Continuum extrapolated high order baryon fluctuations

Dávid Pesznyák

in collaboration with

A. Adam, Sz. Borsányi, Z. Fodor, J. N. Günther, S. D. Katz, P. Parotto, A. Pásztor, K. K. Szabó and C. H. Wong from the Wuppertal-Budapest Collaboration

ELFT Particle Physics Seminar

April 30, 2024, Budapest, Hungary

Outline

1. Introduction

 \sim LQCD, conserved charges, fluctuations, sign problem

2. Methods

 \sim Taylor method, computing fluctuations, HRG, volume effects

3. Results

 \sim continuum estimates, comparisons with literature, CEP

QCD in grand canonical ensemble (GCE)

Partition function of QCD $(N_f = 2 + 1)$:

$$\mathcal{Z}(V,T,\{\mu_B,\mu_Q,\mu_S\}) = \operatorname{Tr}\left[e^{-(H-\mu_B B - \mu_Q Q - \mu_S S)/T}\right]$$
$$= \operatorname{Tr}\left[e^{-(H-\mu_u N_u - \mu_d N_d - \mu_s N_s)/T}\right]$$

with

$$\mu_u = \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q , \qquad \mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q , \qquad \mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S$$

Conserved charges of QCD:

 \blacktriangleright baryon number B

 \blacktriangleright electric charge Q

 \blacktriangleright strangeness S

Conserved exactly in the whole system, can **fluctuate** in subsystems!

Fluctuations of conserved charges of QCD

Observables \sim derivatives of pressure

$$p = \frac{T}{V} \log \mathcal{Z}$$

Generalized susceptibilities $(\hat{p} = p/T^4, \hat{\mu} = \mu/T)$

$$\chi_{ij}^{BS} = \frac{\partial^i}{\partial \hat{\mu}_B^i} \frac{\partial^j}{\partial \hat{\mu}_S^j} \ \hat{p}(V, T, \{\mu_B, \mu_S\}) \quad \propto \quad \text{cumulants of } B, S$$

Examples:

$$\langle B \rangle \propto \chi_1^B \qquad \langle B^2 \rangle - \langle B \rangle^2 \propto \chi_2^B \qquad \langle BS \rangle - \langle B \rangle \langle S \rangle \propto \chi_{11}^{BS}$$

Importance of fluctuations

1. EoS of hot-and-dense QGP [hep-lat:2208.05398]:

$$\hat{p}(\mu_B,\dots) = \hat{p}(0) + \frac{1}{2!}\chi_2^B(T)\hat{\mu}_B^2 + \frac{1}{4!}\chi_4^B(T)\hat{\mu}_B^4 + \frac{1}{6!}\chi_6^B(T)\hat{\mu}_B^6 + \dots$$

- 2. CEP searches [nucl-th:2008.04022]
- 3. sensitivity to effective DoFs [hep-lat:1702.01113]
- 4. direct comparison of lattice QCD and experimental data

GCE in experiments?

cuts in pseudorapidity \sim sub-volume

Caveats:

- \blacktriangleright cuts in $p_{\text{transverse}}$
- $\blacktriangleright \text{ proxy } \langle \Delta N_p \rangle \neq \langle B \rangle$
- ▶ fluctuating volume
- question of thermalization
- ▶ final state interactions

[hep-ph:1203.4529], [nucl-th:2007.02463]

QCD phase diagram

Lattice

Finite spacetime lattice: $N_x^3 \times N_t$

- ▶ Continuum limit: for fixed temperature $a \to 0$ and $N_t \to \infty$
- ▶ Thermodynamic limit: $V \to \infty$ ~ aspect ratio $LT = N_s/N_t \to \infty$

The sign problem in a nutshell

QCD partition function as a path integral:

$$\mathcal{Z} = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \ e^{-S_{\rm YM}[U] - \bar{\psi}M[U,m,\mu]\psi} = \int \mathcal{D}U \ \det M[U,m,\mu] e^{-S_{\rm YM}[U]}$$

