old problems and new(?) physics: non-leptonic kaon decay and the $\Delta I=1 / 2$ rule

Carlos Pena ift UAM

an old problem

EVIDENCE FOR THE 2π DECAY OF THE $K_{2}{ }^{\circ}$ MESON* \dagger

> J. H. Christenson, J. W. Cronin, \ddagger V. L. Fitch,, and R. Turlay \S Princeton University, Princeton, New Je rsey (Received 10 July 1964)

This Letter reports the results of experimental tudies designed to search for the 2π decay of the $K_{2}{ }^{\circ}$ meson. Several previous experiments have fraction of $K_{2}^{\text {o }} \mathrm{s}$ which decay into two charged pi ns. The present experiment, using spark cham in techniques, proposed to extend this limit. In this measurement, K_{2} mesons were pro-
duced at the Brookhaven AGS in an internal Be target bombarded by $30-\mathrm{BeV}$ protons. A neutral beam was defined at 30 degrees relative to the circulating protons by a $1 \frac{1}{2}$-in. $\times 1 \frac{1}{2}$-in. $\times 48$-in. collimator at an average distance of 14.5 ft . from
the internal target. This collimator was followed by a sweeping magnet of $512 \mathrm{kG}-\mathrm{in}$. at $\sim 20 \mathrm{ft}$. nd a 6 -in. $\times 6$-in. $\times 48$-in. collimator at 55 ft . A $\frac{1}{2}$-in. thickness of Pb was placed in front of the rst collimator to attenuate the gamma rays in the beam.
experimental layout is shown in relation to he beam in Fig. 1. The detector for the decay products consisted of two spectrometers each composed of two spark chambers for track delin eation separated by a magnetic field of 178 kG -i zontal plane and each subtended an average solid angle of 0.7×10^{-2} steradians. The spark chambers were triggered on a coincidence between water Cherenkov and scintillation counters posi When coherent $K_{1}{ }^{0}$ regeneration in solid materia was being studied, an anticoincidence counter wa placed immediately behind the regenerator. To minimize interactions $K_{2}{ }^{0}$ decays were observed rom a volume of He gas at nearly STP.

The Nobel Prize in Physics 1980

Photo from the Nobel Foundation
archive
James Watson
Cronin
Prize share: 1/2

hoto from the Nobel Foundation
Val Logsdon Fitch
Prize share: 1/2

The Nobel Prize in Physics 1980 was awarded jointly to James Watson Cronin and Val Logsdon Fitch "for the discovery of violations of fundamental symmetry principles in the decay of neutral Kmesons."

an old problem

Volume 13, Number 4 PHYSICAL REVIEW LETTERS

This Letter reports the results of experimental
studies designed to search for the 2π decay of the
 fraction of $K_{2}{ }^{0}$'s which decay into two charged pions. The present experiment, using spark chamber techniques, proposed to extend this limit.

In this measurement, $K_{2}{ }^{0}$ mesons were pro-
duand at the Rnoglebovan ACS in an internal Da

the internal by a sweepin and a 6-in. $1 \frac{1}{2}$-in. thick first collim the beam. The exper the beam in products co composed of eation sepa The axis of zontal plane angle of 0.7 bers were t water Cher tioned imm When coher was being st placed imm minimize in from a volu	$\begin{array}{llllll}300 & 350 & 400 & 450 & 500 & 550 \\ 600\end{array} \mathrm{MeV}$ FIG. 2. (a) Experimental distribution in m^{*} compared with Monte Carlo calculation. The calculated distribution is normalized to the total number of observed events. (b) Angular distribution of those events in the range $490<m^{*}<510 \mathrm{MeV}$. The calculated curve is normalized to the number of events in the complete sample.
$\underset{\sim \text { PLAN VIEW }}{\text { Poot }}$	$\left.\left[K_{0}-K_{0}\right)+\epsilon\left(K_{0}+\bar{K}_{\mathrm{o}}\right)\right]$ then and τ_{2} are the $K_{1}{ }^{0}$ and $K_{2}{ }^{\circ}$ the branching ratio incl sing. $R_{T}=\frac{3}{4} R$ and the bra $\|\epsilon\| \cong 2,3 \times 10^{-3}$.

The Nobel Prize in Physics 1980

James Watson
Cronin

Photo fro
archive.
Val Logsdon Fitch
Prize share: 1/2

Prize share: $1 / 2$

The Nobel Prize in Physics 1980 was awarded jointly to James Watson Cronin and Val Logsdon Fitch "for the discovery of violations of fundamental symmetry principles in the decay of neutral Kmesons."

a persistent problem

Latice es
 Fri 21/6

14:00	TKNN formula for general lattice Hamiltonian in odd dimensions \quad Tetsuya Onogi ©	Resonance study of SU(2) model with 2 fundamental flavours of ferm...	Tadeusz Janowski ©
	Spectral Methods and Running Giuseppe Clemente Scales in Causal Dynamical Triang...	Meson spectrum of Sp(4) lattice gauge theory with two fundamental Dirac fe..	ye. Jong-WanLee ©
	The meson spectrum of Prof. Antonio Gonzalez-Arroyo © large N gauge theories	$\mathrm{Sp}(2 \mathrm{~N})$ Yang-Mills towards large N . Shimao 3B	Jack Holligan © $14: 40-15: 00$
15:00	Numerical study of ADE-type Okuto Morikawa © SImathcal $\{\mathbb{N}\}=2$ Landau-Ginzburg m...	Towards a composite Higgs and a partially composite top quark	Benjamin Svetitsky ©
	Gauge-invariant path-integral measure for the overalp Weyl fermions in 16 of SO(10) and the SM Prof. Yoshio Kikukawa ©		
	Coffee/Tea break		
16:00			15:40-16:10
	Calculation of the SK_L-K_S\$ mass difference for physical quark masses Shimao 5		Mr Bigeng Wang $16: 10-16: 30$
	Investigating Rare Kaon Decays with the All-to-All Method Shimao 5		Fionn O hOgain 16:30-16:50
	S-wave pi-pil=0 and $l=2$ scattering at physical pion mass		Tianle Wang ©
17:00			16:50-17:10
	Update on the improved lattice calculation of direct CP-violation in K decays Shimao 5		Dr Christopher Kelly 17:10-17:30
	Charm CP \& the latice		Amajit Soni ©
			17:30-17:50

$16^{\text {th }}$ Conference on Flavor Physics \& CP Violation

14-18 July 2018, Hyderabad, India
Sun 15/7

	Kaon decays: epsilon/epsilon', new physics	Satoshi Mishima ©
	Hyderabad	14:15-14:45
	Search for ultra-rare Kaon decay K-> pi nu nu	Jurgen Engelfried ©
15:00	Hyderabad	14:45-15:15
	Tea/Coffe	
	Hyderabad	15:15-15:45
	Latest results from Кото	Kota Nakagiri @
16:00	Hyderabad	15:45-16:15
	Latest results on the KLOE data and status of analysis of the KLOE-2 data	Eryk Czerwirski ©
	Hyderabad	16:15-16:45

prime time attention by hep-ph and hep-lat communities for 55 years - and running

a persistent problem

$\varepsilon^{\prime} / \varepsilon$-2018: A Christmas Story

Andrzej J. Buras

TUM Institute for Advanced Study, Lichtenbergstr. 2a, D-85748 Garching, Germany Physik Department, TU München, James-Franck-Straße, D-85748 Garching, Germany

E-mail: aburas@ph.tum.de

Abstract

I was supposed to review the status of $\varepsilon^{\prime} / \varepsilon$ both at the CKM Workshop in September in Heidelberg and recently at the Discrete 2018 Conference in Vienna. Unfortunately I had to cancel both talks for family reasons. My main goal in these talks was to congratulate NA48 and KTeV collaborations for the discovery of new sources of CP violation through their heroic efforts to measure the ratio $\varepsilon^{\prime} / \varepsilon$ in the 1980s and
other conferences this year I will reach this goal in this writing. In this context I will give arguments, why I am convinced about the presence of new physics in $\varepsilon^{\prime} / \varepsilon$ on the basis of my work with Jean-Marc Gérard within the context of the Dual QCD (DQCD) approach and why RBC-UKQCD lattice QCD collaboration and in particular Chiral Perturbation Theory practitioners are still unable to reach this conclusion. I will demonstrate that even in the presence of pion loops, as large as advocated recently by Gisbert and Pich, the value of $\varepsilon^{\prime} / \varepsilon$ is significantly large as advocated recently by Gisbert and Pich, the value of $\varepsilon^{\prime} / \varepsilon$ is significantly
below the data, when the main non-factorizable QCD dynamics at long distance below the data, when the main non-factorizable QCD dynamics at long distance
scales, represented in DQCD by the meson evolution, is taken into account. As
other conferences this year I will reach this goal in this writing. In this context I will give arguments, why I am convinced about the presence of new physics in $\varepsilon^{\prime} / \varepsilon$ on the basis of my work with Jean-Marc Gérard within the context of the Dual QCD (DQCD) approach and why RBC-UKQCD lattice QCD collaboration and in particular Chiral Perturbation Theory practitioners are still unable to reach this conclusion. I will demonstrate that even in the presence of pion loops, as large as advocated recently by Gisbert and Pich, the value of $\varepsilon^{\prime} / \varepsilon$ is significantly below the data, when the main non-factorizable QCD dynamics at long distance scales, represented in DQCD by the meson evolution, is taken into account. As appropriate for a Christmas story, I will prophesy the final value of $\varepsilon^{\prime} / \varepsilon$ within the SM, which should include in addition to the correct matching between long and short distance contributions, isospin breaking effects, NNLO QCD corrections to both QCD penguin and electroweak penguin contributions and final state interactions.
Such final SM result will probably be known from lattice QCD only in the middle Such the 2020s, but already in 2019 we should be able to of the 2020 s , be se signs of NP in the next result on $\varepsilon^{\prime} / \varepsilon$ from RBC-UKQCD. In this presentation I try to avoid, as much as possible, the overlap with my recent review of Dual QCD in [1].

