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FIG. 1. Plan view of the detector arrangement.

This Letter reports the results of experimental
studies designed to search for the 2m decay of the
K, meson. Several previous experiments have
served"~ to set an upper limit of 1/300 for the
fraction of K2 's which decay into two charged pi-
ons. The present experiment, using spark cham-
ber techniques, proposed to extend this limit.
In this measurement, K,' mesons were pro-

duced at the Brookhaven AGS in an internal Be
target bombarded by 30-BeV protons. A neutral
beam was defined at 30 degrees relative to the

1 1circulating protons by a 1&-in. x 12-in. x 48-in.
collimator at an average distance of 14.5 ft. from
the internal target. This collimator was followed
by a sweeping magnet of 512 kG-in. at -20 ft. .
and a 6-in. x 6-in. x 48-in. collimator at 55 ft. A
1~-in. thickness of Pb was placed in front of the
first collimator to attenuate the gamma rays in
the beam.
The experimental layout is shown in relation to

the beam in Fig. 1. The detector for the decay
products consisted of two spectrometers each
composed of two spark chambers for track delin-
eation separated by a magnetic field of 178 kG-in.
The axis of each spectrometer was in the hori-
zontal plane and each subtended an average solid
angle of 0.7&& 10 steradians. The squark cham-
bers were triggered on a coincidence between
water Cherenkov and scintillation counters posi-
tioned immediately behind the spectrometers.
When coherent K,' regeneration in solid materials
was being studied, an anticoincidence counter was
placed immediately behind the regenerator. To
minimize interactions K2' decays were observed
from a volume of He gas at nearly STP.

Water

The analysis program computed the vector mo-
mentum of each charged particle observed in the
decay and the invariant mass, m*, assuming
each charged particle had the mass of the
charged pion. In this detector the Ke3 decay
leads to a distribution in m* ranging from 280
MeV to -536 MeV; the K&3, from 280 to -516; and
the K&3, from 280 to 363 MeV. We emphasize
that m* equal to the E' mass is not a preferred
result when the three-body decays are analyzed
in this way. In addition, the vector sum of the
two momenta and the angle, |9, between it and the
direction of the K,' beam were determined. This
angle should be zero for two-body decay and is,
in general, different from zero for three-body
decays.
An important calibration of the apparatus and

data reduction system was afforded by observing
the decays of K,' mesons produced by coherent
regeneration in 43 gm/cm' of tungsten. Since the
K,' mesons produced by coherent regeneration
have the same momentum and direction as the
K,' beam, the K,' decay simulates the direct de-
cay of the K,' into two pions. The regenerator
was successively placed at intervals of 11 in.
along the region of the beam sensed by the detec-
tor to approximate the spatial distribution of the
K,"s. The K,' vector momenta peaked about the
forward direction with a standard deviation of
3.4+0.3 milliradians. The mass distribution of
these events was fitted to a Gaussian with an av-
erage mass 498.1+0.4 MeV and standard devia-
tion of 3.6+ 0.2 MeV. The mean momentum of
the K,o decays was found to be 1100 MeV/c. At
this momentum the beam region sensed by the
detector was 300 K,' decay lengths from the tar-
get.
For the K,' decays in He gas, the experimental

distribution in m is shown in Fig. 2(a). It is
compared in the figure with the results of a
Monte Carlo calculation which takes into account
the nature of the interaction and the form factors
involved in the decay, coupled with the detection
efficiency of the apparatus. The computed curve
shown in Fig. 2(a) is for a vector interaction,
form-factor ratio f /f+= 0.5, and relative abun-
dance 0.47, 0.37, and 0.16 for the Ke3, K&3, and
Eg3 respectively. The scalar interaction has
been computed as well as the vector interaction

138

VOLUME 1),NUMBER 4 PHYSICAL REVIEW LETTERS 27 JULY 1964

QATA: 52ll EVENTS
~ ---- MONTE-CARLO CALCULATION

VECTOR —' -0.5 - 6oo

484&m" & 494 -. IO

- 500

I
0
I
Il~
I
I
I

- 400

- 500

- 200

- IQO 494& m~& 504

30

CA

-- 20
1 LU

LLI

- IO
i iJ
500 550

I I I

400 450 500 550 600 MeV
X

p iZ

(b)
504&m"& 5 l4 -- IO

"---"MONTE- CARLO CALCULATION -~ )20
VE CTOR — & 0.5 "- I IOf+ - IOP

90
~,- 80

ewe $0
r-- ~ sp

r-i ' ~ 5p
y I

I 40
- 50. 20
IO

10.998 0,999
cos g

FIG. 2. (a) Experimental distribution in rn~ com-
pared with Monte Carlo calculation. The calculated
distribution is normalized to the total number of ob-
served events. (b) Angular distribution of those events
in the range 490 &m*&510 MeV. The calculated curve
is normalized to the number of events in the complete
sample.

with a form-factor ratio f /f+ =-6.6. The data
are not sensitive to the choice of form factors
but do discriminate against the scalar interac-
tion.
Figure 2(b) shows the distribution in cos8 for

those events which fall in the mass range from
490 to 510 MeV together with the corresponding
result from the Monte Carlo calculation. Those
events within a restricted angular range (cos8
&0.9995) were remeasured on a somewhat more
precise measuring machine and recomputed using
an independent computer program. The results of
these two analyses are the same within the re-
spective resolutions. Figure 3 shows the re-
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FIG. 3. Angular distribution in three mass ranges

for events with cos0 & 0.9995.

suits from the more accurate measuring machine.
The angular distribution from three mass ranges
are shown; one above, one below, and one encom-
passing the mass of the neutral K meson.
The average of the distribution of masses of

those events in Fig. 3 with cos8 &0.99999 is
found to be 499.1 + 0.8 MeV. A corresponding
calculation has been made for the tungsten data
resulting in a mean mass of 498.1 + 0.4. The dif-
ference is 1.0+0.9 MeV. Alternately we may
take the mass of the E' to be known and compute
the mass of the secondaries for two-body decay.
Again restricting our attention to those events
with cos0&0.99999 and assuming one of the sec-
ondaries to be a pion, the mass of the other par-
ticle is determined to be 137.4+ 1.8. Fitted to a
Gaussian shape the forward peak in Fig. 3 has a
standard deviation of 4.0 + 0.7 milliradians to be
compared with 3.4+ 0.3 milliradians for the tung-
sten. The events from the He gas appear identi-
cal with those from the coherent regeneration in
tungsten in both mass and angular spread.
The relative efficiency for detection of the

three-body E, decays compared to that for decay
to two pions is 0.23. %e obtain 45+ 9 events in
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the forward peak after subtraction of background
out of a total corrected sample of 22 700 K,' de-
cays.
Data taken with a hydrogen target in the beam

also show evidence of a forward peak in the cos0
distribution. After subtraction of background,
45+ 10 events are observed in the forward peak
at the K' mass. We estimate that -10 events can
be expected from coherent regeneration. The
number of events remaining (35) is entirely con-
sistent with the decay data when the relative tar-
get volumes and integrated beam intensities are
taken into account. This number is substantially
smaller (by more than a factor of 15) than one
would expect on the basis of the data of Adair
et al. '
We have examined many possibilities which

might lead to a pronounced forward peak in the
angular distribution at the K' mass. These in-
clude the following:
(i) K,' coherent regeneration. In the He gas it

is computed to be too small by a factor of -10' to
account for the effect observed, assuming reason
able scattering amplitudes. Anomalously large
scattering amplitudes would presumably lead to
exaggerated effects in liquid H, which are not
observed. The walls of the He bag are outside
the sensitive volume of the detector. The spatial
distribution of the forward events is the same as
that for the regular K,' decays which eliminates
the possibility of regeneration having occurred
in the collimator.
(ii) K&3 or Ke3 decay. A spectrum can be

constructed to reproduce the observed data. It
requires the preferential emission of the neutrino
within a narrow band of energy, +4 MeV, cen-
tered at 17+ 2 MeV (K&3) or 39+ 2 MeV (Ke3).
This must be coupled with an appropriate angular
correlation to produce the forward peak. There
appears to be no reasonable mechanism which
can produce such a spectrum.
(iii) Decay into w+7t y. To produce the highly

singular behavior shown in Fig. 3 it would be
necessary for the y ray to have an average ener-
gy of less than 1 MeV with the available energy
ext nding to 209 MeV. We know of no physical
process which would accomplish this.
We would conclude therefore that K2 decays to

two pions with a branching ratio R = (K2- w++ w )/
(K,'- all charged modes) = (2.0+ 0.4) && 10 where
the error is the standard deviation. As empha-
sized above, any alternate explanation of the ef-
fect requires highly nonphysical behavior of the
three-body decays of the K,'. The presence of a
two-pion decay mode implies that the K,' meson
is not a pure eigenstate of CI'. Expressed as
K,0=2 "'[(K,-KO)+e(KO+KJ] then I&I'= R&T—IT2
where 7, and T, are the K, and K,' mean lives
and RZ is the branching ratio including decay to
two r'. Using RT = &R and the branching ratio
quoted above, l et =—2.3x 10
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K, meson. Several previous experiments have
served"~ to set an upper limit of 1/300 for the
fraction of K2 's which decay into two charged pi-
ons. The present experiment, using spark cham-
ber techniques, proposed to extend this limit.
In this measurement, K,' mesons were pro-

duced at the Brookhaven AGS in an internal Be
target bombarded by 30-BeV protons. A neutral
beam was defined at 30 degrees relative to the
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1~-in. thickness of Pb was placed in front of the
first collimator to attenuate the gamma rays in
the beam.
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the beam in Fig. 1. The detector for the decay
products consisted of two spectrometers each
composed of two spark chambers for track delin-
eation separated by a magnetic field of 178 kG-in.
The axis of each spectrometer was in the hori-
zontal plane and each subtended an average solid
angle of 0.7&& 10 steradians. The squark cham-
bers were triggered on a coincidence between
water Cherenkov and scintillation counters posi-
tioned immediately behind the spectrometers.
When coherent K,' regeneration in solid materials
was being studied, an anticoincidence counter was
placed immediately behind the regenerator. To
minimize interactions K2' decays were observed
from a volume of He gas at nearly STP.

Water

The analysis program computed the vector mo-
mentum of each charged particle observed in the
decay and the invariant mass, m*, assuming
each charged particle had the mass of the
charged pion. In this detector the Ke3 decay
leads to a distribution in m* ranging from 280
MeV to -536 MeV; the K&3, from 280 to -516; and
the K&3, from 280 to 363 MeV. We emphasize
that m* equal to the E' mass is not a preferred
result when the three-body decays are analyzed
in this way. In addition, the vector sum of the
two momenta and the angle, |9, between it and the
direction of the K,' beam were determined. This
angle should be zero for two-body decay and is,
in general, different from zero for three-body
decays.
An important calibration of the apparatus and

data reduction system was afforded by observing
the decays of K,' mesons produced by coherent
regeneration in 43 gm/cm' of tungsten. Since the
K,' mesons produced by coherent regeneration
have the same momentum and direction as the
K,' beam, the K,' decay simulates the direct de-
cay of the K,' into two pions. The regenerator
was successively placed at intervals of 11 in.
along the region of the beam sensed by the detec-
tor to approximate the spatial distribution of the
K,"s. The K,' vector momenta peaked about the
forward direction with a standard deviation of
3.4+0.3 milliradians. The mass distribution of
these events was fitted to a Gaussian with an av-
erage mass 498.1+0.4 MeV and standard devia-
tion of 3.6+ 0.2 MeV. The mean momentum of
the K,o decays was found to be 1100 MeV/c. At
this momentum the beam region sensed by the
detector was 300 K,' decay lengths from the tar-
get.
For the K,' decays in He gas, the experimental

distribution in m is shown in Fig. 2(a). It is
compared in the figure with the results of a
Monte Carlo calculation which takes into account
the nature of the interaction and the form factors
involved in the decay, coupled with the detection
efficiency of the apparatus. The computed curve
shown in Fig. 2(a) is for a vector interaction,
form-factor ratio f /f+= 0.5, and relative abun-
dance 0.47, 0.37, and 0.16 for the Ke3, K&3, and
Eg3 respectively. The scalar interaction has
been computed as well as the vector interaction
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FIG. 2. (a) Experimental distribution in rn~ com-
pared with Monte Carlo calculation. The calculated
distribution is normalized to the total number of ob-
served events. (b) Angular distribution of those events
in the range 490 &m*&510 MeV. The calculated curve
is normalized to the number of events in the complete
sample.

with a form-factor ratio f /f+ =-6.6. The data
are not sensitive to the choice of form factors
but do discriminate against the scalar interac-
tion.
Figure 2(b) shows the distribution in cos8 for

those events which fall in the mass range from
490 to 510 MeV together with the corresponding
result from the Monte Carlo calculation. Those
events within a restricted angular range (cos8
&0.9995) were remeasured on a somewhat more
precise measuring machine and recomputed using
an independent computer program. The results of
these two analyses are the same within the re-
spective resolutions. Figure 3 shows the re-
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suits from the more accurate measuring machine.
The angular distribution from three mass ranges
are shown; one above, one below, and one encom-
passing the mass of the neutral K meson.
The average of the distribution of masses of

those events in Fig. 3 with cos8 &0.99999 is
found to be 499.1 + 0.8 MeV. A corresponding
calculation has been made for the tungsten data
resulting in a mean mass of 498.1 + 0.4. The dif-
ference is 1.0+0.9 MeV. Alternately we may
take the mass of the E' to be known and compute
the mass of the secondaries for two-body decay.
Again restricting our attention to those events
with cos0&0.99999 and assuming one of the sec-
ondaries to be a pion, the mass of the other par-
ticle is determined to be 137.4+ 1.8. Fitted to a
Gaussian shape the forward peak in Fig. 3 has a
standard deviation of 4.0 + 0.7 milliradians to be
compared with 3.4+ 0.3 milliradians for the tung-
sten. The events from the He gas appear identi-
cal with those from the coherent regeneration in
tungsten in both mass and angular spread.
The relative efficiency for detection of the

three-body E, decays compared to that for decay
to two pions is 0.23. %e obtain 45+ 9 events in
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the forward peak after subtraction of background
out of a total corrected sample of 22 700 K,' de-
cays.
Data taken with a hydrogen target in the beam

also show evidence of a forward peak in the cos0
distribution. After subtraction of background,
45+ 10 events are observed in the forward peak
at the K' mass. We estimate that -10 events can
be expected from coherent regeneration. The
number of events remaining (35) is entirely con-
sistent with the decay data when the relative tar-
get volumes and integrated beam intensities are
taken into account. This number is substantially
smaller (by more than a factor of 15) than one
would expect on the basis of the data of Adair
et al. '
We have examined many possibilities which

might lead to a pronounced forward peak in the
angular distribution at the K' mass. These in-
clude the following:
(i) K,' coherent regeneration. In the He gas it

is computed to be too small by a factor of -10' to
account for the effect observed, assuming reason
able scattering amplitudes. Anomalously large
scattering amplitudes would presumably lead to
exaggerated effects in liquid H, which are not
observed. The walls of the He bag are outside
the sensitive volume of the detector. The spatial
distribution of the forward events is the same as
that for the regular K,' decays which eliminates
the possibility of regeneration having occurred
in the collimator.
(ii) K&3 or Ke3 decay. A spectrum can be

constructed to reproduce the observed data. It
requires the preferential emission of the neutrino
within a narrow band of energy, +4 MeV, cen-
tered at 17+ 2 MeV (K&3) or 39+ 2 MeV (Ke3).
This must be coupled with an appropriate angular
correlation to produce the forward peak. There
appears to be no reasonable mechanism which
can produce such a spectrum.
(iii) Decay into w+7t y. To produce the highly

singular behavior shown in Fig. 3 it would be
necessary for the y ray to have an average ener-
gy of less than 1 MeV with the available energy
ext nding to 209 MeV. We know of no physical
process which would accomplish this.
We would conclude therefore that K2 decays to

two pions with a branching ratio R = (K2- w++ w )/
(K,'- all charged modes) = (2.0+ 0.4) && 10 where
the error is the standard deviation. As empha-
sized above, any alternate explanation of the ef-
fect requires highly nonphysical behavior of the
three-body decays of the K,'. The presence of a
two-pion decay mode implies that the K,' meson
is not a pure eigenstate of CI'. Expressed as
K,0=2 "'[(K,-KO)+e(KO+KJ] then I&I'= R&T—IT2
where 7, and T, are the K, and K,' mean lives
and RZ is the branching ratio including decay to
two r'. Using RT = &R and the branching ratio
quoted above, l et =—2.3x 10
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Abstract