Simulations work with real and positive weights det $Me^{-S_{\rm YM}}$

- ► zero chemical potential: $\mu = 0$
- ▶ imaginary chemical potential: $\mu^2 < 0$
- ▶ isospin chemical potential: $\mu_u = -\mu_d$

Otherwise: complex action problem / sign problem

Circumventing the sign problem

1. Imaginary chemical potential

simulations at $\mu^2 \leq 0 \quad \rightarrow \quad \text{extrapolation to } \mu^2 > 0$

2. Taylor method

calculate
$$\frac{\partial^n}{\partial \mu^n} \langle \mathcal{O} \rangle$$
 at $\mu = 0 \rightarrow$ extrapolation to $\mu > 0$

3. Reweighting

simulate a different theory \rightarrow reweight back to the original theory

Taylor method

Taylor expansion of the pressure

$$\hat{p}(V,T,\{\hat{\mu}_B,\hat{\mu}_S\}) = \sum_{i,j} \frac{\hat{\mu}_B^i \hat{\mu}_S^j}{i!j!} \left[\frac{\partial^i}{\partial \hat{\mu}_B^i} \frac{\partial^j}{\partial \hat{\mu}_S^j} \hat{p}(V,T,\{\hat{\mu}_B,\hat{\mu}_S\}) \right]_{\hat{\mu}_B = \hat{\mu}_S = 0}$$

expansion coefficients: $\chi_{ij}^{BS}(T)$ at $\mu_B = \mu_S = 0$

 \sim possible CEP search:

go to high enough (i, j) and look for signs of a divergence...

Taylor method: study of pion condensation

Instead of $\mu_B \rightarrow$ isospin chemical potential μ_I [hep-lat:2308.06105]

Figure: QM2023 Plenary by A. Pásztor

2nd order transition at low T and $\mu_I \approx m_\pi/2 \approx 70$ MeV [hep-ph:0005225]

How to calculate fluctuations on the lattice

$$\mathcal{Z} = \int \mathcal{D}U \det M_u[U, \mu_u] \det M_d[U, \mu_d] \det M_s[U, \mu_s] e^{-S_{\rm YM}[U]}$$

1. Measuring

$$A_n^{(q)} = \frac{\partial^n}{\partial \hat{\mu}_q^n} \log \det M_q , \qquad \text{e.g.} \quad A_1^{(u)} = \text{Tr}\left(\frac{\partial M_u}{\partial \hat{\mu}_u} M_u^{-1}\right)$$

2. Combining and averaging $A_n^{(q)}$ -s: $A_n^{(q)} \rightarrow \chi_{abc}^{uds}$,

e.g.
$$\chi_2^u = \frac{1}{VT^3} \frac{\partial^2 \log \mathcal{Z}}{\partial \hat{\mu}_u^2} = \left\langle (A_1^{(u)})^2 + A_2^{(u)} \right\rangle$$
$$\chi_{11}^{ud} = \frac{1}{VT^3} \frac{\partial^2 \log \mathcal{Z}}{\partial \hat{\mu}_u \partial \hat{\mu}_d} = \left\langle (A_1^{(u)})^2 \right\rangle$$

