_{f}(z)} \sum_{j} b_{j} z^{j} \\
= & \frac{1}{\phi_{\mathcal{F}_{1}}(z) B_{\mathcal{F}_{1}}(z)} \sum_{j} c_{j} z^{j}
\end{aligned}
$$

$$
=\frac{1}{\phi_{\mathcal{F}_{2}}(z) B_{\mathcal{F}_{2}}(z)} \sum_{j} d_{j} z^{j}
$$

- Constraint $\mathcal{F}_{1}(z=0)=\left(m_{B}-m_{D^{*}}\right) f(z=0)$
- Constraint $(1+w) m_{B}^{2}(1-r) \mathcal{F}_{1}\left(z=z_{\text {Max }}\right)=(1+r) \mathcal{F}_{2}\left(z=z_{\text {Max }}\right)$
- BGL (weak) unitarity constraints

$$
\sum_{j} a_{j}^{2} \leq 1, \quad \sum_{j} b_{j}^{2}+c_{j}^{2} \leq 1, \quad \sum_{j} d_{j}^{2} \leq 1
$$

Analysis: z expansion fit procedure

- Several different datasets
- Our lattice data
- BaBar BGL fit
- Generate synthetic data and include the data points to our joint fit
- Limited by the order of BaBar BGL fit (222) \rightarrow Truncation errors?
- Fit dominated by Belle data anyway
- Belle untagged dataset
- Data binned in four variables: $w, \cos \theta_{v}, \cos \theta_{l}$ and χ
- Same normalization per binning $\sum \operatorname{Bins}(\alpha)=N, \quad \alpha=w, \cos \theta_{v}, \cos \theta_{l}, \chi$
- Correlation matrices should reflect the normalization constraints \rightarrow they don't
- We use the data as it is published anyway (in Phys.Rev. D, the arXiv correlation matrices are wrong, even on v3!!)
- $f_{00}=0.486(6)$ in our analysis right from the start

All the experimental and theoretical correlations are included in all fits

Analysis: Constraints and number of coefficients

Constraints

- The constraint at zero recoil is used to remove a coefficient of the BGL expansion
- Neither the constraint at maximum recoil nor the unitarity constraints are imposed

How many coefficients in the BGL z-expansion?

Phys.Rev. D100 (2019), 013005

- Add coefficients until
- We exhaust the degrees of freedom
- The error is saturated
- Compared linear/quadratic/cubic fits
- Agreement in the low order coefficients
- Quadratic saturates error, cubic no new information

Results: Decay amplitude and form factors

Lattice prediction for the decay amplitude

Comparison with LCSR

JHEP 01 (2019) 150

- Combined fit p - value $=0.88$
- Good agreement for A_{1}, V
- Reasonable agreement for A_{2}

Results: Separate fits and joint fit

Separate fits

Joint fit

> | Fit | Lattice | Exp | Lat + Belle | Lat + BaBar | Lat + Exp |
| :---: | :---: | :---: | :---: | :---: | :---: |
| p-Value | 0.88 | 0.037 | 0.015 | 0.088 | 0.002 |

Results: Separate fits and joint fit

Separate fits

Joint fit

Unblinded, final result $\left|V_{c b}\right|=38.40(74) \times 10^{-3}$

Results: Update of $\left|V_{u b}\right|$ vs $\mid V_{c b}$

The $\left|V_{c b}\right|$ puzzle remains

Results: $R\left(D^{*}\right)$ in context

No constraint $w_{\text {Max }}: R\left(D^{*}\right)_{\mathbf{L a t}}=0.265(13) \quad R\left(D^{*}\right)_{\mathbf{L a t}+\mathbf{E x p}}=0.2483(13)$
$\mathbf{W} /$ constraint $w_{\text {Max }}: R\left(D^{*}\right)_{\text {Lat }}=0.274(10) \quad R\left(D^{*}\right)_{\text {Lat }+\operatorname{Exp}}=0.2492(12)$
Phys.Rev.D92 (2015), 034506; Phys.Rev.D100 (2019), 052007; Phys.Rev.D103 (2021), 079901; Phys.Rev.Lett. 123 (2019), 091801

Conclusions

- This is the first, unquenched, completed $B \rightarrow D^{*} \ell \nu$ calculation at non-zero recoil on the lattice
- The main new information of this analysis comes from the behavior at small recoil of the form factors
- Main sources of errors of our form factors are
- Statistics
- Light- and heavy-quark discretization errors
- We have a short-term plan to reduce the discretization errors by improving the light-quark regularization

Conclusions

- The value of $\left|V_{c b}\right|$ from this analysis agrees with the one obtained from $B \rightarrow D \ell \nu$ analysis at non-zero recoil
- Our newer value decreases the errors
- The inclusive-exclusive tension in the determination of $\left|V_{c b}\right|$ remains unsolved
- Results show $R\left(D^{*}\right)$ very close to the theoretical prediction
- The tension with the experimental average is reduced
- Newest experimental determinations show values closer to the theoretical determination
- Further lattice analysis and refinements of our analysis can potentially settle the $R\left(D^{*}\right)$ issue
- Pending JLQCD calculation on $B \rightarrow D^{*} \ell \nu$ form factor on the lattice
- Next FNAL/MILC calculation of $B \rightarrow D^{(*)} \ell \nu$ is in the queue
- Our next calculation will allow us to confirm this results and have a better handle on the systematic errors
- HISQ $2+1+$ Fermilab HQ, analyze simultaneously $B \rightarrow D \ell \nu$ and $B \rightarrow D^{*} \ell \nu$

