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3He Universe

A recent view with trimmed boundaries.

From Volovik (JLTP, 2021).
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3He Universe?

In�ational expansion (2004-...).
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Universal dissipative dynamics?

Non-equilibrium thermodynamics

Carl Henry Eckart (1940, 1948). Eckart instability. Stepfather of the
discipline.
[PhD: Caltech (1925-7), matrix-wave, 1926, postdoc in Munich at

Sommerfeld (1928), Uni. Chicago (1928-41) Fermi's bombtheory group with

Wigner, anti-bomb, (sabbaticals in Princetown), UCSD (1946-73), Marine

PL, underwater sound, Klara Dán von Neumann (1958-)).]

Variational principles of di�erent kind? Helmholtz conditions. Several
attempts. My conclusion: too many di�erent solutions.

Second law compatibility of material properties. Internal variables.
Memory and nonlocal e�ects.

A general construction mechanism of evolution equations emerges.
Compatibility with mechanics?

Compatibility with ideal, non-dissipative laws?
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What is thermodynamics?

Fundamental or emergent?

Statistical physics is special, thermodynamics is general.

Separation of universal from particular.

Second Law is general, there are statistical demonstrations.

Second Law can be applied for �elds.

Thermodynamics is a stability theory.
( T. Matolcsi, W.M. Haddad, VP (PTRSA 2023))

Are there some original, genuine

consequences??
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Local, nonlocal and weakly nonlocal

Locality in space(time)

Local �elds and local �eld equations. Example: ϕ(t, x), Poisson equation.
Space integrals in the �eld equations: strong nonlocality.
Nonlocal �elds: Example: f (t, x1, x2), Liouville equation, entanglement.

Weak nonlocality: extension of the �eld equations with higher order space
derivatives. Example: gradient �uids, Horndeski gravity.

Locality in time

Locality in time. No memory. Markov process.
Memory functionals in the �eld equations: strong memory. Example:
principle of fading memory.
Weak 'nonlocality' in time: higher order time derivatives in the �eld
equations. Example: second sound, delay and inertia.

Temporal nonlocality and spatial locality are interdependent.
Action at a distance: vacuum solution of a local theory.

7 / 50



Holography

Holography ← holos+graphe = complete, whole + drawing, writing.

Optical holography

Dennis Gábor. Reproduction of 3 dimensional information from 2
dimensional projections.

Interferometric. Amplitude and phase. For any wavelike propagation.
E.g. ambisonic sound.

Holography in quantum �eld theories

Generalisation of black hole thermodynamics. Hawking, t'Hooft,
Susskind. Entropy is area.

Abstracted in string theory. Expected in quantum gravity.

AdS-CFT correspondence.

Holographic principle + Unruh e�ect ⇒ �eld equation of gravity
(Newtonian and GR)

Jacobson (PRL 1995), ..., Verlinde (JHEP 2011) 8 / 50



Classical holography I

Newtonian gravity (∆ϕ = 4πGρ):

ρ∇ϕ = ∇ ·PPPgrav (∇ϕ) = ∇ ·
(

1

4πG

[
∇ϕ∇ϕ− 1

2
(∇ϕ)2III

])
Maxwell stress tensor.

Euler �uids are holographic

Ideal Euler �uids: PPPEuler = p(u, ρ)III . p is the thermostatic pressure, e.g. ideal gas.

∇ ·PPPEuler = ∇p = ρ∇µ+ ρs∇T
Follows from the Gibbs-Duhem relation: 0 = sdT − vdp + dµ. For isothermal
processes of ANY �uid the chemical potential is a mechanical potential.
Friedmann equation.

Classical holographic property:

∇ ·P(...)P(...)P(...) = ρ∇φ(...)

Constitutive (...), material property. Thermodynamics or �eld equation
dependent? 9 / 50



Entropy inequality
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Pure dissipation: heat conduction in CIT

CIT = Classical Irreversible Thermodynamics.
The calculation of entropy production (Eckart, 1940):

ρė +∇ · qqq = 0, de = Tds

ρṡ +∇ ·
( qqq
T

)
=
ρė

T
+∇ ·

( qqq
T

)
= qqq · ∇ 1

T
≥ 0

Solution of the inequality: qqq(e,∇e) = λT∇ 1

T = −λ∇T , λ(e) ≥ 0.

General aspects:

spacetime: comoving derivative, constitutive state space,

entropy density: local thermodynamic potential,

entropy inequality.