I was supposed to review the status of "0/" both at the CKMWorkshop in September
in Heidelberg and recently at the Discrete 2018 Conference in Vienna. Unfortunately
I had to cancel both talks for family reasons. My main goal in these talks was to
congratulate NA48 and KTeV collaborations for the discovery of new sources of
CP violation through their heroic e↵orts to measure the ratio "0/" in the 1980s and
1990s with final results presented roughly 16 years ago. As I will not attend any
other conferences this year I will reach this goal in this writing. In this context
I will give arguments, why I am convinced about the presence of new physics in
"0/" on the basis of my work with Jean-Marc Gérard within the context of the
Dual QCD (DQCD) approach and why RBC-UKQCD lattice QCD collaboration
and in particular Chiral Perturbation Theory practitioners are still unable to reach
this conclusion. I will demonstrate that even in the presence of pion loops, as
large as advocated recently by Gisbert and Pich, the value of "0/" is significantly
below the data, when the main non-factorizable QCD dynamics at long distance
scales, represented in DQCD by the meson evolution, is taken into account. As
appropriate for a Christmas story, I will prophesy the final value of "0/" within the
SM, which should include in addition to the correct matching between long and short
distance contributions, isospin breaking e↵ects, NNLO QCD corrections to both
QCD penguin and electroweak penguin contributions and final state interactions.
Such final SM result will probably be known from lattice QCD only in the middle
of the 2020s, but already in 2019 we should be able to see some signs of NP in the
next result on "0/" from RBC-UKQCD. In this presentation I try to avoid, as much
as possible, the overlap with my recent review of Dual QCD in [1].
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• phenomenology of neutral kaon decay 

• understanding non-leptonic kaon decay within the SM 
- electroweak effective Hamiltonian analysis 
- exact (lattice) vs. approximate (effective theory/large N/models) 
- why is it so hard? 
- state-of-the-art quantitative results 

• understanding the anatomy of ΔI=1/2 
- the strategy 
- (old) results for QCD amplitudes 
- large Nc 
- insight into light meson physics 

• outlook

plan
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neutral kaon decay

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

K 0K 0
K 0K 0 I (JP ) = 1

2 (0−)

50% KS , 50% KL

Mass m = 497.614 ± 0.024 MeV (S = 1.6)
mK0 − mK± = 3.937 ± 0.028 MeV (S = 1.8)

Mean Square Charge RadiusMean Square Charge RadiusMean Square Charge RadiusMean Square Charge Radius
〈

r2
〉

= −0.077 ± 0.010 fm2

T-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixing [d]

Asymmetry AT in K0-K 0 mixing = (6.6 ± 1.6) × 10−3

CPT-violation parametersCPT-violation parametersCPT-violation parametersCPT-violation parameters [d]

Re δ = (2.5 ± 2.3) × 10−4

Im δ = (−1.5 ± 1.6) × 10−5

Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3

Re(x−), Ke3 parameter = (−2.9 ± 2.0) × 10−3
∣

∣mK0 − mK0

∣

∣ / maverage < 6 × 10−19, CL = 90% [k]

(ΓK0 − ΓK0)/maverage = (8 ± 8) × 10−18

Tests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆Q

Re(x+), Ke3 parameter = (−0.9 ± 3.0) × 10−3

K 0
S

K 0
SK 0
S

K 0
S

I (JP ) = 1
2 (0−)

Mean life τ = (0.8954 ± 0.0004)×10−10 s (S = 1.1) Assum-
ing CPT

Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming
CPT
cτ = 2.6844 cm Assuming CPT

CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [l]

Im(η+−0) = −0.002 ± 0.009
Im(η000) = (−0.1 ± 1.6) × 10−2

∣

∣η000

∣

∣ =
∣

∣A(K0
S → 3π0)/A(K0

L → 3π0)
∣

∣ < 0.0088, CL =
90%

CP asymmetry A in π+π− e+ e− = (−0.4 ± 0.8)%
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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K 0K 0
K 0K 0 I (JP ) = 1

2 (0−)

50% KS , 50% KL

Mass m = 497.614 ± 0.024 MeV (S = 1.6)
mK0 − mK± = 3.937 ± 0.028 MeV (S = 1.8)

Mean Square Charge RadiusMean Square Charge RadiusMean Square Charge RadiusMean Square Charge Radius
〈

r2
〉

= −0.077 ± 0.010 fm2

T-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixing [d]

Asymmetry AT in K0-K 0 mixing = (6.6 ± 1.6) × 10−3

CPT-violation parametersCPT-violation parametersCPT-violation parametersCPT-violation parameters [d]

Re δ = (2.5 ± 2.3) × 10−4

Im δ = (−1.5 ± 1.6) × 10−5

Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3

Re(x−), Ke3 parameter = (−2.9 ± 2.0) × 10−3
∣

∣mK0 − mK0

∣

∣ / maverage < 6 × 10−19, CL = 90% [k]

(ΓK0 − ΓK0)/maverage = (8 ± 8) × 10−18

Tests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆Q

Re(x+), Ke3 parameter = (−0.9 ± 3.0) × 10−3

K 0
S

K 0
SK 0
S

K 0
S

I (JP ) = 1
2 (0−)

Mean life τ = (0.8954 ± 0.0004)×10−10 s (S = 1.1) Assum-
ing CPT

Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming
CPT
cτ = 2.6844 cm Assuming CPT

CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [l]

Im(η+−0) = −0.002 ± 0.009
Im(η000) = (−0.1 ± 1.6) × 10−2

∣

∣η000

∣

∣ =
∣

∣A(K0
S → 3π0)/A(K0

L → 3π0)
∣

∣ < 0.0088, CL =
90%

CP asymmetry A in π+π− e+ e− = (−0.4 ± 0.8)%
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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K 0K 0
K 0K 0 I (JP ) = 1

2 (0−)

50% KS , 50% KL

Mass m = 497.614 ± 0.024 MeV (S = 1.6)
mK0 − mK± = 3.937 ± 0.028 MeV (S = 1.8)

Mean Square Charge RadiusMean Square Charge RadiusMean Square Charge RadiusMean Square Charge Radius
〈

r2
〉

= −0.077 ± 0.010 fm2

T-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixing [d]

Asymmetry AT in K0-K 0 mixing = (6.6 ± 1.6) × 10−3

CPT-violation parametersCPT-violation parametersCPT-violation parametersCPT-violation parameters [d]

Re δ = (2.5 ± 2.3) × 10−4

Im δ = (−1.5 ± 1.6) × 10−5

Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3

Re(x−), Ke3 parameter = (−2.9 ± 2.0) × 10−3
∣

∣mK0 − mK0

∣

∣ / maverage < 6 × 10−19, CL = 90% [k]

(ΓK0 − ΓK0)/maverage = (8 ± 8) × 10−18

Tests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆Q

Re(x+), Ke3 parameter = (−0.9 ± 3.0) × 10−3

K 0
S

K 0
SK 0
S

K 0
S

I (JP ) = 1
2 (0−)

Mean life τ = (0.8954 ± 0.0004)×10−10 s (S = 1.1) Assum-
ing CPT

Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming
CPT
cτ = 2.6844 cm Assuming CPT

CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [l]

Im(η+−0) = −0.002 ± 0.009
Im(η000) = (−0.1 ± 1.6) × 10−2

∣

∣η000

∣

∣ =
∣

∣A(K0
S → 3π0)/A(K0

L → 3π0)
∣

∣ < 0.0088, CL =
90%

CP asymmetry A in π+π− e+ e− = (−0.4 ± 0.8)%
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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          system Hamiltonian fixed by hermiticity + CPTK0–K̄0

H = M � i
2� =

✓
A p

2

q
2

A

◆

CP conserved (             ): eigenstates of H arep = q = 0

|K1,2� = 1p
2
(|K0�± |K̄0�)

|KS⇥ =
1p

1 + |�̄|2
(|K1⇥+ �̄|K2⇥) , |KL⇥ =

1p
1 + |�̄|2

(|K2⇥+ �̄|K1⇥) , �̄ =
p� q

p+ q

CP violation in SM leads to mixing:



neutral kaon decay

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

K 0K 0
K 0K 0 I (JP ) = 1

2 (0−)

50% KS , 50% KL

Mass m = 497.614 ± 0.024 MeV (S = 1.6)
mK0 − mK± = 3.937 ± 0.028 MeV (S = 1.8)

Mean Square Charge RadiusMean Square Charge RadiusMean Square Charge RadiusMean Square Charge Radius
〈

r2
〉

= −0.077 ± 0.010 fm2

T-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixing [d]

Asymmetry AT in K0-K 0 mixing = (6.6 ± 1.6) × 10−3

CPT-violation parametersCPT-violation parametersCPT-violation parametersCPT-violation parameters [d]

Re δ = (2.5 ± 2.3) × 10−4

Im δ = (−1.5 ± 1.6) × 10−5

Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3

Re(x−), Ke3 parameter = (−2.9 ± 2.0) × 10−3
∣

∣mK0 − mK0

∣

∣ / maverage < 6 × 10−19, CL = 90% [k]

(ΓK0 − ΓK0)/maverage = (8 ± 8) × 10−18

Tests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆Q

Re(x+), Ke3 parameter = (−0.9 ± 3.0) × 10−3

K 0
S

K 0
SK 0
S

K 0
S

I (JP ) = 1
2 (0−)

Mean life τ = (0.8954 ± 0.0004)×10−10 s (S = 1.1) Assum-
ing CPT

Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming
CPT
cτ = 2.6844 cm Assuming CPT

CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [l]

Im(η+−0) = −0.002 ± 0.009
Im(η000) = (−0.1 ± 1.6) × 10−2

∣

∣η000

∣

∣ =
∣

∣A(K0
S → 3π0)/A(K0

L → 3π0)
∣

∣ < 0.0088, CL =
90%

CP asymmetry A in π+π− e+ e− = (−0.4 ± 0.8)%
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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          system Hamiltonian fixed by hermiticity + CPTK0–K̄0

H = M � i
2� =

✓
A p

2

q
2

A

◆

CP conserved (             ): eigenstates of H arep = q = 0

|K1,2� = 1p
2
(|K0�± |K̄0�)

|KS⇥ =
1p

1 + |�̄|2
(|K1⇥+ �̄|K2⇥) , |KL⇥ =

1p
1 + |�̄|2

(|K2⇥+ �̄|K1⇥) , �̄ =
p� q

p+ q

CP-violation parameters accessible via decay amplitudes 
into two pions
�iT [K0 ! (⇥⇥)I ] = Aie

i�I T [(⇥⇥)I ! (⇥⇥)I ]l=0 = 2ei�I sin �I

⇥ =
T [KL ! (��)0]

T [KS ! (��)0]
' ⇥̄+ i

ImA0

ReA0

⇥0 =
⇥p
2

✓
T [KL ! (��)2]

T [KL ! (��)0]
� T [KS ! (��)2]

T [KS ! (��)0]

◆
' 1p

2
ei(�2��0+⇥/2)ReA2

ReA0

✓
ImA2

ReA2
� ImA0

ReA0

◆

CP violation in SM leads to mixing:



neutral kaon decay

experiment:

Experimental results

∆I = 1/2 rule

˛̨
˛̨ A0

A2

˛̨
˛̨ ≃ 22.1

Indirect CP violation

|ε| = (2.282 ± 0.017) × 10−3

Direct CP violation

Re(ε′/ε) = (16.7 ± 2.3) · 10−4
Re(ε’/ε)

Average: (16.7 ± 2.3) 10-4

E731
(7.4±6.0)10-4

NA31
(23.0±6.5)10-4

KTeV
(20.7±2.8)10-4

NA48
(14.7±2.2)10-4

0 0.002 0.004 0.006

L. Giusti – Valencia November 2005 – p.5/33

|�| = (2.228± 0.011)� 10�3

����
A0

A2

���� = 22.35

Re

✓
"0

"

◆
= (16.5± 2.6)⇥ 10�4



neutral kaon decay

experiment:

[fully?] satisfactory understanding of result within SM lacking for 45 years

(similar observations in baryon sector, e.g., Λ/Σ→Nπ, heavy meson decay, ...)
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• phenomenology of neutral kaon decay 

• understanding non-leptonic kaon decay within the SM 
- electroweak effective Hamiltonian analysis 
- exact (lattice) vs. approximate (effective theory/large N/models) 
- why is it so hard? 
- state-of-the-art quantitative results 

• understanding the anatomy of ΔI=1/2 
- the strategy 
- (old) results for QCD amplitudes 
- large Nc 
- insight into light meson physics 

• outlook

plan



effective weak Hamiltonian analysis

Introduction and motivation

• Indirect CP violation in K ⌃ �� decays. This occurs through the process of
K0-K̄0 mixing, which is given by the imaginary part
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where the ellipsis stands for the other box contribution. It is a |�S| = 2 FCNC
that will be discussed in detail below.

