The $f_{P S, V} / m_{V}$ ratios and the conformal window

Hee Sok Chung (Korea University, Seoul)

Daniel Nogradi (Eotvos University, Budapest)

Context and motivation

- Non-abelian gauge theories $\left(G, N_{f}, R\right)$ in 4 dimensions, $m=0$
- N_{f} small: $0 \leq N_{f}<N_{f}^{*}$

$$
\text { chiral symmetry spontaneously broken, } \wedge
$$

- N_{f} large but not very large

$$
N_{f}^{*}<N_{f}<N_{f}^{\text {asympt }}: \mathrm{CFT} \rightarrow \text { conformal window }
$$

- Main question: what is N_{f}^{*} for given G and R ?
lower end of the conformal window
- Our work: $G=S U(3)$ and $R=$ fund

Motivation

- N_{f}^{*} potentially determined by non-perturbative physics
- $N_{f}^{\text {asympt }}$ purely perturbative (1-loop)
- $G=S U(3), \quad R=$ fund $: \quad N_{f}^{\text {asympt }}=16.5$
from 1-loop β-function

Motivation

- No clear consensus on N_{f}^{*} for $G=S U(3)$ and $R=$ fund
- Somewhere around 8-13
- Lattice would be ideal, but very costly: large finite volume effects, large systematic errors, need for large statistics, ...
- All kinds of not "ab initio" approaches instead
- Our approach will also be speculative somewhat, but combine both perturbative and non-perturbative physics

Motivation

- Perturbative calculations: reliable close to $N_{f}^{\text {asympt }}=16.5$
- Non-perturbative calculations: for low $0<N_{f}<11$
- Combine both in a meaningful way
- $f_{P S, V} / m_{V}$ ratio across full range $0<N_{f} \leq 16.5$
- Observe abrupt change at some $N_{f} \rightarrow$ identify with N_{f}^{*}

Setup

Define $f_{P S, V}$ and m_{V} at finite fermion mass m

Regardless of N_{f} they are finite and scheme independent (physical)

Well-defined ratios for all $N_{f} \leq 16.5$

Setup

Chiral limit - below conformal window

$$
f_{P S}, \quad f_{V}, \quad m_{V} \sim \wedge
$$

Ratio $\quad f_{P S, V} / m_{V}=O(\Lambda) / O(\Lambda)=$ const finite

Setup

Chiral limit - inside conformal window

$$
f_{P S}, \quad f_{V}, \quad m_{V} \sim m^{\alpha}
$$

With the same $\alpha=\frac{1}{1+\gamma}$

Ratio $f_{P S, V} / m_{V}=O\left(m^{\alpha}\right) / O\left(m^{\alpha}\right)=$ const finite

Setup

The ratios are well-defined in the chiral limit for all $N_{f} \leq 16.5$
$f_{P S, V} / m_{V}$ in the chiral limit is just a function of N_{f}
Low N_{f}, from past lattice work

- $f_{P S} / m_{V}$ in chiral, continuum limit for $2 \leq N_{f} \leq 10$
- Largely N_{f}-independent
- Some constant
- f_{V} from $f_{P S}$ using KSRF

Setup

$\operatorname{High} N_{f}$

- $N_{f}=16.5$, free theory
- $m_{V}=2 m$
- $f_{P S, V}=0$
- $f_{P S, V} / m_{V}=0$

Something happens between $N_{f}=10$ (non-zero ratio) and

$$
N_{f}=16.5 \text { (zero ratio) }
$$

Cartoon

Goals

Calculate $f_{P S, V}$ and m_{V} in perturbation theory

See how far down we can go from $N_{f}=16.5$

Hopefully match with highest $N_{f}=10$ from the lattice studies

Outline

- Pertubative calculation schematically, Banks-Zaks expansion
- Bound states in perturbation theory
- NRQCD and pNRQCD
- NLO, NNLO, $\mathrm{N}^{3} \mathrm{LO}$ results
- Matching between low N_{f} and high N_{f}

Perturbative calculation schematically

In QCD running scale $\mu, a(\mu)=\frac{g^{2}(\mu)}{16 \pi^{2}}$

Starting with CFT + mass deformation choose $\mu=m, a(m)$
(p)NRQCD will give

$$
\begin{aligned}
f_{P S, V} & =m a^{3 / 2}(m)\left(b_{0}+b_{1} a(m)+\ldots\right) \\
m_{V} & =m\left(c_{0}+c_{1} a^{2}(m)+\ldots\right)
\end{aligned}
$$

