
Determination of the strong coupling beyond NNLO
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The strong coupling

The strong coupling αs is a fundamental parameter of the Standard Model, its value (at
a given energy scale) is a basic constant of Nature.

The numerical value of the strong coupling enters essentially all theoretical predictions for
LHC processes ⇒ the accurate knowledge of this numerical value is important for fully
exploiting LHC results.

It is the least precisely known coupling: ∆αs(MZ )/αs(MZ ) ∼ 1%.

Coupling Symbol Value Error (ppb)
fine-structure constant αEM 7.2973525693(11)× 10−3 0.15
Fermi constant GF 1.1663787(6)× 10−5 GeV−2 510

strong coupling αs(MZ ) 0.1179(10) 8.5× 106

gravitational constant GN 6.67430(15)× 10−11 m3 kg−1 s−2 2.2× 104

Its value must be extracted by fitting theoretical predictions to measured data ⇒ many
options depending on the nature of the observable.
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The strong coupling: relevance at LHC

The uncertainty in αs contributes significantly to many QCD predictions, e.g., cross
sections for top quark or Higgs boson production.

Consider pp → tt̄:

• The total cross section σtt̄ has been measured:

σtt̄ = 803± 2(stat)± 25(syst)± 20(lumi) pb

[CMS Collaboration, EPJC 79 (2019) 5, 368]

• The combined uncertainty corresponds to: ∆σtt̄/σtt̄ ∼ 4%

• But tt̄ production is proportional to α2
s already at tree level: σtt̄ ∝ α2

s∣∣∣∣∣∣∣∣∣ + +

∣∣∣∣∣∣∣∣∣
2

∼ g4
S = α2

s

• So at a basic level: ∆σtt̄/σtt̄ ∝ 2∆αs/αs ∼ 2%, which is commensurate with the
experimental error!

2



The strong coupling: relevance at LHC

The uncertainty in αs contributes significantly to many QCD predictions, e.g., cross
sections for top quark or Higgs boson production.

Consider pp → tt̄ + N jets:

• CMS has measured normalized
triple differential cross sections
in Njet, M(tt̄) and y(tt̄)

[CMS Collaboration, EPJC 80 (2020) 7, 658]

• For bins with the highest
precision, i.e., Njet = 0 and
440 < M(tt̄) < 1500 GeV, they
find uncertainties of around
2–3% (stat.) and 3–6% (syst.)

• Total th. uncertainty: ∼ 7%,
uncertainty from αs: ∼ 4%.

• In many bins, the dominant
theoretical uncertainty comes
from αs variation.
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The strong coupling: status
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Figure 9.4: Summary of determinations of –s(M2
Z) from the seven sub-fields discussed in the text.

The yellow (light shaded) bands and dotted lines indicate the pre-average values of each sub-field.
The dashed line and blue (dark shaded) band represent the final world average value of –s(M2

Z).

6th December, 2019 11:50am

[P. A. Zyla et al. (Particle Data Group), Prog. Theor.

Exp. Phys. 2020, 083C01 (2020) and 2021 update]

Different approaches

• Many types of observables used to
extract the strong coupling over a large
energy range of ∼ 1 GeV (τ decays) to
∼ 1000 GeV (LHC inclusive jets)

• By convention and to facilitate
comparison, measurements evolved to
Q = MZ , plethora of measurements also
checks the predicted running30 9. Quantum Chromodynamics

in this category, removing this pre-average would not change the final result within the quoted
uncertainty.

αs(MZ
2) = 0.1179 ± 0.0010

α s
(Q
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Figure 9.3: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

9.4.3 Deep-inelastic scattering and global PDF fits:
Studies of DIS final states have led to a number of precise determinations of –s: a combination [501]
of precision measurements at HERA, based on NLO fits to inclusive jet cross sections in neutral
current DIS at high Q2, provides combined values of –s at di�erent energy scales Q, as shown
in Fig. 9.3, and quotes a combined result of –s(M2

Z) = 0.1198 ± 0.0032. A more recent study
of multijet production [373], based on improved reconstruction and data calibration, confirms the
general picture, albeit with a somewhat smaller value of –s(M2

Z) = 0.1165±0.0039, still at NLO. An

1st June, 2020 8:27am
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The strong coupling from e+e− annihilation
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Figure 9.4: Summary of determinations of –s(M2
Z) from the seven sub-fields discussed in the text.

The yellow (light shaded) bands and dotted lines indicate the pre-average values of each sub-field.
The dashed line and blue (dark shaded) band represent the final world average value of –s(M2

Z).

6th December, 2019 11:50am

[P. A. Zyla et al. (Particle Data Group), Prog. Theor.

Exp. Phys. 2020, 083C01 (2020) and 2021 update]

Why αs in e+e−?

• Electron-positron collisions offer a clean
environment for the analysis

• The e+e− jets & shapes sub-field alone
gives ∼ 2.6% uncertainty due to the
large spread between measurements

• Can ∼ 1% precision be achieved?

Why the differences?

• Hadronization modeling: Monte Carlo
or analytic

• Perturbative order: fixed order NNLO
to N3LO + resummation NLL to N3LL

• Type of observable used: jet rates or
event shapes

How best to improve?
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The strong coupling from e+e− annihilation: issues

The current situation raises some questions:

• No new data foreseen in the near future, so would including more perturbative
orders (fixed order and/or resummation) improve precision without any new data?

• If not, what are the limiting factors for precision in future QCD studies?

• What should be done to eliminate those factors?

⇓

To address these issues, two state-of-the-art pQCD analyses are presented:

1. An analysis based on the two-jet rate R2 computed at N3LO+NNLL accuracy. In
this analysis Monte Carlo tools are used to obtain hadronization corrections.

[A. Verbytskyi, A. Banfi, A. Kardos, P. F. Monni, S. Kluth, GS, Z. Szőr, Z. Trócsányi, Z. Tulipánt,
G. Zanderighi, JHEP 1908 (2019) 129 [arXiv:1902.08158 [hep-ph]]]

2. An analysis of event shape averages where unknown perturbative corrections beyond
NNLO are estimated from data. Hadronization corrections are obtained using both
Monte Carlo tools as well as analytic models.

[A. Kardos, GS, A. Verbytskyi, Eur. Phys. J. C 81 (2021) 4, 292 [arXiv:2009.00281 [hep-ph]]]
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The strong coupling from jet rates
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Jet rates in electron-positron annihilation

QCD predicts that the hadrons created in electron-positron annihilation are produced in
beams of collimated particles – jets.

Jet finding algorithms are used to define precisely how many jets are present in an event
and which particle belongs to a given jet.

