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Other risk measures Expected Shortfall

Outline

Introduction to the portfolio problem

Markowitz solution (no constrains)

Analytical solution: the replica trick

Regularization / constrains

No short selling

Caveats in practical applications

Results
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SP500 index SP500 index return distribution

The return is defined through the price Xit as

xit =
Xi ,t+1 − Xi ,t

Xit
≈ log

Xi ,t+1

Xi ,t
, additive.
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Other risk measures Expected Shortfall

The Markowitz solution

There are N assets to invest in, the covariance matrix between
returns is given by Cij , i , j = 1,N.
Find weights wi , normalized as

∑
i wi = 1, that the risk

1
2

∑
ij wiCijwj is minimal. The minimal risk solution is given by

wi =

∑
j C
−1
ij∑

ij C
−1
ij

−→
1
σ2
i∑
i

1
σ2
i

.

The solution involves the inverse of the covariance matrix, and
hence, has problems, when Cij is not invertible:

two assets behave similarly (not distinguishable)

lack of information
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Other risk measures Expected Shortfall

The Covariance Matrix

In the following we distinguish the theoretical / true covariance

matrix C
(0)
ij and the empirical / noisy one, Cij :

Cij =
1

T

T∑
t=1

xitxjt =
1

T
XX †,

where

X =


x11 x12 . . . x1T

x21 x22 . . . x2T

· · ·
...

xN1 xN2 . . . xNT


︸ ︷︷ ︸

Tmeasurement points

N channels
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The Covariance Matrix

In the following we distinguish the theoretical / true covariance

matrix C
(0)
ij and the empirical / noisy one, Cij :

Cij =
1

T

T∑
t=1

xitxjt

For T < N the empirical covariance matrix picks up zero modes,
the optimization problem is not solvable!

Also, as T > N approaches N, the empirical covariance matrix picks
up larger and larger amount of ”noise”, and the estimate is less and
less reliable;

As r = N/T → 0 the empirical covariance matrix approaches the
theoretical one.
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Regularization

The error of optimization

q0 =

∑
ij wiC

(0)
ij wj∑

ij w
(0)
i C

(0)
ij w

(0)
j

∼ 1

1− r

To reduce error and reach the T < N region a regularization is
introduced (extra knowledge about the system):

l2:
∑

w2
i is minimized (distribute equally the weights)

l1:
∑
|wi | is minimized (cancel the ”irrelevant” weights)

lα:
∑
|wi |α is minimized (e.g. α = 3/2 for liquidity problems)

Regularization also appears in Deep Learning!
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Optimization as statistical physical problem

The optimization problem:

min~w
{1

2

∑
ij

wixitxjtwj + g(~w)
}
, s.t.

∑
i

wi = N,

with the asymmetric `1 regularizer

g(~w) = η1

∑
i

wiθ(wi )− η2

∑
i

wiθ(−wi ). (1)

The partition function with inverse temperature γ →∞ is

Z (~w) =
〈 ∞∫
−∞

N∏
i=1

dwie
−γ
(

1
2

∑
i,j,t

wixitxjtwj+g(~w)

)∏
a

δ(
∑
i

wi−N)
〉
~xt
.

The replica trick takes care of averaging the logarithm of the
partition function, based on the identity

〈logZ 〉 = lim
n→0

∂〈Zn〉
∂n

.
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Zn(~w) =
〈 ∞∫
−∞

N∏
i=1

n∏
a=1

dwa
i e
−γ
(

1
2

∑
i,j,t,a

wa
i xitxjtw

a
j +g(~w)

)∏
a

δ(
∑
i

wa
i−N)

〉
~xt

is the partition function of n replicas and equivalent to Zn.

First, using the Hubbard-Stratonovich transformation introducing
an auxiliary field φat , we linearize the exponent in xit :

e
− γ

2

∑
i,j,t,a

wa
i xitxjtw

a
j

=

∞∫
−∞

∏
a,t

dφat e
− 1

2

∑
a,t
φ2
a,t+i

√
γ
∑
i,t,a

φatwa
i xit

Now, the averaging over xit can be done with the probability

density e
− x2

it
2σ2

i .
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−
x2
it

2σ2
i

+ i
√
γ
∑
i ,t,a

φatw
a
i xit = − 1

2σ2
i

xit − i
√
γ
∑
i ,t,a

φatσ
2
i w

a
i

2

− γ

2

∑
a,b,t

φatφbt
∑
i

σ2
i w

a
i w

b
i

Qab =
1

N

∑
i

σ2
i w

a
i w

b
i overlap matrix.