plan

- phenomenology of neutral kaon decay
- understanding non-leptonic kaon decay within the SM
- electroweak effective Hamiltonian analysis
- exact (lattice) vs. approximate (effective theory/large $N /$ models)
- why is it so hard?
- state-of-the-art quantitative results
- understanding the anatomy of $\Delta l=1 / 2$
- the strategy
- (old) results for QCD amplitudes
- large N_{c}
- insight into light meson physics
- outlook

plan

- phenomenology of neutral kaon decay
- understanding non-leptonic kaon decay within the SM
- electroweak effective Hamiltonian analysis
- exact (lattice) vs. approximate (effective theory/large $N /$ models)
- why is it so hard?
- state-of-the-art quantitative results
- understanding the anatomy of $\Delta I=1 / 2$
- the strategy
- (old) results for QCD amplitudes
- large N_{c}
- insight into light meson physics
- outlook

neutral kaon decay

neutral kaon decay

$K^{0}-\bar{K}^{0}$ system Hamiltonian fixed by hermiticity +CPT

$$
H=M-\frac{i}{2} \Gamma=\left(\begin{array}{cc}A & p^{2} \\ q^{2} & A\end{array}\right)
$$

neutral kaon decay

$K^{0}-\bar{K}^{0}$ system Hamiltonian fixed by hermiticity + CPT

$$
H=M-\frac{i}{2} \Gamma=\left(\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right)
$$

CP conserved ($p=q=0$): eigenstates of H are

$$
\left|K_{1,2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \pm\left|\bar{K}^{0}\right\rangle\right)
$$

CP violation in SM leads to mixing:

$$
\left|K_{\mathrm{S}}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{1}\right\rangle+\bar{\varepsilon}\left|K_{2}\right\rangle\right), \quad\left|K_{\mathrm{L}}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{2}\right\rangle+\bar{\varepsilon}\left|K_{1}\right\rangle\right), \quad \bar{\varepsilon}=\frac{p-q}{p+q}
$$

neutral kaon decay

$K^{0}-\bar{K}^{0}$ system Hamiltonian fixed by hermiticity + CPT

$$
H=M-\frac{i}{2} \Gamma=\left(\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right)
$$

CP conserved ($p=q=0$): eigenstates of H are

$$
\left|K_{1,2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \pm\left|\bar{K}^{0}\right\rangle\right)
$$

CP violation in SM leads to mixing:

$$
\left|K_{\mathrm{S}}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{1}\right\rangle+\bar{\varepsilon}\left|K_{2}\right\rangle\right), \quad\left|K_{\mathrm{L}}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{2}\right\rangle+\bar{\varepsilon}\left|K_{1}\right\rangle\right), \quad \bar{\varepsilon}=\frac{p-q}{p+q}
$$

CP-violation parameters accessible via decay amplitudes into two pions

$$
\begin{aligned}
& -i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{i} e^{i \delta_{I}} \quad T\left[(\pi \pi)_{I} \rightarrow(\pi \pi)_{I}\right]_{l=0}=2 e^{i \delta_{I}} \sin \delta_{I} \\
& \varepsilon=\frac{T\left[K_{\mathrm{L}} \rightarrow(\pi \pi)_{0}\right]}{T\left[K_{\mathrm{S}} \rightarrow(\pi \pi)_{0}\right]} \simeq \bar{\varepsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \\
& \varepsilon^{\prime}=\frac{\varepsilon}{\sqrt{2}}\left(\frac{T\left[K_{\mathrm{L}} \rightarrow(\pi \pi)_{2}\right]}{T\left[K_{\mathrm{L}} \rightarrow(\pi \pi)_{0}\right]}-\frac{T\left[K_{\mathrm{S}} \rightarrow(\pi \pi)_{2}\right]}{T\left[K_{\mathrm{S}} \rightarrow(\pi \pi)_{0}\right]}\right) \simeq \frac{1}{\sqrt{2}} e^{i\left(\delta_{2}-\delta_{0}+\pi / 2\right)} \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)
\end{aligned}
$$

neutral kaon decay

experiment:
$|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
$\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=(16.5 \pm 2.6) \times 10^{-4}$
$\left|\frac{A_{0}}{A_{2}}\right|=22.35$

neutral kaon decay

experiment:

$$
|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}
$$

$$
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=(16.5 \pm 2.6) \times 10^{-4}
$$

$$
\left|\frac{A_{0}}{A_{2}}\right|=22.35 \quad-i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{i} e^{i \delta_{I}}
$$

(similar observations in baryon sector, e.g., $\Lambda / \Sigma \rightarrow N \pi$, heavy meson decay, ...)
[fully?] satisfactory understanding of result within SM lacking for 45 years

plan

- phenomenology of neutral kaon decay
- understanding non-leptonic kaon decay within the SM
- electroweak effective Hamiltonian analysis
- exact (lattice) vs. approximate (effective theory/large $N /$ models)
- why is it so hard?
- state-of-the-art quantitative results
- understanding the anatomy of $\Delta l=1 / 2$
- the strategy
- (old) results for QCD amplitudes
- large N_{c}
- insight into light meson physics
- outlook

effective weak Hamiltonian analysis

effective weak Hamiltonian analysis

$$
\begin{aligned}
& m_{K}^{2} \ll M_{W}^{2}, m_{t}^{2}, m_{c}^{2}(?) \Rightarrow \\
& \frac{1}{p^{2}-m_{X}^{2}} \simeq-\frac{1}{m_{X}^{2}}\left[1+\mathcal{O}\left(\frac{p^{2}}{m_{X}^{2}}\right)\right]
\end{aligned}
$$

effective weak Hamiltonian analysis

$$
\begin{aligned}
& m_{K}^{2} \ll M_{W}^{2}, m_{t}^{2}, m_{c}^{2}(?) \Rightarrow \\
& \frac{1}{p^{2}-m_{X}^{2}} \simeq-\frac{1}{m_{X}^{2}}\left[1+\mathcal{O}\left(\frac{p^{2}}{m_{X}^{2}}\right)\right]
\end{aligned}
$$

effective weak Hamiltonian analysis

$$
\begin{aligned}
& m_{K}^{2} \ll M_{W}^{2}, m_{t}^{2}, m_{c}^{2}(?) \Rightarrow \\
& \frac{1}{p^{2}-m_{X}^{2}} \simeq-\frac{1}{m_{X}^{2}}\left[1+\mathcal{O}\left(\frac{p^{2}}{m_{X}^{2}}\right)\right]
\end{aligned}
$$

$$
T[K \rightarrow \pi \pi] \approx\langle\pi \pi| \mathcal{H}_{\mathrm{w}}^{\mathrm{eff}}|K\rangle+\mathcal{O}\left(\frac{p^{2}}{M_{W}^{2}}\right)
$$

$$
\mathcal{H}_{\mathrm{w}}^{\mathrm{eff}}=\frac{G_{\mathrm{F}}}{\sqrt{2}} \sum_{k} f_{k}\left(V_{\mathrm{CKM}}\right) C_{k}\left(\mu / M_{W}\right) \bar{O}_{k}(\mu)
$$