Durham algorithm used in this study. Define a “distance measure” on final-state objects

yij = 2
min(E2

i ,E
2
j )

E2
vis

(1− cos θij )

Jets are defined by the following recursive algorithm

1. Find the smallest yij , suppose this is
min(yij ) = ykl .

2. If ykl is greater than a pre-determined cutoff ycut

(i.e., min(yij ) > ycut), then we are done, each
final-state object is a jet.

3. If ykl < ycut, then replace the k-th and l-th object
by a single new object of momentum pµk + pµl .

Phenomenology – Daniel Maître 3

Definition

● How many jets do you see?
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Jet rates in electron-positron annihilation

Jet rates: Rn is the fraction of n-jet events for a given ycut

Rn(ycut) =
σn−jet(ycut)

σtot

General behavior easy to understand

• if ycut is large, there are many steps of
combining objects ⇒ few jets

• if ycut is small, there are few steps of
combining objects ⇒ many jets

•
∑

n Rn = 1

Good candidate for αs measurement

• High perturbative accuracy, especially for R2

• Lots of precise data from LEP (and PETRA)

• Jet rates are known to be less sensitive to
hadronization corrections than event shapes

• R3 was used multiple times in the past to
extract αs(MZ )

The ALEPH Collaboration: Studies of QCD at e+e− centre-of-mass energies between 91 and 209 GeV 467

ratio of distributions is shown in Fig. 6b. Scaling violations
induce a rise of the cross section at small xE and at a de-
crease at large xE with increasing

√
s. The data clearly

exhibit this property, and it is qualitatively reproduced by
the parametrisations; the predictions of the Monte Carlo
models are in better agreement with the data.

4 Jet rates

Jet rates are defined by means of the Durham clustering
algorithm [8] in the following way. For each pair of particles
i and j in an event the metric yij is computed

yij =
2 min(E2

i , E2
j )(1 − cos θij)

E2
vis

,

where Evis is the total visible energy in the event. The pair
of particles with the smallest value of yij is replaced by a
pseudo-particle (cluster). The four-momentum of the clus-
ter is taken to be the sum of the four momenta of particles
i and j, pµ = pµ

i + pµ
j (‘E’ recombination scheme). The

clustering procedure is repeated until all yij values exceed
a given threshold ycut. The number of clusters remaining
at this point is defined to be the number of jets. Alterna-
tively, the procedure is repeated until exactly three clusters
remain. The smallest value of yij in this configuration is
defined as y3. The distribution of y3 is sensitive to the
probability of hard gluon radiation leading to a three-jet
topology. It can therefore be used to determine αs (Sect. 6).

The n-jet rates were measured for n = 1, 2, 3,4, 5 and
n ≥ 6. Detector correction factors were applied in the same
manner as for the inclusive distributions, but in this case
for each value of the jet resolution parameter ycut. Figure 7
shows the measured jet fractions as a function of ycut at
206 GeV. Good agreement with the Monte Carlo genera-
tor predictions is observed. However, in the region of the
peak of the three-jet fraction the generators, in particular
PYTHIA, lie above the data.

5 Event shapes

The various distributions describing the event shapes are
of interest because (i) most of the variables are predicted
to second order in QCD; and (ii) some resummed calcu-
lations to all orders in αs exist. By fitting the theoretical
predictions to these distributions the value of the strong
coupling constant may be determined. By comparing with
the direct predictions for the various Monte Carlo models,
the validity of each model is tested.

The primary objective is to observe the running of αs

with centre-of-mass energy. For this reason, the analyses at
each energy point have been carried out coherently and cor-
related systematic uncertainties are estimated. The event-
shape variables studied here are defined as follows.

– Thrust T : The thrust [26] axis nT maximises the quan-
tity

T = max
nT

(∑
i |pi · nT |∑

i |pi|

)
,

where the sum extends over all particles in the event.
– Thrust Major Tmajor: The thrust major vector, nMa,

is defined in the same way as the thrust vector, but
with the additional condition that nMa must lie in the
plane perpendicular to nT ,

Tmajor = max
nMa⊥nT

(∑
i |pi · nMa|∑

i |pi|

)
.

– Thrust Minor Tminor: The minor axis is perpendicular
to both the thrust axis and the major axis, nMi =
nT ×nMa. The value of thrust minor is given by

Tminor =

∑
i |pi · nMi|∑

i |pi|
.

– OblatenessO: The oblateness is defined as the difference
between thrust major and thrust minor,

O = Tmajor − Tminor .

– Sphericity S: The sphericity is calculated from the
ordered eigenvalues λi=1,2,3 of the quadratic momen-
tum tensor

Mαβ =

∑
i pα

i pβ
i∑

i |pi|2
, α,β = 1, 2, 3 ;

λ1 ≥ λ2 ≥ λ3 , λ1 + λ2 + λ3 = 1 ;

S =
3

2
(λ2 + λ3) .
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Fig. 7. Measured n-jet fractions for n = 1, 2, 3, 4, 5 and n ≥ 6
and the predictions of Monte Carlo models, at a centre-of-mass
energy of 206 GeV
[ALEPH Coll., Eur. Phys. J. C35, 457 (2004)]

8



Jet rates analysis: components

• Data from LEP and PETRA + new OPAL measurements used to build correlation
model for older measurements.

• Fixed-order perturbative predictions + some b-quark mass corrections

• Resummation + matching

• Non-perturbative corrections from state-of-the-art MC event generators + Lund and
cluster hadronization models
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Data

Combined analysis using 20+ datasets from 4 collaborations

The data covers a wide range of cms energies:
√
s = 35 – 207 GeV

Experiment Data
√
s, (average), GeV MC

√
s, GeV Events

OPAL 91.2(91.2) 91.2 1508031
OPAL 189.0(189.0) 189 3300
OPAL 183.0(183.0) 183 1082
OPAL 172.0(172.0) 172 224
OPAL 161.0(161.0) 161 281
OPAL 130.0− 136.0(133.0) 133 630

L3 201.5− 209.1(206.2) 206 4146
L3 199.2− 203.8(200.2) 200 2456
L3 191.4− 196.0(194.4) 194 2403
L3 188.4− 189.9(188.6) 189 4479
L3 180.8− 184.2(182.8) 183 1500
L3 161.2− 164.7(161.3) 161 424
L3 135.9− 140.1(136.1) 136 414
L3 129.9− 130.4(130.1) 130 556

JADE 43.4− 44.3(43.7) 44 4110
JADE 34.5− 35.5(34.9) 35 29514

ALEPH 91.2(91.2) 91.2 3600000
ALEPH 206.0(206.0) 206 3578
ALEPH 189.0(189.0) 189 3578
ALEPH 183.0(183.0) 183 1319
ALEPH 172.0(172.0) 172 257
ALEPH 161.0(161.0) 161 319
ALEPH 133.0(133.0) 133 806