Zn(~w) =

∞∫
−∞

∏
i ,a,b,t

dwa
i dQabdQ̂abdφatdλ

a e
− 1

2

∑
a,t
φ2
at−

γ
2

∑
a,b,t

φatQabφbt

× e

∑
a,b

Q̂ab

(
NQab−

∑
i
σ2
i w

a
i w

b
i

)
+
∑
a
λa
(∑

i
wa
i−N

)
−γg(~w)
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Integrate over Φat :

∞∫
−∞

∏
a,t

dφat e
− 1

2

∑
a,b,t

φat(δab+γQab)φbt
= e−

T
2

log det(δab+γQab)

Replica symmetric ansatz:

Qab = q0 + ∆, Q̂ab = q̂0 + ∆̂, a = b

Qab = q0, Q̂ab = q̂0 a 6= b∣∣∣∣∣∣∣∣∣
a+b b · · · b
b a+b · · · b
...

...
b b · · · a+b

∣∣∣∣∣∣∣∣∣ = an
(

1 +
nb

a

)

log det (δab + γQab) = n log (1 + γ∆) + n
γq0

1 + γ∆
as n→ 0.
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TrQ̂abQab = n
(

(∆̂ + q̂0)(∆ + q0) + (n−1)q̂0q0

)
−→ n

(
∆̂∆ + ∆̂q0 + ∆q̂0

)
as n→ 0

Zn(~w) =

∞∫
−∞

∏
i ,a,b,t

dwa
i d∆dq0d∆̂dq̂0dλ

a e
−Tn

2

[
log(1+γ∆)+

γq0
1+γ∆

]

× e
Nn(∆̂∆+∆̂q0+∆q̂0−λ)−

∑
a,i

∆̂σ2
i w

a
i w

a
i −
∑
a,b,i

q̂0σ
2
i w

a
i w

b
i +
∑
a,i
λawa

i −γg(~w)

−
∑
a,i

∆̂σ2
i w

a
i w

a
i = −Nn∆̂σ2w2

∑
a,i

λawa
i = nNλw

−
∑
i ,a,b

σ2
i q̂0w

a
i w

b
i −

1

2
(z−

∑
i ,a

σiw
a
i

√
−2q̂0)2 = −z2

2
+Nnwzσ

√
−2q̂0

11 / 31
G. Papp,Portfolio Optimization

N



Other risk measures Expected Shortfall

Zn(~w) =

∞∫
−∞

∏
i ,a,b,t

d∆dq0d∆̂dq̂0dλ e
Nn
[
−1
2r

(
log(1+γ∆)+

γq0
1+γ∆

)
+(∆̂∆+∆̂q0+∆q̂0−λ)

]

×
∞∫
−∞

dwdz e
∫
dσp(σ)Nn[−∆̂σ2w2+wzσ

√
−2q̂0+λw−γg(~w)]− z2

2

with r = N/T .
As for n→ 0, X n ≈ 1 + n logX −→ log〈X n〉 ' n〈logX 〉,

Zn(~w)=

∞∫
−∞

∏
i ,a,b,t

d∆dq0d∆̂dq̂0dλ e
Nn
[
−1
2r

(
log(1+γ∆)+

γq0
1+γ∆

)
+(∆̂∆+∆̂q0+∆q̂0−λ)

]

× e
Nn

〈
log
∞∫
−∞

dw [−∆̂σ2w2+wzσ
√
−2q̂0+λw−γg(~w)]

〉
z,σ

=

∫
dλdq0d∆dq̂0d∆̂ e−γNnf (λ,q0,∆,q̂0,∆̂)
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Free energy

f (λ, q0,∆, q̂0, ∆̂) =
1

2γr

[
log(1+γ∆) +

γq0

1+γ∆

]
+
λ

γ

−1

γ
(q̂0∆+q0∆̂+∆∆̂)−1

γ

〈
log

∫
dw e−∆̂σ2w2+wzσ

√
−2q̂0+λw−g(~w)

〉
zσ

Performing the change of variables ∆→ ∆/γ, q̂0 → γ2q̂0,
∆̂→ γ∆̂, λ→ γλ and taking the limit γ →∞ we finally have in
the saddle point approximation:

f (λ, q0,∆, q̂0, ∆̂) =
q0

2r(1 + ∆)
− q̂0∆− ∆̂q0 +λ+ min

~w

〈
V (~w)

〉
zσ
,

where

V = ∆̂σ2w2 − wzσ
√
−2q̂0 − λw + η1θ(w)− η2θ(−w).
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The minimum of the potential is at

w∗ =
σz
√
−2q̂0 + λ− η1θ(w∗) + η2θ(−w∗)

2∆̂σ2
.