• Direct CP violation in K ⌃ �� decays. The processes which contribute are given
by the following |�S| = 1 amplitudes
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in the case of K0 ⌃ �+��, where the ellipsis stands for missing diagrams similar
to those drawn. The diagrams forK0 ⌃ �0�0 are analogous. Again, this particular
phenomenon will be discussed in detail in the sequel.

1.4 Low-energy e�ective field theories of the Standard Model

With present knowledge and present computer resources, we cannot simulate the full
Standard Model in lattice field theory calculations. In particular various degrees of
freedom must be “eliminated” from the calculations for the following reasons:

• W , Z and t: there is no hope to be able to simulate these degrees of freedom whose
masses are MW,Z ⌅ 80 ÷ 90GeV and mt ⌅ 175GeV on lattices which must be
large enough to accommodate 135 MeV pions, i.e. with sizes L >⌅ 4/M� ⌅ 6 fm. 4

Since we would also have to have amt ⇧ 1, with a the lattice spacing, to guarantee

4The factor of 4 in 4/M� is a conservative rule-of-thumb estimate which guarantees that finite-
volume corrections to stable hadron masses, proportional to e�M�L, are typically below the percent
level.



effective weak Hamiltonian analysis
Active charm quark Propagator techniques Results: physical amplitudes Summary and outlook
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effective weak Hamiltonian analysis

CP-violation effects neglected (                  ), keep active charm quark:VtdV ⇤
ts

VudV ⇤
us

⇠ 10�3CP-violation effects neglected (                  ), keep active charm quark:
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effective weak Hamiltonian analysis

CP-violation effects neglected (                  ), keep active charm quark:VtdV ⇤
ts

VudV ⇤
us

⇠ 10�3CP-violation effects neglected (                  ), keep active charm quark:

����
A0

A2

���� =
k�1 (MW )

k+1 (MW )

⇥(��)I=0|Q�
1 |K⇤

⇥(��)I=2|Q+
1 |K⇤

k�1 (MW )

k+1 (MW )
� 2.8

bulk of effect should come from long-distance QCD contribution 

reliable non-perturbative determination mandatory
[Gaillard, Lee; Altarelli, Maiani 1974]

[Cabibbo, Martinelli, Petronzio; Brower, Maturana, Gavela, Gupta 1984]
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effective weak Hamiltonian analysis
if charm quark is also integrated out (perturbation theory at mc?):

Active charm quark Propagator techniques Results: physical amplitudes Summary and outlook
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effective weak Hamiltonian analysis
if charm quark is also integrated out (perturbation theory at mc?):

Active charm quark Propagator techniques Results: physical amplitudes Summary and outlook

E�ective Hamiltonian (II)

Lowest QCD corrections

He�
w =

g2w
2M2

W

VudV
⇤
us

10X

i=1

[zi + �yi]Qi � = � VtdV ⇤
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[Shifman, Vainshtein, Zakharov 1975-77]
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several four-quark operators (2xcurrent2, 4xQCD/EW 
penguins), includes “CP-violating” structures 

missing GIM mechanism quadratic divergences in 
penguin operators (log if charm active) 
suggests enhancement mechanism due to peculiar role 
of charm scale



effective weak Hamiltonian analysis

useful relation to neutral kaon mixing:

(S=2 transitions: BK

|ϵK| ≈ Cϵ B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

   can also be expressed in terms of  K0 -  K0  mixing
dominant EW process is FCNC (2 W exchange)
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Introduction and motivation

• Indirect CP violation in K ⌃ �� decays. This occurs through the process of
K0-K̄0 mixing, which is given by the imaginary part
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where the ellipsis stands for the other box contribution. It is a |�S| = 2 FCNC
that will be discussed in detail below.

• Direct CP violation in K ⌃ �� decays. The processes which contribute are given
by the following |�S| = 1 amplitudes
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in the case of K0 ⌃ �+��, where the ellipsis stands for missing diagrams similar
to those drawn. The diagrams forK0 ⌃ �0�0 are analogous. Again, this particular
phenomenon will be discussed in detail in the sequel.

1.4 Low-energy e�ective field theories of the Standard Model

With present knowledge and present computer resources, we cannot simulate the full
Standard Model in lattice field theory calculations. In particular various degrees of
freedom must be “eliminated” from the calculations for the following reasons:

• W , Z and t: there is no hope to be able to simulate these degrees of freedom whose
masses are MW,Z ⌅ 80 ÷ 90GeV and mt ⌅ 175GeV on lattices which must be
large enough to accommodate 135 MeV pions, i.e. with sizes L >⌅ 4/M� ⌅ 6 fm. 4

Since we would also have to have amt ⇧ 1, with a the lattice spacing, to guarantee

4The factor of 4 in 4/M� is a conservative rule-of-thumb estimate which guarantees that finite-
volume corrections to stable hadron masses, proportional to e�M�L, are typically below the percent
level.
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in the chiral limit, this amplitude is the same as the contribution to kaon decay in the I=3/2 channel 
(with active charm)



how to tackle it

approximate methods/effective theory

spectacular failure of naive 1/Nc expansion 

elaborate approaches that combine 1/Nc, 
ch i ra l p e r tu rbat ion theory+vector 
dominance, and quark-hadron duality claim 
success

T [K0 ! �0�0] ⇠ 0 )
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[Fukugita et al. 1977] 
[Chivukula, Flynn, Georgi 1986]

[Buras, Gérard, Bardeen 2014]
[Gisbert, Pich 2017]
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lattice QCD [rest of this talk]

first-principles approach, uncertainties can 
be systematically improved 

has reached precision era, main player in 
flavour physics — e.g., BK 

however, ΔI=1/2 and ε’/ε remain very 
difficult problems



first-principles approach = control all systematic uncertainties
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Systematic limitations

Lattice-spacing and finite-volume
e�ects

The light-quark mass m is larger
than the physical one

a

L

Available range of a, L,m must be such that the results can be
extrapolated to a� 0, L�⇥ and m� 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31

[Wilson 1974]

• spacetime = Euclidean lattice 
• allows to define path integral rigorously and 

compute it via Monte Carlo methods 
• QCD recovered by removing cutoffs at 

physical kinematics 
• values of Lagrangian parameters fixed by 

Nf+1 hadron masses/decay constants — 
everything else are predictions

lattice QCD



lattice QCD

[SMBC]



lattice QCD
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[BMW Collaboration 2008]
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[BMW Collaboration 2008] [Flavour Lattice Averaging Group 2019]
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[BMW Collaboration 2008] [Flavour Lattice Averaging Group 2019]
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K→ππ in lattice QCD: why is it so difficult?

two no-go theorems stand in our way



two no-go theorems stand in our way

Nielsen-Ninomiya: no ultralocal lattice 
regularisation preserves the full chiral 
symmetry group

[Nielsen, Ninomiya 1982]

K→ππ in lattice QCD: why is it so difficult?



two no-go theorems stand in our way

Maiani-Testa: physical decay amplitudes with 
>1 final hadron cannot be extracted from 
Euclidean correlation functions [in ∞ volume]

Nielsen-Ninomiya: no ultralocal lattice 
regularisation preserves the full chiral 
symmetry group

[Maiani, Testa 1990][Nielsen, Ninomiya 1982]
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Nielsen-Ninomiya: no ultralocal lattice 
regularisation preserves the full chiral 
symmetry group

• absence of chira l symmetry leads to 
complicated operator mixing and severe power 
divergences 

• use regularisations with exact chiral symmetry 
(not ultralocal), or better chiral properties

• use effective low-energy description of Heff in 
χPT to re late K→ππ ampl i tudes to 
computable quantities 

• avoid by working at large finite volume to 
disentangle pion rescattering effects (requires 
volumes being reached only recently)

[Maiani, Testa 1990]

[Lellouch, Lüscher 1998]
[Lin, Martinelli, Sachrajda, Testa 2001]

[Bernard et al. 1985][Bochicchio et al. 1985]
[Maiani et al. 1987]

[Capitani, Giusti 2001]
[CP, Sint, Vladikas 2004]

[Frezzotti, Rossi 2004]

[Nielsen, Ninomiya 1982]
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K→ππ: state of the art

direct CP violation: 

ΔI=3/2 amplitude: 

“emerging understanding of ΔI=1/2 rule”
  

Results for ε'

● Using Re(A
0
) and Re(A

2
) from experiment and our lattice values for 

Im(A
0
) and Im(A

2
) and the phase shifts, 

(this work)=
(experiment)

● Find discrepancy between lattice and experiment at the 2.1σ level.

far-reaching effort by RBC/UKQCD collaboration

[Bai et al., PRL 115 (2015) 212001]

[Blum et al., PRD 91 (2015) 074502]

[Boyle et al., PRL 110 (2013) 152001]

  

● Results:

● Systematic error completely dominated by perturbative error on NPR and 
Wilson coefficients.

10%, 12% total errors on Re, Im!

● Calculation performed on RBC & UKQCD 483x96 and 643x128 Mobius DWF 
ensembles with (5 fm)3 volumes  and  a=0.114 fm, a=0.084 fm. Continuum 
limit computed.

● Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-
0.9% stat errors on all bare matrix elements!
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χPT-based, large log effect from final state interactions
[Gisbert, Pich 2017]
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Abstract

I was supposed to review the status of "0/" both at the CKMWorkshop in September
in Heidelberg and recently at the Discrete 2018 Conference in Vienna. Unfortunately
I had to cancel both talks for family reasons. My main goal in these talks was to
congratulate NA48 and KTeV collaborations for the discovery of new sources of
CP violation through their heroic e↵orts to measure the ratio "0/" in the 1980s and
1990s with final results presented roughly 16 years ago. As I will not attend any
other conferences this year I will reach this goal in this writing. In this context
I will give arguments, why I am convinced about the presence of new physics in
"0/" on the basis of my work with Jean-Marc Gérard within the context of the
Dual QCD (DQCD) approach and why RBC-UKQCD lattice QCD collaboration
and in particular Chiral Perturbation Theory practitioners are still unable to reach
this conclusion. I will demonstrate that even in the presence of pion loops, as
large as advocated recently by Gisbert and Pich, the value of "0/" is significantly
below the data, when the main non-factorizable QCD dynamics at long distance
scales, represented in DQCD by the meson evolution, is taken into account. As
appropriate for a Christmas story, I will prophesy the final value of "0/" within the
SM, which should include in addition to the correct matching between long and short
distance contributions, isospin breaking e↵ects, NNLO QCD corrections to both
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as possible, the overlap with my recent review of Dual QCD in [1].
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K→ππ: state of the art

direct CP violation: 

ΔI=3/2 amplitude (Re(A2)proportional to BK in the chiral limit): 

“emerging understanding of ΔI=1/2 rule”
  

Results for ε'

● Using Re(A
0
) and Re(A

2
) from experiment and our lattice values for 

Im(A
0
) and Im(A

2
) and the phase shifts, 

(this work)=
(experiment)

● Find discrepancy between lattice and experiment at the 2.1σ level.

far-reaching effort by RBC/UKQCD collaboration

[Bai et al., PRL 115 (2015) 212001]

[Boyle et al., PRL 110 (2013) 152001]

  

● Results:

● Systematic error completely dominated by perturbative error on NPR and 
Wilson coefficients.

10%, 12% total errors on Re, Im!

● Calculation performed on RBC & UKQCD 483x96 and 643x128 Mobius DWF 
ensembles with (5 fm)3 volumes  and  a=0.114 fm, a=0.084 fm. Continuum 
limit computed.

● Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-
0.9% stat errors on all bare matrix elements!

[Blum et al., PRD 91 (2015) 074502]
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Toward an quantitative understanding of the �I = 1/2 rule

Two kinds of contraction for each �I = 3/2 operator
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ReA2 is dominated by the tree level operator

(EWP ⇤ 1%):

Naive factorisation approach: 2⇥ ⇤ 1/3 1⇥

Our computation: 2⇥ ⇤ �0.7 1⇥

⌅ large cancellation in ReA2
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• phenomenology of neutral kaon decay 

• understanding non-leptonic kaon decay within the SM 
- electroweak effective Hamiltonian analysis 
- exact (lattice) vs. approximate (effective theory/large N/models) 
- why is it so hard? 
- state-of-the-art quantitative results 

• understanding the anatomy of ΔI=1/2 
- the strategy 
- (old) results for QCD amplitudes 
- large Nc 
- insight into light meson physics 

• outlook

plan
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anatomy of ΔI=1/2
[Giusti, Hernández, Laine, Weisz, Wittig 2004]

several possible sources for ΔI=1/2 enhancement:
physics at charm scale (penguins) 
physics at “intrinsic” QCD scale  
final state interactions 
all of the above (no dominating “mechanism”)

⇠ ⇤QCD

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of 
charm mass for fixed u,d,s masses

mc = mu = md = ms �! mc � mu = md  ms



active charm 
use chiral fermions (good renormalisation, access to very low masses) 
⇒ give up (too expensive) direct computation, use ChiPT ⇒ no FSI
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implementation (Mark I):



anatomy of ΔI=1/2
dynamics of Goldstone bosons at LO given by chiral Lagrangian

L = 1
4F

2Tr
⇥
�µU�µU

†⇤ � 1
2�Tr

h
UM†ei�/Nf + h.c.

i

weak interactions accounted for by low-energy version of effective Hamiltonian

where g±1,2 are LECs,

Q±
1 = J su

µ J ud
µ ± J sd

µ J uu
µ � [u⇧ c] , (2.17)

Jµ is the left-handed chiral current

Jµ =
F 2

 
2
U⌅µU

† , (2.18)

and superscripts indicate matrix components in flavour space. The SU(3) Hamilto-
nian has instead the form

H(3)
w =

g2w
4M2

W

V ⇥
usVud

�
g27Q27 + g8Q8 + g⌅8Q⌅

8

⇥
, (2.19)

where

Q27 =
2

5
J su
µ J ud

µ +
3

5
J sd
µ J uu

µ , (2.20)

Q8 =
1

2

⇤

q=u,d,s

J sq
µ J qd

µ , (2.21)

Q⌅
8 = ml�F

2
⌅
Uei�/Nf + U †e�i�/Nf

⇧sd
, (2.22)

where ml ⇤ mu = md = ms. Indeed, in order to avoid unessential complications
related to the soft breaking of the SU(3) vector symmetry, we will always work in the
limit of degenerate up, down, and strange masses, which will be assumed hereafter.

