

Importance of dedicated LHC measurements for cosmic ray physics

Ralf Ulrich

Karlsruhe Institute of Technology

30. October 2019, Budapest

Cosmic rays at Earth

Messengers from violent places in our universe. What are they? Where do they come from? How do they interact?

Introduction of observables

The atmosphere as calorimeter

Telescopes measure dE/dX and timing.

Surface detectors measure particle fluxes and timing.

 $egin{aligned} &N_\mu \propto \left(rac{E}{A}
ight)^eta\ &X_{
m max} \propto \ln\left(rac{E}{A}
ight)\ &E_0 = E_{
m cal} + E_{
m invisible}\ &E_0 \propto S_{1000} \end{aligned}$

Ultra-high energy cosmic rays: experimental overview

What is the nature and the sources of the highest energy particles in the universe?

- GZK cutoff? Maximum energy of accelerators? GDR/dissociation?
- Can we find individual (point) sources?
- Can we identify a transition (anisotropy) from galactic to extragalactic?

\rightarrow Mass composition main challenge to resolve questions!

Air shower cascades

Shower maximum

$$X_{
m max} pprox \lambda_{
m I} + X_0 \ln rac{E_0}{N_{
m mult} E_{
m crit}^{
m e.m.}}$$

Muon number at observation level

$$N_{\mu} = N_{\pi^{\pm}} = \left(\frac{E_0}{E_{\mathrm{crit}}^{\mathrm{I}}}
ight)^{eta}$$

where

$$\beta = \ln \left(\frac{2}{3} N_{\mathrm{mult}} \right) / \ln \left(N_{\mathrm{mult}} \right) pprox 0.9$$

(J. Matthews, APP 22 (2005) 387)

Ultra-high energy cosmic ray extensive air showers

- Huge coupled cascading process
- Conversion of primary energy into
 - Electrons/ photons
 - Muons
 - Low energy hadrons

- Most relevant mass-sensitive observables are:
 - Depth of shower maximum
 - Muon content

• Precise modelling is mandatory for a cosmic ray mass measurement

Forward ρ^0 Production, QGSJetII.3 \rightarrow QGSJetII.4

Charge Exchange, Leading π^0/ρ^0 production:

Impact on muons in air showers

Systematically change the leading π^0/ρ^0 ratio:

Ulrich, Engel, Baus, ISVHECRI 2014

SIBYLL, protons, 10^{19.5} eV

Ad-hoc modifications (PRD 83 (2011) 054026): f19 is scaling factor for ρ^0 and baryons at $10^{19} eV$:

$$\alpha^{\text{modified}}(\mathsf{E}) = \alpha^{\text{orig}}(\mathsf{E}) \cdot \left(1 + (\mathsf{f}_{19} - 1) \cdot \frac{\mathsf{lg}_{10}(\mathsf{E}/\mathsf{E}_{\text{thr}})}{\mathsf{lg}_{10}(10^{19}\,\mathsf{eV}/\mathsf{E}_{\text{thr}})}\right) \text{ with } E_{\text{thr}} = 10^{15}\,\mathsf{eV}$$

Forward ρ^0 production, QGSJetII.4

Prediction of inclusive athmospheric muon fluxes as a test of hadronic interaction models

A.V. Lukyashin, ISVHECRI 2014

⇒ Too many muons at \sim TeV ⇒ But: still not enough muons at \sim GeV

Angular acceptance of LHC experiments

Definition of *pseudorapidity*: $\eta = -\log \tan(\theta/2)$ where θ is the angle wrt. to the beam

Phase-space coverage at LHC

- Central ($|\eta| < 1$)
- Endcap $(1 < |\eta| < 3.5)$
- Forward (3 < $|\eta|$ < 5), HF
- CASTOR+T2 (5 < $|\eta|$ < 6.6)
- FSC ($6.6 < |\eta| < 8$)
- ZDC ($|\eta| > 8$), LHCf
- How relevant are specific detectors at LHC for air showers?
- \rightarrow Simulate parts of shower individually.

Lateral particle density on ground level

Muon Density

Air shower models so far only tuned to about 10 % !
Forward detectors are crucial.

Longitudinal shower development

Electron Profile

Air shower models so far only tuned to about 10 % !
Forward detectors are crucial.

Model tuning to LHC data and $\langle X_{\rm max} \rangle$ predictions

Tuning impact:

- Obvious apparent improved model predictions
- But is this really a quantitative indication of a better understanding?

Muon content of air showers at ground level

Auger, PRD 91 (2015) 032003

- More muons in air shower data than expected
- No consistency between different observables can be achieved
- $\rightarrow\,$ Interaction physics in air shower models still not accurate

Sensitivity to interaction physics

⇒ Very different impact on different EAS observables:

- Global shower properties and the shower maximum X_{\max} are sensitive to the highest energy interactions
- Muons in air showers are sensitive to the hadronic cascade over all energies
- ⇒ Large problem in predicting the overall muon number is small problem on the level of individual interactions

Example:

typical 8 had. generations, 5% effect in each \rightarrow $1.05^8\approx\!\!50\%$ total effect

Forward energy as a function of central activity (pp)

CMS/CASTOR low-mass single diffraction (pp, 7 TeV)

Separation of single- and double-diffraction possible with CASTOR detector

CMS + TOTEM combined multiplicity data (pp, 8 TeV)

1) Very wide acceptance! 2) Correlations and final state selection!