With computer algebra

$$\chi_8^u =$$

$$\begin{array}{l} -630\langle A_1^2\rangle^4 - 2520\langle A_1^2\rangle^3\langle A_2\rangle - 3780\langle A_1^2\rangle^2\langle A_2\rangle^2 - 2520\langle A_1^2\rangle\langle A_2\rangle^3 - 630\langle A_2\rangle^4 + 420\langle A_1^2\rangle^2\langle A_1^4\rangle \\ +840\langle A_1^2\rangle\langle A_1^4\rangle\langle A_2\rangle + 420\langle A_1^4\rangle\langle A_2\rangle^2 + 2520\langle A_1^2\rangle^2\langle A_1^2A_2\rangle + 5040\langle A_1^2\rangle\langle A_1^2A_2\rangle\langle A_2\rangle + 2520\langle A_1^2A_2\rangle\langle A_2\rangle^2 \\ +1680\langle A_1A_3\rangle\langle A_1^2\rangle^2 + 3360\langle A_1A_3\rangle\langle A_1^2\rangle\langle A_2\rangle + 1680\langle A_1A_3\rangle\langle A_2\rangle^2 + 1260\langle A_1^2\rangle^2\langle A_2^2\rangle + 2520\langle A_1^2\rangle\langle A_2\rangle\langle A_2\rangle \\ +1260\langle A_2\rangle^2\langle A_2^2\rangle + 420\langle A_1^2\rangle^2\langle A_4\rangle + 840\langle A_1^2\rangle\langle A_2\rangle\langle A_4\rangle + 420\langle A_2\rangle^2\langle A_4\rangle - 28\langle A_1^2\rangle\langle A_1^6\rangle - 28\langle A_1^6\rangle\langle A_2\rangle \\ -420\langle A_1^2\rangle\langle A_1^2A_2\rangle - 420\langle A_1^4A_2\rangle\langle A_2\rangle - 560\langle A_1^2\rangle\langle A_1^3A_3\rangle - 560\langle A_1^3A_3\rangle\langle A_2\rangle - 1260\langle A_1^2\rangle\langle A_1^2A_2\rangle \\ -1260\langle A_1^2A_2^2\rangle\langle A_2\rangle - 35\langle A_1^4\rangle^2 - 420\langle A_1^2A_2\rangle\langle A_1^4\rangle - 280\langle A_1A_3\rangle\langle A_1^4\rangle - 210\langle A_1^4\rangle\langle A_2\rangle - 70\langle A_1^4\rangle\langle A_4\rangle \\ -420\langle A_1^2\rangle\langle A_1^2A_4\rangle - 420\langle A_1^2A_4\rangle\langle A_2\rangle - 1680\langle A_1A_2A_3\rangle\langle A_1^2\rangle - 1680\langle A_1A_2A_3\rangle\langle A_1^2\rangle - 1260\langle A_1^2A_2\rangle\langle A_2\rangle - 70\langle A_1^4\rangle\langle A_4\rangle \\ -420\langle A_1^2\rangle\langle A_1^2A_4\rangle - 420\langle A_1^2A_4\rangle\langle A_2\rangle - 1680\langle A_1A_2A_3\rangle\langle A_1^2\rangle - 1260\langle A_1A_2A_3\rangle\langle A_2\rangle - 420\langle A_1^2\rangle\langle A_2^3\rangle \\ - 420\langle A_2\rangle\langle A_2^3\rangle - 1260\langle A_1^2A_2\rangle^2 - 1680\langle A_1A_3\rangle\langle A_1^2A_2\rangle - 1260\langle A_1^2A_2\rangle\langle A_2\rangle - 420\langle A_1^2\rangle\langle A_2^3\rangle \\ - 420\langle A_1\rangle\langle A_1^2\rangle - 168\langle A_1A_5\rangle\langle A_2\rangle - 420\langle A_1^2\rangle\langle A_2A_4\rangle - 420\langle A_2\rangle\langle A_2A_4\rangle - 280\langle A_1^2\rangle\langle A_3^2\rangle - 280\langle A_2\rangle\langle A_3^2 \\ - 560\langle A_1A_3\rangle^2 - 840\langle A_1A_3\rangle\langle A_2^2\rangle - 280\langle A_1A_3\rangle\langle A_4\rangle - 315\langle A_2^2\rangle^2 - 210\langle A_2^2\rangle\langle A_4\rangle - 28\langle A_1^2\rangle\langle A_6\rangle \\ - 28\langle A_2\rangle\langle A_6\rangle - 35\langle A_4\rangle^2 + \langle A_1^8\rangle + 28\langle A_1^6A_2\rangle + 56\langle A_1^5A_3\rangle + 210\langle A_1^4A_2^2\rangle + 70\langle A_1^4A_4\rangle \\ + 560\langle A_1^3A_2A_3\rangle + 420\langle A_1^2A_3\rangle + 56\langle A_1^3A_5\rangle + 420\langle A_1^2A_2A_4\rangle + 280\langle A_1^2A_3^2\rangle + 840\langle A_1A_3^2A_3\rangle \\ + 105\langle A_2^4\rangle + 28\langle A_1^2A_6\rangle + 168\langle A_1A_2A_5\rangle + 280\langle A_1A_3A_4\rangle + 210\langle A_2^2A_4\rangle + 280\langle A_2A_3^2\rangle + 8\langle A_1A_7\rangle \\ + 28\langle A_2A_6\rangle + 56\langle A_3A_5\rangle + 35\langle A_4^2\rangle + \langle A_8\rangle \\ \end{array}$$