LECs will be determined by matching QCD correlation functions containing the
weak Hamiltonian with ChiPT correlation functions containing its chiral counter-
part. Matching conditions can be imposed separately in di⇥erent symmetry sectors,
by identifying sets of operators on both sides that transform in the same way under
the relevant chiral symmetry. In the case of the matching to SU(4) ChiPT this
is straightforward: Q±

1,2 and Q±
1,2 have exactly the same transformation properties

under SU(4)L. In the case of SU(3) ChiPT, on the other hand, one finds that Q27

transforms in the 27-plet of SU(3)L, while Q8 and Q⌅
8 transforms as octets; since on

the QCD side there are one 27-plet and several octet operators, the matching will
be somewhat more involved. Furthermore, as is well-known, K ⌅ �� amplitudes
depend on g27 and g8 but not on g⌅8 [29,41], rendering the latter essentially arbitrary;
as a matter of fact, the appearance of g⌅8 reflects the need for subtractions in QCD
amplitudes, as will be discussed in greater detail below.

Note that, since the charm quark is always kept as an active degree of freedom
in QCD, this will imply that the SU(3) LECs g27, g8 will be functions of mc. One can

actually consider the matching of the chiral Hamiltonians H(4)
w and H(3)

w in a regime
where mc > mu = md = ms but such that the charm can still be treated within

8
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of order �s(MW )3 ⇤ O(10�3). The RGI Wilson coe⌃cient can instead be computed
directly as kRGI = U(MW /�)�1k(MW ), with the same degree of perturbative un-
certainty. In view of the construction of the weak Hamiltonian, it is convenient to
define the quantities
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1 (µ/�)

Z±
11(µ)

Z2
A
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where ZA is the normalisation factor of the left-handed current (which will be non-
trivial in the lattice regularisation of QCD that we will introduced later). Note that
Z±
1 is independent by construction of the renormalisation scale µ.

The running factor U(µ/�) has been computed non-perturbatively in [38, 39]
with Nf = 0 and Nf = 2 dynamical flavours, respectively. The renormalisation
factors Z±

11(µ)/Z
2
A for the overlap fermion regularisation that we will employ in this

work have been determined in quenched QCD in [40].

2.3 E�ective low-energy description in Chiral Perturbation Theory

As discussed in the introduction, a direct computation of K ⇧ ⌅⌅ amplitudes,
requiring large physical volumes, is beyond the current scope of our work. We thus
resort to computing instead the LECs in the ChiPT counterpart of the e⇤ective weak
Hamiltonian, from which the amplitudes can be computed at some given order in
the chiral expansion. Since our main emphasis is to understand their dependence
on mc, we will face two di⇤erent physical situations: the strict GIM limit, where
all quark masses are light and degenerate; and the “physical” kinematics, where
mu = md = ms are kept light and mc ⌅ mu. In the former case, all four quarks can
be treated within ChiPT, while in the latter only the light flavours enter the e⇤ective
description; therefore, two di⇤erent versions of the chiral e⇤ective Hamiltonian will
be needed, with SU(4) and SU(3) symmetries, respectively.

The construction of the relevant chiral e⇤ective weak Hamiltonians has been
reviewed in [33]. Given a leading-order chiral Lagrangian of the form (either for
U ⌃ SU(Nf = 4) or U ⌃ SU(Nf = 3))5

L =
F 2

4
Tr

⇥
(⌥µU)⌥µU

†
⇤
� ⇥

2
Tr

⇥
UM †ei�/Nf +MU †e�i�/Nf

⇤
, (2.15)

where M is the mass matrix and ⇥ the vacuum angle, the leading-order SU(4)
Hamiltonian reads6

H(4)
w =

g2w
4M2

W

V ⇥
usVud

�

⇤=±
{g⇤1Q⇤

1 + g⇤2Q⇤
2} , (2.16)

5Note that F and � will of course be di⇥erent in general depending on the value of Nf .
6In what follows the operators Q±

2 , which are the chiral counterparts of Q±
2 , will play no role,

since SU(4) ChiPT will only be used in the limit mu = mc, where they drop from H(4)
w . Their

explicit form can be found in [28].
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where g±1,2 are LECs,

Q±
1 = J su

µ J ud
µ ± J sd

µ J uu
µ � [u⇧ c] , (2.17)

Jµ is the left-handed chiral current

Jµ =
F 2

 
2
U⌅µU

† , (2.18)

and superscripts indicate matrix components in flavour space. The SU(3) Hamilto-
nian has instead the form

H(3)
w =

g2w
4M2

W

V ⇥
usVud

�
g27Q27 + g8Q8 + g⌅8Q⌅

8

⇥
, (2.19)

where

Q27 =
2

5
J su
µ J ud

µ +
3

5
J sd
µ J uu

µ , (2.20)

Q8 =
1

2

⇤

q=u,d,s

J sq
µ J qd

µ , (2.21)

Q⌅
8 = ml�F

2
⌅
Uei�/Nf + U †e�i�/Nf

⇧sd
, (2.22)

where ml ⇤ mu = md = ms. Indeed, in order to avoid unessential complications
related to the soft breaking of the SU(3) vector symmetry, we will always work in the
limit of degenerate up, down, and strange masses, which will be assumed hereafter.

LECs will be determined by matching QCD correlation functions containing the
weak Hamiltonian with ChiPT correlation functions containing its chiral counter-
part. Matching conditions can be imposed separately in di⇥erent symmetry sectors,
by identifying sets of operators on both sides that transform in the same way under
the relevant chiral symmetry. In the case of the matching to SU(4) ChiPT this
is straightforward: Q±

1,2 and Q±
1,2 have exactly the same transformation properties

under SU(4)L. In the case of SU(3) ChiPT, on the other hand, one finds that Q27

transforms in the 27-plet of SU(3)L, while Q8 and Q⌅
8 transforms as octets; since on

the QCD side there are one 27-plet and several octet operators, the matching will
be somewhat more involved. Furthermore, as is well-known, K ⌅ �� amplitudes
depend on g27 and g8 but not on g⌅8 [29,41], rendering the latter essentially arbitrary;
as a matter of fact, the appearance of g⌅8 reflects the need for subtractions in QCD
amplitudes, as will be discussed in greater detail below.

Note that, since the charm quark is always kept as an active degree of freedom
in QCD, this will imply that the SU(3) LECs g27, g8 will be functions of mc. One can

actually consider the matching of the chiral Hamiltonians H(4)
w and H(3)

w in a regime
where mc > mu = md = ms but such that the charm can still be treated within
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dynamics of Goldstone bosons at LO given by chiral Lagrangian
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UM†ei�/Nf + h.c.
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weak interactions accounted for by low-energy version of effective Hamiltonian
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of order �s(MW )3 ⇤ O(10�3). The RGI Wilson coe⌃cient can instead be computed
directly as kRGI = U(MW /�)�1k(MW ), with the same degree of perturbative un-
certainty. In view of the construction of the weak Hamiltonian, it is convenient to
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where ZA is the normalisation factor of the left-handed current (which will be non-
trivial in the lattice regularisation of QCD that we will introduced later). Note that
Z±
1 is independent by construction of the renormalisation scale µ.

The running factor U(µ/�) has been computed non-perturbatively in [38, 39]
with Nf = 0 and Nf = 2 dynamical flavours, respectively. The renormalisation
factors Z±

11(µ)/Z
2
A for the overlap fermion regularisation that we will employ in this

work have been determined in quenched QCD in [40].

2.3 E�ective low-energy description in Chiral Perturbation Theory

As discussed in the introduction, a direct computation of K ⇧ ⌅⌅ amplitudes,
requiring large physical volumes, is beyond the current scope of our work. We thus
resort to computing instead the LECs in the ChiPT counterpart of the e⇤ective weak
Hamiltonian, from which the amplitudes can be computed at some given order in
the chiral expansion. Since our main emphasis is to understand their dependence
on mc, we will face two di⇤erent physical situations: the strict GIM limit, where
all quark masses are light and degenerate; and the “physical” kinematics, where
mu = md = ms are kept light and mc ⌅ mu. In the former case, all four quarks can
be treated within ChiPT, while in the latter only the light flavours enter the e⇤ective
description; therefore, two di⇤erent versions of the chiral e⇤ective Hamiltonian will
be needed, with SU(4) and SU(3) symmetries, respectively.

The construction of the relevant chiral e⇤ective weak Hamiltonians has been
reviewed in [33]. Given a leading-order chiral Lagrangian of the form (either for
U ⌃ SU(Nf = 4) or U ⌃ SU(Nf = 3))5

L =
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where M is the mass matrix and ⇥ the vacuum angle, the leading-order SU(4)
Hamiltonian reads6
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5Note that F and � will of course be di⇥erent in general depending on the value of Nf .
6In what follows the operators Q±

2 , which are the chiral counterparts of Q±
2 , will play no role,

since SU(4) ChiPT will only be used in the limit mu = mc, where they drop from H(4)
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explicit form can be found in [28].
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light charm:

heavy charm:

ChiPT, from which point of view charmed mesons behave as decoupling particles.
This has been studied in [42], where explicit expressions for g27(mc), g8(mc) in terms
of LO and (unknown) next-to-leading order LECs in SU(4) ChiPT are provided. The
leading-order matching reads

g27(0) = g+1 , g8(0) = g�1 +
1

5
g+1 . (2.23)

On the other hand, one can take the leading-order results for |A0| and |A2| in SU(3)
ChiPT and match them to the experimental values of the amplitudes, interpreting
the result as a phenomenological determination of the LECs at the physical value
mc of the charm quark mass. The result of this exercise is

|gexp27 (mc)| ⇥ 0.50 , |gexp8 (mc)| ⇥ 10.5 . (2.24)

One important ingredient of our setup is that we work both in the standard,
p-regime of ChiPT, and in the so-called ⇥-regime [43, 44] (see also [45, 46]). Here
p-regime means working in large volumes measured in terms of the pion Compton
wavelength, i.e. m�L ⇤ 1 if a four-dimensional box of dimensions L3 � T is consid-
ered; ⇥-regime means keeping a large volume (i.e. the implicit F�L ⇤ 1 prerrequisite
for the chiral expansion to work is fulfilled) but working at very small quark masses,
such that the “pion” Compton wavelength is of the order of L — or, more precisely,
m�V . 1, where m is the light quark mass, � is the chiral condensate, and V is the
four-dimensional volume. Furthermore, one should keep T ⇥ L, since at T/L ⇤ 1
a di⇥erent kinematical region — the �-regime [47] — arises. The main advantage
of considering the ⇥-regime instead of the physical p-regime is that mass e⇥ects are
suppressed in the former, and the chiral expansion is rearranged such that less oper-
ators appear at any given order in the expansion with respect to the p-regime [48].
This allows for potentially cleaner determinations of the leading-order LECs — es-
pecially so in the case of e⇥ective Hamiltonians for non-leptonic meson decay, which
display a large number of new terms at NLO in the chiral expansion [49]. On the
other hand, finite-volume e⇥ects are obviously large in the ⇥-regime, being typically
polynomial and not exponentially suppressed as in the p-regime. Finally, out of
technical convenience correlation functions in the ⇥-regime are computed at a fixed
value of the topological charge.

It can be shown [43] that LECs are universal, in the sense that the same values
are obtained when ChiPT is matched to QCD in either kinematical regime. Since
the systematic uncertainties induced by the truncation of the chiral expansion are
however di⇥erent in each case, being able to perform consistent matching in both
regimes implies a much higher degree of control on the final results. In particular,
the ChiPT correlation functions involved in the matching for leading-order LECs
in the chiral e⇥ective Hamiltonian will not depend on extra LECs up to NNLO
corrections — NLO contributions are purely finite-volume e⇥ects, which are exactly
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determining weak LECs: mu=mc

match suitable correlation functions in QCD and ChPT (infinite volume: K→π amplitudes)

calculable. Note that on the QCD side, the need of having non-perturbative results
at very low quark masses and for a well-defined value of the topological charge in
order to work in the ⇤-regime implies that lattice regularisations with exact chiral
symmetry are strongly preferred.

One final comment concerns the use of quenched Chiral Perturbation Theory
(qChiPT) to describe quenched QCD data. As is well-known, qChiPT displays
unphysical artifacts; in particular, in the context of K ⇥ ⌅⌅ transitions Golterman-
Pallante ambiguities make the matching of QCD to SU(3) qChiPT ill-defined [50,51].
This is however not the case for SU(4), where the ratios of correlation functions we
will deal with (see below) present no ambiguities in the quenched approximation,
as discussed in [28, 33]. Quenched results are not worked out explicitly in [33]
for SU(3) ChiPT. As can be seen in the formulae gathered in Appendix A, while
the ⇤-regime formulae are essentially insensitive to quenching, the NLO prediction
p-regime predictions for the relevant correlation functions in the octet channel dis-
plays 1/Nf factors, that signal the need to take into account non-decoupled singlet
contributions to repeat the computation in the quenched case. Here we will take the
unquenched formulae as an operational description, and perform fits with various
values of Nf (and hence di⇥erent coe⇧cients in the chiral logs) to check the depen-
dence of the LECs on the value of Nf , and adscribe a systematic uncertainty to fit
results (see Section 5 for details).

2.4 Matching ChiPT to QCD

2.4.1 mc = ml

When all quarks are light and degenerate the e⇥ective low-energy description of
�S = 1 processes is given by Eq. (2.16). Contributions from Q±

2 (in QCD) and Q±
2

(in ChiPT) drop because they are proportional to mu � mc; one is thus left with
the problem of determining the LECs g±1 . As explained above, the correspondence
between QCD and ChiPT operators in this case is straightforward. The matching
can be easily performed using three-point functions of the operators in the e⇥ective
Hamiltonian with quark bilinears such that flavour indices are saturated. A techni-
cally convenient choice for the latter is to employ left-handed currents, leading to
the correlation functions

C±
i (x0, y0) =

�
d3x

�
d3y ⌅Jdu

0 (x)Q±
i (0) J

us
0 (y)⇧ , (2.25)

C(x0) =

�
d3x ⌅J�⇥

0 (x) J⇥�
0 (0)⇧ , (2.26)

where �,⇥ are distinct light flavour indices (not summed over). The ratios

R±
i (x0, y0) =

C±
i (x0, y0)

C(x0)C(y0)
, (2.27)
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will then be proportional to the matrix elements ⌦�|Q±
1 |K↵ (with mass-degenerate

kaon and pion) when x0 ⇤ +⌅, y0 ⇤ �⌅. The equivalent ChiPT quantities are

C(x0) =
⇤

d3x ⌦J ud
0 (x)J du

0 (0)↵SU(4) , (2.28)

C±
i (x0, y0) =

⇤
d3x

⇤
d3y ⌦J du

0 (x)Q±
i (0)J

us
0 (y)↵SU(4) , (2.29)

R±
i (x0, y0) =

C±
i (x0, y0)

C(x0)C(y0)
, (2.30)

where the notation ⌦↵SU(4) emphasises the use of the appropriate e�ective theory.
The LECs in the chiral weak Hamiltonian can then be readily extracted from the
matching condition

Z±
1 R±

1 (x0, y0) = g±1 R
±
1 (x0, y0) . (2.31)

Formulae for ChiPT quantities are given in Appendix A.