Substituting this back into the potential and performing the double
average over z and σ

〈V ∗〉zσ =
q̂0

∆̂

1

N

∑
i

[
W

(
λ− η1

σi
√
−2q̂0

)
+ W

(
− λ+ η2

σi
√
−2q̂0

)]
.

where

W (x)=

x∫
−∞

dt Ψ(t), Ψ(x)=

x∫
−∞

dt Φ(t), Φ(x)=

x∫
−∞

dt φ(t), φ(t)=
e−t

2/2

√
2π

Thus the free energy

f = λ−∆q̂0 − ∆̂q0 +
q0

2r(1+∆)
+ 〈V ∗〉zσ

∂f

∂λ
=

∂f

∂q̂0
=

∂f

∂∆̂
=

∂f

∂q0
=

∂f

∂∆
= 0 (saddle point eq.)
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Unconstrained case: η1 = η2 = 0

f = λ−∆q̂0 − ∆̂q0 +
1

2r

q0

1 + ∆
+

q̂0

2∆̂
− λ2

4∆̂

1

N

∑
i

1

σ2
i

.

with the solution:

λ =
1

1
N

∑
i

1
σ2
i

1− r

r
= 2f , chemical potential

∆ =
r

1− r
, susceptibility

q0 =
1

1
N

∑
i

1
σ2
i

1

1− r
, estimation error

q̂0 = − 1
1
N

∑
i

1
σ2
i

1− r

2r
,

∆̂ =
1− r

2r
,
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Weight distribution

Returning to the saddle point solution of w ,

w∗ =
σz
√
−2q̂0 + λ

2∆̂σ2
with η1 = η2 = 0

w can be written as

w∗i =
σw
σi

(
z − z∗

σi

)
, σw =

√
−2q̂0

2∆̂
, z∗ = − λ√

−2q̂0

and since z is distributed from the normal distribution,

p(w) =
1

N

∑
i

N
(
−σwz∗

σ2
i

,
σw
σi

)
.

As r → 0, p(w)→ 1
N

∑
i
N (

1

σ2
i

1
N

∑
i

1

σ2
i

, 0) : Markowitz solution
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Unconstrained case

Critical point, rc = 1 is described as ∆→∞, or λ→ 0.
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No short selling: η1 = 0, η2 →∞

f = λ−∆q̂0 − ∆̂q0 +
1

2r

q0

1 + ∆
+

q̂0

∆̂

1

N

∑
i

W

(
λ

σi
√
−2q̂0

)
.

with the solution:

λ =
q0

r(1 + ∆)2
= 2f ,

∆ =
r 1
N

∑
i Φ
(√

λ
σi

)
1− r 1

N

∑
i Φ
(√

λ
σi

) ,
q0 = λr(1 + ∆)2,

q̂0 = − q0

2r(1 + ∆)2
,

∆̂ =
1

2r(1 + ∆)
.

1

2r
=

1

N

∑
i

W

(√
λ

σi

)

18 / 31
G. Papp,Portfolio Optimization

N



Other risk measures Expected Shortfall

Weight distribution

p(w) = n0δ(w) + θ(w)
1

N

∑
i

1

σ
(i)
w

√
2π

exp

−1

2

(
w − w

(i)
0

σ
(i)
w

)2


n0 =
1

N

∑
i

Φ

(
−
w

(i)
0

σ
(i)
w

)
,

w
(i)
0 =

q0

(1 + ∆)

1

σ2
i

,

σ
(i)
w =

√
q0r

σi
.
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Condensation: cancelled assets

n0 =
1

N

∑
i

Φ

(
−
w

(i)
0

σ
(i)
w

)
,

is the number of cancelled
assets.
Above rc , w0 = 0, that is
half of the entries are can-
celled.

20 / 31
G. Papp,Portfolio Optimization

N



Other risk measures Expected Shortfall

Critical point

The λ = 0 (condensation) condition for criticality with eq.