Wilson coefficients
(short-distance physics)
four-quark operators (long-distance physics)

effective weak Hamiltonian analysis

CP-violation effects neglected $\left(\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}} \sim 10^{-3}\right)$, keep active charm quark:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{w}}^{\mathrm{eff}} & =\frac{g_{\mathrm{w}}^{2}}{2 M_{W}^{2}} V_{u s}^{*} V_{u d} \sum_{\sigma= \pm}\left\{k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+k_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\right\} \\
Q_{1}^{ \pm} & =\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} u_{\mathrm{L}}\right)\left(\bar{u}_{\mathrm{L}} \gamma_{\mu} d_{\mathrm{L}}\right) \pm\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} d_{\mathrm{L}}\right)\left(\bar{u}_{\mathrm{L}} \gamma_{\mu} u_{\mathrm{L}}\right)-[u \leftrightarrow c] \\
\rightarrow Q_{2}^{ \pm} & =\left(m_{u}^{2}-m_{c}^{2}\right)\left\{m_{d}\left(\bar{s}_{\mathrm{L}} d_{\mathrm{R}}\right)+m_{s}\left(\bar{s}_{\mathrm{R}} d_{\mathrm{L}}\right)\right\}
\end{aligned}
$$

(do not contribute to physical $K \rightarrow \pi \pi$ transitions)

effective weak Hamiltonian analysis

CP-violation effects neglected $\left(\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}} \sim 10^{-3}\right)$, keep active charm quark:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{w}}^{\mathrm{eff}} & =\frac{g_{\mathrm{w}}^{2}}{2 M_{W}^{2}} V_{u s}^{*} V_{u d} \sum_{\sigma= \pm}\left\{k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+k_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\right\} \\
Q_{1}^{ \pm} & =\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} u_{\mathrm{L}}\right)\left(\bar{u}_{\mathrm{L}} \gamma_{\mu} d_{\mathrm{L}}\right) \pm\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} d_{\mathrm{L}}\right)\left(\bar{u}_{\mathrm{L}} \gamma_{\mu} u_{\mathrm{L}}\right)-[u \leftrightarrow c] \\
\rightarrow Q_{2}^{ \pm} & =\left(m_{u}^{2}-m_{c}^{2}\right)\left\{m_{d}\left(\bar{s}_{\mathrm{L}} d_{\mathrm{R}}\right)+m_{s}\left(\bar{s}_{\mathrm{R}} d_{\mathrm{L}}\right)\right\}
\end{aligned}
$$

(do not contribute to physical $K \rightarrow \pi \pi$ transitions)

$$
\left|\frac{A_{0}}{A_{2}}\right|=\frac{k_{1}^{-}\left(M_{W}\right)}{k_{1}^{+}\left(M_{W}\right)} \frac{\left\langle(\pi \pi)_{I=0}\right| Q_{1}^{-}|K\rangle}{\left\langle(\pi \pi)_{I=2}\right| Q_{1}^{+}|K\rangle} \quad \frac{k_{1}^{-}\left(M_{W}\right)}{k_{1}^{+}\left(M_{W}\right)} \simeq 2.8
$$

O bulk of effect should come from long-distance QCD contribution
O reliable non-perturbative determination mandatory

effective weak Hamiltonian analysis

if charm quark is also integrated out (perturbation theory at m_{c} ?):

effective weak Hamiltonian analysis

if charm quark is also integrated out (perturbation theory at m_{c} ?):

effective weak Hamiltonian analysis

useful relation to neutral kaon mixing:

in the chiral limit, this amplitude is the same as the contribution to kaon decay in the $I=3 / 2$ channel (with active charm)

how to tackle it

approximate methods/effective theory
O spectacular failure of naive $1 / N_{c}$ expansion

$O\left(N_{C}^{2}\right)$
$T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] \sim 0 \Rightarrow\left|\frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}$ [Fukugita et al. 1977] [Chivukula, Flynn, Georgi 1986]

O elaborate approaches that combine $1 / N_{c}$, chiral perturbation theory + vector dominance, and quark-hadron duality claim success

```
[Buras, Gérard, Bardeen 2014]
    [Gisbert, Pich 2017]
```


how to tackle it

approximate methods/effective theory

O spectacular failure of naive $1 / N_{c}$ expansion

$O\left(N_{C}^{2}\right)$
$T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] \sim 0 \Rightarrow\left|\frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}$
[Fukugita et al. 1977] [Chivukula, Flynn, Georgi 1986]

O elaborate approaches that combine $1 / N_{c}$, chiral perturbation theory+vector dominance, and quark-hadron duality claim success

```
[Buras, Gérard, Bardeen 2014]
    [Gisbert, Pich 2017]
```


lattice QCD [rest of this talk]

O first-principles approach, uncertainties can be systematically improved

O has reached precision era, main player in flavour physics - e.g., B_{K}
o however, $\Delta I=1 / 2$ and $\varepsilon^{\prime} / \varepsilon$ remain very difficult problems

lattice QCD

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{2 g^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right]+\sum_{q=1}^{N_{\mathrm{f}}} \bar{\psi}_{q}\left[i \not D-m_{q}\right] \psi_{q} \underbrace{\frac{i \theta}{32 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right]}_{\mathrm{CP}}
$$

first-principles approach $=$ control all systematic uncertainties

[Wilson 1974]

- spacetime $=$ Euclidean lattice
- allows to define path integral rigorously and compute it via Monte Carlo methods
- QCD recovered by removing cutoffs at physical kinematics
- values of Lagrangian parameters fixed by $N_{\mathrm{f}}+1$ hadron masses/decay constants everything else are predictions

lattice QCD

lattice QCD

$$
\begin{array}{r}
\text { CLS } \\
\text { ETMC } \\
\text { (clover) ETMC } \\
\text { QCDSF } \\
\text { BGR } \\
\text { JLQCD } \\
\text { (plaq) TWQCD } \\
\text { (Iwa) TWQCD } \\
\text { (HEX) BMW } \\
\text { (stout) BMW } \\
\text { (stout-stag) } \mathrm{BMW} \\
\text { CLS } \\
\text { HSC } \\
\text { PACS-CS } \\
\text { QCDSF } \\
\text { JLQCD } \\
\text { (DÖbius) JLQCD } \\
\text { RBC-UKQCD } \\
\text { (DSDR) RBC-UKQCD } \\
\text { (Möbius) RBC-UKQCD } \\
\text { MILC } \\
\text { MILC } \\
\text { JLQCD } / \mathrm{CP}-\mathrm{PACS} 01
\end{array}
$$

lattice QCD

lattice QCD

lattice QCD

[BMW Collaboration 2008]

$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves the full chiral symmetry group

[^0]
$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves the full chiral symmetry group

Maiani-Testa: physical decay amplitudes with >1 final hadron cannot be extracted from Euclidean correlation functions [in ∞ volume]

$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves the full chiral symmetry group

Maiani-Testa: physical decay amplitudes with >1 final hadron cannot be extracted from Euclidean correlation functions [in ∞ volume]
[Nielsen, Ninomiya 1982]

- absence of chiral symmetry leads to complicated operator mixing and severe power divergences

```
[Bochicchio et al. 1985]
    [Maiani et al. 1987]
```

- use regularisations with exact chiral symmetry (not ultralocal), or better chiral properties

$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves the full chiral symmetry group
[Nielsen, Ninomiya 1982]

- absence of chiral symmetry leads to complicated operator mixing and severe power divergences

```
[Bochicchio et al. 1985]
    [Maiani et al. 1987]
```

- use regularisations with exact chiral symmetry (not ultralocal), or better chiral properties

Maiani-Testa: physical decay amplitudes with >1 final hadron cannot be extracted from Euclidean correlation functions [in ∞ volume]

$$
\begin{aligned}
& -i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{i} e^{i \delta_{I}} \\
& \quad T\left[(\pi \pi)_{I} \rightarrow(\pi \pi)_{I}\right]_{l=0}=2 e^{i \delta_{I}} \sin \delta_{I}
\end{aligned}
$$

$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves the full chiral symmetry group
[Nielsen, Ninomiya 1982]

- absence of chiral symmetry leads to complicated operator mixing and severe power divergences

```
[Bochicchio et al. 1985]
    [Maiani et al. 1987]
```

- use regularisations with exact chiral symmetry (not ultralocal), or better chiral properties

Maiani-Testa: physical decay amplitudes with >1 final hadron cannot be extracted from Euclidean correlation functions [in ∞ volume]

$$
\begin{aligned}
& -i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{i} e^{i \delta_{I}} \\
& \quad T\left[(\pi \pi)_{I} \rightarrow(\pi \pi)_{I}\right]_{l=0}=2 e^{i \delta_{I}} \sin \delta_{I}
\end{aligned}
$$

- avoid by working at large finite volume to disentangle pion rescattering effects (requires volumes being reached only recently)

$K \rightarrow \pi \pi$ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves the full chiral symmetry group

Maiani-Testa: physical decay amplitudes with >1 final hadron cannot be extracted from Euclidean correlation functions [in ∞ volume]

- absence of chiral symmetry leads to complicated operator mixing and severe power divergences

```
[Bochicchio et al. 1985]
    [Maiani et al. 1987]
```

