Non-equilibrium dynamics of integrable models: Brief review and current research projects

Balázs Pozsgay
Eötvös Loránd University Budapest
MTA-ELTE "Momentum" Integrable Quantum Dynamics Research group

28. October 2020

The topic of this talk

- History of integrable models

The topic of this talk

- History of integrable models
- The last decade: Non-equilibrium dynamics

The topic of this talk

- History of integrable models
- The last decade: Non-equilibrium dynamics
- Ongoing research projects and future plans

Integrability

What is it??

Integrability

What is it??
"Integrable models are special many body systems whose exact solution is possible with analytic methods".

Integrable models

- Many body systems in $1+1$ dimension

Integrable models

- Many body systems in $1+1$ dimension
- Classical or quantum

Integrable models

- Many body systems in $1+1$ dimension
- Classical or quantum
- Discrete or continuous space (spin chains, quantum gases or field theories)

Integrable models

- Many body systems in $1+1$ dimension
- Classical or quantum
- Discrete or continuous space (spin chains, quantum gases or field theories)
- Discrete or continuous time (Quantum gate models, or standard Hamiltonian systems)

Integrable models

- Many body systems in $1+1$ dimension
- Classical or quantum
- Discrete or continuous space (spin chains, quantum gases or field theories)
- Discrete or continuous time (Quantum gate models, or standard Hamiltonian systems)
- Existence of a large set of conserved charges

Integrable models

- Many body systems in $1+1$ dimension
- Classical or quantum
- Discrete or continuous space (spin chains, quantum gases or field theories)
- Discrete or continuous time (Quantum gate models, or standard Hamiltonian systems)
- Existence of a large set of conserved charges
- Scattering: Elastic and factorized (two-body reducible)

Integrable models

- Many body systems in $1+1$ dimension
- Classical or quantum
- Discrete or continuous space (spin chains, quantum gases or field theories)
- Discrete or continuous time (Quantum gate models, or standard Hamiltonian systems)
- Existence of a large set of conserved charges
- Scattering: Elastic and factorized (two-body reducible)
- Integrable models: between free and generic interacting models

Hans Bethe, 1931: Heisenberg spin chain

$$
H=\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}
$$

Hans Bethe, 1931: Heisenberg spin chain

$$
H=\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}
$$

- Ferromagnetic state with all spins up

Hans Bethe, 1931: Heisenberg spin chain

$$
H=\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}
$$

- Ferromagnetic state with all spins up
- Spin wave excitations

$$
E(p)=?
$$

Hans Bethe, 1931: Heisenberg spin chain

$$
H=\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}
$$

- Ferromagnetic state with all spins up
- Spin wave excitations

$$
E(p)=?
$$

- Two body problem

$$
S\left(p_{1}, p_{2}\right)=e^{i \delta\left(p_{1}, p_{2}\right)}=?
$$

Hans Bethe, 1931: Heisenberg spin chain

$$
H=\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}
$$

- Ferromagnetic state with all spins up
- Spin wave excitations

$$
E(p)=?
$$

- Two body problem

$$
S\left(p_{1}, p_{2}\right)=e^{i \delta\left(p_{1}, p_{2}\right)}=?
$$

- Three body scattering: product of two body scattering events

Further history

- Bethe Ansatz for the 1D Bose gas:

$$
H=\sum_{j=1}^{N}-\frac{\partial^{2}}{\partial x_{j}^{2}}+2 c \sum_{j<k} \delta\left(x_{j}-x_{k}\right)
$$

Lieb and Liniger, 1963

Further history

- Bethe Ansatz for the 1D Bose gas:

$$
H=\sum_{j=1}^{N}-\frac{\partial^{2}}{\partial x_{j}^{2}}+2 c \sum_{j<k} \delta\left(x_{j}-x_{k}\right)
$$

Lieb and Liniger, 1963

- Extension to particles with spin, C. N. Yang 1967

Further history

- Bethe Ansatz for the 1D Bose gas:

$$
H=\sum_{j=1}^{N}-\frac{\partial^{2}}{\partial x_{j}^{2}}+2 c \sum_{j<k} \delta\left(x_{j}-x_{k}\right)
$$