1

2r
=

1

N

∑
i

W

(√
λ

σi

)
→ 1/4

yields rc = 2 . Indeed, at that point Φ(0) = 1/2, and ∆→∞.
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Zero modes

The condition to have zero risk is
∑

i ,j ,t wixitxjtwj = 0, or
T∑
t=1

(∑
i

wixit

)2

= 0 ⇔
∑
i

wixit = 0 ∀t .

For the unconstrained case as r > 1 zero modes of the covariance
matrix automatically satisfy this condition.

For the no short selling constrain, wi ≥ 0 prevents the system to
spread into zero modes only, and up to r = 2 this condition can not
be satisfied generally:

One has to find in an N dimensional space a vector w , which is
perpendicular to T random vectors, and has only positive entries:

p(N,T ) =
1

2N−1

N−1∑
k=T

(
N − 1

k

)
.

22 / 31
G. Papp,Portfolio Optimization

N



Other risk measures Expected Shortfall

Zero modes
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Beyond Gaussian

Probability of riskless solution p(N,T ) is general, provided the
underlying x distribution is symmetric and continuous;

rc = 2 is distribution independent;

Going beyond Gaussian analytically may be possible for special
distributions;

Numerical study is possible (Student): the general behavior is
similar, Gaussian seems to be the most well behaving distribution.
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Conclusions

Portolio in high-dimensional limit with fixed r = N/T ratio is
considered, returns from normal distribution;

unconstrained case:

optimal weight distribution;
rc = 1 recovered, connection to zero modes, distribution
independence;

constrains: no short selling

first analytical solution of the problem, supported by numerical
calculations;
rc = 2 found, connection to zero modes, distribution independence;

Standard programs automatically make l2 regularization in the zero
mode sector, which leads to a dangerous solution not indicating the
criticality of the system.
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Other risk measures

VaRα: Value at Risk

P(VaRα) = 1 − α
NOT a coherent measure

ESα: Expected Shortfall (CVaR)

ESα = 1
α

α∫
0

dγVaRγ

coherent measure
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Expected Shortfall

The probability of loss l({wi}, {xi}) = −X to be smaller than a
threshold l0 is

P({wi}, l0) =

∫ ∏
i

dxip({xi}) θ (l0 − l({wi}, {xi}))

VaRα = min {l0 : P({wi}, l0) ≥ α}

(1− α)ESα =

∫ ∏
i

dxip({xi})l({wi}, {xi} θ (l({wi}, {xi})−VaRα)

Instead, Rockafellar and Uryasev proposed

Fα({wi}, ε) = ε+
1

1− α

∫
Πidxip({xi}) [`({wi}, {xi})− ε]+

ES({wi}) = minεFα({wi}, ε)

with [x ]+ = (x + |x |)/2.
27 / 31
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This problem may be linearized, searching for the minimum of

E (ε, {ut}) = (1− α)T ε+
T∑
t=1

ut

ut ≥ 0 ∀ t,

ut + ε+
N∑
i=1

xitwi ≥ 0 ∀ t,

and the partition function modifies accordingly,

Zγ [{xi ,t}] =

∫ ∞
0

T∏
i=1

dut

∫ ∞
−∞

dε θ

(
ut + ε+

N∑
i=1

xi ,twi

)
e−γE [ε,{ut}].
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α = 1 is the minimax risk measure.
For N = 2,T = 2:

y1 = −wx11 − (1−w)x21 = w(x21 − x11)− x21

y2 = −wx12 − (1−w)x22 = w(x22 − x12)− x22
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p =
1

2T−1

T−1∑
k=N−1

(
T − 1

k

)
.

α = 1 is the minimax risk measure.
For N = 2,T = 2:

y1 = −wx11 − (1−w)x21 = w(x21 − x11)− x21

y2 = −wx12 − (1−w)x22 = w(x22 − x12)− x22

Result depends ONLY on geometry!
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Error of estimation for ES

for α = 0.975 5% precision re-
quires T/N = 71, for 20% pre-
cision T/N = 16, and even 50%
precision is T/N = 5.
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Error of estimation for ES

5% estimation error contour line
from numerical simulations.

31 / 31
G. Papp,Portfolio Optimization

N



Other risk measures Expected Shortfall

Error of estimation for ES

5% estimation error contour line
from numerical simulations.

Introducing l1 regularization
has similar effect, than for
variance+l1: the critical line
move to 2r

(0)
c .
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