CMS minijet measurements (pp, 8 TeV)

- First LHC paper at 13 TeV (without CMS magnet \rightarrow no p_T-cutoff)
- EPOS-LHC makes an excellent first impression
- And: analysis performed in Budapest!

Multiplicity measurements at 13 TeV

pre-LHC models \rightarrow Models tuned at 7 TeV

- Good extrapolation over factor ≈ 2 in \sqrt{s}
- Poorly constraint beyond factor > 10 in \sqrt{s}

Extrapolation to ultra-high energies

CASTOR and cosmic ray interpretation

Energy [eV]

CASTOR at 13 TeV

Total energy

Electromagnetic energy

Hadronic energy

JHEP 08 (2017) 046

- Model performance tested in crucial phase-space domain
- Very sensitive to MPI, diffraction, low-x structure
- Represents a significant part of the overall energy-flow

Proton-Air cross section, with Tevatron data

compare to Nucl.Phys.Proc.Suppl. 196 (2009) 335

Large uncertainties due to nuclear effects from pp to p-air

Proton-Air cross section, with LHC data

 \Rightarrow Sign of a clear relevant improvement

Large uncertainties due to nuclear effects from pp to p-air

Inelastic proton-lead cross section at 5.02 TeV

PLB 759 (2016) 641

- Direct test of Glauber model (and related physics) at LHC
- proton-oxygen will be much more powerful.

Hadronic interactions, Auger

Attempt of consistent description of longitudinal and lateral shower data.

PRL 117, 192001 (2016)

Hadron/Muon component in data is too large

PRL 117, 192001 (2016)

 Scale E.M. and had. part of MC showers with R_E and R_{had} to fit data:

 $S_{
m resc}(R_{
m E},R_{
m had})=R_{
m E}S_{
m EM}+R_{
m had}R_{
m E}^{lpha}S_{
m had}$

- While $R_E = 1$ is possible and mostly consistent with data
- R_{had} is significantly above 1
- None of the models/assumptions reproduces data

Compilation of muon measurements

- WHISP report at UHECR 2018 conference, Oct 8-12 2018
- · Comprehensive compilation of muon measurements from air shower experiments

- No simple key measurement
- Need to accurately know and extrapolate several features
- Focus on precise measurements of features in references systems, use models to predict interactions in unavailable target systems and phase space

Proton-Oxygen Data at LHC: Very Relevant

- Asymmetric heavy-ion run with proton-oxygen nuclei
- LHC Run3 $\sqrt{s_{\rm NN}^{\rm pO}} = 10 \, {\rm TeV}$ (Proton beam at 7 TeV)
- Oxygen very close to atmospheric material of extensive air shower production (nitrogen)
- Impact on model predictions :

Potential of proton-oxygen data

Remove uncertainties from nuclear effects.

Increase accuracy of air shower simualtions.

Shown is spread between: EPOS-LHC, QGSJetII.04, SIBYLL-2.3

Models mostly tuned to p+p data at $|\eta| < 2$: p+p 10 % model spread, p+O 50 % model spread

Impact of LHC measurements

- X_{max} sensitive to: inelastic cross-section, hadron multiplicity
- N_μ sensitive to: energy fraction lost to π⁰, hadron multiplicity
- Nuclear modification in forward-produced hadrons expected and important

Energy flow: e/γ vs. hadrons

- Hadronic energy "lost" to π^0 s cannot produce muons in late shower
- "Energy loss" described by observable E_{ey}/E_{hadrons}

- Model predictions differ by 15 % and in shape: only EPOS has forward peaks
- Translates to about 20 % shift in N_u -> high impact on Muon Puzzle

Mechanisms for different EM-ratios

Secondaries are produced in different mechanisms in different phase space regions:

vs η

vs
$$N_{
m mult}~(\eta=0)$$
 vs $N_{
m mult}~(\eta=6)$

arXiv:1902.09265 [hep-ph]

And: each mechanism has its own EM-ratio ($R = E_{e.m.}/E_{had}$).

Collective effects in small systems

Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC:

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

JHEP 09 (2010) 091

A rare discovery at LHC!

Potential (further) signatures at LHC

Could be measured at LHC \rightarrow shape analyses

Orthogonal to many other effects \rightarrow important for muon mystery

Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at 13 TeV:

CMS, arXiv:1908.01750 [hep-ex], submitted

LHC shopping list

At 13 TeV

- Total and elastic cross section, elastic slope, imaginary to real part of amplitude (rho)
- Soft diffraction, rapidity gaps, characteristics of "pomeron" exchange
- Mini-jets, PID spectra, correlations
- PDF constraints (W $^{\pm}$, Z, ...)
- LHCf zero-degree π^0 and neutrons
- \bullet Underlying event with CASTOR, CMS+TOTEM dN/d η

Finally

- LHC energy scan: 0.9 GeV ightarrow large $x_{
 m F}$ -range
- Nuclear scan: proton-lead, proton-oxygen
- Maximum acceptance, dedicated detector components
- Pion as beam particle

Summary

LHC impact on UHECR interpretation

- Models are constraint much better
- Predictions tend to converge (overall)
- Different observables have very different sensitivity to interaction uncerainties
- Muon mystery may be related to a few percent of unaccounted physics per collision
- Models so far tuned at LHC roughly to a level of about 10%
- Forward detectors ultimately of paramount importance
- Important for air showers: energy AND phase space !
- Nuclear effects are another important source of uncertainties. Need oxygen in LHC.