- use regularisations with exact chiral symmetry (not ultralocal), or better chiral properties
[Maiani, Testa 1990]
- use effective low-energy description of $H_{\text {eff }}$ in XPT to relate $K \rightarrow \pi \pi$ amplitudes to computable quantities

```
[Bernard et al. 1985]
```

- avoid by working at large finite volume to disentangle pion rescattering effects (requires volumes being reached only recently)

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration
O direct CP violation:

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
&=1.38(5.15)(4.43) \times 10^{-4}, \text { (this work) } \\
& 16.6(2.3) \times 10^{-4} \text { (experiment) }
\end{aligned}
$$

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration
O direct CP violation:

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA}_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
=1.38(5.15)(4.43) \times 10^{-4}, & \text { (this work) } \\
16.6(2.3) \times 10^{-4} & \text { (experiment) }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =(15 \pm 7) \times 10^{-4} & \text { XPT-based, large log effect from final state interactions } \\
& =(14 \pm 5) \times 10^{-4} & \text { [Cirigliano, Gisbert, Pich, Rodríguez Sánchez today] }
\end{aligned}
$$

$K \rightarrow \pi \pi$: state of the art

$\varepsilon^{\prime} / \varepsilon$-2018: A Christmas Story

Andrzej J. Buras

TUM Institute for Advanced Study, Lichtenbergstr. 2a, D-85748 Garching, Germany Physik Department, TU München, James-Franck-Straße, D-85748 Garching, Germany

E-mail: aburas@ph.tum.de

Abstract

I was supposed to review the status of $\varepsilon^{\prime} / \varepsilon$ both at the CKM Workshop in September in Heidelberg and recently at the Discrete 2018 Conference in Vienna. Unfortunately I had to cancel both talks for family reasons. My main goal in these talks was to congratulate NA48 and KTeV collaborations for the discovery of new sources of CP violation through their heroic efforts to measure the ratio $\varepsilon^{\prime} / \varepsilon$ in the 1980 s and
other conferences this year I will reach this goal in this writing. In this context I will give arguments, why I am convinced about the presence of new physics in $\varepsilon^{\prime} / \varepsilon$ on the basis of my work with Jean-Marc Gérard within the context of the Dual QCD (DQCD) approach and why RBC-UKQCD lattice QCD collaboration and in particular Chiral Perturbation Theory practitioners are still unable to reach this conclusion. I will demonstrate that even in the presence of pion loops, as large as advocated recently by Gisbert and Pich, the value of $\varepsilon^{\prime} / \varepsilon$ is significantly below the data, when the main non-factorizable QCD dynamics at long distance below the data, when the main non-factorizable QCD dynamics at long distance
scales, represented in DQCD by the meson evolution, is taken into account. As
other conferences this year I will reach this goal in this writing. In this context I will give arguments, why I am convinced about the presence of new physics in $\varepsilon^{\prime} / \varepsilon$ on the basis of my work with Jean-Marc Gérard within the context of the Dual QCD (DQCD) approach and why RBC-UKQCD lattice QCD collaboration and in particular Chiral Perturbation Theory practitioners are still unable to reach this conclusion. I will demonstrate that even in the presence of pion loops, as large as advocated recently by Gisbert and Pich, the value of $\varepsilon^{\prime} / \varepsilon$ is significantly below the data, when the main non-factorizable QCD dynamics at long distance scales, represented in DQCD by the meson evolution, is taken into account. As appropriate for a Christmas story, I will prophesy the final value of $\varepsilon^{\prime} / \varepsilon$ within the SM, which should include in addition to the correct matching between long and short distance contributions, isospin breaking effects, NNLO QCD corrections to both QCD penguin and electroweak penguin contributions and final state interactions. Suct the 2020s, but already in 2019 we should be able to see some signs of NP in the of the 2020 s , be se signs of NP in the next result on $\varepsilon^{\prime} / \varepsilon$ from RBC-UKQCD. In this presentation I try to avoid, as much as possible, the overlap with my recent review of Dual QCD in [1].

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration
O direct CP violation:

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{Re} \mathrm{~A}_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
=1.38(5.15)(4.43) \times 10^{-4}, & \text { (this work) } \\
16.6(2.3) \times 10^{-4} & \text { (experiment) }
\end{aligned}
$$

- $\Delta I=3 / 2$ amplitude $\left(\operatorname{Re}\left(A_{2}\right)\right.$ proportional to B_{κ} in the chiral limit):

$$
\begin{aligned}
& \operatorname{Re}\left(A_{2}\right)=1.50(4)_{\text {stat }}(14)_{\text {sys }} \times 10^{-8} \mathrm{GeV} \\
& \operatorname{Im}\left(A_{2}\right)=-6.99(20)_{\text {stat }}(84)_{\text {sys }} \times 10^{-13} \mathrm{GeV}
\end{aligned}
$$

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration
O direct CP violation:

$$
\begin{array}{rll}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
=1.38(5.15)(4.43) \times 10^{-4}, & \text { (this work) } \\
16.6(2.3) \times 10^{-4} & \text { (experiment) }
\end{array}
$$

- $\Delta I=3 / 2$ amplitude $\left(\operatorname{Re}\left(A_{2}\right)\right.$ proportional to B_{K} in the chiral limit $)$:

$$
\begin{aligned}
& \operatorname{Re}\left(A_{2}\right)=1.50(4)_{\text {stat }}(14)_{\text {sys }} \times 10^{-8} \mathrm{GeV} \\
& \operatorname{Im}\left(A_{2}\right)=-6.99(20)_{\text {stat }}(84)_{\text {sys }} \times 10^{-13} \mathrm{GeV}
\end{aligned}
$$

O "emerging understanding of $\Delta I=1 / 2$ rule"

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration

Contraction (1)

Contraction (2)

- Naive factorisation approach: (2) $\sim 1 / 3$ (1)
- Our computation: (2) ~-0.7 (1)

O "emerging understanding of $\Delta I=1 / 2$ rule"

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration

Contraction (2)

$O\left(N_{C}^{2}\right)$

$O\left(N_{C}\right)$

$O(1)$

■ Naive factorisation approach: (2) $\sim 1 / 3(1)$

$$
T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] \sim 0 \Rightarrow\left|\frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}
$$

■ Our computation: (2) ~-0.7 (1)

O "emerging understanding of $\Delta I=1 / 2$ rule"

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration

Contraction (2)

- Naive factorisation approach: (2) $\sim 1 / 3$ (1)
- Our computation: (2) ~-0.7 (1)

O "emerging understanding of $\Delta I=1 / 2$ rule"

$K \rightarrow \pi \pi$: state of the art

far-reaching effort by RBC/UKQCD collaboration

Contraction (2)

- Naive factorisation approach: (2) $\sim 1 / 3$ (1)
- Our computation: (2) ~-0.7 (1)

O "emerging understanding of $\Delta I=1 / 2$ rule"

plan

- phenomenology of neutral kaon decay
- understanding non-leptonic kaon decay within the SM
- electroweak effective Hamiltonian analysis
- exact (lattice) vs. approximate (effective theory/large $N /$ models)
- why is it so hard?
- state-of-the-art quantitative results
- understanding the anatomy of $\Delta l=1 / 2$
- the strategy
- (old) results for QCD amplitudes
- large N_{c}
- insight into light meson physics
- outlook
based on:
- A. Donini, P. Hernández, CP, F. Romero-López, to appear.
- P. Hernández, CP, F. Romero-López, Large N_{c} scaling of meson masses and decay constants, EPJC 79 (2019) 865.
- A. Donini, P. Hernández, CP, F. Romero-López, Nonleptonic kaon decays at large N_{c}, PRD 94 (2016) 114511.
- E. Endress, CP, Exploring the role of the charm quark in the $\Delta I=1 / 2$ rule, PRD 90 (2014) 094504.
- P. Hernandez, M. Laine, CP, E. Torró, J. Wennekers, H. Wittig, Determination of the $\Delta S=1$ weak Hamiltonian in the $S U(4)$ chiral limit through topological zero-mode wave functions, JHEP 0805 (2008) 043.
- L. Giusti, P. Hernández, M. Laine, CP, J. Wennekers, H. Wittig, On $K \rightarrow \pi \pi$ amplitudes with a light charm quark, PRL 98 (2007) 082003.

anatomy of $\Delta I=1 / 2$

[Giusti, Hernández, Laine, Weisz, Wittig 2004]
several possible sources for $\Delta I=1 / 2$ enhancement:
O physics at charm scale (penguins)

- physics at "intrinsic" QCD scale $\sim \Lambda_{\mathrm{QCD}}$
o final state interactions
- all of the above (no dominating "mechanism")
separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u, d, s masses

$$
m_{c}=m_{u}=m_{d}=m_{s} \quad \longrightarrow \quad m_{c} \gg m_{u}=m_{d} \leq m_{s}
$$

anatomy of $\Delta /=1 / 2$

[Giusti, Hernández, Laine, Weisz, Wittig 2004]
several possible sources for $\Delta I=1 / 2$ enhancement:
O physics at charm scale (penguins)