Here ... contains $\log (a)$ too, coefficients depend on N_{f}

Perturbative calculation schematically

Ratio, m drops out

Take chiral limit $m \rightarrow 0, a(m) \rightarrow a_{*}$ fixed point

$$
\frac{f_{P S, V}}{m_{V}}=a_{*}^{3 / 2}\left(d_{0}+d_{1} a_{*}+d_{2} a_{*}^{2}+\ldots\right)
$$

Here \ldots contains $\log \left(a_{*}\right)$ too, coefficients depend on N_{f}

Banks-Zaks expansion of a_{*}
$\varepsilon=16.5-N_{f}$ distance from upper end of conformal window

Use 5-loop β-function to calculate $a_{*}: \quad \beta\left(a_{*}\right)=0$

Expand a_{*} in ε

$$
a_{*}=\varepsilon\left(e_{0}+e_{1} \varepsilon+e_{2} \varepsilon^{2}+e_{3} \varepsilon^{3}+\ldots\right)
$$

Now no logs, coefficients are constants

Finally Banks-Zaks expansion of ratio
a_{*} expanded in ε and $f_{P S, V} / m_{V}$ expanded in a_{*}

$$
\frac{f_{P S, V}}{m_{V}}=\varepsilon^{3 / 2}\left(h_{0}+h_{1} \varepsilon+h_{2} \varepsilon^{2}+\ldots\right)
$$

Here ... contains $\log (\varepsilon)$ too, coefficients are constants

These will be our main results

Bound states in perturbation theory
$f_{P S, V}$ and m_{V} are properties of bound states (mesons)

Leading order: 2 non-interacting fermions

$$
\begin{aligned}
m_{V} & =2 m \\
f_{P S, V} & =0
\end{aligned}
$$

Valid at $N_{f}=16.5$

Bound states in perturbation theory

First correction: 1-gluon exchange, Coulomb potential

$$
V^{(0)}(r)=-4 \pi C_{F} \frac{a}{r}
$$

Non-relativistic Schroedinger equation

$$
m_{V}=2 m\left(1-2 C_{F}^{2} \pi^{2} a^{2}+O\left(a^{3}\right)\right)
$$

From wave function at origin $f_{P S, V} \sim|\psi(0)|$

$$
f_{P S, V}=m a^{3 / 2} \pi \sqrt{8 N C_{F}^{3}}(1+O(a))
$$

Bound states in perturbation theory, (p)NRQCD

Systematic improvement

Integrate out heavy fermions \rightarrow effective theory

Fermions are slow moving $v \ll 1$ and coupling is small $a \ll 1$

Non-relativistic setup, relativistic effects from corrections
(p)NRQCD

3 scales

- m fermion mass (hard scale)
- mv typical fermion momentum in meson rest frame (soft scale)
- $m v^{2}$ typical kinetic energy

In QCD: $\wedge_{Q C D}$ too, but not for us (CFT)

Separation

$$
m v^{2} \ll m v \ll m
$$

NRQCD

Developed for heavy-heavy mesons in QCD, $\uparrow, J / \Psi, \ldots$

Low energy properties of heavy mesons

Analogous but much simpler: (p)NRQED and positronium

In NRQCD language: n_{1} light quarks and n_{2} heavy quarks

Integrate out n_{2} heavy quarks, n_{1} light quarks stay

For us: $n_{1}=0, n_{2}=N_{f}$ because start from CFT

NRQCD

- Define fields for low-energy excitations
- Impose symmetries
- Specify how accurate the effective theory should be
- Find most general Lagrangian for required accuracy
- Find coefficients from matching original and effective theory

NRQCD

Heavy fermion and anti-fermion, Pauli spinor ψ and χ

$$
\mathcal{L}^{(0)}=\psi^{\dagger}\left(i D_{t}+\frac{\mathbf{D}^{2}}{2 m}\right) \psi+\chi^{\dagger}\left(i D_{t}-\frac{\mathbf{D}^{2}}{2 m}\right) \chi
$$

Higher orders

$$
\begin{aligned}
& \mathcal{L}^{(1)}=\frac{c_{1}}{8 m^{3}} \psi^{\dagger}\left(\mathbf{D}^{2}\right)^{2} \psi+\frac{c_{2}}{8 m^{2}} \psi^{\dagger}(\mathbf{D} g \mathbf{E}-g \mathbf{E D}) \psi+ \\
& +\frac{c_{3}}{8 m^{2}} \psi^{\dagger}(i \mathbf{D} \times g \mathbf{E}-g \mathbf{E} \times \mathbf{D}) \sigma \psi+\frac{c_{4}}{2 m} \psi^{\dagger} g \mathbf{B} \sigma \psi+(\psi \rightarrow \chi)
\end{aligned}
$$

Even more at further orders ...