Thank you for your attention

Backup slides

BACKUP SLIDES

Analysis: Heavy quark mistuning corrections

- The simulations are run at approximate physical values of m_{c}, m_{b}
- After the runs the differences between the calculated and the physical masses is corrected non-perturbatively
- The Fermilab action uses the kinetic mass m_{2} to compute these corrections
- $m_{1} \rightarrow m_{2}$ as $a \rightarrow 0$

Correction process

(1) For a particular ensemble correlators are computed at different m_{c}, m_{b}
(3) All the ratios are calculated for the new values of the heavy quark masses, and the form factors are extracted
(The derivative of combinations of the form factors with respect to the heavy quark masses is fitted to a suitable function
(1) All the form factors are corrected using these results

Shifts are small in most cases, but add a small correlation among all data points

Analysis: Comparison with an improved CLN

- CLN is much more constraining than BGL, using only 4 fit parameters
- We can relax the constraints by allowing errors in the coefficients
- We take into account the full correlation between $\rho^{2}, c_{A_{1}}$ and $d_{A_{1}}$
- Update HQET relations between the form factors JHEP 11 (2017) 061

$$
\begin{aligned}
h_{A_{1}}(w) & =h_{A_{1}}(1)\left[1-8 \rho^{2} z+\left(64 c_{A_{1}}-16 \rho^{2}\right) z^{2}+\left(512 d_{A_{1}}+256 c_{A_{1}}-6 \rho^{2}\right) z^{3}\right] \\
R_{0}^{\mathrm{CLN}}(w) & =1.25(35)-0.183(77)(w-1)+0.063(23)(w-1)^{2} \\
R_{1}^{\mathrm{CLN}}(w) & =1.28(36)-0.101(51)(w-1)+0.066(24)(w-1)^{2} \\
R_{2}^{\mathrm{CLN}}(w) & =0.744(44)+0.128(38)(w-1)-0.079(19)(w-1)^{2}
\end{aligned}
$$

$$
R_{0}^{\mathrm{CLN}}(w)=\frac{\sqrt{r} \mathcal{F}_{2}(w)}{(1+r) h_{A_{1}}(w)}
$$

$$
R_{1}^{\mathrm{CLN}}(w)=\frac{h_{V}(w)}{h_{A_{1}}(w)}
$$

$$
R_{2}^{\mathrm{CLN}}(w)=\frac{\frac{m_{D_{B}}}{m_{B}} h_{A_{2}}(w)+h_{A_{3}}(w)}{h_{A_{1}}(w)}
$$

Analysis: Comparison with an improved CLN

- Lattice only p - value $=\sim O\left(10^{-5}\right)$
- Predictions for $h_{A_{1}}$ and R_{1}^{CLN} look fine

Analysis: Comparison with an improved CLN

- Lattice only p - value $=\sim O\left(10^{-5}\right)$
- Predictions for R_{0}^{CLN} and R_{2}^{CLN} show tensions

Analysis: The recoil parameter w

- The recoil parameter is measured dynamically
- In the lab frame (B meson at rest)

$$
w^{2}=1+v_{D^{*}}^{2}
$$

- Ratio of three point functions

$$
X_{f}(p)=\frac{\left\langle D^{*}(p)\right| \mathbf{V}\left|D^{*}(0)\right\rangle}{\left\langle D^{*}(p)\right| V_{4}\left|D^{*}(0)\right\rangle}=\frac{\mathbf{v}_{D^{*}}}{w+1}
$$

- From here

$$
w(p)=\frac{1+\mathbf{x}_{f}^{2}}{1-\mathbf{x}_{f}^{2}}
$$

- Alternatively one can use the dispersion relation

Analysis: The recoil parameter w

- Different methods to calculate the recoil parameter
- In this analysis, we choose the ratio (more conservative)
- The difference in the final result for the form factors, $\left|V_{c b}\right|$ and $R\left(D^{*}\right)$ is not significative

Analysis: Systematic errors

- Error contributions considered:
- Correlator fits and excited states
- Use the same fit ranges for all the correlators
- Make sure the fits are stable under small variations
- Add extra excited states

We assume no extra errors

- Light- and heavy-quark discretization errors
- These errors are already taken into account in the chiral-continuum extrapolation
- The NLO terms of tour ansatz include $O\left(a^{2}\right)$ corrections to describe the light-quark discretization errors
- We employ generic discretization terms $\beta_{X} \alpha_{s}^{p} a^{q}$ for the heavy-quark
- Try the chiral-continuum extrapolation with and without these terms to estimate the size of the correction
- Chiral extrapolation
- The errors are already taken into account in the chiral-continuum extrapolation
- Try the chiral-continuum extrapolation with and without the NNLO and NNNLO terms to estimate their size
- Matching
- The errors are already taken into account in the chiral-continuum extrapolation
- Try the chiral-continuum extrapolation with and without the matching errors to estimate their size

Analysis: Systematic errors

- Error contributions considered:
- Heavy quark mistuning
- The errors are already taken into account in the chiral-continuum extrapolation
- Try the chiral-continuum extrapolation with and without mistuning corrections to estimate their size
- Light quark mistuning
- Try the chiral-continuum extrapolation with $m_{u d} \pm \sigma$ and compare The difference is negligible
- Lattice scale dependence
- Redo the chiral-continuum extrapolation with $r_{1} \pm \sigma$ and compare The difference is negligible
- Isospin effects
- Try the chiral-continuum extrapolation with $m_{u d}=m_{u, d}$ and compare
- The difference is added as an extra error to the final result
- Finite volume errors
- Following Arndt and Lin we estimate the size of the finite volume errors

The errors are negligible