Material properties (statistical and kinetic origin?):

static EOS: e = cT ,

constitutive EOT: qqq = −λ(e)∇T (e).
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Remark I. Nonrelativistic balances

Balance of momentum. Global form:

Ṁ = −Fsurf + Fbulk .

Local form and substantial forms:

ρv̇̇v̇v +∇ ·PPP = −ρ∇ϕ, ρv̇ i + ∂kP
ik = −ρ∂ iϕ. (1)

Bulk and surface forces. Substantial or comoving derivative, Convective and
conductive current densities, Hidden Galilean covariance.

Particle or �eld??

ρv̇̇v̇v +∇ ·PPPgrav = 0 ⇐⇒ v̇̇v̇v = −∇ϕ
Test particle and integrating screens. Constant background �eld or �eld theory?
(ρ̇+ ρ∇ · vvv = 0, ∆ϕ = 4πGρ)
Newtonian form:

Ṁ = F

The universality of point mass modell.
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Remark II. Galilean relativistic balances

Spacetime aspects - separation of material and motion

∂(ρetotal)

∂t
+∇ · (qqq + ρvvvetotal +PPP · vvv) = 0, → ρėtotal +∇ · (qqq +PPP · vvv) = 0

Relative form of a four-divergence:

Galilean four-vector: (ρe,qqq), convective and conductive current densities.

Comoving(substantial) time derivative: ė = ∂e
∂t + vvv · ∇e. Transformation rule

for a timelike covector.

∇e is spacelike covector: does not transform.

total and internal energies : e = eTOT − v2/2.

Consequences

What is comoving? Mass? Energy? Observer representations. Flow-frames.

Total energy, kinetic energy and internal energy. Galilean relativistic
energy-momentum-mass four-tensor. Entropy production is objective.

Temperature is a Galilean relativistic four-vector: thermal reference frames.
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Ockham's razor

"Is there a harmony of mathematics and physics??"
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Constitutive state space

Coleman-Noll and Liu procedures. Separation of functions and variables.
The entropy inequality is conditional :

ρė +∇ · qqq(e,∇e) = 0,

ρṡ(e,∇e) +∇ · JJJ(e,∇e)− Λ(e,∇e)(ρė +∇ · qqq(e,∇e)) =

ρ
∂s

∂∇e
(∇e)··· + ρ

(
1

T
− Λ

)
ė + ... ≥ 0

Liu-procedure, Lagrange�Farkas-multipliers. It follows that:

∂s

∂∇e
(e,∇e) = 0, Λ =

1

T
, and qqq(e,∇e) · ∇

(
1

T
(e)

)
≥ 0

Constitutive state variables: (e,∇e)
→ thermodynamic state variables: (e)

Process direction variables: (ė, (∇e)···,∇2e)
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Weakly nonlocal extensions

Classi�ed by constitutive state spaces and constraints

Fluid mechanics. Mass, velocity and energy. (ρ,∇ρ, v ,∇v , e,∇e)
Constraints: balances of mass, momentum and energy (→ quantum
mechanics and more)
→ Fourier-Navier-Stokes equations.

Fluid mechanics + scalar �eld (ρ,∇ρ, v ,∇v , e,∇e, ϕ,∇ϕ, ∇2ϕ)
Constraint: evolution equation, balances of mass momentum and
energy.
→ Fourier-Navier-Stokes + Newtonian gravity and more

Fluid mechanics + second order weak nonlocality in density. Mass,
velocity and energy. (ρ,∇ρ,∇2ρ, v ,∇v , e,∇e)
Constraints: balances of mass, momentum and energy
→ Korteweg �uids, super�uids, quantum mechanics and more
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Newtonian gravity

VP-Abe (Physica A, 2022)
Abe-VP (Symmetry, 2022)

Pszota-VP (arXiv: 2306.01825)
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Scalar �eld and hydrodynamics

s(e − ϕ− ∇ϕ·∇ϕ
8πGρ

, ρ). Speci�c Gibbs relation:

du = Tds +
p

ρ2
dρ = de − d

(
ϕ +
∇ϕ · ∇ϕ
8πGρ

)
.

The potential energy, ϕ, the �eld energy and internal energy are separated.

Balances of mass, momentum, internal energy + �eld equation:

ρ̇+ ρ∇ · vvv = 0,

ρv̇vv +∇ ·PPP = 000,

ρė +∇ · qqq = −PPP : ∇vvv ,
ϕ̇ = f .