2.4.2 mc ⇥ ml

A similar strategy to the one just described can be pursued to match QCD with
mc ⇥ ml to SU(3) ChiPT. One first defines new three-point functions in both QCD

C+
u (x0, y0) =

⇤
d3x

⇤
d3y ⌦Jdu
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us
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⇤
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0 (x)Q⇤
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0 (y)↵SU(3) , (2.35)

and the corresponding ratios R+
u ,R27,R8,R⇤

8 by dividing them with products of
current two-point functions. Next one can impose matching conditions in both the
27-plet and octet channels,

R27(x0, y0) = g27R27(x0, y0) , (2.36)

R8(x0, y0) = g8R8(x0, y0) + g⇤8R⇤
8(x0, y0) , (2.37)

where
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1 R+

u , (2.38)

R8 = Z+
1

�
R+

1 �R+
u + c+R+
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will then be proportional to the matrix elements ⌦�|Q±
1 |K↵ (with mass-degenerate

kaon and pion) when x0 ⇤ +⌅, y0 ⇤ �⌅. The equivalent ChiPT quantities are
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, (2.30)

where the notation ⌦↵SU(4) emphasises the use of the appropriate e�ective theory.
The LECs in the chiral weak Hamiltonian can then be readily extracted from the
matching condition

Z±
1 R±

1 (x0, y0) = g±1 R
±
1 (x0, y0) . (2.31)

Formulae for ChiPT quantities are given in Appendix A.
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QCD

[J0(x)]du

Q
±
1 (z)

[J0(y)]us [J0(x)]du

Q
±
1 (z)

[J0(y)]us
u/c

Figure 2: Eight and eye diagrams appearing in the computation of three-point
functions of Q±

1 .

simulations at mc 6= ml correspond, respectively, to Mc ⇡ 50, 249, and 498 MeV.
Note that, while the scaling properties of computations with overlap fermions are
generally expected to be good, at the heaviest charm mass amc = 0.400 cuto↵ e↵ects
can be expected to be sizeable.

For each of the three values of ml we have an independent ensemble of around
400 independent gauge configurations. Only about half the statistics is used for the
computation at amc = 0.4, as well as in the computation of three-point functions
involving Q

±
2 .

4.2 Variance reduction techniques

Our main aim is to compute the two- and three-point functions involved in the
matching of QCD to ChiPT, as discussed in Section 2. After integrating over fermion
variables in the path integral, fermionic correlation functions can be written as usual
in terms of gauge expectation values of traces of products of quark propagators
and spin matrices; explicit expressions are provided in Appendix B. The reason to
consider left-handed currents as interpolating operators becomes apparent in that
the traces only contain left-handed propagators P�S(x, y)P+, that can always be
computed in the chirality sector that does not contain zero modes, thus avoiding
their contribution in correlators [54]. The three-point functions involving Q

±
1 require

the computation of the quark-propagator diagrams depicted in Fig. 2, to which we
will refer as “eight” and “eye” diagrams, respectively. Each of them appears in a
colour-spin connected and a colour-spin disconnected version.

The computation of these correlation functions poses severe problems in terms
of noise-to-signal ratio. When the light quark mass is su�ciently low (and especially
so in the ✏-regime), Dirac modes with very small eigenvalues have large contributions
to correlation functions. Their wavefunctions have been shown to develop localised
structures [59], which makes good sampling of the whole lattice volume mandatory
in order to avoid large statistical fluctuations. It is thus important to integrate over
space at all operator insertion points (or at least at as many insertions as possible),
which obviously cannot be achieved with propagators computed with point sources.
The use of all-to-all propagators for variance reduction thus becomes mandatory.

One first step in this direction was the development of low-mode averaging
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calculable. Note that on the QCD side, the need of having non-perturbative results
at very low quark masses and for a well-defined value of the topological charge in
order to work in the ⇤-regime implies that lattice regularisations with exact chiral
symmetry are strongly preferred.

One final comment concerns the use of quenched Chiral Perturbation Theory
(qChiPT) to describe quenched QCD data. As is well-known, qChiPT displays
unphysical artifacts; in particular, in the context of K ⇥ ⌅⌅ transitions Golterman-
Pallante ambiguities make the matching of QCD to SU(3) qChiPT ill-defined [50,51].
This is however not the case for SU(4), where the ratios of correlation functions we
will deal with (see below) present no ambiguities in the quenched approximation,
as discussed in [28, 33]. Quenched results are not worked out explicitly in [33]
for SU(3) ChiPT. As can be seen in the formulae gathered in Appendix A, while
the ⇤-regime formulae are essentially insensitive to quenching, the NLO prediction
p-regime predictions for the relevant correlation functions in the octet channel dis-
plays 1/Nf factors, that signal the need to take into account non-decoupled singlet
contributions to repeat the computation in the quenched case. Here we will take the
unquenched formulae as an operational description, and perform fits with various
values of Nf (and hence di⇥erent coe⇧cients in the chiral logs) to check the depen-
dence of the LECs on the value of Nf , and adscribe a systematic uncertainty to fit
results (see Section 5 for details).

2.4 Matching ChiPT to QCD

2.4.1 mc = ml

When all quarks are light and degenerate the e⇥ective low-energy description of
�S = 1 processes is given by Eq. (2.16). Contributions from Q±

2 (in QCD) and Q±
2

(in ChiPT) drop because they are proportional to mu � mc; one is thus left with
the problem of determining the LECs g±1 . As explained above, the correspondence
between QCD and ChiPT operators in this case is straightforward. The matching
can be easily performed using three-point functions of the operators in the e⇥ective
Hamiltonian with quark bilinears such that flavour indices are saturated. A techni-
cally convenient choice for the latter is to employ left-handed currents, leading to
the correlation functions

C±
i (x0, y0) =

�
d3x

�
d3y ⌅Jdu

0 (x)Q±
i (0) J

us
0 (y)⇧ , (2.25)

C(x0) =

�
d3x ⌅J�⇥

0 (x) J⇥�
0 (0)⇧ , (2.26)

where �,⇥ are distinct light flavour indices (not summed over). The ratios

R±
i (x0, y0) =

C±
i (x0, y0)

C(x0)C(y0)
, (2.27)
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will then be proportional to the matrix elements ⌦�|Q±
1 |K↵ (with mass-degenerate

kaon and pion) when x0 ⇤ +⌅, y0 ⇤ �⌅. The equivalent ChiPT quantities are

C(x0) =
⇤

d3x ⌦J ud
0 (x)J du

0 (0)↵SU(4) , (2.28)

C±
i (x0, y0) =

⇤
d3x

⇤
d3y ⌦J du

0 (x)Q±
i (0)J

us
0 (y)↵SU(4) , (2.29)

R±
i (x0, y0) =

C±
i (x0, y0)

C(x0)C(y0)
, (2.30)

where the notation ⌦↵SU(4) emphasises the use of the appropriate e�ective theory.
The LECs in the chiral weak Hamiltonian can then be readily extracted from the
matching condition

Z±
1 R±

1 (x0, y0) = g±1 R
±
1 (x0, y0) . (2.31)

Formulae for ChiPT quantities are given in Appendix A.

2.4.2 mc ⇥ ml

A similar strategy to the one just described can be pursued to match QCD with
mc ⇥ ml to SU(3) ChiPT. One first defines new three-point functions in both QCD
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and the corresponding ratios R+
u ,R27,R8,R⇤

8 by dividing them with products of
current two-point functions. Next one can impose matching conditions in both the
27-plet and octet channels,

R27(x0, y0) = g27R27(x0, y0) , (2.36)

R8(x0, y0) = g8R8(x0, y0) + g⇤8R⇤
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where
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Formulae for ChiPT quantities are given in Appendix A.
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Formulae for ChiPT quantities are given in Appendix A.
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calculable. Note that on the QCD side, the need of having non-perturbative results
at very low quark masses and for a well-defined value of the topological charge in
order to work in the ⇤-regime implies that lattice regularisations with exact chiral
symmetry are strongly preferred.

One final comment concerns the use of quenched Chiral Perturbation Theory
(qChiPT) to describe quenched QCD data. As is well-known, qChiPT displays
unphysical artifacts; in particular, in the context of K ⇥ ⌅⌅ transitions Golterman-
Pallante ambiguities make the matching of QCD to SU(3) qChiPT ill-defined [50,51].
This is however not the case for SU(4), where the ratios of correlation functions we
will deal with (see below) present no ambiguities in the quenched approximation,
as discussed in [28, 33]. Quenched results are not worked out explicitly in [33]
for SU(3) ChiPT. As can be seen in the formulae gathered in Appendix A, while
the ⇤-regime formulae are essentially insensitive to quenching, the NLO prediction
p-regime predictions for the relevant correlation functions in the octet channel dis-
plays 1/Nf factors, that signal the need to take into account non-decoupled singlet
contributions to repeat the computation in the quenched case. Here we will take the
unquenched formulae as an operational description, and perform fits with various
values of Nf (and hence di⇥erent coe⇧cients in the chiral logs) to check the depen-
dence of the LECs on the value of Nf , and adscribe a systematic uncertainty to fit
results (see Section 5 for details).

2.4 Matching ChiPT to QCD

2.4.1 mc = ml

When all quarks are light and degenerate the e⇥ective low-energy description of
�S = 1 processes is given by Eq. (2.16). Contributions from Q±

2 (in QCD) and Q±
2

(in ChiPT) drop because they are proportional to mu � mc; one is thus left with
the problem of determining the LECs g±1 . As explained above, the correspondence
between QCD and ChiPT operators in this case is straightforward. The matching
can be easily performed using three-point functions of the operators in the e⇥ective
Hamiltonian with quark bilinears such that flavour indices are saturated. A techni-
cally convenient choice for the latter is to employ left-handed currents, leading to
the correlation functions

C±
i (x0, y0) =

�
d3x

�
d3y ⌅Jdu

0 (x)Q±
i (0) J

us
0 (y)⇧ , (2.25)
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�
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0 (0)⇧ , (2.26)

where �,⇥ are distinct light flavour indices (not summed over). The ratios

R±
i (x0, y0) =

C±
i (x0, y0)

C(x0)C(y0)
, (2.27)
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will then be proportional to the matrix elements ⌦�|Q±
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where the notation ⌦↵SU(4) emphasises the use of the appropriate e�ective theory.
The LECs in the chiral weak Hamiltonian can then be readily extracted from the
matching condition

Z±
1 R±

1 (x0, y0) = g±1 R
±
1 (x0, y0) . (2.31)

Formulae for ChiPT quantities are given in Appendix A.
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27-plet and octet channels,
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[J0(x)]du

Q
±
1 (z)

[J0(y)]us [J0(x)]du

Q
±
1 (z)

[J0(y)]us
u/c

Figure 2: Eight and eye diagrams appearing in the computation of three-point
functions of Q±

1 .

simulations at mc 6= ml correspond, respectively, to Mc ⇡ 50, 249, and 498 MeV.
Note that, while the scaling properties of computations with overlap fermions are
generally expected to be good, at the heaviest charm mass amc = 0.400 cuto↵ e↵ects
can be expected to be sizeable.

For each of the three values of ml we have an independent ensemble of around
400 independent gauge configurations. Only about half the statistics is used for the
computation at amc = 0.4, as well as in the computation of three-point functions
involving Q

±
2 .

4.2 Variance reduction techniques

Our main aim is to compute the two- and three-point functions involved in the
matching of QCD to ChiPT, as discussed in Section 2. After integrating over fermion
variables in the path integral, fermionic correlation functions can be written as usual
in terms of gauge expectation values of traces of products of quark propagators
and spin matrices; explicit expressions are provided in Appendix B. The reason to
consider left-handed currents as interpolating operators becomes apparent in that
the traces only contain left-handed propagators P�S(x, y)P+, that can always be
computed in the chirality sector that does not contain zero modes, thus avoiding
their contribution in correlators [54]. The three-point functions involving Q

±
1 require

the computation of the quark-propagator diagrams depicted in Fig. 2, to which we
will refer as “eight” and “eye” diagrams, respectively. Each of them appears in a
colour-spin connected and a colour-spin disconnected version.

The computation of these correlation functions poses severe problems in terms
of noise-to-signal ratio. When the light quark mass is su�ciently low (and especially
so in the ✏-regime), Dirac modes with very small eigenvalues have large contributions
to correlation functions. Their wavefunctions have been shown to develop localised
structures [59], which makes good sampling of the whole lattice volume mandatory
in order to avoid large statistical fluctuations. It is thus important to integrate over
space at all operator insertion points (or at least at as many insertions as possible),
which obviously cannot be achieved with propagators computed with point sources.
The use of all-to-all propagators for variance reduction thus becomes mandatory.

One first step in this direction was the development of low-mode averaging
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determining weak LECs: mu≠mc



match suitable correlation functions in QCD and ChPT (infinite volume: K→π amplitudes)

QCD SU(3) χPT

will then be proportional to the matrix elements ⌦�|Q±
1 |K↵ (with mass-degenerate

kaon and pion) when x0 ⇤ +⌅, y0 ⇤ �⌅. The equivalent ChiPT quantities are

C(x0) =
⇤

d3x ⌦J ud
0 (x)J du

0 (0)↵SU(4) , (2.28)

C±
i (x0, y0) =
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d3x
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d3y ⌦J du

0 (x)Q±
i (0)J

us
0 (y)↵SU(4) , (2.29)

R±
i (x0, y0) =

C±
i (x0, y0)

C(x0)C(y0)
, (2.30)

where the notation ⌦↵SU(4) emphasises the use of the appropriate e�ective theory.
The LECs in the chiral weak Hamiltonian can then be readily extracted from the
matching condition

Z±
1 R±

1 (x0, y0) = g±1 R
±
1 (x0, y0) . (2.31)

Formulae for ChiPT quantities are given in Appendix A.

2.4.2 mc ⇥ ml
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calculable. Note that on the QCD side, the need of having non-perturbative results
at very low quark masses and for a well-defined value of the topological charge in
order to work in the ⇤-regime implies that lattice regularisations with exact chiral
symmetry are strongly preferred.

