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Context and motivation

• Non-abelian gauge theories (G,Nf , R) in 4 dimensions, m = 0

• Nf small: 0 ≤ Nf < N∗f

HELLO chiral symmetry spontaneously broken, Λ

• Nf large but not very large

HELLO N∗f < Nf < N
asympt
f : CFT → conformal window

• Main question: what is N∗f for given G and R?

HELLO lower end of the conformal window

• Our work: G = SU(3) and R = fund



Motivation

• N∗f potentially determined by non-perturbative physics

• Nasympt
f purely perturbative (1-loop)

• G = SU(3), R = fund : N
asympt
f = 16.5

from 1-loop β-function



Motivation

• No clear consensus on N∗f for G = SU(3) and R = fund

• Somewhere around 8− 13

• Lattice would be ideal, but very costly: large finite volume

effects, large systematic errors, need for large statistics, . . .

• All kinds of not “ab initio” approaches instead

• Our approach will also be speculative somewhat, but combine

both perturbative and non-perturbative physics



Motivation

• Perturbative calculations: reliable close to N
asympt
f = 16.5

• Non-perturbative calculations: for low 0 < Nf < 11

• Combine both in a meaningful way

• fPS,V /mV ratio across full range 0 < Nf ≤ 16.5

• Observe abrupt change at some Nf → identify with N∗f



Setup

Define fPS,V and mV at finite fermion mass m

Regardless of Nf they are finite and scheme independent (physical)

Well-defined ratios for all Nf ≤ 16.5



Setup

Chiral limit - below conformal window

fPS, fV , mV ∼ Λ

Ratio fPS,V /mV = O(Λ)/O(Λ) = const finite



Setup

Chiral limit - inside conformal window

fPS, fV , mV ∼ mα

With the same α = 1
1+γ

Ratio fPS,V /mV = O(mα)/O(mα) = const finite



Setup

The ratios are well-defined in the chiral limit for all Nf ≤ 16.5

fPS,V /mV in the chiral limit is just a function of Nf

Low Nf , from past lattice work

• fPS/mV in chiral, continuum limit for 2 ≤ Nf ≤ 10

• Largely Nf-independent

• Some constant

• fV from fPS using KSRF



Setup

High Nf

• Nf = 16.5, free theory

• mV = 2m

• fPS,V = 0

• fPS,V /mV = 0

Something happens between Nf = 10 (non-zero ratio) and

Nf = 16.5 (zero ratio)
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Goals

Calculate fPS,V and mV in perturbation theory

See how far down we can go from Nf = 16.5

Hopefully match with highest Nf = 10 from the lattice studies



Outline

• Pertubative calculation schematically, Banks-Zaks expansion

• Bound states in perturbation theory

• NRQCD and pNRQCD

• NLO, NNLO, N3LO results

• Matching between low Nf and high Nf



Perturbative calculation schematically

In QCD running scale µ, a(µ) = g2(µ)
16π2

Starting with CFT + mass deformation choose µ = m, a(m)

(p)NRQCD will give

fPS,V = ma3/2(m) (b0 + b1 a(m) + . . .)

mV = m(c0 + c1 a
2(m) + . . .)

Here . . . contains log(a) too, coefficients depend on Nf



Perturbative calculation schematically

Ratio, m drops out

Take chiral limit m→ 0, a(m)→ a∗ fixed point

fPS,V

mV
= a

3/2
∗ (d0 + d1 a∗+ d2 a

2
∗ + . . .)

Here . . . contains log(a∗) too, coefficients depend on Nf



Banks-Zaks expansion of a∗

ε = 16.5−Nf distance from upper end of conformal window

Use 5-loop β-function to calculate a∗ : β(a∗) = 0

Expand a∗ in ε

a∗ = ε (e0 + e1 ε+ e2 ε
2 + e3 ε

3 + . . .)

Now no logs, coefficients are constants



Finally Banks-Zaks expansion of ratio

a∗ expanded in ε and fPS,V /mV expanded in a∗

fPS,V

mV
= ε3/2(h0 + h1 ε+ h2 ε

2 + . . .)