Constraints of the entropy inequality:

ρṡ +∇ · JJJ = Σ ≥ 0
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Gravity

Constitutive state variables : (e,∇e, ρ,∇ρ, (vvv),∇vvv , ϕ,∇ϕ,∇2ϕ)
→ thermodynamic state variabless : (e, ρ, ϕ,∇ϕ)

ρṡ +∇ · JJJ =(
qqq +

ϕ̇

4πG
∇ϕ
)
· ∇
(
1

T

)
+

f

4πGT
(∆ϕ− 4πGρ)

−
[
PPP − pIII − 1

4πG

(
∇ϕ∇ϕ− 1

2
∇ϕ · ∇ϕIII

)]
:
∇vvv
T
≥ 0

Perfect self-gravitating (isothermal) �uids are holographic:

∇ ·
(
pIII +

1

4πG

(
∇ϕ∇ϕ− 1

2
∇ϕ · ∇ϕIII

))
= ρ∇(µ+ ϕ)
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Nonlinear extension, static, nondissipative �eld

Stationary nondissipative �eld equation:

0 = ∆ϕ− 4πGρ− K∇ϕ · ∇ϕ.

Spherical symmetric force �eld. Crossover. Apparent and real masses:

f (r) = − r1
Kr(r + r1)

= − GMaa

r(r + r1)
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Thermodynamic gravity, MOND and Dark Matter

NGC 3198

MDM+BM Maa

190 110

Unit : 109M�

Thanks to M. Pszota
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Korteweg �uids

VP-Fülöp (Proc. Roy. Soc., 2004)
VP-Kovács (Phil. Trans. Roy. Soc. A, 2020)

VP (Physics of Fluids, 2023)
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Korteweg �uids: history

Van der Waals : gradient of density is a thermodynamic variable. Surface
tension and capillarity.
Korteweg (1905): second gradient of density, pressure expansion.

Balances of mass, momentum and internal energy:

ρ̇+ ρ∇ · vvv = 0,

ρv̇vv +∇ ·PPP = 000,

(ρė +∇ · qqq = −PPP : ∇vvv .)

PPP =
(
p − α∆ρ− β(∇ρ)2

)
III − δ∇ρ ◦ ∇ρ− γ∇2ρ

α, β, γ, δ are density dependent material parameters.

Instable. Second law? Eckart �uids 1940, Dunn and Serrin (ARMA, 1985).
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Korteweg �uids � Liu procedure

Constitutive state variables : (e,∇e, ρ,∇ρ,∇2ρ, (vvv),∇vvv)
→ thermodynamic state variables: (e, ρ,∇ρ)

Process direction: (ė, (∇e)···,∇2e, ρ̇, (∇ρ)···, (∇2ρ)···,∇3ρ, v̇̇v̇v , (∇2vvv)···)

ρṡ +∇ · JJJ = qqq · ∇
(
1

T

)
−

−
[
PPP − pIII − ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)]
:
∇vvv
T
≥ 0

Rigorous methods are essential.

The pressure of an ideal, non-dissipative Korteweg �uid is :

PPP = p(e, ρ)III +
ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)
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Perfect Korteweg �uids are holographic

PPPK =
ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)
Classical holographic property, with internal energy:

∇ ·PPPK = ρ(∇φ+ T∇s) , where φ =
∂ρu

∂ρ
−∇ · ∂(ρu)

∂∇ρ
= δρ(ρu)|ρs

Functional derivative. Isothermal and adiabatic potentials.

Momentum balance: continuum AND point mass

ρv̇vv +∇ ·PPPK = ρ(v̇vv +∇φ) = 0 → v̇vv = −∇φ

Conserved vorticity follows.

φ(ρ,∇ρ, ...) : Bohm potential, a chemical potential of super�uids.

How can we get the Schrödinger equation?
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Quantum to hydro

Schrödinger (super�uid) equation:

i~
∂ψ

∂t
+

~2

2m
∆ψ − Vψ = 0

Madelung transformation:
ψ = Re iϕ,

ρ density (probability or super�uid), R =
√
ρ, ϕ velocity potential : vvv = ~

m∇ϕ.

i~
2ρ

(
∂ρ

∂t
+∇ · (ρvvv)

)
ψ −

(
m

~
m

∂ϕ

∂t
+ m

v2

2
− ~2

2m

∆
√
ρ

√
ρ
− V

)
ψ = 0

Continuity and Bernoulli equations of classical rotation free �uids. The gradient of
the second one

v̇vv +∇(UQ + V ) = 0

UQ(ρ,∇ρ,∇2ρ) = − ~2
2m2

∆R
R is the Bohm potential. V (...) may be the chemical

potential of boson interactions. Ginzburg-Gross-Pitaevskii-Sobaynin-... theories.
What is the origin of Bohm potential?
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Probabilistic Korteweg �uids � additivity

Zeroth Law of thermodynamics: separability of independent physical systems.