Lieb and Liniger, 1963

- Extension to particles with spin, C. N. Yang 1967
- Solution of the 8-vertex model (XYZ chain), R. Baxter, 1973

$$
H=\sum_{j} J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}
$$

Further history

- Bethe Ansatz for the 1D Bose gas:

$$
H=\sum_{j=1}^{N}-\frac{\partial^{2}}{\partial x_{j}^{2}}+2 c \sum_{j<k} \delta\left(x_{j}-x_{k}\right)
$$

Lieb and Liniger, 1963

- Extension to particles with spin, C. N. Yang 1967
- Solution of the 8 -vertex model (XYZ chain), R. Baxter, 1973

$$
H=\sum_{j} J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}
$$

- Integrable S-matrices in $1+1$ QFT: sine-Gordon model, etc... (A. B. Zamolodchikov \& AI. B. Zamolodchikov, ...)

Quantum Inverse Scattering Method
(L. Faddeev and the Leningrad group, around 1980)

Quantum Inverse Scattering Method
(L. Faddeev and the Leningrad group, around 1980)

- Standard and unified framework

Quantum Inverse Scattering Method
(L. Faddeev and the Leningrad group, around 1980)

- Standard and unified framework
- Construction of conserved charges

Quantum Inverse Scattering Method
(L. Faddeev and the Leningrad group, around 1980)

- Standard and unified framework
- Construction of conserved charges
- Yang-Baxter relation:

History of integrable models between 1980 and 2010...

- ...is quite a lot to tell.

History of integrable models between 1980 and 2010...

- ...is quite a lot to tell.
- Thermodynamic state functions in equilibrium

History of integrable models between 1980 and 2010...

- ...is quite a lot to tell.
- Thermodynamic state functions in equilibrium
- Correlation functions, and their asymptotic behaviour

$$
\langle\mathcal{O}(0) \mathcal{O}(x)\rangle \sim \frac{1}{x^{\kappa}}
$$

History of integrable models between 1980 and 2010...

- ...is quite a lot to tell.
- Thermodynamic state functions in equilibrium
- Correlation functions, and their asymptotic behaviour

$$
\langle\mathcal{O}(0) \mathcal{O}(x)\rangle \sim \frac{1}{x^{\kappa}}
$$

- Relation to AdS/CFT

Experiments

B. Lake, D. A. Tennant, J.-S. Caux, T. Barthel, U. Schollwöck, S. E. Nagler, and C.
D. Frost, Multispinon Continua at Zero and Finite Temperature in a Near-Ideal Heisenberg Chain, Phys. Rev. Lett. 111, 137205

Quantum simulation of integrable models!

Quantum Newton's Cradle

T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton's cradle, Nature 440, 900-903 (2006)

Non-equilibrium dynamics

- Equilibration and thermalization (?)

Non-equilibrium dynamics

- Equilibration and thermalization (?)
- Transport properties

Equilibration in integrable models

- Can we derive statistical physics from QM?

Equilibration in integrable models

- Can we derive statistical physics from QM?
- Generic non-integrable systems: Gibbs Ensemble

$$
\rho_{G}=\frac{e^{-\beta H}}{Z}
$$

Equilibration in integrable models

- Can we derive statistical physics from QM?
- Generic non-integrable systems: Gibbs Ensemble

$$
\rho_{G}=\frac{e^{-\beta H}}{Z}
$$

- Conserved charges: $\left\{Q_{\alpha}\right\}_{\alpha=1,2, \ldots}$

$$
\left[Q_{\alpha}, Q_{\beta}\right]=0
$$

Equilibration in integrable models

- Can we derive statistical physics from QM?
- Generic non-integrable systems: Gibbs Ensemble

$$
\rho_{G}=\frac{e^{-\beta H}}{Z}
$$

- Conserved charges: $\left\{Q_{\alpha}\right\}_{\alpha=1,2, \ldots}$

$$
\left[Q_{\alpha}, Q_{\beta}\right]=0
$$

- Generalized Gibbs Ensemble (GGE, M. Rigol, 2006):

$$
\rho_{G G E}=\frac{e^{-\sum_{j} \beta_{j} Q_{j}}}{Z}
$$

Questions about the GGE:

- When is a set of charges complete? How to find it?