Here . . . contains log(ε) too, coefficients are constants

These will be our main results



Bound states in perturbation theory

fPS,V and mV are properties of bound states (mesons)

Leading order: 2 non-interacting fermions

HELLO HELLO mV = 2m

HELLO HELLOl fPS,V = 0

Valid at Nf = 16.5



Bound states in perturbation theory

First correction: 1-gluon exchange, Coulomb potential

V (0)(r) = −4π CF
a

r

Non-relativistic Schroedinger equation

mV = 2m(1− 2C2
Fπ

2a2 +O(a3))

From wave function at origin fPS,V ∼ |ψ(0)|

fPS,V = ma3/2π
√

8NC3
F (1 +O(a))



Bound states in perturbation theory, (p)NRQCD

Systematic improvement

Integrate out heavy fermions → effective theory

Fermions are slow moving v � 1 and coupling is small a� 1

Non-relativistic setup, relativistic effects from corrections



(p)NRQCD

3 scales

• m fermion mass (hard scale)

• mv typical fermion momentum in meson rest frame (soft scale)

• mv2 typical kinetic energy

In QCD: ΛQCD too, but not for us (CFT)

Separation mv2 � mv � m



NRQCD

Developed for heavy-heavy mesons in QCD, Υ, J/Ψ, . . .

Low energy properties of heavy mesons

Analogous but much simpler: (p)NRQED and positronium

In NRQCD language: n1 light quarks and n2 heavy quarks

Integrate out n2 heavy quarks, n1 light quarks stay

For us: n1 = 0, n2 = Nf because start from CFT



NRQCD

• Define fields for low-energy excitations

• Impose symmetries

• Specify how accurate the effective theory should be

• Find most general Lagrangian for required accuracy

• Find coefficients from matching original and effective theory



NRQCD

Heavy fermion and anti-fermion, Pauli spinor ψ and χ

L(0) = ψ†
(
iDt +

D2

2m

)
ψ + χ†

(
iDt −

D2

2m

)
χ

Higher orders

L(1) =
c1

8m3
ψ†(D2)2ψ +

c2
8m2

ψ† (DgE− gED)ψ+

+
c3

8m2
ψ† (iD× gE− gE×D)σψ +

c4
2m

ψ†gBσψ + (ψ → χ)

Even more at further orders ...



NRQCD

Short distance coefficients c1,2,3,4 = 1 +O(a)

Calculate these to desired order in a: matching QCD to NRQCD



pNRQCD

Further integrate out soft scale mv

Decay constants from NRQCD matrix elements: long distance

matrix elements

Long distance matrix elements from pNRQCD wave functions

Wave functions from Schroedinger equation with V (r)

V (r) = V (0)(r) + V (1)(r, ∂) + . . .

Expanded in 1/m, determined by NRQCD - pNRQCD matching



pNRQCD

Long distance matrix elements, O(v)

HELLO Pseudo scalar: 〈0|χ†ψ|PS〉 =
√

2Nc|ΨPS(0)|

HELLO Vector: 〈0|χ†εσψ|V 〉 =
√

2Nc|ΨV (0)|

Long distance matrix elements, O(v2)

HELLO Pseudo scalar: 〈0|χ†
(
− i

2
←→
D
)2
ψ|PS〉 = mEPS

√
2Nc|ΨPS(0)|

HELLO Vector: 〈0|χ†εσ
(
− i

2
←→
D
)2
ψ|V 〉 = mEV

√
2Nc|ΨV (0)|

EPS,V = mPS,V − 2m = O(a2) < 0 binding energies



pNRQCD, decay constants

fPS =
1

√
mPS

(
cp〈0|χ†ψ|PS〉 −

dp

2m2
〈0|χ†(−

i

2

←→
D )2ψ|PS〉

)

fV =
1
√
mV

(
cv〈0|χ†ε · σψ|V 〉 −

dv

6m2
〈0|χ†ε · σ(−

i

2

←→
D )2ψ|V 〉

)

where cv, dv, cp, dp = 1 +O(a) matching coefficients

fPS =

√
Nc

m

[
cp −

(
cp

4
+
dp

2

)
EPS
m

]
|ΨPS(0)|

fV =

√
Nc

m

[
cv −

(
cv

4
+
dv

6

)
EV
m

]
|ΨV (0)|



Decay constants

Nf-dependence from the matching coefficients

From heavy quark literature:

• NNLO for all ingredients of fPS

• N3LO for all ingredients of fV

In QCD: a(µ) = g2(µ)
16π2 non-trivial µ-dependence

Starting with CFT + mass deformation, natural choice µ = m



Results, mV

mV = c0m
(
1 + c2a

2(m) + c30a
3(m) + c31a

3(m) log a(m) +O(a4)
)

c0 = 2

c2 = −2C2
Fπ

2

c30 =
4

9
π2CAC

2
F (66 log(4πCF )− 97)

c31 =
88

3
π2CAC

2
F



Results, fV NNLO

fV = bV0 ma3/2(m)

1 +
3∑

n=1

n∑
k=0

bVnk a
n(m) log k a(m) +O(a4)



bV0 =
√

8NcC
3
Fπ, bV10 =

161

6
−

11π2

3
+33 log

(
3

16π

)
, bV11 = −33

bV20 =

(
−

64π2

27
+

704

27

)
Nf +

9781ζ(3)