Multicomponent normal �uids. Notation: ρ1 = ρ1(xxx1).

u(ρ1 + ρ2) = u(ρ1) + u(ρ2).

Multicomponent probabilistic �uids:

u(ρ1ρ2) = u(ρ1) + u(ρ2).

Functional condition, ρtot = ρ1ρ1 :

u(ρtot , (∇ρtot)2) = u
(
ρ1ρ2, (ρ2∇1ρ1)2 + (ρ1∇2ρ2)2

)
=

u(ρ1, (∇1ρ1)2) + u(ρ2, (∇2ρ2)2).

Unique solution:

u(ρ, (∇ρ)2) = k ln ρ+
κ

2

(∇ρ)2

ρ2

Independent Schrödinger equations for independent particles/components.

QFT, GR can be �uids: Jackiw et al. (JP A, 2004), Biró-VP(FP, 2015), ...
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Quantum versus hydro

Analogy:

quantum mechanics →
superfluids

and
more

→ capillary �uids and more

Deduction and universality:

gradient �uids
and/or
�elds

=⇒
superfluids

and
more

=⇒ quantum mechanics

Second Law of Thermodynamics =⇒ Classical holography.

Additivity =⇒ Bohm potential
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Concepts, practical tools, mechanisms and

foundations
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Concepts: Quantum plasmas, plasmons

Correlated many-particle systems. Jánossy et al. (APH, 1963-77)

Aspects of quantum hydrodynamics
Time dependent Hartree equations can be converted to MQHD -
microscopic QHD, i.e. multicomponent q�uid equations.

Various partial averages e.g. standard vs. many-fermion Bohm
potentials :

φB = − ~2

2m

∆
√
ρ

√
ρ

→ φ̃B = − ~2

2mN

N∑
i=1

fi
∆
√
ρi√
ρi

ρ - mean electron density, N - total number of electrons, fi occupation
number given by a Fermi-function, ni orbital probability density,

Mixed states are not problematic with modi�ed initial sampling
probability:

∑
i fiρi (t = 0,RRR).

Many continuity and averaged momentum: equivalent to time dependent
DFT (Kohn-Sham equations). Exchange potential.
Bonitz et al. (PoP., 2019), Moldabekov et al. (SciPost P., 2022).
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Practical tool : SFDM (Scalar Field Dark Matter)

� Correlated many-boson systems. Bose-Einstein condensates, super�uids.
In cosmology: Ru�ni and Bonazzola (PR 1969).

� Evolution of ΛCDM halos with hydrodynamics and N-body simulations.
� Solution of several small scale problems of ΛCDM, like "core-cusp",
"too-big-to-fail", etc...
Foidl et al. (PRD 2023) Shapiro et al. (MNRAS 2021)
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Insight and mechanism: pilot-wave hydrodynamics.

Bohmian mechanism: double solution pilot-wave hydrodynamics de
Broglie (1956,1987)

Bouncing droplets over an excited surface. Coulder et al. (Nature, 2005),
Bush (ARFM, 2015), Frumkin et al. (PRA, 2022).

Stochastic "interpretation": Fényes (ZfP, 1952)
Stochastic electrodynamics: de la Pena-Cetto (1992)
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More than six worlds since 1992: Bell (FP, 1992)

Interpretation: inferior by nomination. Original ≥ interpretation.
Bohm vs. de Broglie today Drezet (special issue of FP, 2023)

What are the Bohmian benchmarks?

theory: predictions beyond quantum mechanics?

origin of Bohm potential?

spin (empty waves, fermions)?

classical-quantum transition?

measurement, relativistic, ...

Real or not?

Deus ludens. Probabilistic is real.

Are particles solitons? Not really.

What is the background mechanism? Universality: anything. Level stability?

Spacetime aspects, operators, Wigner functions, ...
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Summary

Emergent classical holography and emergent evolution.

The Second Law of Thermodynamics is applicable for �elds and
informative in the marginal case of zero dissipation.

Variational principles are not necessary.

The Second Law of Thermodynamics is (looks like) fundamental.