Data selection:

• measurements with both
charged and neutral final
state particles

• corrected for detector
effects

• corrected for QED initial
state radiation

• no overlap with other
samples

• sufficient precision

• sufficient information on
dataset available
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Fixed-order predictions for jet rates

Fixed-order predictions up to and including α3
s corrections known for some time

[Gehrmann-De Ridder et al., Phys. Rev. Lett. 100 (2008) 172001, Weinzierl, Phys. Rev. Lett. 101 (2008) 162001]

Rn(y) = δ2,n +
αs(Q)

2π
An(y) +

(
αs(Q)

2π

)2

Bn(y) +

(
αs(Q)

2π

)3

Cn(y) +O(α4
s )

0.0

0.2

0.4

0.6

0.8

1.0

R
n

10−3 10−2 10−1

y

Q

αS(Q)

µR/Q ∈ [1/2, 2]

R5 LO
R4 NLO
R3 NNLO
R2 N3LO

• R3 computed at NNLO accuracy using
CoLoRFulNNLO ⇒ obtain R2 at N3LO

[Del Duca et al., Phys. Rev. D94 (2016) no.7, 074019]

• very good numerical precision and stability

• b-mass corrections from Zbb4: note only NLO
for R3 ⇒ NNLO for R2

[Nason, Oleari, Phys. Lett. B407, 57 (1997)]

• mass effects included at distribution level, e.g.

R2(y) = (1− rb)RN3LO
2 (y)mb=0 + rbR

NNLO
2 (y)mb 6=0

where rb is the fraction of b-quark events

rb =
σmb 6=0(e+e− → bb̄)

σmb 6=0(e+e− → hardons)
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Resummation

Fixed order diverges in the limit of y → 0 as ∼ αn
s ln2n−1 y , i.e., the fixed-order coefficients

at n-th order include terms {lnk y}2n−1
k=1 .

For small y the logarithms become large, αn
s ln2n−1 y ∼ 1, invalidating the use of

fixed-order perturbation theory.

Logarithmically enhanced terms must be resummed to all orders to obtain a description
appropriate in the y → 0 limit. Resummation can be systematically improved by
resumming more towers of logs: leading logs (LL), next-to-leading logs (NLL), etc.

R2(y) ∼
{

1
[

log y + 1
]

LO

1

σt

dΣ

d cosχ
+ αs

[
log y + 1

]
NLO

1

σt

dΣ

d cosχ
+ α2

s

[
log3 y + log2 y + log y + 1

]
NNLO

1

σt

dΣ

d cosχ
+ α3

s

[
log5 y + log4 y + log3 y + log2 y . . .

]}
N3LO

...

LL NLL NNLL
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Combining fixed-order and resummed predictions

Fixed-order and resummed calculations are complementary to each other: they describe
data over different kinematical ranges

In order to obtain predictions over a wide kinematical range, the two computations must
be combined without double counting (“matching”)

Matched predictions at N3LO+NNLL:

• all terms from first four rows (N3LO)
• in addition, first three terms from all rows (NNLL)
• must take care to count the first three terms of the first four rows only once

R2(y) ∼
{

1
[

log y + 1
]

LO

1

σt

dΣ

d cosχ
+ αs

[
log y + 1

]
NLO

1

σt

dΣ

d cosχ
+ α2

s

[
log3 y + log2 y + log y + 1

]
NNLO

1

σt

dΣ

d cosχ
+ α3

s

[
log5 y + log4 y + log3 y + log2 y . . .

]}
N3LO

...

LL NLL NNLL 13



Resummed predictions for jet rates

Resummed predictions for R2 at NNLL accuracy have been computed more recently
[Banfi et al., Phys. Rev. Lett. 117 (2016) 172001]

R2(y) = e−RNNLL(y)

[(
1 +

αs(Q)

2π
H(1) +

αs(Q
√
y)

2π
C

(1)
hc

)
FNLL(y) +

αs(Q)

2π
δFNNLL(y)

]

• resummation performed with the ARES program

• matching to fixed-order: log R scheme

• counting of logs (NNLL) here refers to logs in lnR2

In contrast, resummed predictions for R3 have a much lower logarithmic accuracy

• more colored emitters

• state-of-the-art resummation includes only O(αn
s L

2n) and O(αn
s L

2n−1) terms in R3

(note different logarithmic counting)

• in this analysis, no resummation for R3 is performed

⇓

Main focus on N3LO+NNLL for R2, but also simultaneous analysis with NNLO for R3
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Hadronization corrections: setups

Effects associated with the parton-to-hadron transition cannot be computed in
perturbation theory and must be estimated by other means.

In this analysis: obtained using state-of-the-art MC event generators: e+e− → jjjjj

merged samples with massive b-quarks

• Default setup “HL”: Herwig7.1.4 for e+e− → 2, 3, 4, 5 jets, 2 and 3 jets at
NLO using MadGraph5 and OpenLoops + Lund fragmentation model

• Setup for hadronization systematics “HC”: Herwig7.1.4 for e+e− → 2, 3, 4, 5 jets, 2
and 3 jets at NLO using MadGraph5 and OpenLoops + cluster fragmentation model

• Setup for cross-checks “SC”: Sherpa2.2.6 for e+e− → 2, 3, 4, 5 jets, 2 jets at NLO
using AMEGIC, COMIX and OpenLoops + cluster fragmentation model

15



Hadronization correction factors

Hadronization correction factors for several values of ycut for R2 and R3
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• Correlations between R2 and R3 taken into account.

• Simultaneous corrections for R2 and R3 preserve physical constraints

Rn,hadrons ≥ 0 , R2,hadrons + R3,hadrons + R≥4,hadrons = 1
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Fit procedure

To find the optimal value of αs, MINUIT2 is used to minimize

χ2(αs) =
∑

data set

χ2(αs)
data set

where χ2(αs) are computed separately for each data set

χ2(αs) = ~r V−1~rT , ~r = (~D − ~P(αs))

• ~D: vector of data points

• ~P(αs): vector of theoretical predictions

• V : covariance matrix for ~D (statistical correlations estimated from MC generated
samples, systematic correlations modeled to mimic patters observed in OPAL data)
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Fits: distributions
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Central result and fit range selection

• avoid regions where theoretical predictions or hadronization model are unreliable

• Q2-dependent fit range: [−2.25 + L,−1] for R2 and [−2 + L,−1] for R3 (if used),

where L = ln
M2

Z
Q2

• note separate fit ranges for R2 and R3 (if used)

• smallest χ2/ndof , low sensitivity to fit range
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Fits: systematics and uncertainties
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Estimate the uncertainty by

• varying the renormalization scale
µren ∈ [Q/2, 2Q]: (ren.)