9
−

27π4

8
+

1126π2

81
+

9997

72
+

+
1815 log2 π

2
+

1815

2
log2

(
16

3

)
+log

(
16

3

)(
−

2581

2
+

605π2

3
+ 1815 log(π)

)
+

+

(
4325π2

27
−

2581

2

)
log(π)−

256

81
π2 log(8)−

1120

27
π2 log

(
8

3

)
−

512

9
π2 log(2)

bV21 =
4325π2

27
−

2581

2
+ 1815 log

(
16π

3

)
, bV22 =

1815

2
.



Results, fV N3LO

fV = bV0 ma3/2(m)

1 +
3∑

n=1

n∑
k=0

bVnka
n(m) log k a(m) +O(a4)



bV30 = 0.8198N2
f − 362.7Nf − 1.0901(1)× 106

bV31 = −88.42Nf − 7.7493× 105

bV32 = −2.1651× 105

bV33 = −2.3292× 104

Part of it numerical only



Results, fPS NNLO

fPS = bPS0 ma3/2(m)

1 +
2∑

n=1

n∑
k=0

bPSnk a
n(m) log k a(m) +O(a3)



bPS0 =
√

8NcC
3
Fπ, bPS10 =

59

2
−

11π2

3
+ 33 log

(
3

16π

)
, bPS11 = −33

bPS20 = Nf

(
−

32π2

9
+

344

9

)
+ 961ζ(3)−

27π4

8
+

1310π2

27
+

23053

72
+

+
1815 log2 π

2
+

1815

2
log2

(
16

3

)
+log

(
16

3

)(
−

2757

2
+

1271π2

9
+ 1815 logπ

)
+

+

(
1271π2

9
−

2757

2

)
logπ −

272

9
π2 log 2

bPS21 =
1271π2

9
−

2757

2
+

1815

2
log

(
256π2

9

)
, bPS22 =

1815

2
.



Banks-Zaks expansion

Replace Nf-dependence by ε = 16.5−Nf

Expand a∗ in ε from 5-loop β-function

Now both ratios are just expanded in ε



Main result, Banks-Zaks expansion of ratios

fV
mV

= ε3/2C0

1 +
3∑

n=1

n∑
k=0

Cnk ε
n logk ε+O(ε4)



C0 = 0.005826678

C10 = 0.4487893 C11 = −0.2056075 C20 = 0.2444502

C21 = −0.1624891 C22 = 0.03522870 C30 = 0.10604(3)

C31 = −0.1128420 C32 = 0.03695458 C33 = −0.005633665



Main result, Banks-Zaks expansion of ratios

fPS
mV

= ε3/2C0

1 +
2∑

n=1

n∑
k=0

Dnk ε
n logk ε+O(ε3)



D10 = 0.4654041 D11 = −0.2056075

D20 = 0.2845697 D21 = −0.1737620 D22 = 0.03528692



Notes

• Coefficients do not blow up (unlike in terms of a of fV,PS,mV )

• Coefficients are scheme independent

• Many subtle details left out

• Renormalization (we use MS)

• Arbitrary scale independence and cancellations ...



fV /mV

N3LO perturbative result

Direct lattice results only for fPS

Use KSRF relation to extract fV

fV =
√

2fPS

From vector meson dominance / universality

Proven in SQCD, correct to about 12% in QCD

Conservatively assign 12% uncertainty



Main result - fV /mV
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Main result - fV /mV

Important observations

• NNLO and N3LO almost the same down to Nf = 12

• N3LO matches at Nf = 12 last non-pertubative point Nf = 10

• Quantitatively

– Nf = 12.00(4) NNLO

– Nf = 12.08(6) N3LO

– Nf = 12.0(5) N3LO + KSRF



Main result - fPS/mV
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Main result - fPS/mV

Important observations

• N3LO not available

• Assume similar to fV /mV

• Match seems to be around Nf = 13



Conclusions

• Perturbation theory perhaps reliable down to Nf = 12

• If monotonous Nf-dependence assumed, constrain N∗f

• N∗f ' 12 and N∗f ' 13 from the two ratios

• In any case: abrupt change in ratios at these Nf

• Our method combines perturbative and non-perturbative input



Improvements for the future

• N3LO calculation of fPS (very difficult)

• Direct fV lattice calculation for Nf ≤ 10 (probably doable)

• Perhaps Nf = 11,12 lattice calculation (costly)

• N4LO: 6-loop β-function would be needed (not any time soon)



.

Thank you for your attention!