One final comment concerns the use of quenched Chiral Perturbation Theory
(qChiPT) to describe quenched QCD data. As is well-known, qChiPT displays
unphysical artifacts; in particular, in the context of K ⇥ ⌅⌅ transitions Golterman-
Pallante ambiguities make the matching of QCD to SU(3) qChiPT ill-defined [50,51].
This is however not the case for SU(4), where the ratios of correlation functions we
will deal with (see below) present no ambiguities in the quenched approximation,
as discussed in [28, 33]. Quenched results are not worked out explicitly in [33]
for SU(3) ChiPT. As can be seen in the formulae gathered in Appendix A, while
the ⇤-regime formulae are essentially insensitive to quenching, the NLO prediction
p-regime predictions for the relevant correlation functions in the octet channel dis-
plays 1/Nf factors, that signal the need to take into account non-decoupled singlet
contributions to repeat the computation in the quenched case. Here we will take the
unquenched formulae as an operational description, and perform fits with various
values of Nf (and hence di⇥erent coe⇧cients in the chiral logs) to check the depen-
dence of the LECs on the value of Nf , and adscribe a systematic uncertainty to fit
results (see Section 5 for details).

2.4 Matching ChiPT to QCD

2.4.1 mc = ml

When all quarks are light and degenerate the e⇥ective low-energy description of
�S = 1 processes is given by Eq. (2.16). Contributions from Q±

2 (in QCD) and Q±
2

(in ChiPT) drop because they are proportional to mu � mc; one is thus left with
the problem of determining the LECs g±1 . As explained above, the correspondence
between QCD and ChiPT operators in this case is straightforward. The matching
can be easily performed using three-point functions of the operators in the e⇥ective
Hamiltonian with quark bilinears such that flavour indices are saturated. A techni-
cally convenient choice for the latter is to employ left-handed currents, leading to
the correlation functions

C±
i (x0, y0) =
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�
d3y ⌅Jdu

0 (x)Q±
i (0) J

us
0 (y)⇧ , (2.25)
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0 (0)⇧ , (2.26)

where �,⇥ are distinct light flavour indices (not summed over). The ratios
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C(x0)C(y0)
, (2.27)
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Formulae for ChiPT quantities are given in Appendix A.
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0 (y)↵SU(3) , (2.35)

and the corresponding ratios R+
u ,R27,R8,R⇤

8 by dividing them with products of
current two-point functions. Next one can impose matching conditions in both the
27-plet and octet channels,

R27(x0, y0) = g27R27(x0, y0) , (2.36)
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where
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1 R+
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R8 = Z+
1

�
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1 �R+
u + c+R+

2

⇥
+ Z�

1

�
R�

1 + c�R�
2

⇥
. (2.39)
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will then be proportional to the matrix elements ⌦�|Q±
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⇤
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quenched overlap results

a ⇠ 0.12 fmfixed 
sophisticated variance reduction techniques 
computations spanning both p- and ε-regime

[Giusti, Hernández, Laine, CP, Wennekers, Wittig 2007]
3

am aMP R+, bare R−, bare

ϵ-reg ime
0.002 - 0.569(44) 2.43(15)
0.003 - 0.572(43) 2.41(14)

p-reg ime
0.020 0.1960(28) 0.636(40) 2.20(12)
0.030 0.2302(25) 0.691(33) 1.93(9)
0.040 0.2598(24) 0.723(31) 1.75(8)
0.060 0.3110(24) 0.772(30) 1.51(7)

TABLE I: Results for aMP and R±,bare

for a smooth extrapolation to the chiral limit. It is also
important to notice that at this volume and for these
masses finite volume corrections are visible and taken
into account in the formulas (10) and (11)...

FITTING STRATEGY

At the kaon mass or heavier, where finite volume correc-
tions can be safely neglected, the continuum-limit renor-
malization group-invariant (RGI) ratios R±,RGI can be
extracted from Refs. [35, 36]. By defining the reference
values

R±,RGI
ref ≡ R±,RGI

∣∣∣
r2
0M2

P =r2
0M2

K

(13)

at the pseudoscalar mass r2
0M

2
K = 1.573, we obtain

R+,RGI
ref = 0.954(52) and R−,RGI

ref = 0.910(76). Since
Wilson coefficients are computed in a mass independent
renormalization scheme

R±,RGI = R±,ba re
[
R±,ba re

∣∣∣
r2
0M2

K

]−1
R±,RGI

ref (14)

for any value of the quark mass.

IV. PHYSICS DISCUSSION

We can now combine our results for R±,RGI with the
Wilson coefficients in Eq. (3) to obtain

g+
1 = 0.50(?) , g−1 = 2.9(?) ,

g−1
g+
1

= 5.8 (??) , (15)

where errors take into account uncertainties on k±
1 ,

R±,RGI
ref and statistical errors on R±,ba re. A solid esti-

mate of discretization effects would require simulations
at several lattice spacing, which is beyond the scope
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FIG. 1: Dependence of R±,bare on am

of this exploratory study. However, computations of
R± at different lattice spacings and for masses close
to ms/2 [5, 34, 38 ] indicate that discretization effects
may be already comparable or smaller than our statis-
tical errors. In this respect it is interesting to notice
that quenched computations of various physical quan-
tities carried out with Neuberger fermions show small
discretization uncertainties at this lattice spacing [37].

Our values of g±1 in Eq.(15) reveal a clear hierarchy
among the low-energy constants, g−1 ≫ g+

1 , which in turn
implies the presence of a ∆I = 1/2 rule in this corner of
the parameter space of (quenched) QCD.

Assuming that QCD reproduces the experimental am-
plitudes, the LECs of the ∆S = 1 effective Hamiltonian
can be extracted from a combination of LO ChPT and
experimental results [39]

g+, exp
1 ∼0.50 , g−, exp

1 ∼10.4 ,
g−, exp
1

g+, exp
1

∼20.8 . (16)

Apart for quenching effects, these LECs differ from the
ones we have computed due to higher order effects in
ChPT and/ or due to contributions arising when the
charm mass is heavier. A comparison of the values in
Eqs. (15) and (16) suggests the presence of a large con-
tribution to the ∆I = 1/2 rule from physics at the intrin-
sic QCD scale. Barring accidental cancellations among
quenching effects and higher order ChPT corrections, our
value of g+

1 points to the fact that higher order ChPT cor-
rections in |A2| may be relatively small. In this case, in
fact, the charm mass dependence is expected to be mild
(only via the determinant). On the contrary our value for
g−1 is off by more than a factor three with respect to the
experimental value. Apart from possible large quench-
ing artifacts, this suggests that the charm mass depen-
dence and/ or higher order effects in ChPT are large for
|A0|. These two contributions can be disentangled by im-
plementing the second step of the strategy proposed in
Ref. [5].

All the above speculations are, of course, invalidated
if it turns out that quenching affects these correlation
functions in a significant way. In this respect it is im-

large chiral corrections, consistent with χPT prediction 
ΔI=3/2 in the right ballpark (n.b. charm enters only via loops / quenching subdominant [?]) 
ΔI=1/2 about a factor 4 too small to reproduce physical enhancement 
remarkable enhancement of ΔI=1/2 channel present for light charm: pure “no-penguin” effect
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SU(3) LECs

Charm quark mass dependence of LECs

“Experimental” values: g27 � 0.5

g8 � 10.5

large chiral corrections, consistent with χPT prediction 
ΔI=3/2 in the right ballpark (n.b. charm enters only via loops / quenching subdominant [?]) 
ΔI=1/2 about a factor 4 3.0-3.5 too small to reproduce physical enhancement 
heavy charm adds to the enhancement, but effect is moderate up to mcphys/4 - mcphys/2
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ΔI=1/2 @ large Nc
Toward an quantitative understanding of the �I = 1/2 rule
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understanding by comparing connected-
disconnected contributions to three-point 
functions difficult to interpret physically

the leading large Nc scaling of each 
contr ibut ion i s however d ifferent :    
connection with the physical amplitudes 
can be established by studying the Nc 
dependence

[Donini, Hernández, CP, Romero-López 2016]
[cf. also Blum et al., PRD 91 (2015) 074502] 

[RBC/UKQCD 2013-15]
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Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Relating K ! ⇡ to A2 and A0
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3

where µ is a convenient renormalisation scale for the non-perturbative computation of matrix elements of Q±, which
will be later set to the inverse lattice scale a�1. The factor U�(µ,MW ) = ĉ�(µ)/ĉ�(MW ), therefore, measures the
running of the renormalised operator between the scales µ and MW . Ideally one would like to evaluate this factor
non-perturbatively, as has been done for Nc = 3 [21], but this is beyond the scope of this paper. We will instead
use the perturbative results at two loops in the RI scheme [22] to evaluate the ĉ�(µ) factors. This implies relying on
perturbation theory at scales above µ = a�1

⇠ 2 GeV.
Our goal is to compute the K ! ⇡ amplitudes mediated by H�S=1

w . The hadronic contribution is encoded in the
ratios of three- and two-point functions

R̂±
⌘

h⇡|Q̂±
|Ki

fKf⇡mKm⇡
= ĉ±(µ)Z±

R (µ)R± , (10)

where Z±
R (µ) are the renormalisation factors for the ratios and R± is the ratio of matrix elements of bare operators.

In the SU(3) limit ms = md = mu, from R+ we can determine B̂K as

B̂K =
3

4
R̂+. (11)

Concerning K ! ⇡⇡ decays, the two very di↵erent isospin amplitudes

iAIe
i�I ⌘ h(⇡⇡)I |HW |K0i, I = 0, 2 (12)

can be related in chiral perturbation theory, and in the GIM limit, to the K ! ⇡ amplitudes A±
⌘ k̂±R̂± [14]:

A0

A2
=

1
p
2

✓
1

2
+

3

2

A�

A+

◆
. (13)

The �I = 1/2 rule, i.e. the large enhancement of the ratio |A0/A2| ⇠ 22, is therefore related in this limit to the ratio
of the amplitudes A�/A+.

At this point, it is necessary to comment on the chiral corrections. The relation between the K � K̄ and K !

(⇡⇡)|I=2 amplitudes is well known to break down away from the chiral limit for the physical case ms � mu,d, since
the chiral logarithmic corrections are much larger for the former amplitude [13]. On the other hand, this is not the
case in the SU(3) limit ms = mu = md, where the chiral logs are the same for both amplitudes both in the full as in
the quenched case [23]. The following relation holds up to one loop in ChPT in the leading-log approximation:

h⇡+⇡0
|HW |Ki

m2
K �m2

⇡

����
ms=md

=
iF
p
2
A+GFVudV

⇤
us, (14)

where F is the decay constant in the chiral limit and A+ contains one loop corrections. This shows that, in this
approximation, the 1/Nc corrections in the physical amplitude are fixed [40] by those in A+. At the same order in
ChPT, we can relate the amplitudes for both choices of quark masses:

h⇡+⇡0
|HW |K+

im⇡!0 = m2
K

h⇡+⇡0
|HW |K+

i

m2
K �m2

⇡

����
ms=md

✓
1 +

9

4

m2
K

(4⇡F )2
log

m2
K

(4⇡F )2

◆
. (15)

The chiral log term gives an additional negative 1/Nc contribution to the amplitude at the physical point with respect
to that in the degenerate case. Another important point to note is that, in the GIM limit, the chiral logs have been
shown to be fully anticorrelated in A± [29] and therefore an extrapolation to the chiral limit using chiral perturbation
theory will not change the anticorrelation found at larger masses. Unfortunately the computation of chiral logs in
K ! (⇡⇡)I=0 in the GIM limit is not available, although it is likely that the same anticorrelation holds also there.

III. RESULTS

We compute the ratios R̂± on the lattice from the ratio of correlation functions

R± = lim
z0�x0!1
y0�z0!1

P
x,yhP

du(y)Q±(z)Pus(x)i
P

x,yhP
du(y)Aud

0 (z)ihAsu
0 (z)Pus(x)i

, (16)

mu=md=ms limit:
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ΔI=1/2 @ large Nc
n.b.: relation between kaon mixing and ΔI=3/2 decay amplitude holds outside the chiral 
limit for mu=md=ms, since in that case chiral logs coincide - at leading log

3
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Concerning K ! ⇡⇡ decays, the two very di↵erent isospin amplitudes
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The �I = 1/2 rule, i.e. the large enhancement of the ratio |A0/A2| ⇠ 22, is therefore related in this limit to the ratio
of the amplitudes A�/A+.

At this point, it is necessary to comment on the chiral corrections. The relation between the K � K̄ and K !

(⇡⇡)|I=2 amplitudes is well known to break down away from the chiral limit for the physical case ms � mu,d, since
the chiral logarithmic corrections are much larger for the former amplitude [13]. On the other hand, this is not the
case in the SU(3) limit ms = mu = md, where the chiral logs are the same for both amplitudes both in the full as in
the quenched case [23]. The following relation holds up to one loop in ChPT in the leading-log approximation:
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where F is the decay constant in the chiral limit and A+ contains one loop corrections. This shows that, in this
approximation, the 1/Nc corrections in the physical amplitude are fixed [40] by those in A+. At the same order in
ChPT, we can relate the amplitudes for both choices of quark masses:
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The chiral log term gives an additional negative 1/Nc contribution to the amplitude at the physical point with respect
to that in the degenerate case. Another important point to note is that, in the GIM limit, the chiral logs have been
shown to be fully anticorrelated in A± [29] and therefore an extrapolation to the chiral limit using chiral perturbation
theory will not change the anticorrelation found at larger masses. Unfortunately the computation of chiral logs in
K ! (⇡⇡)I=0 in the GIM limit is not available, although it is likely that the same anticorrelation holds also there.