- physics at "intrinsic" QCD scale $\sim \Lambda_{\mathrm{QCD}}$
o final state interactions
- all of the above (no dominating "mechanism")
separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u, d, s masses

$$
m_{c}=m_{u}=m_{d}=m_{s} \quad \longrightarrow \quad m_{c} \gg m_{u}=m_{d} \leq m_{s}
$$

implementation (Mark I):
O active charm

- use chiral fermions (good renormalisation, access to very low masses)
$0 \Rightarrow$ give up (too expensive) direct computation, use ChiPT \Rightarrow no FSI

anatomy of $\Delta I=1 / 2$

dynamics of Goldstone bosons at LO given by chiral Lagrangian

$$
\mathcal{L}=\frac{1}{4} F^{2} \operatorname{Tr}\left[\partial_{\mu} U \partial_{\mu} U^{\dagger}\right]-\frac{1}{2} \Sigma \operatorname{Tr}\left[U M^{\dagger} e^{i \theta / N_{\mathrm{f}}}+\text { h.c. }\right]
$$

weak interactions accounted for by low-energy version of effective Hamiltonian
light charm:

$$
\begin{array}{rlrl}
\mathcal{H}_{\mathrm{w}}^{(4)} & =\frac{g_{\mathrm{W}}^{2}}{4 M_{W}^{2}} V_{u s}^{*} V_{u d} \sum_{\sigma= \pm}\left\{g_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+g_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\right\} \\
\mathcal{Q}_{1}^{ \pm} & =\mathcal{J}_{\mu}^{s u} \mathcal{J}_{\mu}^{u d} \pm \mathcal{J}_{\mu}^{s d} \mathcal{J}_{\mu}^{u u}-[u \leftrightarrow c] & \mathcal{J}_{\mu}=\frac{F^{2}}{\sqrt{2}} U \partial_{\mu} U^{\dagger}
\end{array}
$$

heavy charm:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{w}}^{(3)} & =\frac{g_{\mathrm{w}}^{2}}{4 M_{W}^{2}} V_{u s}^{*} V_{u d}\left\{g_{27} \mathcal{Q}_{27}+g_{8} \mathcal{Q}_{8}+g_{8}^{\prime} \mathcal{Q}_{8}^{\prime}\right\} \\
\mathcal{Q}_{27} & =\frac{2}{5} \mathcal{J}_{\mu}^{s u} \mathcal{J}_{\mu}^{u d}+\frac{3}{5} \mathcal{J}_{\mu}^{s d} \mathcal{J}_{\mu}^{u u}, \\
\mathcal{Q}_{8} & =\frac{1}{2} \sum_{q=u, d, s} \mathcal{J}_{\mu}^{s q} \mathcal{J}_{\mu}^{q d}, \\
\mathcal{Q}_{8}^{\prime} & =m_{l} \Sigma F^{2}\left[U e^{i \theta / N_{\mathrm{f}}}+U^{\dagger} e^{-i \theta / N_{f}}\right]^{s d},
\end{aligned}
$$

anatomy of $\Delta I=1 / 2$

dynamics of Goldstone bosons at LO given by chiral Lagrangian

$$
\mathcal{L}=\frac{1}{4} F^{2} \operatorname{Tr}\left[\partial_{\mu} U \partial_{\mu} U^{\dagger}\right]-\frac{1}{2} \Sigma \operatorname{Tr}\left[U M^{\dagger} e^{i \theta / N_{\mathrm{f}}}+\text { h.c. }\right]
$$

weak interactions accounted for by low-energy version of effective Hamiltonian
light charm:

$$
\begin{array}{ll}
\mathcal{H}_{\mathrm{w}}^{(4)}=\frac{g_{\mathrm{w}}^{2}}{4 M_{W}^{2}} V_{u s}^{*} V_{u d} \sum_{\sigma= \pm}\left\{g_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+g_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\right\} \\
g_{27}(0)=g_{1}^{+}, & g_{8}(0)=g_{1}^{-}+\frac{1}{5} g_{1}^{+}
\end{array}
$$

heavy charm:

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{w}}^{(3)}=\frac{g_{\mathrm{w}}^{2}}{4 M_{W}^{2}} V_{u s}^{*} V_{u d}\left\{g_{27} \mathcal{Q}_{27}+g_{8} \mathcal{Q}_{8}+g_{8}^{\prime} \mathcal{Q}_{8}^{\prime}\right\} \\
& \left|g_{27}^{\exp }\left(\bar{m}_{c}\right)\right| \sim 0.50, \underbrace{\left|g_{8}^{\exp }\left(\bar{m}_{c}\right)\right| \sim 10.5}_{\text {match to experiment © LO in XPT }}
\end{aligned}
$$

determining weak LECs: $m_{u}=m_{c}$

match suitable correlation functions in QCD and ChPT (infinite volume: $K \rightarrow \pi$ amplitudes)

$$
\begin{array}{cc}
\text { QCD } & \mathrm{SU}(4) \mathrm{XPT} \\
R_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\frac{C_{i}^{ \pm}\left(x_{0}, y_{0}\right)}{C\left(x_{0}\right) C\left(y_{0}\right)} & \mathcal{R}_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\frac{\mathcal{C}_{i}^{ \pm}\left(x_{0}, y_{0}\right)}{\mathcal{C}\left(x_{0}\right) \mathcal{C}\left(y_{0}\right)} \\
C_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle J_{0}^{d u}(x) Q_{i}^{ \pm}(0) J_{0}^{u s}(y)\right\rangle & \mathcal{C}\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle\mathcal{J}_{0}^{u d}(x) \mathcal{J}_{0}^{d u}(0)\right\rangle_{\mathrm{SU}(4)}, \\
C\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle J_{0}^{\alpha \beta}(x) J_{0}^{\beta \alpha}(0)\right\rangle, & \mathcal{C}_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{i}^{ \pm}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(4)}
\end{array}
$$

determining weak LECs: $m_{u}=m_{c}$

match suitable correlation functions in QCD and ChPT (infinite volume: $K \rightarrow \pi$ amplitudes)

$$
\begin{array}{cc}
\text { QCD } & \mathrm{SU}(4) \mathrm{xPT} \\
R_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\frac{C_{i}^{ \pm}\left(x_{0}, y_{0}\right)}{C\left(x_{0}\right) C\left(y_{0}\right)} & \mathcal{R}_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\frac{\mathcal{C}_{i}^{ \pm}\left(x_{0}, y_{0}\right)}{\mathcal{C}\left(x_{0}\right) \mathcal{C}\left(y_{0}\right)} \\
C_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle J_{0}^{d u}(x) Q_{i}^{ \pm}(0) J_{0}^{u s}(y)\right\rangle & \mathcal{C}\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle\mathcal{J}_{0}^{u d}(x) \mathcal{J}_{0}^{d u}(0)\right\rangle_{\mathrm{SU}(4)}, \\
C\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle J_{0}^{\alpha \beta}(x) J_{0}^{\beta \alpha}(0)\right\rangle, & \mathcal{C}_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{i}^{ \pm}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(4)} \\
\mathcal{Z}_{1}^{ \pm} R_{1}^{ \pm}\left(x_{0}, y_{0}\right)=g_{1}^{ \pm} \mathcal{R}_{1}^{ \pm}\left(x_{0}, y_{0}\right)
\end{array}
$$

determining weak LECs: $\boldsymbol{m}_{u} \neq \boldsymbol{m}_{\boldsymbol{c}}$

match suitable correlation functions in QCD and ChPT (infinite volume: $K \rightarrow \pi$ amplitudes)

QCD

$$
\begin{aligned}
R_{27} & =\mathcal{Z}_{1}^{+} R_{u}^{+} \\
R_{8} & =\mathcal{Z}_{1}^{+}\left[R_{1}^{+}-R_{u}^{+}+c^{+} R_{2}^{+}\right]+\mathcal{Z}_{1}^{-}\left[R_{1}^{-}+c^{-} R_{2}^{-}\right]
\end{aligned}
$$

$$
C_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle J_{0}^{d u}(x) Q_{i}^{ \pm}(0) J_{0}^{u s}(y)\right\rangle
$$

$$
C\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle J_{0}^{\alpha \beta}(x) J_{0}^{\beta \alpha}(0)\right\rangle,
$$

$$
C_{u}^{+}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle J_{0}^{d u}(x) Q_{u}^{+}(0) J_{0}^{u s}(y)\right\rangle
$$

$$
\begin{aligned}
\mathcal{C}_{27}\left(x_{0}, y_{0}\right) & =\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{27}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(3)}, \\
\mathcal{C}_{8}\left(x_{0}, y_{0}\right) & =\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{8}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(3)}, \\
\mathcal{C}_{8}^{\prime}\left(x_{0}, y_{0}\right) & =\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{8}^{\prime}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(3)},
\end{aligned}
$$

determining weak LECs: $\boldsymbol{m}_{u} \neq \boldsymbol{m}_{\boldsymbol{c}}$

match suitable correlation functions in QCD and ChPT (infinite volume: $K \rightarrow \pi$ amplitudes)