• varying the resummation scale
µres ∈ [Q/2, 2Q]: (res.)

• varying the hadronization model
HL vs. HC : (hadr .)

• fit uncertainty is obtained from the
χ2 + 1 criterion as implemented in
MINUIT2: (exp.)

Notice much reduced renormalization scale
uncertainty when NNLL resummation for R2

is included
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Results: R2

Extraction of αs(MZ ) from the two-jet rate R2 measured over a wide range of cms energies
in e+e− collisions has been performed at N3LO+NNLL accuracy for the first time:

αs(MZ ) = 0.11881± 0.00063(exp.)± 0.00101(hadr .)± 0.00045(ren.)± 0.00034(res.)

αs(MZ ) = 0.11881± 0.00131(comb.)

• main source of uncertainty: hadronization modeling

• uncertainty from scale variation is considerably smaller than from hadronization

• experimental uncertainty comparable to perturbative one

Inclusion of NNLL resummation crucial for reducing perturbative uncertainty
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Results: R2 + R3

Combined fit of R2 at N3LO+NNLL and R3 at NNLO, taking into account for the first
time the correlation between the observables gives:

αs(MZ ) = 0.11989± 0.00045(exp.)± 0.00098(hadr .)± 0.00046(ren.)± 0.00017(res.)

αs(MZ ) = 0.11989± 0.00118(comb.)

• result is fully compatible with R2-only fit

• formally more precise than a fit based on R2 alone,

• but much more sensitive to fit range selection

An accurate resummation of R3 could potentially reduce the sensitivity to fit range
selection and lead to an even more precise determination of αs(MZ )
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The strong coupling from jet rates: final result

The following value of αs(MZ ) was obtained in the analysis

αs(MZ ) = 0.11881± 0.00063 (exp.)± 0.00101 (hadr .)± 0.00045 (ren.)± 0.00034 (res.)
αs(MZ ) = 0.11881± 0.00131 (comb.)

• The result agrees with the world average αs(MZ )PDG2020 = 0.1179± 0.0010 and has an
uncertainty that is of the same size

• The presented result is the most precise in its subclass [Salam, arXiv:1712.05165v2]

Determination Data and procedure
0.1175± 0.0025 ALEPH 3-jet rate (NNLO+MChad)
0.1199± 0.0059 JADE 3-jet rate (NNLO+NLL+MChad)

0.1224± 0.0039 ALEPH event shapes (NNLO+NLL+MChad)
0.1172± 0.0051 JADE event shapes (NNLO+NLL+MChad)
0.1189± 0.0041 OPAL event shapes (NNLO+NLL+MChad)

0.1164+0.0028
−0.0026 Thrust (NNLO+NLL+anlhad)

0.1134+0.0031
−0.0025 Thrust (NNLO+NNLL+anlhad)

0.1135± 0.0011 Thrust (SCET NNLO+N3LL+anlhad)

0.1123± 0.0015 C -parameter (SCET NNLO+N3LL+anlhad)
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So what is the issue?

The main source of uncertainty is due to hadronization modeling and differences with
other precise determinations remain.

Monte Carlo simulations used to obtain hadronization
corrections, but

• the parton level of the MC simulation is not
equivalent to a fixed-order calculation

• the tuning of the shower/hadronization models
performed using theoretical predictions with
lower perturbative accuracy

Sizeable difference with other precise determinations,
e.g. those based on thrust (T). Basic differences

• NNLO vs. N3LO perturbative accuracy

• Monte Calo vs. analytic hadronization models

35 9. Quantum Chromodynamics
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Figure 9.4: Summary of determinations of –s(M2
Z) from the seven sub-fields discussed in the text.

The yellow (light shaded) bands and dotted lines indicate the pre-average values of each sub-field.
The dashed line and blue (dark shaded) band represent the final world average value of –s(M2

Z).
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Can we examine the role of higher orders and hadronization models in a single
analysis?
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The strong coupling from event shape averages
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Event shapes

To address this question, we perform a state-of-the-art perturbative QCD analysis of
event shape averages.

Event shapes associate a single number to the entire event, describing some specific
aspect of the global event topology.

Thrust (T):

• Definition: T = max
~n

(∑
i |~n · ~pi |∑
i |~pi |

)
• Generally 1/2 ≤ T ≤ 1, where T = 1/2 for spherically symmetric events and T → 1 in

the dijet limit (“pencil-like” event)

Phenomenology – Daniel Maître 3

Definition

● How many jets do you see?

T ∼ 1

Phenomenology – Daniel Maître 3

Definition

● How many jets do you see?

T ∼ 1/2 25



Event shapes

To address this question, we perform a state-of-the-art perturbative QCD analysis of
event shape averages.

Event shapes associate a single number to the entire event, describing some specific
aspect of the global event topology.

C-parameter (C):

• Definition: C = 3(λ1λ2 + λ2λ3 + λ3λ1), λi are eigenvalues of Θρσ =
1∑
i |~pi |

∑
i

~pρi ~p
σ
i

|~pi |

• Generally 0 ≤ C ≤ 1, where C = 1 for spherically symmetric events and C → 0 in the
dijet limit (“pencil-like” event). For planar events 0 ≤ C ≤ 3/4.

Phenomenology – Daniel Maître 3

Definition

● How many jets do you see?

C ∼ 0

Phenomenology – Daniel Maître 3

Definition

● How many jets do you see?

C ∼ 1 25



Event shapes

Three-jet event shapes (i.e., those that have a non-trivial distribution already with three
final-state momenta) can be computed to NNLO accuracy in pQCD (note τ = 1− T).

[Gehrmann-De Ridder et al., JHEP 0712 (2007) 094,
Weinzierl, JHEP 0906 (2009) 041,

Del Duca et al., Phys. Rev. D 94 (2016) 7, 074019]
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Clearly event shape moments can also be computed at the same accuracy.

26



Event shapes analysis: components

• Data form 20+ datasets with a wide range of energies: focus on thrust (T) and the
C -parameter (C).

• Estimation of unknown N3LO perturbative QCD coefficients from data (hence the
focus on event shape averages ⇒ small number of coefficients to fit).