III. RESULTS
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[Golterman, Leung 1997]

caveat 1: in physical kinematics, chiral logs much larger for mixing amplitude 

caveat 2: higher-order ChiPT effects argued to be larger
[Truong 1988; Isgur, Maltman, Weinstein, Barnes 1990;

Kambor, Missimer, Wyler 1991; Pallante, Pich 1998]

[Donoghue, Golowich, Holstein 1982; Bijnens, Sonoda, Wise 1984]

thus, large N corrections to the physical amplitude are fixed by those in A+



ΔI=1/2 @ large Nc: numerical study

• simulate for Nc=3,…,8 at fixed lattice spacing, change quark mass along mu=md=ms=mc  

- quenched: use line of constant physics provided by Regensburg+Scotland+Wales study of meson physics 

- dynamical: use gradient flow scale t0 to set constant physics 

• use Wilson fermions for sea (HiRep code), twisted-mass QCD for valence 
- twisted valence à la Frezzotti-Rossi allows to avoid mixing with wrong-chirality operators 

- mixed-action approach requires matching of valence and sea, performed with meson mass 

- check for residual cutoff effects by changing value of csw + ongoing simulation on finer lattice 

• develop necessary SU(4) χPT to better understand meson dynamics 
- bonus: get large-Nc insight on LECs and meson interactions

[Bursa et al. 2013]

[Frezzotti, Rossi 2004]

[Hernández, CP, Romero-López 2016-2019]

[Hansen 2017]
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where P ab(x) =  ̄a(x)�5 b(x), and Aab
0 (x) = ZA ̄a(x)�0�5 b(x). The renormalised ratios R̂± have been computed

in SU(Nc) for Nc = 3� 7 and in the quenched approximation. Note that the latter does not modify the leading large
Nc result, but it can modify the first subleading 1/Nc corrections. We have implemented the required correlation
functions in the source code first developed in [30] and further optimized in [31]. The number of colours and the lattice
size are given in the first two columns of Table I. The spatial volume, L/a = 16, is kept fixed in all simulations. On
the other hand, T/a = 48 for Nc = 3, 4, 5 and T/a = 32 for Nc = 6, 7. Following [32] the bare coupling, � = 2Nc/g20 ,
is tuned with Nc in such a way that the string tension remains constant a

p
� ' 0.2093; this results in a ' 0.093 fm

with � = 1 GeV/fm. The bare ’t Hooft coupling � is found to be well described by the following scaling

� = Ncg
2
0 = 2.775(3) +

1.90(3)

N2
c

. (17)

The coupling � as a function of Nc is given in the third column of Table I. In order to preserve the multiplicative
renormalisation of Q±, while avoiding the high computational cost of a simulation with exactly chiral lattice fermions,
we use a Wilson twisted-mass fermion regularisation [33]. (For the gauge sector we employ the standard plaquette
action.) This allows to devise a formulation of valence quarks that not only preserves good renormalisation properties,
but also prevents the appearance of linear cuto↵ e↵ects in a [34]. The full-twist condition amounts to having a vanishing
current quark mass mPCAC from the axial Takahashi-Ward identity in so-called twisted quark field variables. The
value of amPCAC in our simulations is given in the fourth column of Table I, where we can see that the full-twist
condition amPCAC = 0, expected from an accurate tuning of the Wilson critical mass (which we again take from [32]),
is satisfied to a varying degree of accuracy; the deviations present are however irrelevant within the precision of our
results. The bare quark mass is chosen to provide a pseudoscalar mass not far from the physical kaon mass in all
cases (see the fifth column of Table I). Eventually, our results for the bare ratios R± defined in eq. (16), computed in
the SU(3) limit, are shown in the last two columns of the table.

Nc T/a � amPCAC amPS R+
bare R�

bare

3 48 6.0175 -0.002(14) 0.2718(61) 0.774(21) 1.218(31)
4 48 11.028 -0.0015(11) 0.2637(39) 0.783(15) 1.198(19)
5 48 17.535 0.0028(9) 0.2655(31) 0.839(8) 1.145(12)
6 32 25.452 0.0013(7) 0.2676(28) 0.871(6) 1.125(7)
7 32 34.8343 -0.0034(6) 0.2819(19) 0.880(5) 1.122(5)

TABLE I: Lattice simulation results. Lattice sizes are (L/a)3 ⇥ (T/a), with L/a = 16 throughout. The twisted bare mass
is fixed to aµ = 0.02. The lattice spacing is fixed by the string tension through a

p
� ' 0.2093 [32]. mPCAC is the current

mass obtained from the axial Takahashi-Ward identity in twisted quark field variables. mPS is the kaon and pion mass in our
mu = md = ms limit. R± are our results for the bare ratios given in eq. (16).

In Table II we show the various renormalisation constants and RG running factors needed to compute the renor-
malised amplitudes B̂K and A± as a function of the number of colours. First of all, in order to get the renormalised
ratios R̂± from the bare ones computed on the lattice, we have used the known one-loop lattice renormalisation con-
stants in the RI scheme of ref. [35]. Note that, due to the breaking of chiral symmetry in the adopted regularisation,
the axial current requires a finite, Nc-dependent, renormalisation constant ZA, that has to be included in the factors
Z±
R in eq. (10). This has also been taken from ref. [35]. The values of Z±(a�1) are given in the rightmost column of

Table II. The values of the normalisation coe�cients ĉ±(a�1) and of the running of the renormalised operators from
the scale of lattice computations, µ = a�1, to the scale of the e↵ective theory, MW , computed using perturbative
results at two-loops in the RI scheme [22], are given in the fifth and fourth columns of Table II, respectively. In the
evaluation of the ĉ�(µ) factors we have used the large Nc scaling of the ⇤ parameter found in ref. [36],

⇤MS
p
�

= 0.503(2)(40) +
0.33(3)(3)

N2
c

. (18)

Eventually, the Wilson coe�cients k±(MW ), also computed following ref. [22], are given in the third column of
Table II, while their RGI counterparts k̂±, defined in eq. (8), are given in the second column.

Our results for B̂K as a function of 1/Nc are shown in Fig. 1 together with a linear fit to the data, represented by
a solid black line. The grey band shows the 1� error on the fit. We compare our results with our own evaluation of
the predictions of the phenomenological analysis in ref. [5], represented by a light red band for Nf = 3 and by a blue
band for Nf = 0. For Nf = 3 we use in the latter the same values for hadronic masses and decay constants as in [5],
and obtained the decay constant for Nc 6= 3 by rescaling FK = FK(Nc = 3)

p
Nc/3. For Nf = 0 we use as input

quenched simulations in 163 lattices at 
(roughly) constant PS mass 

renormalisation (RI scheme) at scale around 2 
GeV performed using one-loop P.T.

[Constantinou et al. 2011]
[Alexandrou et al. 2012]

perturbative two-loop RG running in RI to 
connect to RGIs

[Ciuchini et al. 1998]
[Buras et al. 2000]
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p
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GeV performed using one-loop P.T.
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FIG. 1: B̂K versus 1/Nc. The grey band (solid line) is a linear fit to our five data points. The red and blue bands use the
model prediction of [5].

to the following best fits:

A� +A+

2
= 1.01(3) +

1.08(11)

N2
c

(p�value = 0.81),

A�
�A+

2
= 0.01(2) +

1.35(11)

Nc
(p�value = 0.12).

(19)

The subleading 1/Nc e↵ects seem to cancel in the first combination, while they are the only visible corrections in the
second one. The parameters of the quadratic fit in Fig. 2 are obtained from the results of eq. (19).

We have not included any systematic error in these results. There are two obvious sources: finite lattice spacing and
the quenched approximation. Although it is impossible to quantify those errors, we do not expect them to be larger
that those observed at Nc = 3, where they have been studied. We have already commented above on the expected
size of O(a2) discretization e↵ects, based on the results of [37]. Concerning the quenching error, it is well-known that
B̂K is remarkably insensitive to the number of dynamical quark flavours, cf. [2] and benchmark quenched studies
[38]; we thus expect a small e↵ect in A+. The pioneering large-Nc study of dynamical QCD in [39] shows that an
extension of our work to take into account unquenching e↵ects is feasible.

IV. CONCLUSIONS

We have presented the first computation on the lattice of the 1/Nc corrections to the �S = 1 amplitudes K � ⇡
in the GIM and SU(3) limit mc = mu = ms = md. The size and sign of 1/Nc corrections are relevant to give a
solid physical basis to the observation made in [10] that suggests that the �I = 1/2 rule might originate in a near
cancellation of two contributions to the K ! (⇡⇡)I=2 amplitude, that add up in the I = 0 channel. The observed
cancellation can be traced to large and anti-correlated 1/Nc corrections in the two isospin amplitudes. We have
quantified the subleading 1/Nc dependence of the simpler K � ⇡ amplitudes, A±, that are closely related to the
K � ⇡⇡ ones in the degenerate light quark limit, ms = md. Our results show that the subleading 1/Nc corrections in
A� are large and consistent with being equal and opposite in sign for A+ and A�, supporting the observation in [10].
However, the size of these corrections is natural, i.e. O(1)/Nc and not large enough to explain the �I = 1/2 rule,
although we have argued that larger 1/Nc corrections could be present at the physical point, ms � md, suggested by
a large chiral log. We have also studied the subleading Nc corrections to B̂K and found that they are significantly
smaller than those in the closely related amplitude A+, because of the di↵erent normalization. This shows that a
value of B̂K close to the Nc ! 1 value is consistent with large 1/Nc corrections in the �S = 1 amplitudes.
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malised amplitudes B̂K and A± as a function of the number of colours. First of all, in order to get the renormalised
ratios R̂± from the bare ones computed on the lattice, we have used the known one-loop lattice renormalisation con-
stants in the RI scheme of ref. [35]. Note that, due to the breaking of chiral symmetry in the adopted regularisation,
the axial current requires a finite, Nc-dependent, renormalisation constant ZA, that has to be included in the factors
Z±
R in eq. (10). This has also been taken from ref. [35]. The values of Z±(a�1) are given in the rightmost column of

Table II. The values of the normalisation coe�cients ĉ±(a�1) and of the running of the renormalised operators from
the scale of lattice computations, µ = a�1, to the scale of the e↵ective theory, MW , computed using perturbative
results at two-loops in the RI scheme [22], are given in the fifth and fourth columns of Table II, respectively. In the
evaluation of the ĉ�(µ) factors we have used the large Nc scaling of the ⇤ parameter found in ref. [36],

⇤MS
p
�

= 0.503(2)(40) +
0.33(3)(3)

N2
c

. (18)

Eventually, the Wilson coe�cients k±(MW ), also computed following ref. [22], are given in the third column of
Table II, while their RGI counterparts k̂±, defined in eq. (8), are given in the second column.

Our results for B̂K as a function of 1/Nc are shown in Fig. 1 together with a linear fit to the data, represented by
a solid black line. The grey band shows the 1� error on the fit. We compare our results with our own evaluation of
the predictions of the phenomenological analysis in ref. [5], represented by a light red band for Nf = 3 and by a blue
band for Nf = 0. For Nf = 3 we use in the latter the same values for hadronic masses and decay constants as in [5],
and obtained the decay constant for Nc 6= 3 by rescaling FK = FK(Nc = 3)

p
Nc/3. For Nf = 0 we use as input

renormalisation (RI scheme) at scale around 2 
GeV performed using one-loop P.T.

[Constantinou et al. 2011]
[Alexandrou et al. 2012]

perturbative two-loop RG running in RI to 
connect to RGIs

[Ciuchini et al. 1998]
[Buras et al. 2000]
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where P ab(x) =  ̄a(x)�5 b(x), and Aab
0 (x) = ZA ̄a(x)�0�5 b(x). The renormalised ratios R̂± have been computed
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size are given in the first two columns of Table I. The spatial volume, L/a = 16, is kept fixed in all simulations. On
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p
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� = Ncg
2
0 = 2.775(3) +

1.90(3)

N2
c

. (17)

The coupling � as a function of Nc is given in the third column of Table I. In order to preserve the multiplicative
renormalisation of Q±, while avoiding the high computational cost of a simulation with exactly chiral lattice fermions,
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bare
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TABLE I: Lattice simulation results. Lattice sizes are (L/a)3 ⇥ (T/a), with L/a = 16 throughout. The twisted bare mass
is fixed to aµ = 0.02. The lattice spacing is fixed by the string tension through a

p
� ' 0.2093 [32]. mPCAC is the current

mass obtained from the axial Takahashi-Ward identity in twisted quark field variables. mPS is the kaon and pion mass in our
mu = md = ms limit. R± are our results for the bare ratios given in eq. (16).

In Table II we show the various renormalisation constants and RG running factors needed to compute the renor-
malised amplitudes B̂K and A± as a function of the number of colours. First of all, in order to get the renormalised
ratios R̂± from the bare ones computed on the lattice, we have used the known one-loop lattice renormalisation con-
stants in the RI scheme of ref. [35]. Note that, due to the breaking of chiral symmetry in the adopted regularisation,
the axial current requires a finite, Nc-dependent, renormalisation constant ZA, that has to be included in the factors
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R in eq. (10). This has also been taken from ref. [35]. The values of Z±(a�1) are given in the rightmost column of

Table II. The values of the normalisation coe�cients ĉ±(a�1) and of the running of the renormalised operators from
the scale of lattice computations, µ = a�1, to the scale of the e↵ective theory, MW , computed using perturbative
results at two-loops in the RI scheme [22], are given in the fifth and fourth columns of Table II, respectively. In the
evaluation of the ĉ�(µ) factors we have used the large Nc scaling of the ⇤ parameter found in ref. [36],
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0.33(3)(3)
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Eventually, the Wilson coe�cients k±(MW ), also computed following ref. [22], are given in the third column of
Table II, while their RGI counterparts k̂±, defined in eq. (8), are given in the second column.

Our results for B̂K as a function of 1/Nc are shown in Fig. 1 together with a linear fit to the data, represented by
a solid black line. The grey band shows the 1� error on the fit. We compare our results with our own evaluation of
the predictions of the phenomenological analysis in ref. [5], represented by a light red band for Nf = 3 and by a blue
band for Nf = 0. For Nf = 3 we use in the latter the same values for hadronic masses and decay constants as in [5],
and obtained the decay constant for Nc 6= 3 by rescaling FK = FK(Nc = 3)

p
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[3] S. Dürr et al., Phys. Lett. B 705 (2011) 477; J. Laiho and R.S. Van de Water, PoS LATTICE 2011 (2011) 293; T. Blum

et al. [RBC and UKQCD Collaborations], Phys. Rev. D 93 (2016) no.7, 074505; B.J. Choi et al. [SWME Collaboration],
Phys. Rev. D 93 (2016) no.1, 014511; N. Carrasco et al. [ETM Collaboration], Phys. Rev. D 92 (2015) no.3, 034516.

[4] G. ’t Hooft, Nucl. Phys. B 72 (1974) 461.
[5] A.J. Buras, J.M. Gérard and W.A. Bardeen, Eur. Phys. J. C 74 (2014) 2871.
[6] A. Pich and E. de Rafael, Phys. Lett. B 374 (1996) 186.
[7] S. Peris and E. de Rafael, Phys. Lett. B 490 (2000) 213.
[8] T. Hambye, S. Peris and E. de Rafael, JHEP 0305 (2003) 027.
[9] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portolés, Rev. Mod. Phys. 84 (2012) 399.

[10] P.A. Boyle et al. [RBC and UKQCD Collaborations], Phys. Rev. Lett. 110 (2013) no.15, 152001.
[11] T. Blum et al., Phys. Rev. D 91 (2015) no.7, 074502.
[12] N. Carrasco et al. [ETM Collaboration], Phys. Lett. B 736 (2014) 174.
[13] J.F. Donoghue, E. Golowich and B.R. Holstein, Phys. Lett. B 119 (1982) 412; J. Bijnens, H. Sonoda and M.B. Wise, Phys.