QCD

$$
\begin{aligned}
R_{27} & =\mathcal{Z}_{1}^{+} R_{u}^{+}, \\
R_{8} & =\mathcal{Z}_{1}^{+}\left[R_{1}^{+}-R_{u}^{+}+c^{+} R_{2}^{+}\right]+\mathcal{Z}_{1}^{-}\left[R_{1}^{-}+c^{-} R_{2}^{-}\right]
\end{aligned}
$$

$$
C_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle J_{0}^{d u}(x) Q_{i}^{ \pm}(0) J_{0}^{u s}(y)\right\rangle
$$

$$
C\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle J_{0}^{\alpha \beta}(x) J_{0}^{\beta \alpha}(0)\right\rangle,
$$

$$
C_{u}^{+}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle J_{0}^{d u}(x) Q_{u}^{+}(0) J_{0}^{u s}(y)\right\rangle
$$

SU(3) xPT

$$
\mathcal{R}_{i}^{ \pm}\left(x_{0}, y_{0}\right)=\frac{\mathcal{C}_{i}^{ \pm}\left(x_{0}, y_{0}\right)}{\mathcal{C}\left(x_{0}\right) \mathcal{C}\left(y_{0}\right)}
$$

$$
\begin{aligned}
\mathcal{C}_{27}\left(x_{0}, y_{0}\right) & =\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{27}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(3)}, \\
\mathcal{C}_{8}\left(x_{0}, y_{0}\right) & =\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{8}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(3)}, \\
\mathcal{C}_{8}^{\prime}\left(x_{0}, y_{0}\right) & =\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}^{d u}(x) \mathcal{Q}_{8}^{\prime}(0) \mathcal{J}_{0}^{u s}(y)\right\rangle_{\mathrm{SU}(3)},
\end{aligned}
$$

$$
\begin{aligned}
R_{27}\left(x_{0}, y_{0}\right) & =g_{27} \mathcal{R}_{27}\left(x_{0}, y_{0}\right), \\
R_{8}\left(x_{0}, y_{0}\right) & =g_{8} \mathcal{R}_{8}\left(x_{0}, y_{0}\right)+g_{8}^{\prime} \mathcal{R}_{8}^{\prime}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

quenched overlap results

```
[Giusti, Hernández, Laine, CP, Wennekers, Wittig 2007]
```

- fixed $a \sim 0.12 \mathrm{fm}$
o sophisticated variance reduction techniques
○ computations spanning both p - and ε-regime

	g^{+}	g^{-}
This work	$0.51(3)(5)(6)$	$2.6(1)(3)(3)$
"Exp"	~ 0.5	~ 10.4
Large N_{c}	1	1

- large chiral corrections, consistent with XPT prediction
- $\Delta I=3 / 2$ in the right ballpark (n.b. charm enters only via loops / quenching subdominant [?])
o $\Delta l=1 / 2$ about a factor 4 too small to reproduce physical enhancement
O remarkable enhancement of $\Delta I=1 / 2$ channel present for light charm: pure "no-penguin" effect

quenched overlap results

o fixed $a \sim 0.12 \mathrm{fm}$
O sophisticated variance reduction techniques
O computations spanning both p - and ε-regime
o add heavy(-ish) charm + perturbative operator mixing

quenched overlap results

O fixed $a \sim 0.12 \mathrm{fm}$
O sophisticated variance reduction techniques
O computations spanning both p - and ε-regime
O add heavy(-ish) charm + perturbative operator mixing

O large chiral corrections, consistent with χ PT prediction
o $\Delta I=3 / 2$ in the right ballpark (n.b. charm enters only via loops / quenching subdominant [?])
o $\Delta I=1 / 2$ about a factor $\frac{x}{}$ 3.0-3.5 too small to reproduce physical enhancement O heavy charm adds to the enhancement, but effect is moderate up to $m_{c}{ }^{\text {phys }} / 4-m_{c}{ }^{\text {phys } / 2}$

$\Delta /=1 / 2$ @ large N_{c}

[RBC/UKQCD 2013-15]

Contraction (1)

Contraction (2)

$$
T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] \sim 0 \Rightarrow\left|\frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}
$$

$\Delta I=1 / 2$ @ large N_{c}

[RBC/UKQCD 2013-15]

Contraction (1)

Contraction (2)
understanding by comparing connecteddisconnected contributions to three-point functions difficult to interpret physically

the leading large N_{c} scaling of each contribution is however different: connection with the physical amplitudes can be established by studying the N_{c} dependence

[^1]
$\Delta /=1 / 2$ @ large N_{c}

[RBC/UKQCD 2013-15]

Contraction (1)

Contraction (2)

$$
T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] \sim 0 \Rightarrow\left|\frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}
$$

$$
\frac{A_{0}}{A_{2}}=\frac{1}{2 \sqrt{2}}\left(1+3 \frac{g^{-}}{g^{+}}\right) \xrightarrow[g^{+}=g^{-}]{\text {Large } N_{c}} \sqrt{2}
$$

$\Delta /=1 / 2$ @ large N_{c}

[RBC/UKQCD 2013-15]

Contraction (1)

Contraction (2)

$$
T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] \sim 0 \Rightarrow\left|\frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}
$$

$$
m_{u}=m_{d}=m_{s} \text { limit: } \quad \hat{B}_{K}=\frac{3}{4} \hat{R}^{+}
$$

$\Delta I=1 / 2$ @ large N_{c}

n.b.: relation between kaon mixing and $\Delta I=3 / 2$ decay amplitude holds outside the chiral limit for $m_{u}=m_{d}=m_{s}$, since in that case chiral logs coincide - at leading log

$$
\begin{gathered}
\left.\frac{\left\langle\pi^{+} \pi^{0}\right| H_{W}|K\rangle}{m_{K}^{2}-m_{\pi}^{2}}\right|_{m_{s}=m_{d}}=\frac{i F}{\sqrt{2}} A^{+} G_{F} V_{u d} V_{u s}^{*} \\
\left\langle\pi^{+} \pi^{0}\right| H_{W}\left|K^{+}\right\rangle_{m_{\pi} \rightarrow 0}=\left.m_{K}^{2} \frac{\left\langle\pi^{+} \pi^{0}\right| H_{W}\left|K^{+}\right\rangle}{m_{K}^{2}-m_{\pi}^{2}}\right|_{m_{s}=m_{d}}\left(1+\frac{9}{4} \frac{m_{K}^{2}}{(4 \pi F)^{2}} \log \frac{m_{K}^{2}}{(4 \pi F)^{2}}\right)
\end{gathered}
$$

[Golterman, Leung 1997]
thus, large N corrections to the physical amplitude are fixed by those in A^{+}

```
[Donoghue, Golowich, Holstein 1982; Bijnens, Sonoda, Wise 1984]
```

O caveat 1: in physical kinematics, chiral logs much larger for mixing amplitude
o caveat 2: higher-order ChiPT effects argued to be larger

$\Delta I=1 / 2$ @ large N_{c} : numerical study

- simulate for $N_{c}=3, \ldots, 8$ at fixed lattice spacing, change quark mass along $m_{u}=m_{d}=m_{s}=m_{c}$
- quenched: use line of constant physics provided by Regensburg+Scotland+Wales study of meson physics [Bursa et al. 2013]
- dynamical: use gradient flow scale t_{0} to set constant physics
- use Wilson fermions for sea (HiRep code), twisted-mass QCD for valence
- twisted valence à la Frezzotti-Rossi allows to avoid mixing with wrong-chirality operators
[Frezzotti, Rossi 2004]
- mixed-action approach requires matching of valence and sea, performed with meson mass
- check for residual cutoff effects by changing value of $c_{s w}+$ ongoing simulation on finer lattice
- develop necessary $\mathrm{SU}(4) \mathrm{XPT}$ to better understand meson dynamics
- bonus: get large- N_{c} insight on LECs and meson interactions