• Hadronization corrections obtained from both Monte Carlo tools as well as analytic
models extended to N3LO for the first time.
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Data

Combined analysis using 20+ datasets and a wide range of energies:
√
s = 29–206 GeV

Measured Used
Points, Points,

Source Observables
√
s range Observables

√
s range

( GeV) ( GeV)

ALEPH 〈(1− T )1〉 1,[133] 〈(1− T )1〉 1,[133]

ALEPH 〈(1− T )1〉 1,[91] 〈(1− T )1〉 1,[91]

ALEPH 〈(1− T )1〉 9,[91, 206] 〈(1− T )1〉 9,[91, 206]

AMY 〈(1− T )1〉 1,[55] 〈(1− T )1〉 1,[55]

DELPHI 〈(1− T )1,2,3〉 15,[91, 183] 〈(1− T )1〉 5,[91, 183]

DELPHI 〈(1− T )1〉 15,[45, 202] 〈(1− T )1〉 11,[45, 202]

HRS 〈(1− T )1〉 1,[29] 〈(1− T )1〉 1,[29]

JADE 〈(1− T )1,2,3,4,5〉 30,[14, 43] 〈(1− T )1〉 4,[34, 43]

L3 〈(1− T )1〉 1,[91] 〈(1− T )1〉 1,[91]

L3 〈(1− T )1,2〉 30,[41, 206] 〈(1− T )1〉 15,[41, 206]

MARK 〈(1− T )1〉 1,[89] 〈(1− T )1〉 1,[89]

MARK 〈(1− T )1〉 1,[29] 〈(1− T )1〉 1,[29]

MARKII 〈(1− T )1〉 1,[89] 〈(1− T )1〉 1,[89]

OPAL 〈(1− T )1,2,3,4,5〉 60,[91, 206] 〈(1− T )1〉 12,[91, 206]

TASSO 〈(1− T )1〉 4,[14, 44] 〈(1− T )1〉 2,[35, 44]

ALEPH 〈C1〉 1,[91] 〈C1〉 1,[91]

DELPHI 〈C1〉 15,[45, 202] 〈C1〉 11,[45, 202]

DELPHI 〈C1,2,3〉 12,[133, 183] 〈C1〉 4,[133, 183]

JADE 〈C1,2,3,4,5〉 30,[14, 43] 〈C1〉 4,[34, 43]

L3 〈C1〉 1,[91] 〈C1〉 1,[91]

L3 〈C1,2〉 18,[130, 206] 〈C1〉 9,[130, 206]

OPAL 〈C1,2,3,4,5〉 60,[91, 206] 〈C1〉 12,[91, 206]
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Fixed-order predictions for event shape moments

The n-th moment of an event shape O is defined by

〈On〉 =
1

σtot

∫ Omax

Omin

On dσ(O)

dO
dO

Fixed-order predictions up to and including α4
s terms read

〈On〉 =
αs(Q)

2π
A〈O

n〉 +

(
αs(Q)

2π

)2

B〈O
n〉 +

(
αs(Q)

2π

)3

C 〈O
n〉 +

(
αs(Q)

2π

)4

D〈O
n〉 +O(α5

s )

• First three coefficients (A〈O
n〉, B〈O

n〉 and C 〈O
n〉) have been known for some time

[Gehrmann-De Ridder et al., JHEP 05 (2009) 106, Weinzierl, Phys. Rev. D 80 (2009) 094018]

• Recomputed for this study with CoLoRFulNNLO ⇒ very good numerical precision
[Del Duca et al., Phys. Rev. D 94 (2016) no.7, 074019]

• b-mass corrections from Zbb4: note only NLO
[Nason, Oleari, Phys. Lett. B 407, 57 (1997)]

A〈O
n〉 = (1− rb(Q))A

〈On〉
mb=0 + rb(Q)A

〈On〉
mb 6=0

B〈O
n〉 = (1− rb(Q))B

〈On〉
mb=0 + rb(Q)B

〈On〉
mb 6=0

where rb is the fraction of b-quark events

rb(Q) =
σmb 6=0(e+e− → bb̄)

σmb 6=0(e+e− → hadrons) 29



Event shape averages: predictions at NNLO and beyond

We focus on averages of the C -parameter 〈C1〉 and one minus thrust 〈(1− T )1〉

• abundance of available measurements (see above)

• avoid correlations between various moments (not reported by most measurements)

Fixed-order predictions at scale Q = mZ for the perturbative coefficients [normalized to
the leading order cross section σ0(e+e− → hadrons)]

Coefficient This work Analytic GGGH SW

A
〈(1−T )1〉
0 2.1034(1) 2.10347 2.1035 2.10344(3)

B
〈(1−T )1〉
0 44.995(1) 44.999(2) 44.999(5)

C
〈(1−T )1〉
0 979.6(6) 867(21) 1100(30)

A
〈C1〉
0 8.6332(5) 8.63789 8.6379 8.6378(1)

B
〈C1〉
0 172.834(5) 172.859 172.778(7) 172.8(3)

C
〈C1〉
0 3525(3) 3212(89) 4200(100)

[Gehrmann-De Ridder et al., JHEP 05 (2009) 106 (GGGH), Weinzierl, Phys. Rev. D 80 (2009) 094018] (SW)

We extract D〈(1−T )1〉 and D〈C
1〉 from data together with αs(MZ ) in the analysis.
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Event shape averages: predictions at NNLO and beyond

Importantly, the main point of extracting the N3LO coefficients D〈(1−T )1〉 and D〈C
1〉

from data is not to get an accurate determination of these quantities.

Rather, it is to model them as best as possible in order to be able to assess the impact
of including terms beyond NNLO in the extraction of the strong coupling in the absence
of an actual calculation of those terms.
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Modeling of non-perturbative corrections

The modeling of non-perturbative corrections is essential to perform a meaningful
comparison of predictions with data.

To basic approaches

1. Monte Carlo (MC) hadronization: extract hadronization corrections from Monte
Carlo simulations.

Issue: the parton level of an MC simulation is not equivalent to a fixed-order
calculation + issue of tuning.

2. Analytic hadronization: use analytic models to describe the effects of hadronization
on observables.

Issue: systematics are difficult to control.

⇓

Apply both approaches and examine the impact of the choice on the extracted value of
the strong coupling.
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Monte Carlo hadronization

Hadronization corrections obtained using state-of-the-art MC event generators:
e+e− → Z/γ → 2, 3, 4, 5 parton processes generated using MadGraph5 and OpenLoops,
2-parton final state at NLO.

To study hadronization systematics, we employ different setups (similar to jet rates
analysis):

• Default setup “HL”: Herwig7.2.0 with Lund fragmentation model

• Setup for systematics “HC”: Herwig7.2.0 with cluster fragmentation model

• Setup for cross-checks “SC”: Sherpa2.2.8 with cluster fragmentation model

Hadronization corrections are ratios of observables calculated from MC generated events
at hadron and parton levels.

To account for the presence of a shower cut-off scale Q0 ≈ O(1 GeV) in MC generators,
predictions were computed with several values of Q0 and extrapolated to Q0 → 0 GeV.