NRQCD

Short distance coefficients $c_{1,2,3,4}=1+O(a)$
Calculate these to desired order in a : matching QCD to NRQCD

pNRQCD

Further integrate out soft scale $m v$

Decay constants from NRQCD matrix elements: long distance matrix elements

Long distance matrix elements from pNRQCD wave functions

Wave functions from Schroedinger equation with $V(r)$

$$
V(r)=V^{(0)}(r)+V^{(1)}(r, \partial)+\ldots
$$

Expanded in $1 / m$, determined by NRQCD - pNRQCD matching

pNRQCD

Long distance matrix elements, $O(v)$
Pseudo scalar: $\langle 0| \chi^{\dagger} \psi|P S\rangle=\sqrt{2 N_{c}}\left|\Psi_{P S}(0)\right|$
Vector: $\langle 0| \chi^{\dagger} \epsilon \sigma \psi|V\rangle=\sqrt{2 N_{c}}\left|\Psi_{V}(0)\right|$
Long distance matrix elements, $O\left(v^{2}\right)$
Pseudo scalar: $\langle 0| \chi^{\dagger}\left(-\frac{i}{2} \overleftrightarrow{\mathrm{D}}\right)^{2} \psi|P S\rangle=m E_{P S} \sqrt{2 N_{c}}\left|\Psi_{P S}(0)\right|$
Vector: $\langle 0| \chi^{\dagger} \epsilon \sigma\left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}}\right)^{2} \psi|V\rangle=m E_{V} \sqrt{2 N_{c}}\left|\Psi_{V}(0)\right|$
$E_{P S, V}=m_{P S, V}-2 m=O\left(a^{2}\right)<0$ binding energies
pNRQCD, decay constants

$$
\begin{aligned}
f_{P S} & =\frac{1}{\sqrt{m_{P S}}}\left(c_{p}\langle 0| \chi^{\dagger} \psi|P S\rangle-\frac{d_{p}}{2 m^{2}}\langle 0| \chi^{\dagger}\left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}}\right)^{2} \psi|P S\rangle\right) \\
f_{V} & =\frac{1}{\sqrt{m_{V}}}\left(c_{v}\langle 0| \chi^{\dagger} \epsilon \cdot \sigma \psi|V\rangle-\frac{d_{v}}{6 m^{2}}\langle 0| \chi^{\dagger} \epsilon \cdot \sigma\left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}}\right)^{2} \psi|V\rangle\right)
\end{aligned}
$$

where $c_{v}, d_{v}, c_{p}, d_{p}=1+O(a)$ matching coefficients

$$
\begin{aligned}
f_{P S} & =\sqrt{\frac{N_{c}}{m}}\left[c_{p}-\left(\frac{c_{p}}{4}+\frac{d_{p}}{2}\right) \frac{E_{P S}}{m}\right]\left|\Psi_{P S}(0)\right| \\
f_{V} & =\sqrt{\frac{N_{c}}{m}}\left[c_{v}-\left(\frac{c_{v}}{4}+\frac{d_{v}}{6}\right) \frac{E_{V}}{m}\right]\left|\Psi_{V}(0)\right|
\end{aligned}
$$

Decay constants

N_{f}-dependence from the matching coefficients

From heavy quark literature:

- NNLO for all ingredients of $f_{P S}$
- $\mathrm{N}^{3} \mathrm{LO}$ for all ingredients of f_{V}