Questions about the GGE:

- When is a set of charges complete? How to find it?
- Given an initial state $\left|\Psi_{0}\right\rangle$ how to find the GGE?

$$
\left\langle\Psi_{0}\right| Q_{\alpha}\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left(\rho_{G G E} Q_{\alpha}\right)
$$

Questions about the GGE:

- When is a set of charges complete? How to find it?
- Given an initial state $\left|\Psi_{0}\right\rangle$ how to find the GGE?

$$
\left\langle\Psi_{0}\right| Q_{\alpha}\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left(\rho_{G G E} Q_{\alpha}\right)
$$

- How to give predictions for the dynamics?

$$
\left\langle\Psi_{0}\right| e^{i H t} \mathcal{O} e^{-i H t}\left|\Psi_{0}\right\rangle=?
$$

GGE for the Heisenberg spin chains

- Local charges Q_{α} were known from QISM

GGE for the Heisenberg spin chains

- Local charges Q_{α} were known from QISM
- Local charges not complete for the GGE!
B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M. Rigol, and J.-S. Caux Phys. Rev. Lett. 113, 117202 (2014)
B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács, Phys. Rev. Lett. 113, 117203 (2014)

GGE in the Heisenberg spin chains

- Solution: quasi-local charges

$$
Q=\sum_{x} q(x), \quad q(x)=\sum_{r} q^{(r)}(x)
$$

E. Ilievski, M. Medenjak, T. Prosen, Phys. Rev. Lett. 115, 120601 (2015)
E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler, T. Prosen Phys. Rev. Lett. 115, 157201 (2015)

Generalized Hydrodynamics (GHD)

- Transport in the large time, long distance limit
O. A. Castro-Alvaredo, B. Doyon, T. Yoshimura, Physical Review X 6 (4), 041065, (2016)
B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016)

Generalized Hydrodynamics (GHD)

- Transport in the large time, long distance limit
O. A. Castro-Alvaredo, B. Doyon, T. Yoshimura, Physical Review X 6 (4), 041065, (2016)
B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016)
- Describes ballistic, diffusive, even super-diffusive transport

Generalized Hydrodynamics (GHD)

- Transport in the large time, long distance limit
O. A. Castro-Alvaredo, B. Doyon, T. Yoshimura, Physical Review X 6 (4), 041065, (2016)
B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016)
- Describes ballistic, diffusive, even super-diffusive transport
- Fluid cells: Important to know $\left\langle q_{\alpha}(x, t)\right\rangle$

Generalized Hydrodynamics (GHD)

- Continuity:

$$
\frac{\partial}{\partial t}\left\langle q_{\alpha}(x, t)\right\rangle+\frac{\partial}{\partial x}\left\langle J_{\alpha}(x, t)\right\rangle=0
$$

Generalized Hydrodynamics (GHD)

- Continuity:

$$
\frac{\partial}{\partial t}\left\langle q_{\alpha}(x, t)\right\rangle+\frac{\partial}{\partial x}\left\langle J_{\alpha}(x, t)\right\rangle=0
$$

- State functions: $\left\langle J_{\alpha}\right\rangle=\mathcal{F}_{\alpha}\left(\left\langle q_{\beta}\right\rangle, \partial_{x}\left\langle q_{\beta}\right\rangle, \ldots\right)$

Generalized Hydrodynamics (GHD)

- Continuity:

$$
\frac{\partial}{\partial t}\left\langle q_{\alpha}(x, t)\right\rangle+\frac{\partial}{\partial x}\left\langle J_{\alpha}(x, t)\right\rangle=0
$$

- State functions: $\left\langle J_{\alpha}\right\rangle=\mathcal{F}_{\alpha}\left(\left\langle q_{\beta}\right\rangle, \partial_{x}\left\langle q_{\beta}\right\rangle, \ldots\right)$
- Keeping only the ballistic term: $\left\langle J_{\alpha}\right\rangle=\mathcal{F}_{\alpha}\left(\left\langle q_{\beta}\right\rangle\right)$