Change of basis

$$\mu_u = \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q , \qquad \mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q , \qquad \mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S$$

$$\begin{split} \chi_2^B &= \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_B^2} = \frac{\partial}{\partial \hat{\mu}_B} \left[\frac{\partial \hat{p}}{\partial \hat{\mu}_u} \frac{\partial \hat{\mu}_u}{\partial \hat{\mu}_B} + \frac{\partial \hat{p}}{\partial \hat{\mu}_d} \frac{\partial \hat{\mu}_d}{\partial \hat{\mu}_B} + \frac{\partial \hat{p}}{\partial \hat{\mu}_s} \frac{\partial \hat{\mu}_s}{\partial \hat{\mu}_B} \right] \\ &= \frac{1}{3} \left[\frac{\partial^2 \hat{p}}{\partial \hat{\mu}_u^2} \frac{\partial \hat{\mu}_u}{\partial \hat{\mu}_B} + \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_u \partial \hat{\mu}_d} \frac{\partial \hat{\mu}_d}{\partial \hat{\mu}_B} + \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_u \partial \hat{\mu}_s} \frac{\partial \hat{\mu}_s}{\partial \hat{\mu}_B} \right] \\ &+ \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_u \partial \hat{\mu}_d} \frac{\partial \hat{\mu}_u}{\partial \hat{\mu}_B} + \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_d^2} \frac{\partial \hat{\mu}_d}{\partial \hat{\mu}_B} + \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_d \partial \hat{\mu}_s} \frac{\partial \hat{\mu}_s}{\partial \hat{\mu}_B} \\ &+ \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_u \partial \hat{\mu}_s} \frac{\partial \hat{\mu}_u}{\partial \hat{\mu}_B} + \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_d \partial \hat{\mu}_s} \frac{\partial \hat{\mu}_d}{\partial \hat{\mu}_B} + \frac{\partial^2 \hat{p}}{\partial \hat{\mu}_s^2} \frac{\partial \hat{\mu}_s}{\partial \hat{\mu}_B} \\ &= \frac{1}{9} \left(2\chi_2^u + \chi_2^s + 4\chi_{11}^{us} + 2\chi_{11}^{ud} \right) \end{split}$$

With computer algebra

$$\begin{split} \chi^B_8 &= \frac{1}{6561} \bigg[2\chi^u_8 + 16\chi^{ud}_{71} + 16\chi^{us}_{71} + 56\chi^{ud}_{62} + 112\chi^{uds}_{611} + 56\chi^{us}_{62} + 112\chi^{ud}_{53} \\ &+ 336\chi^{uds}_{521} + 336\chi^{uds}_{512} + 112\chi^{us}_{53} + 70\chi^{ud}_{44} + 560\chi^{uds}_{431} + 840\chi^{uds}_{422} \\ &+ 560\chi^{uds}_{413} + 140\chi^{us}_{44} + 560\chi^{uds}_{332} + 1120\chi^{uds}_{323} + 560\chi^{uds}_{314} + 112\chi^{us}_{35} \\ &+ 420\chi^{uds}_{224} + 336\chi^{uds}_{215} + 56\chi^{us}_{26} + 56\chi^{uds}_{116} + 16\chi^{us}_{17} + \chi^s_8 \bigg] \end{split}$$