〈On〉corrected = 〈On〉theory ×
〈On〉MC hadrons, Q0=0 GeV

〈On〉MC partons, Q0=0 GeV
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Monte Carlo hadronization

Data and predictions by MC event generators extrapolated to Q0 → 0 GeV.
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• Hadron and parton level MC
predictions provide reasonable
descriptions of data and NNLO
theory for wide range of energy

• Non-physical behaviour of MC
parton level results for small

√
s:

〈On〉 increases with energy
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Monte Carlo hadronization

Data and predictions by MC event generators extrapolated to Q0 → 0 GeV.
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• Hadron and parton level MC
predictions provide reasonable
descriptions of data and NNLO
theory for wide range of energy

• Non-physical behaviour of MC
parton level results for small

√
s:

〈On〉 increases with energy

⇓

• Exclude measurements with√
s < 29 GeV

• Weaker criterion than requiring
that MC matches data well, but
retains as much data as possible
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Analytic hadronization

Dispersive model of analytic hadronization corrections for event shapes: hadronization
corrections simply shift the perturbative event shape distributions

dσhadrons(O)

dO
=

dσpartons(O − aOP)

dO

• the aO are observable-specific constants, e.g., a1−T = 2 and aC = 3π

• the power correction P is universal

P(αs,Q, α0) =
4CF

π2
M×

µI

Q
×
{
α0(µI )− αS +O(α2

s )

}
where M is the so-called Milan factor and α0 is a non-perturbative model parameter

Under these assumptions, we find that non-perturbative corrections simply shift the
perturbative event shape averages

〈O1〉hadrons = 〈O1〉partons + aOP

35



Issues with the dispersive model

Recently, both of these assumptions have been challenged

• the aO are observable-specific constants

Issue: aO have been computed in the two-jet limit, but they actually depend on the
value of O. This dependence is a source of uncertainty in αs extractions based on
event shapes and analytic hadronization models that has not been accounted for so
far and may be responsible for some of the tension between recent αs determinations.

[Luisoni, Monni, Salam, Eur. Phys. J. C 81 (2021) 2, 158, Caola et al., arXiv:2108.08897 [hep-ph]]

• the power correction P is universal

P(αs,Q, α0) =
4CF

π2
M×

µI

Q
×
{
α0(µI )− αS +O(α2

s )

}
Issue: non-inclusive corrections, e.g., those parametrized by the Milan factor M may
not in fact be universal beyond NLO

In this analysis we take the pragmatic viewpoint that this approach nevertheless provides
a reasonable model for non-perturbative corrections. However, the applicability of the
dispersive model should be investigated.
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Computing the power correction

We must compute P at O(α4
s ) accuracy. Ingredients of the computation are

• The running of the strong coupling in the MS scheme

• The relation between the effective soft coupling in the Catani–Marchesini–Webber
(CMW) scheme αCMW

s and the strong coupling defined in the MS scheme αs

αCMW
S = αS

[
1 +

αS

2π
K +

(αS

2π

)2
L +

(αS

2π

)3
M +O(α4

S )

]

• K , L and M are in principle computable constants

• K is simply the one-loop cusp anomalous dimension

• L and M can be computed once the effective soft coupling is explicitly defined ⇒
several proposals in the literature beyond NLL, so L and M are “scheme-dependent”

37



Effective soft coupling schemes

The Catani–Marchesini–Webber soft coupling at NLL (αs is the strong coupling in the
MS scheme, Cq = CF , Cg = CA)

ACMW
i (αs) = Ci

αCMW
s

π
= Ci

αCMW
s

π

(
1 +

αs

2π
K
)

Proposals for definitions beyond NLL

AT ,i (αs) =
1

2
µ2
∫ ∞

0
dm2

Tdk
2
T δ(µ2 − k2

T )wi (k)

A0,i (αs) =
1

2
µ2
∫ ∞

0
dm2

Tdk
2
T δ(µ2 −m2

T )wi (k)

where wi (k) is called the web function, it gives the “probability” of correlated emission
(including the corresponding virtual corrections) of an arbitrary number of soft partons
with total momentum k.

[Catani, De Florian and Grazzini, Eur. Phys. J. C 79, 685 (2019),
Banfi, El-Menoufi and P.F. Monni JHEP 01, 083 (2019)]
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Effective soft coupling schemes

Given these definitions, the expansion of αCMW
s in terms of αs, and hence L and M, can in

principle be computed (note in each scheme K is the one-loop cusp anomalous dimension)

(αCMW
s )scheme = αs

[
1 +

αs

2π
K +

( αs

2π

)2
Lscheme +

( αs

2π

)3
Mscheme +O(α4

s )

]

• A0 scheme: L and M computed from A0,i

• AT scheme: L computed from AT ,i , but the complete expression for M is missing in
this scheme, hence we set MT = M0

• Acusp scheme: L and M are simply set equal to the two-and three-loop cusp
anomalous dimensions (for ease of comparison with existing results)
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The power correction

The power correction at O(α4
s ) accuracy reads

P(αS ,Q, α0) =
4CF

π2
M×

µI

Q
×
{
α0(µI )−

[
αS (µR) +

(
K + β0

(
1 + ln

µR

µI

))
α2
S (µR)

2π

+

(
2L + (4β0 (β0 + K) + β1)

(
1 + ln

µR

µI

)
+ 2β2

0 ln2 µR

µI

)
α3
S (µR)

8π2

+

(
4M +

(
2β0 (12β0(β0 + K) + 5β1) + β2 + 4β1K + 12β0L

)(
1 + ln

µR

µI

)
+ β0(12β0(β0 + K) + 5β1) ln2 µR

µI
+4β3

0 ln3 µR

µI

)
α4
S (µR)

32π3

]}

• M is the so-called Milan factor with estimated value Mest. ± δMest. = 1.49± 0.30.

• µI is the scale where the perturbative and non-perturbative couplings are matched.
Following the usual choice, we set µI = 2 GeV.

• α0(µI ) corresponds to the first moment of the effective soft coupling below the scale
µI and is a non-perturbative parameter of the model

α0(µI ) =
1

µI

∫ µI

0
dµαCMW

s (µ)
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Hadronization correction factors

Ratios of hadron-level to parton-level predictions
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• Analytic hadronization: the result
for the A0 scheme is shown, but
the different schemes give very
similar results.
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• Analytic hadronization: the result
for the A0 scheme is shown, but
the different schemes give very
similar results.

• Recall measurements with
√
s < 29

GeV are excluded.

• Weaker criterion than requiring
that sub-leading power corrections
are small.