Generalized Hydrodynamics (GHD)

- Continuity:

$$
\frac{\partial}{\partial t}\left\langle q_{\alpha}(x, t)\right\rangle+\frac{\partial}{\partial x}\left\langle J_{\alpha}(x, t)\right\rangle=0
$$

- State functions: $\left\langle J_{\alpha}\right\rangle=\mathcal{F}_{\alpha}\left(\left\langle q_{\beta}\right\rangle, \partial_{x}\left\langle q_{\beta}\right\rangle, \ldots\right)$
- Keeping only the ballistic term: $\left\langle J_{\alpha}\right\rangle=\mathcal{F}_{\alpha}\left(\left\langle q_{\beta}\right\rangle\right)$
- Continuity

$$
\frac{\partial}{\partial t}\left\langle q_{\alpha}(x, t)\right\rangle+\frac{\partial \mathcal{F}_{\alpha}}{\partial\left\langle q_{\beta}\right\rangle} \frac{\partial}{\partial x}\left\langle q_{\beta}(x, t)\right\rangle=0
$$

Generalized Hydrodynamics (GHD)

- New finite volume result:

$$
\left\langle\boldsymbol{\lambda}_{N}\right| J_{\alpha}(x)\left|\boldsymbol{\lambda}_{N}\right\rangle=\frac{1}{L} \sum_{j} h_{\alpha}\left(\lambda_{j}\right) v_{\text {eff }}\left(\lambda_{j}\right), \quad \boldsymbol{v}_{\text {eff }}=L G^{-1} \mathbf{e}^{\prime}
$$

where

$$
G_{i j}=\delta_{i j} L p^{\prime}\left(\lambda_{j}\right)+\left(\ldots \delta^{\prime}() \ldots\right)
$$

M. Borsi, BP, L. Pristyák, Phys. Rev. X 10, 011054 (2020)

BP, SciPost Phys. 8, 016 (2020)
BP, Phys. Rev. Lett. 125, 070602 (2020)

Generalized Hydrodynamics (GHD)

- New finite volume result:

$$
\left\langle\boldsymbol{\lambda}_{N}\right| J_{\alpha}(x)\left|\boldsymbol{\lambda}_{N}\right\rangle=\frac{1}{L} \sum_{j} h_{\alpha}\left(\lambda_{j}\right) v_{\text {eff }}\left(\lambda_{j}\right), \quad \mathbf{v}_{\text {eff }}=L G^{-1} \mathbf{e}^{\prime}
$$

where

$$
G_{i j}=\delta_{i j} L p^{\prime}\left(\lambda_{j}\right)+\left(\ldots \delta^{\prime}() \ldots\right)
$$

M. Borsi, BP, L. Pristyák, Phys. Rev. X 10, 011054 (2020)

BP, SciPost Phys. 8, 016 (2020)
BP, Phys. Rev. Lett. 125, 070602 (2020)

- In free models: $v=\frac{e^{\prime}}{p^{\prime}}=\frac{d e}{d p}$. Interaction modifies it: $\sim \delta^{\prime}\left(p_{j}, p_{k}\right)$

Generalized HydroDynamics on an Atom Chip, Max Schemmer et.al, Phys. Rev. Lett. 122, 090601 (2019)

Ongoing and future projects

Currents and GHD in the XYZ model

$$
H=\sum_{j} J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}
$$

Entanglement production?

Ongoing and future projects

Overlap computations

$$
\left\langle\Psi_{0} \mid \lambda_{N}\right\rangle=?
$$

Relevant for AdS/CFT
M. de Leeuw, T. Gombor, C. Kristjansen, G. Linardopoulos, BP, JHEP 2020, 176

Integrability breaking

Integrability breaking

- Lindblad equation:

$$
\dot{\rho}=i[\rho, H]+\sum_{a} \gamma_{a}\left[L_{a} \rho L_{a}^{\dagger}-\frac{1}{2}\left\{L_{a}^{\dagger} L_{a}, \rho\right\}\right]
$$