$\Delta I=1 / 2$ @ large N_{c} : numerical study

quenched simulations in 16^{3} lattices at (roughly) constant PS mass

N_{c}	T / a	β	$a m_{\mathrm{PCAC}}$	$a m_{\mathrm{PS}}$	$R_{\text {bare }}^{+}$	$R_{\text {bare }}^{-}$
3	48	6.0175	$-0.002(14)$	$0.2718(61)$	$0.774(21)$	$1.218(31)$
4	48	11.028	$-0.0015(11)$	$0.2637(39)$	$0.783(15)$	$1.198(19)$
5	48	17.535	$0.0028(9)$	$0.2655(31)$	$0.839(8)$	$1.145(12)$
6	32	25.452	$0.0013(7)$	$0.2676(28)$	$0.871(6)$	$1.125(7)$
7	32	34.8343	$-0.0034(6)$	$0.2819(19)$	$0.880(5)$	$1.122(5)$

renormalisation (RI scheme) at scale around 2 GeV performed using one-loop P.T.

```
[Constantinou et al. 2011]
    [Alexandrou et al. 2012]
```

perturbative two-loop RG running in RI to connect to RGIs

```
[Ciuchini et al. 1998]
    [Buras et al. 2000]
```


$\Delta I=1 / 2$ @ large N_{c} : numerical study

quenched simulations in 16^{3} lattices at (roughly) constant PS mass, string tension

N_{c}	T / a	β	$a m_{\text {PCAC }}$	$a m_{\mathrm{PS}}$	$R_{\text {bare }}^{+}$	$R_{\text {bare }}^{-}$
3	48	6.0175	$-0.002(14)$	$0.2718(61)$	$0.774(21)$	$1.218(31)$
4	48	11.028	$-0.0015(11)$	$0.2637(39)$	$0.783(15)$	$1.198(19)$
5	48	17.535	$0.0028(9)$	$0.2655(31)$	$0.839(8)$	$1.145(12)$
6	32	25.452	$0.0013(7)$	$0.2676(28)$	$0.871(6)$	$1.125(7)$
7	32	34.8343	$-0.0034(6)$	$0.2819(19)$	$0.880(5)$	$1.122(5)$

renormalisation (RI scheme) at scale around 2 GeV performed using one-loop P.T.

```
[Constantinou et al. 2011]
    [Alexandrou et al. 2012]
```

perturbative two-loop RG running in RI to connect to RGIs

essentially flat scaling, consistent with model by Buras, Gérard, Bardeen

$\Delta I=1 / 2$ @ large N_{c} : numerical study

quenched simulations in 16^{3} lattices at (roughly) constant PS mass, string tension

N_{c}	T / a	β	$a m_{\mathrm{PCAC}}$	$a m_{\mathrm{PS}}$	$R_{\text {bare }}^{+}$	$R_{\text {bare }}^{-}$
3	48	6.0175	$-0.002(14)$	$0.2718(61)$	$0.774(21)$	$1.218(31)$
4	48	11.028	$-0.0015(11)$	$0.2637(39)$	$0.783(15)$	$1.198(19)$
5	48	17.535	$0.0028(9)$	$0.2655(31)$	$0.839(8)$	$1.145(12)$
6	32	25.452	$0.0013(7)$	$0.2676(28)$	$0.871(6)$	$1.125(7)$
7	32	34.8343	$-0.0034(6)$	$0.2819(19)$	$0.880(5)$	$1.122(5)$

renormalisation (RI scheme) at scale around 2 GeV performed using one-loop P.T.

> [Constantinou et al. 2011] [Alexandrou et al. 2012]
perturbative two-loop RG running in RI to connect to RGls

O very linear behaviour in N_{c}
O expected large N_{c} limit, corrections at $N_{c}=3$ in 30% ballpark

O strong anticorrelation of corrections for the two amplitudes

$\Delta I=1 / 2$ @ large N_{c} : numerical study

quenched simulations in 16^{3} lattices at (roughly) constant PS mass, string tension

N_{c}	T / a	β	$a m_{\text {PCAC }}$	$a m_{\mathrm{PS}}$	$R_{\text {bare }}^{+}$	$R_{\text {bare }}^{-}$
3	48	6.0175	$-0.002(14)$	$0.2718(61)$	$0.774(21)$	$1.218(31)$
4	48	11.028	$-0.0015(11)$	$0.2637(39)$	$0.783(15)$	$1.198(19)$
5	48	17.535	$0.0028(9)$	$0.2655(31)$	$0.839(8)$	$1.145(12)$
6	32	25.452	$0.0013(7)$	$0.2676(28)$	$0.871(6)$	$1.125(7)$
7	32	34.8343	$-0.0034(6)$	$0.2819(19)$	$0.880(5)$	$1.122(5)$

renormalisation (RI scheme) at scale around 2 GeV performed using one-loop P.T.

```
[Constantinou et al. 2011]
    [Alexandrou et al. 2012]
```

perturbative two-loop RG running in RI to connect to RGls

```
[Ciuchini et al. 1998]
    [Buras et al. 2000]
```


$\Delta I=1 / 2$ @ large N_{c} : numerical study

dynamical simulations at varying PS mass
(+ extra quenched points)

Ensemble	N_{c}	$L \times T$	β	m_{0}	aM	$M(\mathrm{MeV})$
A301	3	20×36	1.778	-0.4040	0.2191(36)	570
A302		24×48		-0.4060	0.1831(17)	480
A303		24×48		-0.4070	0.1612(24)	420
A304		32×60		-0.4080	0.1384(15)	360
A401	4	20×36	3.570	-0.3725	0.2035(14)	530
A402		24×48		-0.3752	0.1804(7)	470
A403		24×48		-0.3760	0.1714(8)	440
A404		32×60		-0.3780	0.1397(8)	360
A501	5	20×36	5.969	-0.3458	0.2128(9)	560
A502		24×48		-0.3490	0.1802(6)	470
A503		24×48		-0.3500	0.1712(6)	450
A504		32×60		-0.3530	0.1328(8)	350
A601	6	20×36	8.974	-0.3260	0.2150(7)	570
A602		24×48		-0.3300	0.1801(5)	470
A603		24×48		-0.3311	0.1690(7)	450
A604		32×60		-0.3340	0.1354(7)	360

other technicalities as before

$\Delta I=1 / 2$ @ large N_{c} : numerical study

dynamical simulations at varying PS mass

 (+ extra quenched points)| Ensemble | N_{c} | $L \times T$ | β | m_{0} | aM | $M(\mathrm{MeV})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A301 | 3 | 20×36 | 1.778 | -0.4040 | 0.2191(36) | 570 |
| A302 | | 24×48 | | -0.4060 | 0.1831(17) | 480 |
| A303 | | 24×48 | | -0.4070 | 0.1612(24) | 420 |
| A304 | | 32×60 | | -0.4080 | 0.1384(15) | 360 |
| A401 | 4 | 20×36 | 3.570 | -0.3725 | 0.2035(14) | 530 |
| A402 | | 24×48 | | -0.3752 | 0.1804(7) | 470 |
| A403 | | 24×48 | | -0.3760 | 0.1714(8) | 440 |
| A404 | | 32×60 | | -0.3780 | 0.1397(8) | 360 |
| A501 | 5 | 20×36 | 5.969 | -0.3458 | 0.2128(9) | 560 |
| A502 | | 24×48 | | -0.3490 | 0.1802(6) | 470 |
| A503 | | 24×48 | | -0.3500 | 0.1712(6) | 450 |
| A504 | | 32×60 | | -0.3530 | 0.1328(8) | 350 |
| A601 | 6 | 20×36 | 8.974 | -0.3260 | 0.2150(7) | 570 |
| A602 | | 24×48 | | -0.3300 | 0.1801(5) | 470 |
| A603 | | 24×48 | | -0.3311 | 0.1690(7) | 450 |
| A604 | | 32×60 | | -0.3340 | 0.1354(7) | 360 |

other technicalities as before

$$
\left\langle t^{2} E(t)\right\rangle_{t=t_{0}}=0.1125 \frac{N_{c}^{2}-1}{N_{c}}
$$

$$
\left(M \sqrt{t_{0}}\right)_{M=420 \mathrm{MeV}}=0.3090(83)
$$

$\Delta I=1 / 2$ @ large N_{c} : numerical study

dynamical simulations at varying PS mass (+ extra quenched points)

Ensemble	N_{c}	$L \times T$	β	m_{0}	aM	$M(\mathrm{MeV})$
A301	3	20×36	1.778	-0.4040	0.2191(36)	570
A302		24×48		-0.4060	0.1831(17)	480
A303		24×48		-0.4070	0.1612(24)	420
A304		32×60		-0.4080	0.1384(15)	360
A401	4	20×36	3.570	-0.3725	0.2035(14)	530
A402		24×48		-0.3752	0.1804(7)	470
A403		24×48		-0.3760	0.1714(8)	440
A404		32×60		-0.3780	0.1397(8)	360
A501	5	20×36	5.969	-0.3458	0.2128(9)	560
A502		24×48		-0.3490	0.1802(6)	470
A503		24×48		-0.3500	0.1712(6)	450
A504		32×60		-0.3530	0.1328(8)	350
A601	6	20×36	8.974	-0.3260	0.2150(7)	570
A602		24×48		-0.3300	0.1801(5)	470
A603		24×48		-0.3311	0.1690(7)	450
A604		32×60		-0.3340	0.1354(7)	360