Strangeness neutrality

So far:
$$\mu_S = 0$$

 \downarrow

 $\chi_1^S(T,\mu_B,\mu_S) \propto \langle S(T,\mu_B,\mu_S) \rangle = 0 \sim \text{phenomenological relevance}$

tuning of

$$\mu_S \equiv \mu_S^*(T, \mu_B) = s_1(T)\mu_B + s_3(T)\mu_B^3 + s_5(T)\mu_B^5 + s_7(T)\mu_B^7 + \mathcal{O}(\mu_B^9)$$
[hep-lat:1701.04325]

 $s_1, s_3, s_5, s_7 \sim \text{from Taylor coefficients order-by-order}$

Strangeness neutrality: example

To first order:

$$\frac{n_S}{T^3} = \frac{\partial \hat{p}}{\partial \hat{\mu}_S} = \sum_{i,j} \frac{j}{i!j!} \chi_{ij}^{BS}(T) \hat{\mu}_B^i \hat{\mu}_S^{j-1} \approx \chi_1^S(T) + \chi_{11}^{BS}(T) \hat{\mu}_B + \chi_2^S(T) \hat{\mu}_S \stackrel{!}{=} 0$$

from which

$$\hat{\mu}_{S}^{*}(T) = s_{1}(T)\hat{\mu}_{B} = -\frac{\chi_{11}^{BS}(T)}{\chi_{2}^{S}(T)}\hat{\mu}_{B} \implies s_{1}(T) = -\frac{\chi_{11}^{BS}(T)}{\chi_{2}^{S}(T)}$$

 $(s_3, s_5, s_7$ with computer algebra)

Hadron resonance gas (HRG) model

Interacting gas of hadrons \approx non-interacting gas of hadrons and resonances

$$p_{\text{QCD}} = \sum_{h} p_{h}^{\text{free}} = \mp \frac{V}{2\pi^{2}T^{3}} \sum_{h} d_{h} \int_{0}^{\infty} dp \ p^{2} \log \left[1 \mp z_{h} e^{-\sqrt{m_{h}^{2} + p^{2}}/T} \right]$$
$$= \frac{VT}{2\pi^{2}} \sum_{h} m_{h}^{2} d_{h} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n+1}}{n^{2}} z_{h}^{n} K_{2} \left(\frac{nm_{h}}{T} \right)$$

with $z_{\rm h} = \exp[(B_{\rm h}\mu_B + Q_{\rm h}\mu_Q + S_{\rm h}\mu_S)/T]$

 $\triangleright \mathcal{O}(10^3)$ hadrons

non-critical baseline [nucl-th:2007.02463]

▶ uses GCE (just like lattice QCD)

Can HRG describe lattice data?

Corrections to HRG from the lattice

Fugacity expansion

$$\hat{p}(V,T,\{\hat{\mu}_B,\hat{\mu}_S\}) = \sum_{m,n} P_{mn}^{BS}(T) \cosh(m\hat{\mu}_B - n\hat{\mu}_S)$$

= $P_{00}^{BS}(T) + P_{10}^{BS}(T) \cosh(\hat{\mu}_B) + P_{01}^{BS} \cosh(\hat{\mu}_S) + P_{11}^{BS}(T) \cosh(\hat{\mu}_B - \hat{\mu}_S)$
+ $P_{20}^{BS}(T) \cosh(2\hat{\mu}_B) + \dots$

Phenomenology: the range of short-range interactions

Based on

• [hep-ph:1708.00879] \sim mean field model with energy shift \propto density \sim S-matrix formalism with NN phase shifts

[hep-ph:1708.02852] \sim Van der Waals-like extension of HRG

\Downarrow

repulsive, short-range interaction dominates first order corrections with typical scale of $v_0 = 1 - 3.5 \text{ fm}^3$