In QCD: $a(\mu)=\frac{g^{2}(\mu)}{16 \pi^{2}}$ non-trivial μ-dependence

Starting with CFT + mass deformation, natural choice $\mu=m$

Results, m_{V}

$$
m_{V}=c_{0} m\left(1+c_{2} a^{2}(m)+c_{30} a^{3}(m)+c_{31} a^{3}(m) \log a(m)+O\left(a^{4}\right)\right)
$$

$$
\begin{gathered}
c_{0}=2 \\
c_{2}=-2 C_{F}^{2} \pi^{2} \\
c_{30}=\frac{4}{9} \pi^{2} C_{A} C_{F}^{2}\left(66 \log \left(4 \pi C_{F}\right)-97\right) \\
c_{31}=\frac{88}{3} \pi^{2} C_{A} C_{F}^{2}
\end{gathered}
$$

Results, f_{V} NNLO

$$
\begin{gathered}
f_{V}=b_{0}^{V} m a^{3 / 2}(m)\left(1+\sum_{n=1}^{3} \sum_{k=0}^{n} b_{n k}^{V} a^{n}(m) \log ^{k} a(m)+O\left(a^{4}\right)\right) \\
b_{0}^{V}=\sqrt{8 N_{c} C_{F}^{3}} \pi, \quad b_{10}^{V}=\frac{161}{6}-\frac{11 \pi^{2}}{3}+33 \log \left(\frac{3}{16 \pi}\right), \quad b_{11}^{V}=-33 \\
b_{20}^{V}=\left(-\frac{64 \pi^{2}}{27}+\frac{704}{27}\right) N_{f}+\frac{9781 \zeta(3)}{9}-\frac{27 \pi^{4}}{8}+\frac{1126 \pi^{2}}{81}+\frac{9997}{72}+ \\
+\frac{1815 \log ^{2} \pi}{2}+\frac{1815}{2} \log ^{2}\left(\frac{16}{3}\right)+\log \left(\frac{16}{3}\right)\left(-\frac{2581}{2}+\frac{605 \pi^{2}}{3}+1815 \log (\pi)\right)+ \\
+\left(\frac{4325 \pi^{2}}{27}-\frac{2581}{2}\right) \log (\pi)-\frac{256}{81} \pi^{2} \log (8)-\frac{1120}{27} \pi^{2} \log \left(\frac{8}{3}\right)-\frac{512}{9} \pi^{2} \log (2) \\
b_{21}^{V}=\frac{4325 \pi^{2}}{27}-\frac{2581}{2}+1815 \log \left(\frac{16 \pi}{3}\right), \quad b_{22}^{V}=\frac{1815}{2} .
\end{gathered}
$$

Results, $f_{V} \mathrm{~N}^{3} \mathrm{LO}$

$$
\begin{gathered}
f_{V}=b_{0}^{V} m a^{3 / 2}(m)\left(1+\sum_{n=1}^{3} \sum_{k=0}^{n} b_{n k}^{V} a^{n}(m) \log ^{k} a(m)+O\left(a^{4}\right)\right) \\
b_{30}^{V}=0.8198 N_{f}^{2}-362.7 N_{f}-1.0901(1) \times 10^{6} \\
b_{31}^{V}=-88.42 N_{f}-7.7493 \times 10^{5} \\
b_{32}^{V}=-2.1651 \times 10^{5} \\
b_{33}^{V}=-2.3292 \times 10^{4}
\end{gathered}
$$

Part of it numerical only

Results, $f_{P S}$ NNLO

$$
\begin{gathered}
f_{P S}=b_{0}^{P S} m a^{3 / 2}(m)\left(1+\sum_{n=1}^{2} \sum_{k=0}^{n} b_{n k}^{P S} a^{n}(m) \log ^{k} a(m)+O\left(a^{3}\right)\right) \\
b_{0}^{P S}=\sqrt{8 N_{C} C_{F}^{3}} \pi, \quad b_{10}^{P S}=\frac{59}{2}-\frac{11 \pi^{2}}{3}+33 \log \left(\frac{3}{16 \pi}\right), \quad b_{11}^{P S}=-33 \\
b_{20}^{P S}=N_{f}\left(-\frac{32 \pi^{2}}{9}+\frac{344}{9}\right)+961 \zeta(3)-\frac{27 \pi^{4}}{8}+\frac{1310 \pi^{2}}{27}+\frac{23053}{72}+ \\
+\frac{1815 \log ^{2} \pi}{2}+\frac{1815}{2} \log ^{2}\left(\frac{16}{3}\right)+\log \left(\frac{16}{3}\right)\left(-\frac{2757}{2}+\frac{1271 \pi^{2}}{9}+1815 \log \pi\right)+ \\
+\left(\frac{1271 \pi^{2}}{9}-\frac{2757}{2}\right) \log \pi-\frac{272}{9} \pi^{2} \log 2 \\
b_{21}^{P S}=\frac{1271 \pi^{2}}{9}-\frac{2757}{2}+\frac{1815}{2} \log \left(\frac{256 \pi^{2}}{9}\right), \quad b_{22}^{P S}=\frac{1815}{2} .
\end{gathered}
$$