- quenching effects $\mathrm{O}\left(1 / N_{c}{ }^{2}\right)$
other technicalities as before
$\left.\bigcirc \frac{A_{0}}{A_{2}}\right|_{N_{c}=3, N_{f}=4}=5.7(3)^{\text {stat }}$

$\Delta /=1 / 2$ anatomy: a summary

several possible sources for $\Delta /=1 / 2$ enhancement (on top of short-distance's $\times 2$):

O physics at charm scale (penguins)
O physics at "intrinsic" QCD scale $\sim \Lambda_{\mathrm{QCD}}$
O final state interactions
O all of the above (no dominating "mechanism")

$\Delta /=1 / 2$ anatomy: a summary

several possible sources for $\Delta t=1 / 2$ enhancement (on top of short-distance's $\times 2$):
O physics at charm scale (penguins)

O physics at "intrinsic" QCD scale $\sim \Lambda_{\mathrm{QCD}} \longrightarrow \times[1.5-2.0$ (glue) $\times 1.0-1.5$ (quarks)]
O final state interactions

O all of the above (no dominating "mechanism")
likely, if I were to put my money...
$1 / N_{c}$ corrections are very large, consistent with the enhancement (and RBC/UKQCD's findings), and however still consistent with $1 / N_{c}$ scaling
several interesting byproducts

meson interactions @ large $N_{c}: ~ X P T$

Goldstone boson physics is well-parametrized by Chiral Perturbation Theory

$$
F_{\pi}=F\left\{1+\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\left[4 L_{5}(\mu)+4 N_{\mathrm{f}} L_{4}(\mu)\right]+\frac{N_{\mathrm{f}}}{2} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu}\right)\right\}
$$

$$
\begin{aligned}
F_{\pi}^{2} & =\mathcal{O}\left(N_{c}\right) \\
L_{5} & =\mathcal{O}\left(N_{c}\right) \\
L_{4} & =\mathcal{O}(1)
\end{aligned}
$$

$$
F_{\pi} \underset{N_{c} \rightarrow \infty}{\approx} F\left\{1+4 \frac{M_{\pi}^{2}}{F_{\pi}^{2}} L_{5}+\operatorname{logs}\right\}
$$

meson interactions @ large N_{c} : XPT

$$
\begin{aligned}
F_{\pi} & =F\left\{1+\frac{M_{\pi}^{2}}{F_{\pi}^{2}} 4 L_{F}+\frac{N_{\mathrm{f}}}{2} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right] \\
F & =\sqrt{N_{c}}\left(F^{(0)}+\frac{F^{(1)}}{N_{c}}\right) \quad L_{F}=N_{c} L_{F}^{(0)}+L_{F}^{(1)}
\end{aligned}
$$

meson interactions @ large N_{c} : XPT

$$
\begin{aligned}
M_{\pi}^{2} & =2 B m\left\{1+\frac{M_{\pi}^{2}}{F_{\pi}^{2}} 8 L_{M}+\frac{1}{N_{\mathrm{f}}} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right\} \\
B & =B^{(0)}+\frac{B^{(1)}}{N_{c}} \quad L_{M}=N_{c} L_{M}^{(0)}+L_{M}^{(1)}
\end{aligned}
$$

meson interactions @ large N_{c} : XPT

selected results:

meson interactions @ large \boldsymbol{N}_{c} : XPT

selected results:

- LO LECs:

$$
-\frac{F}{\sqrt{N_{c}}}=\left[67(3)-26(4) \frac{N_{f}}{N_{c}}\right] \mathrm{MeV} \Rightarrow F_{N_{f}=2}=86(3) \mathrm{MeV}
$$

$$
F_{N_{f}=3}=71(3) \mathrm{MeV}
$$

ETM 15A	$[386]$	$86.3(2.8)$
Engel 14	$[50]$	$85.8(0.7)(2.0)$
Brandt 13	$[49]$	$84(8)(2)$
QCDSF 13	$[402]$	$86(1)$
TWQCD 11	$[394]$	$83.39(35)(38)$
ETM 09C	$[48]$	$85.91(07)\left({ }_{-07}^{+78}\right)$
ETM 08	$[53]$	$86.6(7)(7)$
Hasenfratz 08	$[397]$	$90(4)$
JLQCD/TWQCD 08A	$[376]$	$79.0(2.5)(0.7)\left({ }_{-0.0}^{+4.2}\right)$
JLQCD/TWQCD 07	$[398]$	$87.3(5.6)$
Colangelo 03	$[403]$	$86.2(5)$

JLQCD/TWQCD $10 \mathrm{~A}[389]$	
$71(3)(8)$	
MILC 10	$[36]$
MILC 09A	$[17] 78.3(2.5)(5.4)$
MILC 09	$[129]$
PACS-CS 08	$[162] 83.8(6.4)$
RBC/UKQCD 08	$[163] 66.1(5.2)$

meson interactions @ large \boldsymbol{N}_{c} : XPT

selected results:

- LO LECs:

$-\frac{F}{\sqrt{N_{c}}}=\left[67(3)-26(4) \frac{N_{f}}{N_{c}}\right] \mathrm{MeV} \quad \Rightarrow \quad F_{N_{f}=2}=86(3) \mathrm{MeV} \quad F_{N_{f}=3}=71(3) \mathrm{MeV}$

- $\Sigma_{N_{f}=3}=223(9) \mathrm{MeV} \quad$ vs $\quad \Sigma_{N_{f}=3}^{1 / 3}=214(6)(24) \mathrm{MeV}$
[Fukaya et al. 2010]
- $\frac{\Sigma_{N_{f}=3}}{\Sigma_{N_{f}=2}}=1.49(10) \quad$ vs $\quad \frac{\Sigma_{N_{f}=3}}{\Sigma_{N_{f}=2}}=1.51(11) \quad$ [Bernard, Descotes-Genon, Toucas 2012]
- NLO LECs:
- $\bar{\ell}_{4}=5.1(3) \quad$ vs $\quad \bar{\ell}_{4}=4.40(28)$
[FLAG 2019]
- n.b. subleading corrections to LECs are sizable: $\frac{L_{M}^{N_{f}=4}}{N_{c}} \times 10^{3}=-0.2(2)+\frac{2.9(6)}{N_{c}}+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)$

meson interactions @ large $\boldsymbol{N}_{c}: \mathbf{2 \rightarrow 2}$ scattering

infinite volume: phase shifts parametrize S-matrix

$$
\langle\mathbf{k} \ell m| \hat{S}|\mathbf{p} \ell m\rangle=S_{\ell}=e^{2 \delta_{\ell}(k)} \delta(|\mathbf{k}|-|\mathbf{p}|)
$$

finite volume: use Lüscher method to derive phase shifts from volumescaling of energies

$$
\operatorname{det}\left[\cot \delta_{\ell}+\mathcal{M}\right]=0
$$

meson interactions @ large $N_{c}: 2 \rightarrow 2$ scattering

infinite volume: phase shifts parametrize S -matrix

$$
\langle\mathbf{k} \ell m| \hat{S}|\mathbf{p} \ell m\rangle=S_{\ell}=e^{2 \delta_{\ell}(k)} \delta(|\mathbf{k}|-|\mathbf{p}|)
$$

finite volume: use Lüscher method to derive phase shifts from volumescaling of energies

$$
\operatorname{det}\left[\cot \delta_{\ell}+\mathcal{M}\right]=0
$$

plan

- phenomenology of neutral kaon decay
- understanding non-leptonic kaon decay within the SM
- electroweak effective Hamiltonian analysis
- exact (lattice) vs. approximate (effective theory/large $N /$ models)
- why is it so hard?
- state-of-the-art quantitative results
- understanding the anatomy of $\Delta /=1 / 2$
- the strategy
- (old) results for QCD amplitudes
- large N_{c}
- insight into light meson physics
- outlook

conclusions and outlook

- non-leptonic kaon decay remains an open problem... and a fertile ground to learn about strong interaction physics
- indirect CP violation well under control
- direct CP violation, isospin enhancement still witness claims of new physics
- lattice toolbox making steady progress
- controlled quantitative predictions for amplitudes are at hand
- the anatomy of the effect is ever better understood, complex interplay of accumulated enhancements seems to emerge
- a theorist's paradise: field-theory, phenomenology, and computational physics all simultaneously at play!

[^0]: [Nielsen, Ninomiya 1982]

[^1]: [Donini, Hernández, CP, Romero-López 2016] [cf. also Blum et al., PRD 91 (2015) 074502]