Integrability breaking

- Lindblad equation:

$$
\dot{\rho}=i[\rho, H]+\sum_{a} \gamma_{a}\left[L_{a} \rho L_{a}^{\dagger}-\frac{1}{2}\left\{L_{a}^{\dagger} L_{a}, \rho\right\}\right]
$$

- Particle losses in quantum gases: $L(x)=\Psi^{3}(x)$ (with A. Hutsalyuk)

Integrability breaking

- Lindblad equation:

$$
\dot{\rho}=i[\rho, H]+\sum_{a} \gamma_{a}\left[L_{a} \rho L_{a}^{\dagger}-\frac{1}{2}\left\{L_{a}^{\dagger} L_{a}, \rho\right\}\right]
$$

- Particle losses in quantum gases: $L(x)=\Psi^{3}(x)$ (with A. Hutsalyuk)
- Question:

$$
\frac{d}{d t}\left\langle q_{\alpha}(x)\right\rangle=?
$$

Thanks for the attention!

Generalized Hydrodynamics (GHD)

- Fluid cells: $\rho(\lambda \mid x, t)$

Generalized Hydrodynamics (GHD)

- Fluid cells: $\rho(\lambda \mid x, t)$
- The ballistic flow equation becomes:

$$
\partial_{t} \rho(\lambda \mid x, t)+\partial_{x}\left(v_{\text {eff }}(\lambda \mid x, t) \rho(\lambda \mid x, t)\right)=0
$$

"I got really fascinated by these ($1+1$)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you don't know why. I am trying to understand all this better."

Richard P. Feynman, 1988

- Bethe Ansatz: In finite volume $\boldsymbol{\lambda}_{N}$

$$
Q_{\alpha}\left|\boldsymbol{\lambda}_{N}\right\rangle=\left(\sum_{j=1}^{N} h_{\alpha}\left(\lambda_{j}\right)\right)\left|\boldsymbol{\lambda}_{N}\right\rangle
$$

- Bethe Ansatz: In finite volume $\boldsymbol{\lambda}_{N}$

$$
Q_{\alpha}\left|\boldsymbol{\lambda}_{N}\right\rangle=\left(\sum_{j=1}^{N} h_{\alpha}\left(\lambda_{j}\right)\right)\left|\boldsymbol{\lambda}_{N}\right\rangle
$$

- In infinite volume $\rho(\lambda)$

$$
\frac{\left\langle Q_{\alpha}\right\rangle}{L}=\int d \lambda h_{\alpha}(\lambda) \rho(\lambda)
$$

- Bethe Ansatz: In finite volume $\boldsymbol{\lambda}_{N}$

$$
Q_{\alpha}\left|\boldsymbol{\lambda}_{N}\right\rangle=\left(\sum_{j=1}^{N} h_{\alpha}\left(\lambda_{j}\right)\right)\left|\boldsymbol{\lambda}_{N}\right\rangle
$$

- In infinite volume $\rho(\lambda)$

$$
\frac{\left\langle Q_{\alpha}\right\rangle}{L}=\int d \lambda h_{\alpha}(\lambda) \rho(\lambda)
$$

- Completeness, if

$$
\left\langle Q_{\alpha}\right\rangle_{\alpha=1,2, \ldots} \quad \leftrightarrow \quad \rho(\lambda)
$$

- Bethe Ansatz: In finite volume $\boldsymbol{\lambda}_{N}$

$$
Q_{\alpha}\left|\boldsymbol{\lambda}_{N}\right\rangle=\left(\sum_{j=1}^{N} h_{\alpha}\left(\lambda_{j}\right)\right)\left|\boldsymbol{\lambda}_{N}\right\rangle
$$

- In infinite volume $\rho(\lambda)$

$$
\frac{\left\langle Q_{\alpha}\right\rangle}{L}=\int d \lambda h_{\alpha}(\lambda) \rho(\lambda)
$$

- Completeness, if

$$
\left\langle Q_{\alpha}\right\rangle_{\alpha=1,2, \ldots} \quad \leftrightarrow \quad \rho(\lambda)
$$

- $\rho(\lambda)$ not local, not quasi-local. However, the GGE can be quasi-local.