Case 1: There is a thermodynamic road to gravity.

Fluid + scalar internal variable −→ gravity

Second law with zero dissipation =⇒ classical holography

Energy type, quadratic =⇒ gravity

Case 2: There is a thermodynamic road to quantum physics.

Korteweg �uids −→ quantum mechanics

Second law with zero dissipation =⇒ classical holography

Additivity =⇒ quantum systems
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"This may be true, because it is mathematically trivial."
(somebody from Princeton, according to R. Pisarski)

35 / 50



Thank you for the attention!
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Variational principles for dissipative processes

Condition: symmetry

Θ̂(ϕ) = 0 , ∃F : Dom(Θ̂)→ R, δF (ϕ) = Θ̂(ϕ)

δ derivation in a Banach (or Frechet) spaces, boundary conditions, ...

Necessary condition: Θ̂ is symmetric.

Many di�erent variational principles

Potentials : Θ̂ ◦ ϕ̂(ϕ) = 0, where Θ̂ ◦ ϕ̂ is symmetric

Integrating multipliers : T̂ ◦ Θ̂ = 0, where T̂ ◦ Θ̂ is symmetric

Change the operator: (Θ̂(ϕ))2 = 0, and neglect parts

Change the function space: Gyarmati principle, ...,

All of them are right, which one is the true?
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Farkas' lemma

Liu procedure: linear algebra and analysis.

Farkas(-Minkowski-Haar) lemma

If aaai 6= 000, i = 1, ..., n are vectors of a �nite dimensional vector space VVV and
S = {ppp ∈ V ∗V ∗V ∗|ppp · aaai ≥ 0, i = 1, ..., n} is a subset of the dual vector space, then the
following staments are equivalent for all bbb ∈ VVV vectors:
(i) ppp · bbb ≥ 0 for all ppp ∈ S .
(ii) There exist λ1, ..., λn nonnegative real numbers, so that bbb =

∑n
i=1

λiaaai .
Remark:

ppp · bbb −
n∑

i=1

λippp · aaai = ppp · (bbb −
n∑

i=1

λi · aaai ) ≥ 0, ∀ppp ∈ VVV ∗.

History:
Farkas proved it in his analysis of Fourier principle (of mechanics) in 1895 in
Hungarian. Minkowski and Haar provided independent proofs later. The lemma is
the base of the Bell inequalities and also the Karush-Kuhn-Thucker theorems of
optimisation.
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Phase �eld evolution equations, variational derivatives

Scalar �eld evolution: ϕ̇ = f (ϕ,∇ϕ)

Ṡ(ϕ,∇ϕ)− λ(ϕ̇− f (ϕ,∇ϕ)) = (∂ϕS − λ)ϕ̇+ ∂∇ϕS ∇ϕ̇+ λf ≥ 0

∂ϕS − λ = 0, ∂∇ϕS = 0,

0 ≤ f ∂ϕS → f = l ∂ϕS , (l ≥ 0)

Extended approach: ϕ̇ = f (ϕ,∇ϕ,∇2ϕ)

Higher order state space: (ϕ,∇ϕ,∇2ϕ) ;

Constitutive entropy �ux;

Gradient constraints: ∇ϕ̇ = ∇f

Ṡ +∇J − λ(ϕ̇− f )− Λ(∇ϕ̇−∇f ) ≥ 0

∂ϕS = λ, ∂∇ϕS = Λi , ∂∂ϕS = 0

J = −∂∇ϕS f + Ĵ(ϕ,∇ϕ) 0 ≤ f (∂ϕS −∇(∂∇ϕS)) = f
δS

δϕ 39 / 50



Quantum �uids exist :

Vortex lines in He II, from boundary to boundary. Donelly, 1991.
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Super�uidity

Histocical remarks and more

Landau, ZhETP (1941).

Bohm and Pines (1952), Gross and Pitaevskii (1961).

Dense plasmas. Critical survey of Bonitz et al. (2019).

QGP, T. Kodama et al., stochastic qm., Jackiw et al (2004).

G.E. Volovik: The Universe in a Helium Droplet (2003).

Theory notes: there is no quantisation

There is a Hamiltonian but there is no Lagrangian.

Hydro is an e�ective theory and cannot be quantised.

(Note: Like gravity. Therefore gravity cannot be quantized, q-gravity
does not exist.)
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The four dimensions of Galilean relativistic space-time
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Mathematical structure of Galilean relativistic space-time

1 The space-time M is an oriented four dimensional vector space of the
xa ∈M world points or events. There are no Euclidean or
pseudoeuclidean structures on M : the length of a space-time vector
does not exist.