• Serves to highlight the
discrepancies between MC and
analytic models where
hadronization effects are most
pronounced (low energies).
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Fit procedure

Values of αs determined using optimization procedures in MINUIT2

χ2(αS ) =
all data sets∑

i

χ2
i (αS )

where χ2
i (αS ) for data set i is

χ2
i (αS ) = (~D − ~P(αS ))V−1(~D − ~P(αS ))T

• ~D: vector of data points

• ~P(αS ): vector of calculated predictions

• V : the covariance matrix of ~D (diagonal, stat. and syst. uncertainties added in
quadrature for every measurement)
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Fit results

Results of the fits at N3LO vs. data. In addition to αs(MZ ), we fit also

• the O(α4
s ) perturbative coefficient

D〈O
n〉 (in N3LO fits)

• the non-perturbative parameter
α0(2 GeV) (when using the analytic
hadronization model)

• the Milan factor M, in order to
include the uncertainty on its
theoretical value consistently
(constrained fit)

• since the dependence on analytic
hadronization scheme is mild so
only the result for the A0 scheme is
shown
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Results: αs(MZ )

The extractions of αs(MZ ) from 〈(1− T )1〉 and 〈C1〉 data

0.1 0.12 0.14 0.16

N3LO Ac

N3LO AT

N3LO A0

N3LO HL

NNLO Ac

NNLO AT

NNLO A0

NNLO HL

αs(MZ )

〈(1− T )1〉
〈C1〉

• Good agreement between fits to
〈(1− T )1〉 and 〈C1〉 data both at
NNLO and N3LO ⇒ internal
consistency of extraction procedure

• Analytic hadronization
scheme-dependence is mild.

• Large discrepancy between
results obtained with MC and
analytic hadronization models
both at NNLO and N3LO ⇒
suggests that the discrepancy has a
fundamental origin and would hold
even with exact N3LO predictions.

• Better understanding of
hadronization is key.
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Results: D〈O
n〉

The extractions of the O(α4
s ) perturbative coefficients D〈(1−T )1〉 and D〈C

1〉 from data
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• Extracted values of the
perturbative coefficients show
reasonable agreement for both
observables between fits using MC
and analytic hadronization models
⇒ demonstrates the viability of
extracting higher-order coefficients
from data.

• The amount and consistency of
current data is an issue, would
need large amounts of consistent
data, e.g., from FCC-ee or CEPC.

• Precise high-energy data would be
especially valuable.
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Results: α0(2 GeV)

The extractions of the non-perturbative parameter α0(2 GeV) from 〈(1− T )1〉 and 〈C1〉
data

0 0.5 1 1.5
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NNLO A0

α0(2 GeV)

〈(1− T )1〉
〈C1〉

• Recall this parameter is
scheme-dependent, so its values in
different schemes should not be
directly compared. Nevertheless,
the choice of scheme has only a
small numerical impact.

• Values extracted from 〈(1− T )1〉
and 〈C1〉 data agree well with each
other both at NNLO and N3LO.

• Rather large uncertainties at N3LO
primarily due to insufficient
amount and quality of data as well
as the extraction method itself.
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What did we learn?

The aim of the analysis was to examine the role higher order corrections and the choice
of hadronization models play in a single analysis.

In particular, we wanted to assess the factors that will determine the precision of QCD
analyses of e+e− data once theoretical predictions at O(α4

s ) accuracy become available.

To do this, we have performed an extraction of αs(MZ ) from the averages of event shapes
〈(1− T )1〉 and 〈C1〉.

• Using NNLO theory and analytic hadronization models, the obtained results are
consistent with the last world average αs(MZ )PDG2020 = 0.1179± 0.0010.

• We considered a method of extracting αs(MZ ) at N3LO by estimating the missing
O(α4

s ) perturbative coefficient from data. The values of αs(MZ ) obtained in this way
are compatible with the last world average, within somewhat large uncertainties, e.g.,

αs(MZ )N
3LO+A0

= 0.12911± 0.00177(exp.)± 0.0123(scale)

• Both MC and analytic hadronization models were used, the latter being extended to
O(α4

s ) for the first time.

• The comparison of results obtained with MC and analytic hadronization suggests
that future extractions of αs(MZ ) will be strongly affected by the modeling of
hadronization effects.
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Lessons
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Improving perturbative predictions

Improving the perturbative predictions is clearly important.

More N’s, more legs

• beyond NNLO for 3-jet rate/event shapes

• beyond 3-jet rate/event shapes at NNLO

• improved logarithmic accuracy
for 3-jet rate/event shapes

Mass effects, mixed EW×QCD corrections

• mass corrections (finite mb) beyond NLO

• mixed EW×QCD corrections

However

• the necessary 2- and 3-loop matrix elements are presently not known, however this
is a very active area, so expect new results

• using those matrix elements to compute physical observables is a separate issue in
itself (definitely beyond NNLO), new ideas may be needed
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The role of hadronization corrections

But the elephant in the room: hadronization modeling

• discrepancies between results obtained with MC and analytic hadronization models
will likely remain in place even after including exact higher order perturbative
corrections beyond NNLO

• naively going to higher energies helps: hadr. corr. ∼ 1/Q, however. . .

• the energy of foreseen machines (FCC-ee, CEPC) is not orders of magnitude larger
than LEP

• moreover, going up in energy there is non-trivial interplay between smaller
hadronization corrections but larger background and much smaller luminosity
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The role of hadronization corrections

Bottom line: need better MC’s + hadronization models/calibration in e+e−

In a perfect world

• Parton showers with NNLL logarithmic accuracy matched to NNLO

• Hadronization models calibrated from scratch with many different observables, since
current models were tuned using MC’s with lower accuracy

Alternatively

• Need a (much) more refined analytical understanding of non-perturbative
corrections, for recent advances see e.g.,

[Luisoni, Monni, Salam, Eur. Phys. J. C 81 (2021) 2, 158,
Caola et al., arXiv:2108.08897 [hep-ph]]

• Look for better observables with smaller hadronization corrections, e.g., groomed
event shapes

[Baron, Marzani, Theeuwes, JHEP 08 (2018) 105,
Kardos, Larkoski, Trócsányi, Phys. Lett. B 809 (2020) 135704]
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Conclusions

So where do we stand?

• No new data foreseen in the near future, so would including more perturbative
orders (fixed order and/or resummation) improve precision without any new data?

Not by itself. More perturbative orders alone are not likely to dramatically improve
the precision of strong coupling extractions from existing data.

• If not, what are the limiting factors for precision in future QCD studies?

Main limiting factors are: systematics related to the estimation of hadronization
corrections as well as the quality and consistency of current data.

• What should be done to eliminate those factors?