Rev. Lett. 53 (1984) 2367.
[14] L. Giusti et al.,JHEP 0411 (2004) 016.

quenched simulations in 163 lattices at 
(roughly) constant PS mass, string tension 



ΔI=1/2 @ large Nc: numerical study

other technicalities as before

dynamical simulations at varying PS mass 
(+ extra quenched points)

Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Our Large Nc Ensembles with Nf = 4

Iwasaki gauge action and O(a) improved Wilson fermions.

Ensemble Nc L⇥ T � m0 aM M (MeV)

A301

3

20⇥ 36

1.778

-0.4040 0.2191(36) 570
A302 24⇥ 48 -0.4060 0.1831(17) 480
A303 24⇥ 48 -0.4070 0.1612(24) 420
A304 32⇥ 60 -0.4080 0.1384(15) 360

A401

4

20⇥ 36

3.570

-0.3725 0.2035(14) 530
A402 24⇥ 48 -0.3752 0.1804(7) 470
A403 24⇥ 48 -0.3760 0.1714(8) 440
A404 32⇥ 60 -0.3780 0.1397(8) 360

A501

5

20⇥ 36

5.969

-0.3458 0.2128(9) 560
A502 24⇥ 48 -0.3490 0.1802(6) 470
A503 24⇥ 48 -0.3500 0.1712(6) 450
A504 32⇥ 60 -0.3530 0.1328(8) 350

A601

6

20⇥ 36

8.974

-0.3260 0.2150(7) 570
A602 24⇥ 48 -0.3300 0.1801(5) 470
A603 24⇥ 48 -0.3311 0.1690(7) 450
A604 32⇥ 60 -0.3340 0.1354(7) 360
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A402 24⇥ 48 -0.3752 0.1804(7) 470
A403 24⇥ 48 -0.3760 0.1714(8) 440
A404 32⇥ 60 -0.3780 0.1397(8) 360
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5

20⇥ 36

5.969

-0.3458 0.2128(9) 560
A502 24⇥ 48 -0.3490 0.1802(6) 470
A503 24⇥ 48 -0.3500 0.1712(6) 450
A504 32⇥ 60 -0.3530 0.1328(8) 350
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20⇥ 36

8.974

-0.3260 0.2150(7) 570
A602 24⇥ 48 -0.3300 0.1801(5) 470
A603 24⇥ 48 -0.3311 0.1690(7) 450
A604 32⇥ 60 -0.3340 0.1354(7) 360

P. Hernandez, C. Pena and FRL et al., arXiv:1810.06285, arXiv:1907.11511
Generated with HiRep, M. Hansen arXiv:1705.11010
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Preliminary results for K ! ⇡ at Large Nc

Donini, Hernández, FRL, Pena, arXiv:1607.03262, arXiv:1810.06285 and on-going work
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ΔI=1/2 anatomy: a summary

several possible sources for ΔI=1/2 enhancement (on top of short-distance’s x2):

physics at charm scale (penguins) 

physics at “intrinsic” QCD scale  

final state interactions 

all of the above (no dominating “mechanism”)

⇠ ⇤QCD



ΔI=1/2 anatomy: a summary

several possible sources for ΔI=1/2 enhancement (on top of short-distance’s x2):

physics at charm scale (penguins) 

physics at “intrinsic” QCD scale  

final state interactions 

all of the above (no dominating “mechanism”)

⇠ ⇤QCD x [1.5-2.0 (glue) x 1.0-1.5 (quarks)]

x [>1.3]

?

likely, if I were to put my money…

1/Nc corrections are very large, consistent with the enhancement (and RBC/UKQCD’s findings), 
and however still consistent with 1/Nc scaling

several interesting byproducts



meson interactions @ large Nc: χPT
Goldstone boson physics is well-parametrized by Chiral Perturbation Theory

Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Meson decay constant at Large Nc

In Chiral Perturbation Theory:
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Large Nc Scaling of Low Energy Constants for F⇡
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F⇡ at Large Nc

Simultaneous chiral and Nc fit.
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meson interactions @ large Nc: χPT
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Large Nc scaling of Low Energy Constants for M⇡
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M⇡ at Large Nc

Simultaneous chiral and Nc fit.
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selected results:

• LO LECs: 

-   

-   

-   

• NLO LECs: 

-   

- n.b. subleading corrections to LECs are sizable:
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[Fukaya et al. 2010]⌃Nf=3 = 223(9) MeV vs ⌃1/3
Nf=3 = 214(6)(24) MeV

[Bernard, Descotes-Genon, Toucas 2012]

[FLAG 2019]
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meson interactions @ large Nc: χPT



selected results:

• LO LECs: 

-   

-   

-   

• NLO LECs: 

-   

- n.b. subleading corrections to LECs are sizable:

Fp
Nc

=


67(3)� 26(4)

Nf

Nc

�
MeV ) FNf=2 = 86(3) MeV FNf=3 = 71(3) MeV

⌃Nf=3

⌃Nf=2
= 1.49(10) vs

⌃Nf=3

⌃Nf=2
= 1.51(11)

¯̀
4 = 5.1(3) vs ¯̀

4 = 4.40(28)

L
Nf=4
M

Nc
⇥ 103 = �0.2(2) +

2.9(6)

Nc
+O

✓
1

N2
c

◆

[Fukaya et al. 2010]⌃Nf=3 = 223(9) MeV vs ⌃1/3
Nf=3 = 214(6)(24) MeV

[Bernard, Descotes-Genon, Toucas 2012]

[FLAG 2019]

⌃1/3
Nf=3 = 223(9) MeV vs ⌃1/3

Nf=3 = 223(9) MeV

⌃Nf=3

⌃Nf=2
= 1.49(10) vs

⌃Nf=3

⌃Nf=2
= 1.51(11)

¯̀
4 = 5.1(3) vs ¯̀

4 = 4.40(28)

L
Nf=4
M

Nc
⇥ 103 = �0.2(2) +

2.9(6)

Nc
+O

✓
1

N2
c

◆

[FLAG 2019 summary]

Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

ch
ir
al
ex
tr
ap
ol
at
io
n

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

fin
it
e
vo
lu
m
e

F F⇡/F

ETM 11 [51] 2+1+1 C � F � 85.60(4)(13) 1.077(2)(2)
ETM 10 [186] 2+1+1 A � ⌅ F 85.66(6)(13) 1.076(2)(2)

RBC/UKQCD 15E [45] 2+1 A F F F 85.8(1.1)(1.5) 1.0641(21)(49)
RBC/UKQCD 14B [10] 2+1 A F F F 86.63(12)(13) 1.0645(15)(0)
BMW 13 [44] 2+1 A F F F 88.0(1.3)(0.3) 1.055(7)(2)
Borsanyi 12 [43] 2+1 A � � F 86.78(05)(25) 1.0627(06)(27)
NPLQCD 11 [52] 2+1 A � � � 86.8(2.1)

�
+3.3

�3.4

�
1.062(26)

�
+42

�40

�

MILC 10 [36] 2+1 C � F F 87.0(4)(5) 1.060(5)(6)
MILC 10A [14] 2+1 C � F F 87.5(1.0)

�
+0.7

�2.6

�
1.054(12)

�
+31

�09

�

MILC 09A, SU(3)-fit [17] 2+1 C � F F 86.8(2)(4) 1.062(1)(3)
MILC 09A, SU(2)-fit [17] 2+1 C � F F 87.4(0.6)

�
+0.9

�1.0

�
1.054(7)

�
+12

�11

�

MILC 09 [129] 2+1 A � F F 87.66(17)
�
+28

�52

�
1.052(2)

�
+6

�3

�

PACS-CS 08, SU(3)-fit [162] 2+1 A F ⌅ ⌅ 90.3(3.6) 1.062(8)
PACS-CS 08, SU(2)-fit [162] 2+1 A F ⌅ ⌅ 89.4(3.3) 1.060(7)
RBC/UKQCD 08 [163] 2+1 A � ⌅ � 81.2(2.9)(5.7) 1.080(8)

ETM 15A [386] 2 A F ⌅ � 86.3(2.8) 1.069(35)
Engel 14 [50] 2 A F F F 85.8(0.7)(2.0) 1.075(09)(25)
Brandt 13 [49] 2 A � F � 84(8)(2) 1.080(16)(6)
QCDSF 13 [402] 2 A F � � 86(1) 1.07(1)
TWQCD 11 [394] 2 A � ⌅ ⌅ 83.39(35)(38) 1.106(5)(5)
ETM 09C [48] 2 A � F � 85.91(07)

�
+78

�07

�
1.0755(6)

�
+08

�94

�

ETM 08 [53] 2 A � � � 86.6(7)(7) 1.067(9)(9)
Hasenfratz 08 [397] 2 A � ⌅ � 90(4) 1.02(5)
JLQCD/TWQCD 08A [376] 2 A � ⌅ ⌅ 79.0(2.5)(0.7)

�
+4.2

�0.0

�
1.167(37)(10)

�
+02

�62

�

JLQCD/TWQCD 07 [398] 2 A � ⌅ ⌅ 87.3(5.6) 1.06(7)

Colangelo 03 [403] 86.2(5) 1.0719(52)

Table 20: Results for the SU(2) low-energy constant F (in MeV) and for the ratio F⇡/F . All
ETM values that were available only in r0 units were converted on the basis of r0 = 0.48(2) fm
[386, 400, 401], with this error being added in quadrature to any existing systematic error.

Numbers in slanted fonts have been calculated by us, based on
p
2F phys

⇡ = 130.41(20)MeV
[170], with this error being added in quadrature to any existing systematic error (otherwise
to the statistical error). The systematic error in ETM 11 has been carried over from ETM 10.
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F0 F/F0 B/B0

JLQCD/TWQCD 10A[389] 3 A ⌅ ⌅ ⌅ 71(3)(8)

MILC 10 [36] 2+1 C � F F 80.3(2.5)(5.4)
MILC 09A [17] 2+1 C � F F 78.3(1.4)(2.9) 1.104(3)(41) 1.21(4)

�
+5

�6

�

MILC 09 [129] 2+1 A � F F 1.15(5)
�
+13

�03

�
1.15(16)

�
+39

�13

�

PACS-CS 08 [162] 2+1 A F ⌅ ⌅ 83.8(6.4) 1.078(44) 1.089(15)
RBC/UKQCD 08 [163] 2+1 A � ⌅ � 66.1(5.2) 1.229(59) 1.03(05)
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⌃1/3

0
⌃/⌃0

JLQCD/TWQCD 10A [389] 3 A ⌅ ⌅ ⌅ F 214(6)(24) 1.31(13)(52)

MILC 09A [17] 2+1 C � F F � 245(5)(4)(4) 1.48(9)(8)(10)
MILC 09 [129] 2+1 A � F F � 242(9)

�
+05

�17

�
(4) 1.52(17)

�
+38

�15

�

PACS-CS 08 [162] 2+1 A F ⌅ ⌅ ⌅ 290(15) 1.245(10)
RBC/UKQCD 08 [163] 2+1 A � ⌅ � F 1.55(21)

Table 24: Lattice results for the low-energy constants F0, B0 (in MeV) and ⌃0 ⌘ F 2
0B0,

which specify the e↵ective SU(3) Lagrangian at leading order. The ratios F/F0, B/B0, ⌃/⌃0,
which compare these with their SU(2) counterparts, indicate the strength of the Zweig-rule
violations in these quantities (in the large-Nc limit, they tend to unity). Numbers in slanted
fonts are calculated by us, from the information given in the references.
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which specify the e↵ective SU(3) Lagrangian at leading order. The ratios F/F0, B/B0, ⌃/⌃0,
which compare these with their SU(2) counterparts, indicate the strength of the Zweig-rule
violations in these quantities (in the large-Nc limit, they tend to unity). Numbers in slanted
fonts are calculated by us, from the information given in the references.
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selected results:

• LO LECs: 

-   

-   

-   

• NLO LECs: 

-   

- n.b. subleading corrections to LECs are sizable:

Fp
Nc

=


67(3)� 26(4)

Nf

Nc

�
MeV ) FNf=2 = 86(3) MeV FNf=3 = 71(3) MeV

⌃Nf=3

⌃Nf=2
= 1.49(10) vs

⌃Nf=3

⌃Nf=2
= 1.51(11)

¯̀
4 = 5.1(3) vs ¯̀

4 = 4.40(28)

L
Nf=4
M

Nc
⇥ 103 = �0.2(2) +

2.9(6)

Nc
+O

✓
1

N2
c

◆

[Fukaya et al. 2010]⌃Nf=3 = 223(9) MeV vs ⌃1/3
Nf=3 = 214(6)(24) MeV

[Bernard, Descotes-Genon, Toucas 2012]

[FLAG 2019]
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Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Scattering in infinite volume

Define asymptotic states: |�INi , |�OUTi
The Scattering Matrix relates these states:

|�OUTi = Ŝ |�INi

The Phase Shifts parametrize the S Matrix

h~k`m|Ŝ |~p`mi = S` = e
2�`(k)�

⇣
|~k | � |~p|

⌘

E↵ective range expansion (s-wave):

k cot �0 = � 1

a0
+

1

2
rk

2 + O(k4)

~k ~p

�~p �~k

infinite volume: phase shifts parametrize S-matrix
hk`m|Ŝ|p`mi = S` = e2�`(k)�(|k|� |p|)

finite volume: use Lüscher method to derive phase shifts from volume-
scaling of energies

det[cot �` +M] = 0 [Lüscher 1986]

meson interactions @ large Nc: 2→2 scattering
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Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Preliminary results for Isospin 2 ⇡⇡ scattering
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Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Preliminary results for ⇡Ds � KD scattering
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• phenomenology of neutral kaon decay 

• understanding non-leptonic kaon decay within the SM 
- electroweak effective Hamiltonian analysis 
- exact (lattice) vs. approximate (effective theory/large N/models) 
- why is it so hard? 
- state-of-the-art quantitative results 

• understanding the anatomy of ΔI=1/2 
- the strategy 
- (old) results for QCD amplitudes 
- large Nc 
- insight into light meson physics 

• outlook

plan



conclusions and outlook

• non-leptonic kaon decay remains an open problem… and a fertile ground to learn 
about strong interaction physics 

- indirect CP violation well under control 

- direct CP violation, isospin enhancement still witness claims of new physics 

• lattice toolbox making steady progress 

- controlled quantitative predictions for amplitudes are at hand 

- the anatomy of the effect is ever better understood, complex interplay of accumulated 
enhancements seems to emerge 

• a theorist’s paradise: field-theory, phenomenology, and computational physics all 
simultaneously at play!