2 The time I is a one dimensional oriented vector space of t ∈ I instants.

3 τa : M→ I is the timing or time evaluation, a linear surjection.

4 δāb̄ : E× E→ R⊗ R Euclidean structure is a symmetric bilinear
mapping, where E := Ker(τ) ⊂M is the three dimensional vector
space of space vectors.

Simpli�cation: space-time and time are a�ne spaces

Simpli�cation: measure lines.

Abstract indexes: a, b, c, ... for M, ā, b̄, c̄ , ... for S
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Vectors an covectors are di�erent

A′αB ′β = AαBβ = AB + AiBi

(
t ′

x ′i

)
=

(
t

x i + v i t

)
Vector transformations (extensives):(

A′

A′i

)
=

(
A

Ai + v iA

)
Covector transformations (derivatives):(

B ′ B ′i
)

=
(
B − Bkv

k Bi

)
Balances: absolute, local and substantial

∂aA
a = 0 −→

(a,b,c∈{0,1,2,3})

ua : DuA + ∂iA
i = dtA + ∂iA

i = 0,

u′a : Du′A + ∂iA
′i = ∂tA + ∂iA

′i = 0.

Transformed: (dt − v i∂i )A + ∂i (A
i + Av i ) = dtA + A∂iv

i + ∂iA
i = 0
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Mass, energy and momentum

What kind of quantity is the energy?

Square of the relative velocity: 2nd order tensor

Kinetic theory: trace of a contravariant second order tensor.

Energy density and �ux: additional order

Basic �eld:

Z abc = zbcua + zabc : mass-energy-momentum density-�ux tensor

a, b, c ∈ {0,1,2,3}, a, b, c ∈ {1,2,3}

zbc →
(
ρ pb

pc ebc

)
, z ābc →

(
j ā Pab

Pac qāb̄c̄

)
, e =

ebb
2

45 / 50



Galilean transformation

Z ′αβγ = Gα
µG

β
ν G

γ
κZ

µνκ

Zαβγ =

((
ρ pi

pj e ji

) (
jk Pki

Pkj qkij

))
, Gα

ν =

(
1 0i

v j δji

)
, e =

e i i
2

Transformation rules follow:

ρ′ = ρ,

p′i = pi + ρv i ,

e ′ = e + pivi + ρ
v2

2
,

j ′i = j i + ρv i ,

P ′ij = P ij + ρv iv j + j iv j + pjv i ,

q′i = qi + ev i + P ijvj + pjvjv
i + (j i + ρv i )

v2

2
.
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Galiean transformation of energy

Transitivity:

e2 = e1 + p1v12 + ρ
v212
2

e3 = e2 + p2v23 + ρ
v223
2

→ e3 = e1 + p1v13 + ρ
v2
13

2

p2 = p1 + ρv12, v13 = v12 + v23
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Balance transformations

Absolute

∂aZ
abc = żbc + zbc∂au

a + ∂az
abc = 0

Rest frame

ρ̇+ ∂i j
i = 0,

ṗi + ∂kP
ik = 0i ,

ė + ∂iq
i = 0.

Inertial reference frame

ρ̇+ ρ∂iv
i + ∂i j

i = 0,

ṗi + pi∂kv
k + ∂kP

ik + ρv̇ i + jk∂kv
i = 0i ,

ė + e∂iv
i + ∂iq

i + pi v̇i + P ij∂ivj = 0.
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Interpretations vs. explanations

Quantum physics

Canonical quantisation. Do we need a Lagrangian?

Qhydro as transformation or more?

Stochastic, path integrals, etc...

Every theory is quantum. Or not. There are some problems. See the
discussion of Weinberg (Here is a LINK).

Ockham's razor. "Pluralitas non est ponenda sine neccesitate"
49 / 50

https://www.nybooks.com/articles/2017/01/19/trouble-with-quantum-mechanics/


�The law that entropy always increases holds, I think, the

supreme position among the laws of Nature. If someone

points out to you that your pet theory of the universe is in

disagreement with Maxwell's equations - then so much the

worse for Maxwell's equations. If it is found to be

contradicted by observation - well, these experimentalists

do bungle things sometimes. But if your theory is found to

be against the Second Law of Thermodynamics I can give

you no hope; there is nothing for it to collapse in deepest

humiliation.�

Arthur Eddington, New Pathways in Science
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