In addition to advancing the perturbative predictions, we must seriously refine our
understanding/modeling of non-perturbative effects. This would be aided greatly
by dedicated low-energy (below the Z -peak) measurements at future e+e− facilities.
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Thank you for your attention!
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Backup slides
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Hadronization corrections: simultaneous corrections for R2 and R3

Challenge: simultaneous corrections for R2 and R3

• hadronization corrections derived on a bin-by-bin basis, Rn,hadron = Rn,partonfn(y),

n = 2, 3, 4, . . . can violate physical constraints: 0 ≤ Rn ≤ 1 and
∑
n

Rn = 1

Solution:

• introduce ξ1 and ξ2 such that at parton level R2,parton + R3,parton + R≥4,parton = 1

R2,parton = cos2 ξ1 , R3,parton = sin2 ξ1 cos2 ξ2 , R≥4,parton = sin2 ξ1 sin2 ξ2 ,

• similarly at hadron level, set

R2,hadron = cos2(ξ1 + δξ1) , R3,hadron = sin2(ξ1 + δξ1) cos2(ξ2 + δξ2) ,

R≥4,hadron = sin2(ξ1 + δξ1) sin2(ξ2 + δξ2)

• the functions δξ1(y) and δξ2(y) account for hadronization corrections and are
extracted from the MC samples

This approach clearly preserves physical constraints
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Hadronization corrections: δξ1(y) and δξ2(y)
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• to avoid binning effects, the
hadronization corrections are
parametrized with smooth
functions

• vertical lines show the fit ranges for
the reference fits of R2 and R3
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Hadronization corrections: hadron to parton ratios
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• to avoid binning effects, the
hadronization corrections are
parametrized with smooth
functions

• vertical lines show the fit ranges for
the reference fits of R2 and R3
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R2 fits

Fit of αs(MZ ) from experimental data for R2 obtained using N3LO and N3LO+NNLL
predictions for R2. The reported uncertainty comes from MINUIT2

Fit ranges, log y N3LO N3LO+NNLL
Hadronization χ2/ndof χ2/ndof

[−1.75 + L,−1] 0.12121± 0.00095 0.11849± 0.00092
SC 20/86 = 0.24 20/86 = 0.24

[−2 + L,−1] 0.12114± 0.00081 0.11864± 0.00075
SC 26/100 = 0.26 26/100 = 0.26

[−2.25 + L,−1] 0.12119± 0.00060 0.11916± 0.00063
SC 44/150 = 0.29 44/150 = 0.29

[−2.5 + L,−1] 0.12217± 0.00052 0.12075± 0.00055
SC 89/180 = 0.50 107/180 = 0.59

[−1.75 + L,−1] 0.11957± 0.00098 0.11698± 0.00093
HC 22/86 = 0.26 22/86 = 0.25

[−2 + L,−1] 0.11923± 0.00079 0.11687± 0.00076
HC 29/100 = 0.29 28/100 = 0.28

[−2.25 + L,−1] 0.11868± 0.00068 0.11679± 0.00064
HC 43/150 = 0.28 40/150 = 0.27

[−2.5 + L,−1] 0.11849± 0.00050 0.11723± 0.00053
HC 58/180 = 0.32 58/180 = 0.32

[−1.75 + L,−1] 0.12171± 0.00109 0.11897± 0.00092
HL 21/86 = 0.25 21/86 = 0.24

[−2 + L,−1] 0.12144± 0.00078 0.11893± 0.00075
HL 28/100 = 0.28 26/100 = 0.26

[−2.25 + L,−1] 0.12080± 0.00069 0.11881± 0.00063
HL 43/150 = 0.28 39/150 = 0.26

[−2.5 + L,−1] 0.12024± 0.00051 0.11897± 0.00053
HL 57/180 = 0.32 52/180 = 0.29
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R2 + R3 fits

Simultaneous fit of αs(MZ ) from experimental data for R2 and R3 obtained using N3LO
and N3LO+NNLL predictions for R2 and NNLO predictions for R3. The reported
uncertainty comes from MINUIT2

Fit ranges, log y N3LO N3LO+NNLL
Hadronization χ2/ndof χ2/ndof

[−1.75 + L,−1][−1.5 + L,−1] 0.12195± 0.00072 0.12078± 0.00066
SC 120/143 = 0.84 140/143 = 0.98

[−2 + L,−1][−1.75 + L,−1] 0.12163± 0.00061 0.12065± 0.00056
SC 153/187 = 0.82 176/187 = 0.94

[−2.25 + L,−1][−2 + L,−1] 0.12075± 0.00044 0.11994± 0.00041
SC 208/251 = 0.83 222/251 = 0.88

[−2.5 + L,−1][−2.25 + L,−1] 0.12143± 0.00043 0.12089± 0.00044
SC 321/331 = 0.97 336/331 = 1.01

[−1.75 + L,−1][−1.5 + L,−1] 0.12068± 0.00073 0.11956± 0.00066
HC 126/143 = 0.88 147/143 = 1.03

[−2 + L,−1][−1.75 + L,−1] 0.12006± 0.00061 0.11913± 0.00054
HC 163/187 = 0.87 188/187 = 1.01

[−2.25 + L,−1][−2 + L,−1] 0.11869± 0.00043 0.11793± 0.00043
HC 221/251 = 0.88 238/251 = 0.95

[−2.5 + L,−1][−2.25 + L,−1] 0.11845± 0.00045 0.11799± 0.00047
HC 302/331 = 0.91 310/331 = 0.94

[−1.75 + L,−1][−1.5 + L,−1] 0.12248± 0.00068 0.12129± 0.00063
HL 121/143 = 0.85 141/143 = 0.99

[−2 + L,−1][−1.75 + L,−1] 0.12211± 0.00057 0.12110± 0.00053
HL 155/187 = 0.83 180/187 = 0.96

[−2.25 + L,−1][−2 + L,−1] 0.12071± 0.00044 0.11989± 0.00045
HL 209/251 = 0.83 227/251 = 0.90

[−2.5 + L,−1][−2.25 + L,−1] 0.12041± 0.00044 0.11990± 0.00044
HL 266/331 = 0.80 278/331 = 0.84

58



Consistency tests

Several consistency tests performed

• simultaneous fit of R2 + R3

(see above)

• separate R3 fit

• variation of χ2 definition

• change of fit ranges

• multiplicative hadronization
corrections

• Sherpa MC hadronization SC

• stability across
√
s (see below)

• exclusion of data with
√
s < MZ
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Correlations: αs(MZ ) vs. α0(2 GeV)

Correlations between αs(MZ ) and α0(2 GeV)

• contours correspond to 1-, 2- and 3
standard deviations obtained in the
fit

• systematic uncertainties not
included
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