Detour: Roberge-Weiss periodicity

Would expect 2π periodicity from $\mathcal{Z} = \text{Tr}\left[e^{-(H-\mu_u N_u - \mu_d N_d - \mu_s N_s)/T}\right]$

$$\begin{aligned} \mathcal{Z}(\hat{\mu}_q) &= \mathcal{Z}\left(\hat{\mu}_q + \frac{2\pi i k}{3}\right) & \sim & \frac{2\pi}{3} \text{ periodic in } \hat{\mu}_q \\ &= \mathcal{Z}(\hat{\mu}_B + 2\pi i k) & \sim & 2\pi \text{ periodic in } \hat{\mu}_B \end{aligned}$$

Ensures that only integer B terms appear in fugacity expansion

History: current continuum results and estimates

Leading order (since 2012) [hep-lat:1204.6710]:

$$\chi^B_2$$
 χ^S_2 χ^{BS}_{11}

Next-to-leading order (since 2015) [hep-lat:1507.04627, 2212.09043]:

 $\chi_4^B \quad \chi_{31}^{BS} \quad \chi_{22}^{BS} \quad \chi_{13}^{BS} \quad \chi_4^S$

Next-to-next-to-leading order (continuum results now):

 $\chi^B_6 \quad \chi^{BS}_{51} \quad \chi^{BS}_{42} \quad \chi^{BS}_{33} \quad \chi^{BS}_{24} \quad \chi^{BS}_{15} \quad \chi^{S}_{6}$

N³LO (results at finite lattice spacing and cont. at T = 145 MeV) $\chi_8^B \quad \chi_{71}^{BS} \quad \chi_{62}^{BS} \quad \chi_{53}^{BS} \quad \chi_{44}^{BS} \quad \chi_{35}^{BS} \quad \chi_{26}^{BS} \quad \chi_{17}^{BS} \quad \chi_8^S$

Previous results

[hep-lat:1805.04445]
$$LT = 4, N_t = 12$$

Discrepancies of previous results

[hep-lat:1805.04445]

LT = 4, N_t = 12
 μ_B = iμ_B^I
 Fit to μ_B^I

[hep-lat:2202.09184]

$$\blacktriangleright LT = 4, N_t = 8$$

 $\blacktriangleright \mu_B = 0$

▶ μ_B definition breaks RW periodicity

Our lattice setup

- ▶ $N_f = 2 + 1 + 1$ 4HEX staggered action + DBW2 gauge action
- ▶ $T = 130 \dots 200 \text{ MeV}$
- ▶ $N_t = 8, 10, 12$
- ▶ aspect ratio LT = 2
- ▶ physical point: $m_{\pi}/f_{\pi} = 1.0337, m_s/m_{ud} = 27.63, m_c/m_s = 11.85$
- ▶ statistics: $\mathcal{O}(10^4)$ $\mathcal{O}(10^5)$ configuration/ensemble

The question of large enough volume...

Based on phenomenology, LT=2 probably large enough to capture short-range repulsion:

ightarrow T = 145 MeV $L^3 \approx 20 \text{ fm}^3 \approx 6\text{-}20 v_0$ $m_{\pi}L \approx 1.9$ ightarrow T = 130 MeV $L^3 \approx 28 \text{ fm}^3 \approx 8-28 v_0$ $m_{\pi}L \approx 2.2$ ightarrow T = 120 MeV $L^3 \approx 35 \text{ fm}^3 \approx 10\text{-}35 v_0$ $m_{\pi}L \approx 2.3$

Results - 4HEX continuum

- agreement with HRG for T < 145 MeV
- ► 4HEX: small cut-off effects due to smaller taste-breaking

Results - 4HEX continuum at $n_S = 0$

Once s_1, s_3, s_5, s_7 known

$$p_n = \frac{\partial^n \hat{p}}{\partial \hat{\mu}_B^n} \bigg|_{n_s = 0} \quad \text{of} \quad \hat{p}_{n_s = 0} = \sum_n p_n \hat{\mu}_B^n$$

can be computed on strangeness neutral line

Results - comparing with literature

Previous results:

- Pisa (not shown)
- HotQCD: HISQ, $N_t = 8$, LT = 4
- WB: 4stout, $N_t = 12, LT = 4$
- ▶ WB: 4HEX, cont. and $N_t = 10$, LT = 2
- 4stout $N_t = 12 \approx 4$ HEX cont.
 - for T < 145 MeV
 - \implies small finite-volume effects
 - \implies agreement with HRG
- ► HISQ $N_t = 8 \not\approx 4$ stout $N_t = 12$ ⇒ large cut-off effects
- \blacktriangleright finite-volume effects for larger T

What can we see at lower temperatures?

Sizeable difference from HRG at T = 120 MeV $\sim \chi_4^B < \chi_6^B < \chi_8^B$!

Lee-Yang zeros in a nuthsell

$$\mathcal{Z} = \operatorname{Tr}\left[e^{-(H-\mu_B B)/T}\right] = \sum_{n} e^{n\mu_B/T} \operatorname{Tr}_n\left[e^{-H/T}\right] = \sum_{n} e^{n\mu_B/T} \mathcal{Z}_n$$
polynom in fugacity $e^{\mu_B/T} \implies$ roots of \mathcal{Z} : Lee-Yang zeros \downarrow

 $p \propto \log \mathcal{Z}$ has logarithmic branch points

As $V \to \infty$:

▶ an infinite number of zeros tend to the real axis \implies phase transition

 \blacktriangleright zeros stay away from the real axis \implies crossover transition

Near critical point ($V \rightarrow \infty$: Lee-Yang edge): Im $\mu_{LY} \sim A|T - T_c|^{\beta\delta}$

[hep-lat:1904.01974],[hep-lat:1911.00043],[hep-th:2312.06952],[hep-lat:2401.05651]

Padé resummation

(i.e. rational function approximation)

For all T:

1. For baryon number susceptibility

$$\chi_2^B(\hat{\mu}_B) \approx \chi_2^B(0) + \frac{\chi_4^B(0)}{2}\hat{\mu}_B^2 + \frac{\chi_6^B(0)}{24}\hat{\mu}_B^4 + \frac{\chi_8^B(0)}{720}\hat{\mu}_B^6 \approx \frac{a+b\hat{\mu}_B^2}{1+c\hat{\mu}_B^2 + d\hat{\mu}_B^4}$$

2. Compute a, b, c, d

$$b = \chi_2^B , \qquad b = rac{(\chi_2^B)^2 \chi_8^B - 30 \chi_2^B \chi_4^B \chi_8^B + 9(\chi_4^B)^3}{30 \left(6(\chi_4^B)^2 - \chi_2^B \chi_6^B
ight)} ,$$

$$c = \frac{\chi_2^B \chi_8^B - 15 \chi_4^B \chi_6^B}{30 \left(6 (\chi_4^B)^2 - \chi_2^B \chi_6^B \right)} , \qquad d = \frac{2 \chi_4^B \chi_8^B - 5 (\chi_6^B)^2}{120 \left(\chi_2^B \chi_6^B - 6 (\chi_4^B)^2 \right)}$$

3. Find poles (quadratic formula)

(

Extrapolate $T_{\rm c}$ from Lee-Yang edge

$$\mathrm{Im}\mu_{\mathrm{LY}} \sim A|T - T_{\mathrm{c}}|^{\beta\delta}$$
 (lots of caveats...)

Constraining the CEP (PRELIMINARY)

$$T_{\rm c} \cong 48^{+15}_{-21} \text{ MeV}$$

Summary

- Computed generalized susceptibilities up to eighth order, both at $\mu_S = 0$ and at $n_S = 0$
- ▶ Made comparisons with previous results, and argued that finite-volume effects are under control for T < 145 MeV
- ▶ Discussed possible constrains for the position of the CEP

Thank you!

Supported by the ÚNKP-23-3 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

> Fig.: LQCD Made with dream.ai.