Banks-Zaks expansion

Replace N_{f}-dependence by $\varepsilon=16.5-N_{f}$
Expand a_{*} in ε from 5-loop β-function

Now both ratios are just expanded in ε

Main result, Banks-Zaks expansion of ratios

$$
\begin{gathered}
\frac{f_{V}}{m_{V}}=\varepsilon^{3 / 2} C_{0}\left(1+\sum_{n=1}^{3} \sum_{k=0}^{n} C_{n k} \varepsilon^{n} \log ^{k} \varepsilon+O\left(\varepsilon^{4}\right)\right) \\
C_{0}=0.005826678 \\
C_{10}=0.4487893 \quad C_{11}=-0.2056075 \\
C_{21}=-0.1624891 \quad C_{20}=0.2444502 \\
C_{31}=-0.1128420 \quad C_{32}=0.03695458 \quad C_{33}=-0.005633665
\end{gathered}
$$

Main result, Banks-Zaks expansion of ratios

$$
\begin{gathered}
\frac{f_{P S}}{m_{V}}=\varepsilon^{3 / 2} C_{0}\left(1+\sum_{n=1}^{2} \sum_{k=0}^{n} D_{n k} \varepsilon^{n} \log ^{k} \varepsilon+O\left(\varepsilon^{3}\right)\right) \\
D_{10}=0.4654041 \quad D_{11}=-0.2056075 \\
D_{20}=0.2845697 \quad D_{21}=-0.1737620 \quad D_{22}=0.03528692
\end{gathered}
$$

Notes

- Coefficients do not blow up (unlike in terms of a of $f_{V, P S}, m_{V}$)
- Coefficients are scheme independent
- Many subtle details left out
- Renormalization (we use $\overline{\mathrm{MS}}$)
- Arbitrary scale independence and cancellations ...

f_{V} / m_{V}

N^{3} LO perturbative result

Direct lattice results only for $f_{P S}$

Use KSRF relation to extract f_{V}

$$
f_{V}=\sqrt{2} f_{P S}
$$

From vector meson dominance / universality

Proven in SQCD, correct to about 12\% in QCD

Conservatively assign 12\% uncertainty

Main result - f_{V} / m_{V}

Main result - f_{V} / m_{V}

Important observations

- NNLO and $\mathrm{N}^{3} \mathrm{LO}$ almost the same down to $N_{f}=12$
- $\mathrm{N}^{3} \mathrm{LO}$ matches at $N_{f}=12$ last non-pertubative point $N_{f}=10$
- Quantitatively

$$
\begin{aligned}
& -N_{f}=12.00(4) \quad \mathrm{NNLO} \\
& -N_{f}=12.08(6) \quad \mathrm{N}^{3} \mathrm{LO} \\
& -N_{f}=12.0(5) \quad \mathrm{N}^{3} \mathrm{LO}+\mathrm{KSRF}
\end{aligned}
$$

Main result - $f_{P S} / m_{V}$

Main result - $f_{P S} / m_{V}$

Important observations

- $\mathrm{N}^{3} \mathrm{LO}$ not available
- Assume similar to f_{V} / m_{V}
- Match seems to be around $N_{f}=13$

Conclusions

- Perturbation theory perhaps reliable down to $N_{f}=12$
- If monotonous N_{f}-dependence assumed, constrain N_{f}^{*}
- $N_{f}^{*} \simeq 12$ and $N_{f}^{*} \simeq 13$ from the two ratios
- In any case: abrupt change in ratios at these N_{f}
- Our method combines perturbative and non-perturbative input

Improvements for the future

- N^{3} LO calculation of $f_{P S}$ (very difficult)
- Direct f_{V} lattice calculation for $N_{f} \leq 10$ (probably doable)
- Perhaps $N_{f}=11,12$ lattice calculation (costly)
- N^{4} LO: 6-loop β-function would be needed (not any time soon)

Thank you for your attention!

